257 research outputs found

    Adaptive inferential sensors based on evolving fuzzy models

    Get PDF
    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can a- ddress the challenges of the modern advanced process industry

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    A new T-S fuzzy model predictive control for nonlinear processes

    Get PDF
    Abstract: In this paper, a novel fuzzy Generalized Predictive Control (GPC) is proposed for discrete-time nonlinear systems via Takagi-Sugeno system based Kernel Ridge Regression (TS-KRR). The TS-KRR strategy approximates the unknown nonlinear systems by learning the Takagi-Sugeno (TS) fuzzy parameters from the input-output data. Two main steps are required to construct the TS-KRR: the first step is to use a clustering algorithm such as the clustering based Particle Swarm Optimization (PSO) algorithm that separates the input data into clusters and obtains the antecedent TS fuzzy model parameters. In the second step, the consequent TS fuzzy parameters are obtained using a Kernel ridge regression algorithm. Furthermore, the TS based predictive control is created by integrating the TS-KRR into the Generalized Predictive Controller. Next, an adaptive, online, version of TS-KRR is proposed and integrated with the GPC controller resulting an efficient adaptive fuzzy generalized predictive control methodology that can deal with most of the industrial plants and has the ability to deal with disturbances and variations of the model parameters. In the adaptive TS-KRR algorithm, the antecedent parameters are initialized with a simple K-means algorithm and updated using a simple gradient algorithm. Then, the consequent parameters are obtained using the sliding-window Kernel Recursive Least squares (KRLS) algorithm. Finally, two nonlinear systems: A surge tank and Continuous Stirred Tank Reactor (CSTR) systems were used to investigate the performance of the new adaptive TS-KRR GPC controller. Furthermore, the results obtained by the adaptive TS-KRR GPC controller were compared with two other controllers. The numerical results demonstrate the reliability of the proposed adaptive TS-KRR GPC method for discrete-time nonlinear systems

    Online incremental learning from scratch with application to handwritten gesture recognition

    Get PDF
    In recent years we have witnessed a significant growth of data to be processed by machines in order to extract all the knowledge from those data. For agile decision making, the arrival of new data is not bounded by time, and their characteristics may change over time. The knowledge stored in machines needs to be kept up to date. In traditional machine learning, this can be done by re-learning on new data. However, with the constant occurrence of high data volume, the process becomes overloaded, and this kind of task becomes unfeasible. Online learning methods have been proposed not only to help with the processing of high data volume, but also to become more agile and adaptive towards the changing nature of data. Online learning brings simplicity to the updates of the model by decoupling a single update from the whole updating process. Such a learning process is often referred to as incremental learning, where the machine learns by small increments to build the whole knowledge. The aim of this research is to contribute to online incremental learning for pattern recognition and more specifically, by handwritten symbol recognition. In this work, we focus on specific problems of online learning related to the stability-plasticity dilemma and fast processing. Driven by the application and the focus of this research, we apply our solutions to Neuro-Fuzzy models. The concept of Neuro-Fuzzy modeling is based on dividing the space of inseparable and overlying classes into sub-problems governed by fuzzy rules, where the classification is handled by a simple linear model and then used for a combined result of the model, i.e., only a partially linear one. Each handwritten symbol can be represented by a number of sets of symbols of one class that resemble each other but vary internally. Thus, each class appears difficult to be described by a simple model. By dividing it into a number of simpler problems, the task of describing the class is more feasible, which is our main motivation for choosing Neuro-Fuzzy models. To contribute to real-time processing, while at the same time maintaining a high recognition rate, we developed Incremental Similarity, a similarity measure using incremental learning and, most importantly, simple updates. Our solution has been applied to a number of models and has shown superior results. Often, the distribution of the classes is not uniform, i.e., there are blocks of occurrences and non-occurrences of some classes. As a result, if any given class is not used for a period of time, it will be forgotten. Since the models used in our research use Recursive Least Squares, we proposed Elastic Memory Learning, a method for this kind of optimization and, we have achieved significantly better results. The use of hyper-parameters tends to be a necessity for many models. However, the fixing of these parameters is performed by a cross-validation. In online learning, cross-validation is not possible, especially for real-time learning. In our work we have developed a new model that instead of fixing its hyper-parameters uses them as parameters that are learned in an automatic way according to the changing trends in the data. From there, the whole structure of the model needs to be self-adapted each time, which yields our proposal of a self-organized Neuro-Fuzzy model (SO-ARTIST). Since online incremental learning learns from one data point at a time, at the beginning there is only one. This is referred to as starting from scratch and leads to low generalization of the model at the beginning of the learning process, i.e., high variance. In our work we integrated a model based on kinematic theory to generate synthetic data into the online learning pipeline, and this has led to significantly lower variance at the initial stage of the learning process. Altogether, this work has contributed a number of novel methods in the area of online learning that have been published in international journals and presented at international conferences. The main goal of this thesis has been fulfilled and all the objectives have been tackled. Our results have shown significant impact in this area

