
 1

Abstract— In this paper, a novel fuzzy Generalized Predictive

Control (GPC) is proposed for discrete-time nonlinear systems via

Takagi-Sugeno system based Kernel Ridge Regression (TS-KRR).

The TS-KRR strategy approximates the unknown nonlinear systems

by learning the Takagi-Sugeno (TS) fuzzy parameters from the input-

output data. Two main steps are required to construct the TS-KRR:

the first step is to use a clustering algorithm such as the clustering

based Particle Swarm Optimization (PSO) algorithm that separates

the input data into clusters and obtains the antecedent TS fuzzy

model parameters. In the second step, the consequent TS fuzzy

parameters are obtained using a Kernel ridge regression algorithm.

Furthermore, the TS based predictive control is created by integrating

the TS-KRR into the Generalized Predictive Controller. Next, an

adaptive, online, version of TS-KRR is proposed and integrated with

the GPC controller resulting an efficient adaptive fuzzy generalized

predictive control methodology that can deal with most of the

industrial plants and has the ability to deal with disturbances and

variations of the model parameters. In the adaptive TS-KRR

algorithm, the antecedent parameters are initialized with a simple K-

means algorithm and updated using a simple gradient algorithm.

Then, the consequent parameters are obtained using the sliding-

window Kernel Recursive Least squares (KRLS) algorithm. Finally,

two nonlinear systems: A surge tank and Continuous Stirred Tank

Reactor (CSTR) systems were used to investigate the performance of

the new adaptive TS-KRR GPC controller. Furthermore, the results

obtained by the adaptive TS-KRR GPC controller were compared

with two other controllers. The numerical results demonstrate the

reliability of the proposed adaptive TS-KRR GPC method for

discrete-time nonlinear systems.

Index Terms— Generalized Predictive Control; Takagi-Sugeno

fuzzy system; Kernel ridge regression; clustering algorithm;

Particle Swarm Optimization; Takagi-Sugeno system based

Kernel ridge regression; Sliding-window Kernel Recursive Least

squares.

I. INTRODUCTION

The Model Predictive Control (MPC) approaches represent

one of the most significant control developments in the last

thirty years (Prett, & Garcia, 1988). The features of the

predictive controller such as model structures, prediction

horizon and optimization criteria allow for the modification

and adjustment of the MPC to suit a large range of engineering

applications. The predictive control was first introduced by

Richalet et al. (Richalet, Rault, Testud, & Papon, 1978;

Richalet, 1993) where their algorithmic formulations have

benefited from the recent advancement in digital computers

and became more practical. Another predictive control

formulation that suits well the open-loop stable processes: the

dynamic matrix control (DMC). The DMC method became

famous due to its simplicity as well as its exploitation of the

step response models which can be easily obtained (Marchetti,

Mellichamp, & Seborg, 1983; Brujin, & Verbruggen, 1984).

Moreover, the Generalized Predictive Control (GPC), which

has been introduced by Clark et al. (Clarke, Mothadi, & Tuffs,

1989; Clarke, & Mohtadi, 1989), has offered virtuous results

in handling unstable systems with a wider range of non-

minimum phase. The GPC strategy uses mostly polynomial

models which limit the number of parameters that describes

the process, and help obtaining effective and solid algorithms

(Clarke, & Mohtadi, 1989). The GPC algorithm has been

applied many times to a wide class of industrial plants and

showed decent results (Richalet, Rault, Testud, & Papon,

1978). However, most of the systems controlled by the GPC

were linear systems since the quadratic optimization in the

GPC algorithm can only be solved for linear predictions.

The idea of developing efficient Nonlinear GPC (NGPC)

algorithms to control nonlinear process was attracted by many

researchers, and many papers were published in the NGPC

field. The simplest strategy for using GPC to control nonlinear

plants is to linearize the nonlinear model of the plants (Zhu,

Warwick, & Douce, 1991). However, this approach has

performed poorly since the operating point may change.

Various strategies have been developed for NGPC such as the

stabilizing predictive control with nonlinear ARX models

which was presented by Nicolao et al. (Nicolao, Magi, &

Scattolini, 1997) to control nonlinear discrete-time systems.

Kanev et al. (Kanev, & Verhaegen, 2000) combines a multiple

model estimator and the GPC algorithm for controller

reconfiguration of nonlinear systems. Chen et al. (Chen,

Balance, Gawthrop, Gribble, & O’Reilly, 1999) controlled

nonlinear plants using a class of nonlinear PID controllers that

have been derived from a nonlinear GPC approach. An

A new T-S fuzzy model predictive control for

nonlinear processes

Boulkaibet I
a,b

, Belarbi K
b
, Bououden S

c
, Marwala T

a
 and Chadli M

d
.

a
 Institute for Intelligent Systems, University of Johannesburg, South Africa.

b
Department of Electronics Engineering, University of Constantine 1, Algeria.

c
 Faculty of Sciences and Technology, University Abbes Laghrour, Khenchela, Algeria.

d
 University of Picardie Jules Verne Amiens, France.

Email: ilyes@aims.ac.za (I. Boulkaibet), kbelarbi@yahoo.com (K. Belarbi), ss_bououden@yahoo.fr (S. Bououden), tmarwala@uj.ac.za (T.

Marwala), mohammed.chadli@u-picardie.fr (M. Chadli)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/146450502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ilyes@aims.ac.za
mailto:kbelarbi@yahoo.com
mailto:ss_bououden@yahoo.fr
mailto:tmarwala@uj.ac.za
mailto:mohammed.chadli@u-picardie.fr

 2

automatic differentiation approach is used by Cao in (Cao,

2005) to formulate a nonlinear model GPC.

Generally, the models used by all predictive controllers

(including the GPC) are assumed to be accurate. This can be a

serious problem since a wide range of plants are complex and

cannot be mathematically modelled. Moreover, sometimes

these plants have large uncertainties and strong nonlinearities.

In the case that no mathematical model is available to describe

a system, approximation methods, such as fuzzy logic (Zadeh,

1973; Driankov et al., 1993; Chen et al., 2013; Flores et al.,

2005; Sáez et al., 2007; Babuska, 1998) and neural networks

(NNs) (Chen, & Billings, 1992), present a good alternative.

The use of neural networks to approximate functions has

shown practical results and has been applied successfully by

many researchers (Tsai et al., 2002; Zamarreno, & Vega,

1999; Palos et al., 2001; Huang, & Lewis, 2003; Lu, & Tsai,

2004; Lu, & Tsai, 2004; Eski, & Temürlenk, 2013) in

modelling complex processes. The results in (Tsai et al., 2002;

Zamarreno, & Vega, 1999; Palos et al., 2001; Huang, &

Lewis, 2003; Lu, & Tsai, 2004; Lu, & Tsai, 2004; Eski, &

Temürlenk, 2013) demonstrated the abilities of the neural

predictive control techniques for nonlinear dynamic systems.

On the other hand, Takagi–Sugeno (TS) (Takagi, & Sugeno,

1985) fuzzy model has been established as an efficient

approximation model for nonlinear GPC. The Takagi–Sugeno

(TS) fuzzy model has the ability to accurately approximate

complex nonlinear systems by using data along with a prior

knowledge of processes (Mollov, Babuska, Abonyi, &

Verbruggen, 2004; Bououden, Chadli, & Karimi, 2015). The

studies presented in (Mollov, Babusˇka, Abonyi, &

Verbruggen, 2004; Sousa, 2000; Mahfouf, Linkens, & Abbod,

2000; Sousa, & Kaymak, 2001; Ali, 2003; Flores, Sáez,

Araya, Berenguel, & Cipriano, 2005; Bououden, Chadli, &

Karimi, 2015a; Bououden, Chadli, & Karimi, 2015b) reported

many successful applications of NGPC using fuzzy models.

Chang et al. (Chang; Tsai, 2013) proposed an adaptive Takagi-

Sugeno-Kang (ATSK) to model nonlinear processes. In this

method, the membership functions were selected as a

triangular functions and initialised using the training data,

while the consequent parameters were identified using the

recursive least squares algorithm. Then, an adaptive fuzzy

model adaptive stable generalized predictive control for

nonlinear discrete-time systems was constructed by integrating

the ATSK algorithm with the GPC algorithm. Jang (Jang,

1991; Jang, 1993) proposed an adaptive neuro-fuzzy inference

system (ANFIS) method that combines the capabilities of the

artificial neural network in modelling nonlinear processes and

the fuzzy reasoning in handling uncertainties. The ANFIS

Algorithm was used many times to construct a NGPC (Zhang,

Chai, Wang, & Fu, 2010; Abghari, Sadi, 2014).

Generally, there are two main approaches to obtain TS

fuzzy models: the off-line and adaptive TS fuzzy algorithms.

In the presence of input-output data collected from plants, the

TS fuzzy model can be obtained by implementing the

following procedure: First, the antecedent TS fuzzy model

parameters (which includes: rules number, antecedent

membership functions, and a set of rules) are obtained by

partitioning the data into subsets (or clusters). This can be

done using clustering algorithms. Then, the number of

clusters, the centroid vectors and variance (width) of the

clusters are used to describe the TS fuzzy model antecedent

parameters. The second step is to identify the consequent TS

fuzzy model parameters which can be done using optimization

algorithms. Unfortunately, the datasets collected from plants

are usually limited and cannot accurately describe all

operating areas of the plant. Moreover, the behaviour of the

plant may change over time. These limitations can seriously

diminish the accuracy of the approximations made by a TS

fuzzy model. On the other hand, introducing adaptive

capabilities to the TS fuzzy model may improve the accuracy

of the approximations made by the TS model. Several papers

described the use of adaptive TS fuzzy models for system

identification and control. Li et al. (Li, Zhou, Xiang, Li, & An,

2009) introduced an adaptive fuzzy-modelling approach that

can automatically determine the right number of rules. In this

algorithm, the premise parameters are obtained by using a

fuzzy c-regression model clustering algorithm, while

exploiting an orthogonal least squares algorithm to identify the

consequent parameters. Rastegar et al. (Rastegar, Araújo, &

Mendes, 2014) proposed a new online evolving Takagi–

Sugeno (TS) fuzzy model identification method based on an

unsupervised fuzzy clustering algorithm (NUFCA). Then, the

proposed method was integrated with a GPC algorithm

resulting in an adaptive predictive process control

methodology. In this algorithm, the input-output data were

partitioned to identify the antecedent parameters of the fuzzy

system, while a recursive least squares algorithm (RLS) was

applied to update the consequent parameters. Mondes et al.

(Mendes, Araújo, & Souza, 2013) proposed an adaptive

identification for industrial applications where a hierarchical

genetic algorithm (HGA) was utilized to approximate the

unknown nonlinear processes in the presence of input-output

data.

Recently, the integration of regression methods based on

kernel machine in fuzzy modelling has been attracted by many

researches (Chiang, & Hao, 2004; Lin, Liang, Yeh, & Fan,

2005; Juang, & Hsieh, 2009; Guo, & Guan, 2015). Kernel

regression methods, such as Kernel ridge regression

(Saunders, Gammerman, & Vovk, 1998) and support vector

regression (SVR) (Cortes, & Vapnik, 1995; Girosi, 1998),

perform nonlinear input data mapping to a high-dimensional

feature space using the properties of kernel functions. This

property gives these methods a high generalization ability and

strong capacity to deal with nonlinearities in modelling and

system identification.

Chiang et al. (Chiang, & Hao, 2004) exploited the

properties of support vector regression and proposed a fuzzy

modelling network based on the SVR. In this approach, the

fuzzy basis function of the fuzzy model is considered as a

kernel function in a SVR and the antecedent part of the fuzzy

system is then generated based on the obtained support

vectors. The main advantage of this method is that the number

of rules is generated automatically since the number of rules is

equal to the number of support vectors. However, this

approach is computationally expensive since the number of

support vectors in SVR is usually large. Another method that

uses the properties of SVR to identify the antecedent part of

fuzzy models was proposed by Lin et al. (Lin, Liang, Yeh, &

 3

Fan, 2005). In this method, A SVR-based forward neural

network (FNN) is introduced where the number of Support

vectors is equal to the initial number of rules. Then, the size of

the model (number of rules) is reduced by eliminating the

irrelevant rules. However, the reduction procedure degrades

the performance of the original fuzzy model. Juang et al.

(Juang, & Hsieh, 2009) proposed another approach where the

SVR is used to identify the consequent parameters of the TS

fuzzy model, while a simple clustering algorithm is used to

define the antecedent parameters. However, this method uses

complex kernel functions and the obtained fuzzy model is too

complex to be implemented for an adaptive TS identification

and control. Inspired by Juang, & Hsieh, 2009 work, this

paper uses a Kernel ridge regress to identify the consequent

TS fuzzy model parameters; however the obtained TS fuzzy

model is simple and can be easily converted to an adaptive TS

fuzzy model for system identification and control.