    Value Function Estimation in Optimal Control via Takagi-Sugeno Models and Linear Programming

    Full text link
    [ES] La presente Tesis emplea técnicas de programación dinámica y aprendizaje por refuerzo para el control de sistemas no lineales en espacios discretos y continuos. Inicialmente se realiza una revisión de los conceptos básicos de programación dinámica y aprendizaje por refuerzo para sistemas con un número finito de estados. Se analiza la extensión de estas técnicas mediante el uso de funciones de aproximación que permiten ampliar su aplicabilidad a sistemas con un gran número de estados o sistemas continuos. Las contribuciones de la Tesis son: -Se presenta una metodología que combina identificación y ajuste de la función Q, que incluye la identificación de un modelo Takagi-Sugeno, el cálculo de controladores subóptimos a partir de desigualdades matriciales lineales y el consiguiente ajuste basado en datos de la función Q a través de una optimización monotónica. -Se propone una metodología para el aprendizaje de controladores utilizando programación dinámica aproximada a través de programación lineal. La metodología hace que ADP-LP funcione en aplicaciones prácticas de control con estados y acciones continuos. La metodología propuesta estima una cota inferior y superior de la función de valor óptima a través de aproximadores funcionales. Se establecen pautas para los datos y la regularización de regresores con el fin de obtener resultados satisfactorios evitando soluciones no acotadas o mal condicionadas. -Se plantea una metodología bajo el enfoque de programación lineal aplicada a programación dinámica aproximada para obtener una mejor aproximación de la función de valor óptima en una determinada región del espacio de estados. La metodología propone aprender gradualmente una política utilizando datos disponibles sólo en la región de exploración. La exploración incrementa progresivamente la región de aprendizaje hasta obtener una política convergida.[CA] La present Tesi empra tècniques de programació dinàmica i aprenentatge per reforç per al control de sistemes no lineals en espais discrets i continus. Inicialment es realitza una revisió dels conceptes bàsics de programació dinàmica i aprenentatge per reforç per a sistemes amb un nombre finit d'estats. S'analitza l'extensió d'aquestes tècniques mitjançant l'ús de funcions d'aproximació que permeten ampliar la seua aplicabilitat a sistemes amb un gran nombre d'estats o sistemes continus. Les contribucions de la Tesi són: -Es presenta una metodologia que combina identificació i ajust de la funció Q, que inclou la identificació d'un model Takagi-Sugeno, el càlcul de controladors subòptims a partir de desigualtats matricials lineals i el consegüent ajust basat en dades de la funció Q a través d'una optimització monotónica. -Es proposa una metodologia per a l'aprenentatge de controladors utilitzant programació dinàmica aproximada a través de programació lineal. La metodologia fa que ADP-LP funcione en aplicacions pràctiques de control amb estats i accions continus. La metodologia proposada estima una cota inferior i superior de la funció de valor òptima a través de aproximadores funcionals. S'estableixen pautes per a les dades i la regularització de regresores amb la finalitat d'obtenir resultats satisfactoris evitant solucions no fitades o mal condicionades. -Es planteja una metodologia sota l'enfocament de programació lineal aplicada a programació dinàmica aproximada per a obtenir una millor aproximació de la funció de valor òptima en una determinada regió de l'espai d'estats. La metodologia proposa aprendre gradualment una política utilitzant dades disponibles només a la regió d'exploració. L'exploració incrementa progressivament la regió d'aprenentatge fins a obtenir una política convergida.[EN] The present Thesis employs dynamic programming and reinforcement learning techniques in order to obtain optimal policies for controlling nonlinear systems with discrete and continuous states and actions. Initially, a review of the basic concepts of dynamic programming and reinforcement learning is carried out for systems with a finite number of states. After that, the extension of these techniques to systems with a large number of states or continuous state systems is analysed using approximation functions. The contributions of the Thesis are: -A combined identification/Q-function fitting methodology, which involves identification of a Takagi-Sugeno model, computation of (sub)optimal controllers from Linear Matrix Inequalities, and the subsequent data-based fitting of Q-function via monotonic optimisation. -A methodology for learning controllers using approximate dynamic programming via linear programming is presented. The methodology makes that ADP-LP approach can work in practical control applications with continuous state and input spaces. The proposed methodology estimates a lower bound and upper bound of the optimal value function through functional approximators. Guidelines are provided for data and regressor regularisation in order to obtain satisfactory results avoiding unbounded or ill-conditioned solutions. -A methodology of approximate dynamic programming via linear programming in order to obtain a better approximation of the optimal value function in a specific region of state space. The methodology proposes to gradually learn a policy using data available only in the exploration region. The exploration progressively increases the learning region until a converged policy is obtained.This work was supported by the National Department of Higher Education, Science, Technology and Innovation of Ecuador (SENESCYT), and the Spanish ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER,UE). The author also received the grant for a predoctoral stay, Programa de Becas Iberoamérica- Santander Investigación 2018, of the Santander Bank.Díaz Iza, HP. (2020). Value Function Estimation in Optimal Control via Takagi-Sugeno Models and Linear Programming [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139135TESI