In this paper, two main objectives will be discussed. The

first objective is to introduce the new TS fuzzy model for the

offline and the online system identifications. In the case of an

offline TS model, the model is constructed by separating

input-output data using clustering based Particle Swarm

Optimization (PSO) algorithm. Then, the antecedent TS fuzzy

model parameters will be identified. However, the real novelty

of this approach is to exploit the properties of Kernel functions

and use a Kernel ridge regression approach to identify the

consequent TS fuzzy parameters. For the adaptive TS fuzzy

model algorithm, the structure of the proposed fuzzy model is

very simple and the consequent parameters can be easily

updated using a recursive least squares algorithm. However, in

this paper a different approach is adopted where the

consequent TS fuzzy model parameters are obtained using a

modified Kernel Recursive Least squares (KRLS) algorithm

called the sliding-window KRLS algorithm (Van

Vaerenbergh, Vía, & Santamaria, 2006). Then, the antecedent

TS fuzzy model parameters are initialized with a simple

clustering (K-means) algorithm and updated using a simple

gradient algorithm. In the sliding-window KRLS algorithm, a

window of the last M data is stored as its dictionary where in

each step the new data is added to the dictionary while the

oldest data is discarded. This can lead to a sliding-window

approach and reduce the computational time (instead of using

all data) to execute a single real time step. The second

objective of this paper is to integrate the proposed TS method

into GPC to construct a TS fuzzy generalized predictive

control. By introducing the concept of the dictionary in the

adaptive TS fuzzy GPC, more values of the previous input-

output data will be involved in the adaptation procedure. This

can help obtaining more accurate results, and the proposed

adaptive TS fuzzy GPC can be used to control nonlinear plants

with time-varying processes, disturbances or nonlinear plants

with varying operating regions. The performance of the

proposed adaptive controller is highlighted by comparing the

adaptive TS-KRR GPC with two different fuzzy predictive

controllers: The ANFIS GPC and the ATSK GPC controllers.

The rest of this paper is organized as follows: Section II

presents the basic mathematical model of the Takagi-Sugeno

system based Kernel ridge regression (TS-KRR). The theory

and the mathematical formulations of the TS-KRR as well as

the clustering based PSO algorithm will be presented in details

in Section III. Moreover, the adaptive TS-KRR will be

discussed in Section III. The predictive control law is derived

in Section IV. Section V discusses both: offline and adaptive

identification results, and the online/offline TS-KRR GPC

control results for a simple nonlinear system (surge tank

system). In this paper, more attentions were given to the

proposed adaptive algorithm where the disturbances

capabilities of the adaptive TS-KRR GPC controller are tested

in Section V by adding disturbances to the surge tank system.

Section VI presents the offline/online TS-KRR identification

results as well as the online/offline TS-KRR GPC control

results for a CSTR nonlinear system. In section VI, more

investigations were made for the adaptive TS-KRR GPC

controller where this controller is tested under the presence of

the disturbances. Furthermore, the performance of the TS-

KRR GPC controller was investigated in the case where the

reference signal is sinusoidal function and in the presence of

disturbances. In Section VII, we conclude this paper.

II. THE TAKAGI-SUGENO FUZZY MODEL

In this section, the Takagi-Sugeno fuzzy model based

Kernel ridge regression (TS-KRR) will be discussed. First, the

TS-KRR algorithm is based on the ―IF-THEN‖ Takagi-Sugeno

fuzzy rules. Similar to the classical Takagi-Sugeno fuzzy

rules, the i-th rule in a TS-KRR is presented as follows:

 ()
 ()

 ()
 ()

 ()

 (1)

where () is the i-th fuzzy rule and is the

number of rules. The input variables are: () (),
where is the time increment, and () is the system output

of the i-th fuzzy rule.
 are the

linguistic terms where these terms are characterized by the

fuzzy membership functions

 ()

 , and each term describes a local operating region of

the nonlinear plant. Figure (1) demonstrates the structure of

the proposed fuzzy system. The proposed TS-KRR has five

layers. In this section, the mathematical functions for each

layer are presented in details.

𝑦 (𝑘)
𝑥 (𝑘)

⋮

𝑥𝑛(𝑘)

𝐴

𝐴
𝑁

𝐴𝑛

𝜃
𝑇𝜓

 ∏

⋮

∑ ⋮ ⋮ ⋮

⋮

𝐴𝑛
𝑁

∏ 𝜃 𝑁
𝑇𝜓

𝑁

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 1: The configuration of the TS-KRR structure

 4

Layer 1: represents the input variables of the model where

these input signals are transmitted to layer 2. In layer 2 (or the

Fuzzification procedure), each
 represents a membership

value of the j-th input variable () in rule i. The value of the

j-th input variable that satisfies the quantity
 is defined by

the membership function

 (). The output of each node in

layer 3 (the rule layer) represents the product of all input

signals of the node. In layer 3, each node represents an ―IF‖

part of ―IF-THEN” rule obtained by fuzzy logic operation

―AND‖. The results obtained from node i in layer 3 gives the

firing strength function (). In layer 4, the output of each

node i has the form of ̂ 𝜓 where 𝑖 𝜓 is the firing strength of 𝑖

node i in layer 3 multiplied by an input vector, and ̂ is the

consequent part of role i. Layer 4 can be seen as the layer that

computes the consequent values of each node i. Finally, layer

5, which represents the Defuzzification Operation, computes

the summation of all incoming signals from layer 4 and gives

the estimated output () of the nonlinear plant. As it appears,

the Defuzzification Operation in the proposed TS-KRR model

does not perform any normalization operations, and in the next

section we will prove that the proposed fuzzy model does not

need any kind of normalizations when the Kernel ridge

regression algorithm is implemented to identify the

consequent parameters (̂).

 To compute the output () of the proposed TS-KRR, the

membership functions are defined as a Gaussian function:

 () {

()

 } (2)

where and are the centre and the width of the

membership function, respectively. The firing strength of each

node in layer 3 is given as:

 () ∏

 ()

 { ∑
()

}

 {

()

 ()} (3)

where [

⋮ ⋮

]

. In layer 4, the function is

defined as (). Then, the output of the TS-KRR

model is the following:

 () ∑ (̂
) ()

 ∑ (̂
) { ∑ (

()

)

 }
 (4)

Next section, the procedure of identifying the consequent

vectors ̂ of the TS-KRR system as well as the

values of the centre and the width of the membership

functions are discussed in details.

III. IDENTIFICATION OF THE ANTECEDENT AND

CONSEQUENT PARAMETERS OF THE TAKAGI-SUGENO FUZZY

SYSTEM BASED KERNEL RIDGE REGRESSION

In this section, the kernel ridge regression will be applied to

identify the TS-KRR consequent parameters. First, several

definitions of the Kernel methods will be presented and then

the algorithm will be described in detail. Next, the clustering

based Particle Swarm Optimization (PSO) algorithm is

presented to identify the antecedent parameters. Then, the

proposed adaptive version of the Takagi-Sugeno system based

Kernel ridge regression (TS-KRR) is introduced.

A. Basics of Kernel ridge regression

The kernel ridge regression (KRR) is a very recognized

regression method in the area of nonlinear regressions. The

idea of this regression method is to perform a linear regression

in very high-dimensional spaces in an efficient way by

exploiting the kernel trick. It is equivalent to performing

nonlinear regression in the original input space.

Definition 1: A kernel function is a function that

for all from a nonempty set satisfies:

 () 〈 () ()〉 (5)

where is a mapping from the set to a Hilbert space (also

called the feature space) and 〈 〉 is the inner product

operation. To verify that a function is a valid kernel, the

properties of positive semi-definite kernel function need to be

satisfied.

Theorem 1: a function () of a two points (or vectors)

defined on is a positive semi-definite kernel if it satisfies

the Mercer’s theorem (Mercer, 1909):

∑ ()

 (6)

for any numbers and any points where

 , and represents the size of training data. In this

paper, the sum of kernel functions will be needed to define our

model and to identify the consequent parameters. This leads to

the following theorem:

Theorem 2: Let and be valid kernel functions, then

 is a valid kernel function.

Proof:

It is easy to prove this using the Mercer’s theorem in Eq.

(6):

∑ ()

 ∑ (() ())

∑ ()

 ∑ ()

 5

 Another important definition that needs to be mentioned in

this section is the Representer Theorem (Schölkopf, Herbrich,

& Smola, 2001). This theorem suggested that for a large class

of optimization problems in reproducing kernel Hilbert space

(RKHS), the solutions can be expressed as kernel expansions

in terms of the training data only. According to Representer

Theorem, the objective of kernel-based learning methods is to

find a nonlinear relationship expressed as the

following kernel expansion:

 () ∑ ()

 (7)

where is the number of available training data,
 are the expansion coefficients. Next, the regularized

problem for kernel ridge regression is defined as (Saunders,

Gammerman, & Vovk, 1998):

 ∑ (())

 ‖ ‖
 (8)

where and () is given in Eq. (7). Let define the

vectors: (
)

, (

)

 and

 (

 () (
)

⋮ ⋮
 () (

)

), then the problem in Eq.

(8) can be expressed as:

 () () (9)

The minimisation of the quadratic problem in Eq. (9) is

simple and the resulted expansion coefficients are given by:

 () (10)

And the matrix is a identity matrix.

B. Identification of the consequent parameters of the

proposed TS-KRR

To obtain the TS-KRR formulation presented in Eq. (4), two

choices has to be made: the number of kernel functions needed

for the TS-KRR, and the form of the mapping to define

each kernel function (as in definition 1). The main idea of

constructing the TS-KRR is to propose the form of the

mapping and then the kernel functions. In this paper, the

kernel function is defined such as:

 () ∑ () ∑ 〈 () ()〉

 (11)

 where is the number of rules for the Takagi-Sugeno system

based Kernel ridge regression (TS-KRR), and the mapping

 are defined as:

 () () () () { ∑
()

 }

 () {

()

 ()} (12)

In Eq. (12), the vectors: ()
 and

()
 are the input and the centroid vectors,

respectively. The width vector is ()
 and the

matrix [

⋮ ⋮

]

. As seen in Eq. (12), the

mapping function () is defined as a vector that has the

same size of the input vector . Then, the result of the

mapping inner product is: 〈 () ()〉 ()
 ().

Moreover, it is clear that the functions ()
〈 () ()〉 are valid kernel functions.

Proof:

∑ ()

 ∑ 〈 () ()〉

 ∑〈 () ()〉

By using the properties of the inner product operation, it is

obvious that:

∑ ()

 〈∑ ()

 ∑ ()

〉

 ‖∑ ()

‖

Then, () 〈 () ()〉 are valid

kernel functions (was proved to be a valid kernel function

without even replacing () with its proposed form), and

according to theorem 2, the function () ∑ ()

 is

a valid Kernel function as well.

By replacing Eq. (11) in Eq. (7), we obtain the following:

 () ∑ ()

 ∑ (∑ ()

)

 ∑ (∑〈 () ()〉

)

 ∑ (∑
()

()

)

 ∑(∑
()

)

()

 ∑(∑
 ()

)

 ()

It is obvious that by setting ̂ (∑ ()

)

∑ ()

 , then the Takagi-Sugeno system based Kernel

ridge regression (TS-KRR) defined in Eq. (4) is attained

where the consequent parameters are:

 6

 ̂ ∑ ()

 ∑ { ∑
()

 }

 (13)

and the model is:

 () ∑ ̂

 () ∑ ̂

 ()

 ∑ (�̂�𝑙
𝑇)

 { ∑
()

 } (14)

Clearly, for a certain training input-output dataset, the

consequent parameters of the proposed TS fuzzy model are

identified using expansion coefficients (
)

which can be easily obtained from the quadratic problem in

Eq. (9). The only missing part of the TS-KRR is the

antecedent parameters (number of rules, and). In this

paper, a clustering algorithm will be used to identify the

antecedent parameters. In the next subsection, a clustering

based PSO algorithm number is discussed where the number

of rules will be defined as the number of clusters, while

and are the centroid and the width of each cluster ,
respectively.

C. Identification of the antecedent parameters of the

proposed TS-KRR

In this subsection, the antecedent parameters of the TS-KRR

fuzzy model are identified using a clustering algorithm, where

the centroid and the width of the clusters will represent the

vectors and of the kernel functions. There are many

possibilities to choose a clustering algorithm. In the case of an

adaptive TS-KRR fuzzy model (which will be presented later),

a simple K-means clustering (Forgy, 1965) algorithm could be

sufficient to initialise the algorithm while the vectors and

 are adjusted in each iteration. However, for offline TS-

KRR model an accurate clustering algorithm helps getting

better approximations.

In this paper, a clustering based PSO algorithm is used for

the offline TS-KRR model. This algorithm is proposed by Van

der Merwe et al. (Van der Merwe, & Engelbrecht, 2003). In

this algorithm, first a K-means clustering (Forgy, 1965)

algorithm is used to initialise the initial swarm. Then, the PSO

algorithm refines the clusters formed by the K-means.

 The K-means algorithm is a very recognized tool for data

clustering. This algorithm attempts to assemble data vectors

into a predefined number of clusters, where the Euclidean

distance is used as a similarity measure. As a result, the data

vectors within the same cluster have small Euclidean distances

from one another. Each cluster is then associated with one

centroid vector, which represents the "midpoint" of that cluster

(the centroid vector is the mean of the data that belongs to the

same cluster). Furthermore, the width of each cluster is

defined by the variance of the data belongs to the same cluster.