    Hybrid Dy-NFIS & RLS equalization for ZCC code in optical-CDMA over multi-mode optical fiber

    Get PDF
    For long haul coherent optical fiber communication systems, it is significant to precisely monitor the quality of transmission links and optical signals. The channel capacity beyond Shannon limit of Single-mode optical fiber (SMOF) is achieved with the help of Multi-mode optical fiber (MMOF), where the signal is multiplexed in different spatial modes. To increase single-mode transmission capacity and to avoid a foreseen “capacity crunch”, researchers have been motivated to employ MMOF as an alternative. Furthermore, different multiplexing techniques could be applied in MMOF to improve the communication system. One of these techniques is the Optical Code Division Multiple Access (Optical-CDMA), which simplifies and decentralizes network controls to improve spectral efficiency and information security increasing flexibility in bandwidth granularity. This technique also allows synchronous and simultaneous transmission medium to be shared by many users. However, during the propagation of the data over the MMOF based on Optical-CDMA, an inevitable encountered issue is pulse dispersion, nonlinearity and MAI due to mode coupling. Moreover, pulse dispersion, nonlinearity and MAI are significant aspects for the evaluation of the performance of high-speed MMOF communication systems based on Optical-CDMA. This work suggests a hybrid algorithm based on nonlinear algorithm (Dynamic evolving neural fuzzy inference (Dy-NFIS)) and linear algorithm (Recursive least squares (RLS)) equalization for ZCC code in Optical-CDMA over MMOF. Root mean squared error (RMSE), mean squared error (MSE) and Structural Similarity index (SSIM) are used to measure performance results

    Semi-supervised machine learning techniques for classification of evolving data in pattern recognition