The Particle swarm optimization (PSO) is a population-

based optimization algorithm that has been introduced by

Kennedy and Eberhart (Kennedy, & Eberhart, 1995). This

algorithm was inspired from the behaviour of flocks of birds

(particles) in nature. In the standard PSO algorithm, particles

(or individuals) represent potential solutions to the

optimization problem where each particle is composed of

three vectors; its position in the search space, which is given

by ̌ (̌
 ̌

), the best position that has been found by

the individual (or particle) (

) and the velocity

 (

) of the individual . In this algorithm, both:

positions and the velocities of the particles are randomly

initialized in the search space. During the implementation of

the PSO algorithm, each particle moves around the search

space by updating its velocity and position vector. Various

equations can be used to update the velocity of particles.

However, the version with the inertia weight will be used in

this paper. The velocity equation that updates particle i is

given by:

 (̌) (

 ̌) (15)

where the influence of the previous velocities in Eq. (15) is

adjusted by introducing an inertia weight . and are

random values. and are the local and global influence

factors, respectively. The simulations inertia weight is reduced

during the algorithm evaluation to allow local search, where

 , where is the initial weight, is

the current iteration of the algorithm while the total number of

iterations is defined by .

The position vector is then updated using:

 ̌ ̌ (16)

The PSO algorithm is terminated after running Eqs. (15) and

(16) for a specified number of iterations .

To adjust the PSO algorithm for clustering, a particle ̌

contains all centroid of the clusters such as ̌ (

),

where all particles represent a possible solution for an accurate

centroids. The fitness function is then defined by:

∑ (∑

 ()

| |

)

 (17)

where represents the cluster and | | is the number of data

vectors belongs to the cluster . The distance is defined as:

 () √∑ ()

 , and for each cluster, the

centroid is calculated as

| |
∑

 and the widths

of clusters are:

| |
(∑ ()

)

. Note that

 represents particle ̌ that belongs to the cluster .

The clustering algorithm is summarized as follows:

Algorithm 1 (PSO clustering):

1) Initialise each particle to contain N centroids. The

particles are randomly initialised except for one particle

which has the results of the K-means algorithm.

 7

2) For i=1:

a) For each particle do

i) For each data vector do

(1) The distance to all centroids is calculated.

(2) Assign the vector to the cluster that has

minimum distance

(3) Calculate the fitness using Eq. (17)

ii) Updates the global and local best positions using

Eqs. (15) and (16).

iii) Update the clusters centroids and widths.

Finally, to perform an identification procedure using the

offline TS-KRR, the following steps must be executed:

Algorithm 2: (offline TS-KRR)

1) Initialize the input size, number of clusters N, the

PSO parameters (, , , and the

number of particles).

2) Perform Algorithm 1.

3) Obtain the expansion coefficients using Eq. (10).

4) Finally, obtain the estimated ̂ from Eq. (13).

5) Obtain the model in Eq. (4) (The same model in

Eq. (14)).

D. The adaptive TS-KRR algorithm

In the previous 2 subsections, the off-line TS-KRR was

introduced where the offline TS-KRR model can be easily

obtained from the input-output data that belongs to certain

plants. However, the main disadvantage of the off-line

algorithms is that the collected data is limited and the model

obtained may not be sufficiently accurate. This inspires the

implementation of the adaptive (online) version of the TS-

KRR algorithm for identifications and control systems.

Adaptive techniques are designed to learn from one data

instance at a time. They are typically used in real-time

scenarios, such as control systems or tracking problems, where

the data arrive sequentially and instant decisions must be

made. The adaptive TS-KRR algorithm consists of two steps.

The first step is to adjust the antecedent parameters (and

 ,) where this can be done by a simple back-

propagation learning algorithm. The second step is to use an

online regression method to update the consequent parameters.

The easiest way is to use the famous RLS algorithm to update

the ̂ . However, the RLS algorithm has been

used many times. Also, the accuracy of this algorithm is not

ensured since the proposed TS-KRR model does not require

normalization in the defuzzification Operation. In this paper,

an alternative scenario is investigated where a modified

version of the Kernel RLS (sliding-window kernel RLS)

algorithm is exploited to update these parameters. The idea is

then to recursively update the expansion coefficients, and then

use these coefficients to obtain the ̂ .

To update the parameters and of the TS-KRR in Eq.

(4), the following error function is introduced:

 ()

(() ()) (18)

where () is the actual output and () is the approximated

output obtained by the TS-KRR at the instant . By applying

the backpropagation learning algorithm, the updated values of

 and at the instant are given by:

 () ()
 ()

 () (() ())
 ()

 (19)

 () ()
 ()

 () (() ())
 ()

 (20)

where is a positive learning rate, and:

 ()

 ()

()

()

 ()

 ()

 () (

() (∑

) ̂)

()

 (21)

 ()

 ()

()

()

 ()

 ()

 () (

() (∑

) ̂)

()

 (22)

and is the size of the dictionary used by the sliding-window

kernel RLS algorithm. To update the expansion coefficients,

the kernel RLS method (Engel, Mannor, & Meir, 2004) is

implemented. In addition, the modifications made in the

sliding-window kernel RLS are presented. Suppose that

data have been received and processed at the ()-th

iteration. The regression solution from Eq. (10) can be

expressed as:

 ́
 (23)

The matrix ́ in Eq. (23) is the regularized kernel matrix

 ́ . When a new data pair (() ()) is arrived,

several steps are required to update Eq. (23) recursively. First,

the predicted output will be calculated such as: ()

 , where ((() ()) (() ())) ,

and the error between the real and the predicted output is

 () () (). The kernel matrix at the instance is

then given by:

 ́ (
 ́

 (() ())

) (24)

By introducing the new variables: ́
 and

 (() ())
 , the new inverse matrix is

defined by:

 8

 ́

(
 ́

) (25)

Finally, the updated values of the expansion coefficients

are:

 (

 ()

 ()

) (26)

The size of the Kernel inverse matrix increases with time,

which is difficult to be implemented in real time applications.

To deal with the size problem, a modified version with a fixed

dictionary size, the sliding-window kernel RLS algorithm, is

implemented to update the expansion coefficients. The idea of

this algorithm is to store a fixed size of the last data as its

dictionary. In each step, the algorithm adds the new arrived

data pair (() ()) and removes the oldest one from its

dictionary (which is obvious since the latest data are more

relevant than the old one), and this will lead to a sliding-

window approach.

Given the kernel matrix ́ , the new regularized kernel

 ́ at the instance is constructed by removing the first row

and column of ́ (downsizing the kernel matrix step), and

the resulting matrix is denoted as . Then, kernels of the

new arrived data are added to as the last row and column

of this matrix:

 ́ (

 (() ())

) (27)

the vector ((() ()) (() ())) .

The inverse of this matrix can be easily obtained using the

same steps used earlier for matrix in Eq. (24). Then, the

inverse matrix ́
 is described as:

 ́

 ̅
(
 ̅

 ̅ ̅

 ̅

 ̅
) (28)

where ̅

 and ̅ (() ())

 ̅ ,

and the inverse matrix

 can be obtained from the matrix

 ́
 (which is already recursively obtained in the previous

instant or iteration). First, the inverse matrix ́
 is divided

as: ́
 (

), and we already know that:

 ́ (
 (() ()) ̂

 ̂

) (29)

where is the size of dictionary and ̂ (((
) ()) (() ())) . Then, the

inverse matrix

 is obtained as:

 (30)

The sliding-window kernel RLS algorithm is summarized

as follows:

Algorithm 3 (sliding-window kernel RLS algorithm):

1. Compute the error ()

2. Update inverse matrix in Eq. (25)

3. : If the dictionary size is more than

(1) Calculate the inverse matrix in Eq. (30)

(2) Calculate the matrix in Eq. (27)

(3) Calculate the inverse matrix in Eq. (28)

(4) Update expansion coefficients ́

4. Else :

 (1) Update expansion coefficients in Eq. (26)

After obtaining expansion coefficients, the consequent

parameters ̂ are updated using only pairs

of the input-output data (the size of dictionary) such as:

 ̂ ∑ () { ∑
()

 }

 (31)

The adaptive TS-KRR is summarized as follows:

Algorithm 4: (online TS-KRR steps)

1. Initialize the input size, number of clusters N)

2. Execute K-means algorithm to initialize the

antecedent parameters (an offline procedure).

3. Set the size of the dictionary

4. Measure the output signal

5. Update , in Eq.(19) and (20).

6. Run Algorithm 3 to obtain the updated expansion

coefficients.

 Obtain the estimated variables 7. �̂�𝑙 from Eq. (31), and

obtain the model in Eq. (4)

 8. Go to 4

K-means algorithm is performed in the Note that, only

adaptive TS fuzzy system since the antecedent parameters are

going to be updated further at each instant. Also, the updated

value of the learning rate will be introduced later in the

simulation example.

IV. DERIVATION OF THE GENERALIZED PREDICTIVE

CONTROL LAW

In this section, a generalized predictive control law is

described. The GPC controller is implemented by removing

the nonlinear effects of the system, which is done by replacing

the original nonlinear plants with the TS-KRR when the

control signal is computed. A nonlinear plant is considered to

have the following general nonlinear structure:

 () (() () () (

) () ()) (32)

 9

where and are the output and the control signals of the

nonlinear system, respectively. The function represents a

nonlinear mapping that describes the relation between the

output and the control signals, where the form of this mapping

function is assumed to be unknown. and are the orders

of the control signal and the output respectively, and is the

time delay of the system. The nonlinear mapping () is

approximated using several local affine models where the

system in Eq. (32) can be described by the following TS fuzzy

rules (similar to the TS rules in Eq. (1)):

 ()
 ()

 () (
) () (

)

 () (33)

where the input vector: () (() ())

(() () () ()), (
)

and (
) are linear polynomials with and

such as:

 (
)

 (
)

 (34)

From Eq. (33), the estimated TS-KRR model is defined

as:

 () ∑ ((
) () (

) (

)) { ∑ (
()

)

 } (35)

where ̂ () is obtained by Eq. (13)

(or Eq. (31) in the case of an adaptive control). To obtain

the control signal, Eq. (35) is written as follows:

 ̅() () ̅() () (36)

with ̅() ̅ ̅ and ̅() ̅

 ̅ ̅ , and:

 ̅ ∑
 { ∑ (

()

)

 }

 ̅ ∑
 { ∑ (

()

)

 }

 (37)

The control law of the GPC algorithm is obtained to

minimize the following cost function:

 () ∑ ((|) ())

 ∑ () (|)

 (38)

where (|) is an optimum step ahead prediction of the

system on time . and are the output and control signal

horizons, respectively. () is the reference trajectory.

 ()

 () is the

weighting polynomial, and . First, we consider

the following Diophantine equation:

 (
) ̅() (

) (39)

The degrees of the polynomials (
) and (

) are

 and , respectively. To simplify the Diophantine

equation, ̃() is introduced such as ̃() ̅().

Both (
) and (

) are obtained when 1 is divided

by ̃(). If Eq. (36) is multiplied by (
) and the

Eq. (39) is used for simplification, then the best prediction

of (|) is:

 (|) (

) () (
) ̅() ()

(40)

where (
) (

) ̅(). The polynomials (
)

and (
) expressed in Eq. (41) are obtained recursively

(see Clarke et al., 1989 for more details).

 (
)

 ()

 (
)

 (41)

Given (
), the polynomial (

) is obtained as

follows:

 (
) (

) (42)

where . The coefficient of (
) are obtained

as:

 ̃ (43)

where
 . The coefficients of (

) are also

obtained recursively where the first coefficients of (
)

are equal to (
) coefficients. The rest of the coefficients

are obtained such as:

 (44)

From Eq. (40), we can write the following:

 () () () () () (45)

where

 ()

[

 ()

 ()
⋮

 ()]

 () [

 ()

 ()
⋮

 ()

] (46)

 ()

[

 (

)

 (
)

⋮

()]

[

⋮

⋮

]

(47)

 10

 ()

[

 ((

) ̃ (
)) ()

((
) ̃ (

)) ()

⋮

(
() ̃

()) ()]

 (48)

and ̃ (
)

 . Next, the

weighting polynomial is set to be constant: () , and

Eq. (45) is used to simply the cost function described in Eq.

(38). Then, the new form of the cost function is given by:

 () (() () () ()) (()

 () () ()) () () (49)

where the vector (() ())

. By

minimizing the Eq. (49) (
 ()

 ()
), the obtained solution is

given by:

 () () (() () ()) (50)

where is an identity matrix. The control signal sent to the

process is only the first element of the vector (). In this

case, the increment of the control signal is:

 () (() () ()) (51)

where is the first row of the matrix () .