    Get PDF
    The amount of data recorded and processed over recent years has increased exponentially. To create intelligent systems that can learn from this data, we need to be able to identify patterns hidden in the data itself, learn these pattern and predict future results based on our current observations. If we think about this system in the context of time, the data itself evolves and so does the nature of the classification problem. As more data become available, different classification algorithms are suitable for a particular setting. At the beginning of the learning cycle when we have a limited amount of data, online learning algorithms are more suitable. When truly large amounts of data become available, we need algorithms that can handle large amounts of data that might be only partially labeled as a result of the bottleneck in the learning pipeline from human labeling of the data. An excellent example of evolving data is gesture recognition, and it is present throughout our work. We need a gesture recognition system to work fast and with very few examples at the beginning. Over time, we are able to collect more data and the system can improve. As the system evolves, the user expects it to work better and not to have to become involved when the classifier is unsure about decisions. This latter situation produces additional unlabeled data. Another example of an application is medical classification, where experts’ time is a rare resource and the amount of received and labeled data disproportionately increases over time. Although the process of data evolution is continuous, we identify three main discrete areas of contribution in different scenarios. When the system is very new and not enough data are available, online learning is used to learn after every single example and to capture the knowledge very fast. With increasing amounts of data, offline learning techniques are applicable. Once the amount of data is overwhelming and the teacher cannot provide labels for all the data, we have another setup that combines labeled and unlabeled data. These three setups define our areas of contribution; and our techniques contribute in each of them with applications to pattern recognition scenarios, such as gesture recognition and sketch recognition. An online learning setup significantly restricts the range of techniques that can be used. In our case, the selected baseline technique is the Evolving TS-Fuzzy Model. The semi-supervised aspect we use is a relation between rules created by this model. Specifically, we propose a transductive similarity model that utilizes the relationship between generated rules based on their decisions about a query sample during the inference time. The activation of each of these rules is adjusted according to the transductive similarity, and the new decision is obtained using the adjusted activation. We also propose several new variations to the transductive similarity itself. Once the amount of data increases, we are not limited to the online learning setup, and we can take advantage of the offline learning scenario, which normally performs better than the online one because of the independence of sample ordering and global optimization with respect to all samples. We use generative methods to obtain data outside of the training set. Specifically, we aim to improve the previously mentioned TS Fuzzy Model by incorporating semi-supervised learning in the offline learning setup without unlabeled data. We use the Universum learning approach and have developed a method called UFuzzy. This method relies on artificially generated examples with high uncertainty (Universum set), and it adjusts the cost function of the algorithm to force the decision boundary to be close to the Universum data. We were able to prove the hypothesis behind the design of the UFuzzy classifier that Universum learning can improve the TS Fuzzy Model and have achieved improved performance on more than two dozen datasets and applications. With increasing amounts of data, we use the last scenario, in which the data comprises both labeled data and additional non-labeled data. This setting is one of the most common ones for semi-supervised learning problems. In this part of our work, we aim to improve the widely popular tecjniques of self-training (and its successor help-training) that are both meta-frameworks over regular classifier methods but require probabilistic representation of output, which can be hard to obtain in the case of discriminative classifiers. Therefore, we develop a new algorithm that uses the modified active learning technique Query-by-Committee (QbC) to sample data with high certainty from the unlabeled set and subsequently embed them into the original training set. Our new method allows us to achieve increased performance over both a range of datasets and a range of classifiers. These three works are connected by gradually relaxing the constraints on the learning setting in which we operate. Although our main motivation behind the development was to increase performance in various real-world tasks (gesture recognition, sketch recognition), we formulated our work as general methods in such a way that they can be used outside a specific application setup, the only restriction being that the underlying data evolve over time. Each of these methods can successfully exist on its own. The best setting in which they can be used is a learning problem where the data evolve over time and it is possible to discretize the evolutionary process. Overall, this work represents a significant contribution to the area of both semi-supervised learning and pattern recognition. It presents new state-of-the-art techniques that overperform baseline solutions, and it opens up new possibilities for future research
    corecore