V. ILLUSTRATIVE EXAMPLE 1: IDENTIFICATION AND

CONTROL OF A SURGE TANK SYSTEM

In this subsection, the surge tank system (Eski, &

Temürlenk, 2013) represented in Figure (2) is considered for

system identification using the TS-KRR algorithm (and

control using TS-KRR GPC controller). The mathematical

model of this nonlinear system is given by:

 ()

 √ ()

 (())

 (())
 () (52)

where () is the control input (the input flow of the system),

 () is the liquid level in the tank and the constants

and . The cross section area of the tank is defined as:

 (()) (())

 . The constants: and

 .
u(t)

h(t)

Figure 2: The surge tank system

A. The offline Identification

To obtain the offline TS-KRR system of the surge tank

system, the sampling time is set to and the

nonlinear mathematical model presented in Eq. (52) is used to

generate samples; the first 400 samples were used

to train the TS-KRR system, while the rest of these samples

were used to validate the proposed TS-KRR method. The

control signal represented in Figure (4b) was used to generate

these 900 samples. The size of the input variable vector is set

to 4 (and).

Generally, there are several methods to identify the right

number of clusters from the training data. Mendes et al.

(Mendes, Araújo, Souza, 2013) used the number of the

operating zones (or the hyper-planes) of the system described

by the training data as the number of clusters. This method is

not very accurate since one operating zone might be repeated

many times in the training data. In this paper, the number of

clusters is identified as follows: First, the number of clusters is

initialized (equal to the number of the operating zones). Then,

the K-means algorithm is applied to obtain the centers of the

clusters. Next, the similarities among these clusters are

eliminated since two clusters (or more) may describe a similar

hyper-plane. The number of clusters will be reduced if

similarities are detected. This process will be repeated till no

similarities between clusters are excited.

Due to the simplicity of the training data, the previous

approach can be easily applied. Thus, the obtained number of

clusters (number of fuzzy rules) is . The number of

clusters can also be identified using Dunn index (Dunn, 1973)

method. To apply this method, the number of clusters is set to

be changing from 2 to 16. Then, the k-means algorithm is

performed for all possible numbers of clusters and the Dunn

index is calculated. The right number of clusters is selected

according to the highest value of the Dunn index (see the

upper value of the index in Figure 3). It is clear that the Dunn

index method obtained the same number of clusters.

Figure 3: The variation of Dunn index

Next, the clustering based PSO algorithm is used to

initialise the centroid and the width of the clusters. The

number of particles used in the PSO algorithm is set to

while the PSO parameters , , , are set to:

 and , respectively. To initialize the 16

particles, first the K-means algorithm is performed and the

results obtained will be considered as the first particles (store

it in ̌). The rest of the particles are randomly selected where

the maximum and minimum boundaries of these particles are

defined as: ̌ ̌ ̌ and ̌ ̌

2 4 6 8 10 12 14 16
0

2

4

6

8

10
Dunn's index

number of clusters

in
d

e
x
 v

a
lu

e

 11

 ̌ , respectively. To perform the quadratic problem in

Eq. (9), the constant is set to . After running the offline

TS-KRR steps in Algorithm 2, the identification results of the

liquid level () are presented in Figure (4a).

The performance of the clustering based PSO algorithm is

evaluated by comparing its offline identification results with

the results obtained by two different clustering algorithms: the

standard K-means algorithm and clustering based Genetic

Algorithm (GA) algorithm. The clustering based GA

algorithm parameters are: the population size is equal to 16,

the mutation rate is 0.2, the selection rate is 0.5, the crossover

rate is 0.7 and the same PSO maximum and minimum

boundaries are used to initialise the GA population. To

perform the clustering based GA algorithm, the same steps in

Algorithm 1 are executed except step 3 where the global and

local best positions are updated using the following GA

operators: selection, mutation and crossover.

(a)

(b)

Figure 4: Identification of the nonlinear system: (a) the modelling
performance of the proposed algorithm TR-KRR. (b) The control signal.

Figure (4a) displays the TS-KRR results when three

different clustering algorithms are used to compute the

antecedent parameters. The obtained results are referred to as:

TS-KRR (PSO), TS-KRR (GA) and TS-KRR (K-means).

Additionally, two different algorithms: the Takagi–Sugeno

Fuzzy System-based Support Vector Regression (TSFS-SVR)

(Juang, & Hsieh, 2009) and the generalized neural networks

based fuzzy inference system (GNN-FIS) (Jang, 1991) are also

are also presented in Figure (4a).

The results show that the TS-KRR algorithm (in all cases)

performed well and the accuracy of the modelling is better

than both: GNN-FIS and TSFS-SVR algorithms. Moreover,

the TS-KRR (PSO), TS-KRR (GA) and TS-KRR (K-means)

appear to have similar results which have been expected due

to the simplicity of the training data.

To have an efficient comparison between the TS-KRR

(PSO), TS-KRR (GA), TS-KRR (K-means), GNN-FIS and

TSFS-SVR algorithms, the Root Mean Squared Error

(RMSE), the Mean Absolute Error (MAE), the Mean Absolute

Percentage Error (MAPE) and the symmetric Mean Absolute

Percentage Error (sMAPE) are computed for all algorithms.

The RMSE is described by:

 √

∑ (() ())

 (53)

where () is the actual (or real) output, () is the predicted

output obtained by the TS-KRR and is the number of

samples. The MAE, MAPE and the sMAPE (Shcherbakov et

al., 2013) are given by Eq. (54), Eq. (55) and Eq. (56),

respectively:

∑ | () ()|

 (54)

∑ |

 () ()

 ()
|

 (55)

∑

| () ()|

| ()| | ()|

 (56)

where | | represents the absolute value of . The comparison

results are presented in Table (1).

Table 1: Comparison results for the surge tank system

Methods Rules Number

of

inputs

RMSE MAE MAPE

(%)

sMAPE

(%)

Simulation

time (s)

TS-

KRR

(PSO)

07

0.0039194 0.0018413 0.04609 0.04621 12.9901

TS-

KRR

(GA)

07

0.0039194 0.0018413 0.04609 0.04621 13.4612

TS-

KRR (k-

means)

07

0.0039219 0.0018427 0.04611 0.04628 07.1240

GNN-

FIS

20

0.1812871 0.0947221 3.0451 3.1132 00.8104

TSFS-

SVR

14

0.0787312 0.0354782 0.8247 0.8098 52.0758

The TS-KRR (PSO) and (GA) have produced the same

error values (RMSE, MAE, MAPE and sMAPE) while the

values obtained by the TS-KRR (K-means) are slightly

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

Time (s)

h
(t

)

TSFS-SVR

ANFIS

TS-KRR (PSO)

TS-KRR (GA)

TS-KRR (K)

Real output

0 10 20 30 40 50 60 70 80 90

3

4

5

6

7

8

9

10

11

12

13

Time (s)

u
(k

)

u(k)

 12

different (see Table 1). This indicates that the K-means

algorithm efficiently clusters the data, and can be used to

compute the centroid and the width of the clusters without any

modifications. In this example, the improvements made by the

PSO and GA algorithms are minor due to simplicity of the

data and the K-means algorithm is sufficient to compute the

antecedent parameters. On the other hand, the proposed TS-

KRR approach outperforms both GNN-FIS and TSFS-SVR

algorithms. This can be seen in Table (1) where the TS-KRR

requires less fuzzy rules (only 7 rules for the TS-KRR) than

the other two algorithms. Also, the values of errors (the values

of RMSE, MAE, MAPE and sMAPE) obtained by the TS-

KRR are smaller than those obtained by GNN-FIS and TSFS-

SVR algorithms. Despite that the GNN-FIS had relatively a

poor performance (RMSE=0.1813, MAE= 0.0947, MAPE=

3.0451% and sMAPE = 3.1132%), this algorithm is faster than

both TS-KRR and TSFS-SVR algorithms where the GNN-FIS

simulation time was less than 1 sec (the time of performing

clustering and obtaining the consequent parameters).

B. Fuzzy predictive Control of the surge tank system

Usually, the offline TS-KRR algorithm could be enough to

approximate nonlinear systems when sufficient data about

these systems are available. In this case, the GPC controller is

then implemented by replacing the original nonlinear plants

with the offline TS-KRR model when the control signal is

computed. To implement the TS-KRR GPC controller with

offline identification, several parameters are selected by the

designer such as: the size of the input vector which is set to 4

(and) and the parameters of the GPC algorithm

which are: , and . The number of fuzzy

rules is equal to and the rest of the TS-KRR parameters

are similar to those discussed earlier (PSO parameters and).

The TS-KRR GPC (with offline identification) procedure is

summarized as follows:

Algorithm 5: (TS fuzzy GPC with offline identification)

1. The reference signal () is selected.

2. The identification parameters such as: number of

rules, the PSO algorithm parameters, and the

control parameters (, and) are selected.

3. Perform Algorithm 2 to obtain the antecedent and

consequent parameters, and then obtain ̅() and

 ̅().
4. The control signal increment () is computed

using Eq. (51).

5. The new control signal () () is

applied to the surge tank system.

6. Repeat steps 4 and 5.

By running the above algorithm, the system output and the

applied control signal are illustrated in Figures (5) and (6)

respectively. Again, the performance of the TS-KRR GPC

controller is investigated when another two different clustering

algorithms are used to compute the centroid and the width of

the clusters. The simulation results are included in Figures (5).

The results show that the proposed controller was successfully

able to control the system output at the desired reference

signal (). Furthermore, the proposed controller response is

fast since it moves from the initial values to the desired

reference signal (as well as moving from one reference level

to another) in a reasonable amount of time. As expected, due

to the simplicity of the data, the offline TS-KRR GPC with the

three clustering methods gave similar results. This concludes

that the K-means algorithm is sufficient to compute the

antecedent parameters and control the surge tank system.

Figure 5: Results of the proposed offline TS-KRR GPC when three different

clustering algorithms are used to compute the antecedent parameters.

Figure 6: The applied control signal obtained by the TS-KRR GPC when the

clustering based PSO algorithm is used to compute the antecedent parameters.

In general, the precision of the offline fuzzy models is

limited due to the uncertainties associated with plants. Also,

the collected data is incomplete and cannot describe all

operating zones of the plants. Furthermore, the behaviour of

the plants may change over time. In this case, introducing the

adaptive capabilities is considered more practical since the

TS-KRR parameters can be refined to improve its

approximations. In the next subsection, the adaptive (or

online) TS-KRR algorithm is investigated when the same

system is controlled. The K-means algorithm will be used to

initialise the antecedent parameters of the adaptive TS

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

Time (s)

h
(k

)

TS-KRR GPC (GA)

TS-KRR GPC (K-means)

TS-KRR GPC (PSO)

W(k)

0 20 40 60 80 100 120 140 160 180 200
5

6

7

8

9

10

11

12

13

14

Time (s)

u
(t

)

u(t)

 13

algorithm since the improvements made by PSO algorithm are

minor. Moreover, the antecedent parameters are updated in

each iteration according to Eqs. (19) and (20).

C. The Online Identification

Again, the same samples obtained earlier from Eq. (52)

are used to test the adaptive TS-KRR performance. The first

400 samples were used to initialize the online TS-KRR while

the rest of samples were used to validate the proposed

adaptive fuzzy method. The same size of the input variables

was chosen and the fuzzy rule is equal to . The

dictionary size is set to and the constant is set to

 . A K-means clustering algorithm is used to initialise the

antecedent parameters. After running the adaptive TS-KRR

steps in Algorithm 4, the liquid level () of the surge tank

system is presented in Figure (7).

Figure 7: The online modelling performance of the adaptive TR-KRR,

ANFIS and ATSK algorithms.

Figure (7) also contains the original signal of the liquid level

 (), the signal predicted by the ANFIS algorithm and the

signal obtained by the adaptive Takagi-Sugeno-Kang (TSK)

method (Chang; Tsai, 2013). As illustrated in Figure (7), the

three algorithms performed well and the accuracy of their

modelling is relatively virtuous. Table 2 illustrates the

accuracy results for the three algorithms where the RMSE,

MAE, MAPE and sMAPE error measurements are calculated

for the three algorithms. Clearly, the adaptive TS-KRR

algorithm outperformed both the ANFIS and the adaptive TSK

algorithms where the adaptive TS-KRR requires less fuzzy

rules (only 7 rules) than the ANFIS and adaptive TSK

algorithms. Furthermore, the error values obtained by the

adaptive TS-KRR are smaller than those obtained by the

ANFIS and the ATSK algorithms (see Table 2).

Table 2: Comparison results for the surge tank system

Methods Rules Number

of inputs

RMSE MAE MAPE

(%)

sMAPE

(%)

Adaptive

TS-KRR

07

0.0347 0.0130 0.9030 0.8848

ANFIS 20

0.09864 0.0396 2.7151 2.7062

Adaptive

TSK

20

0.18332 0.0752 5.1174 5.2018

D. Fuzzy adaptive predictive control

In this subsection, the adaptive TS-KRR GPC is

investigated. Again, the same size of the input vector (

and) was chosen as well as the fuzzy rule number

(equal to). The parameters of the GPC algorithm are:

 , , , the dictionary size is set to

and the K-means algorithm is used to initialize the antecedent

parameters. The adaptive learning rate (the same form of

in (Lu, & Tsai, 2007) was chosen) is defined as:

∑ ∑ ((
 ̂()

)

 (
 ̂()

)

)

, where and the

adaptive fuzzy GPC procedure is summarized as following:

Algorithm 6: (adaptive TS-KRR GPC)

1. The reference signal W(k) is selected

2. The identification parameters such as: number of

rules, and the control parameters (, and) are

selected.

3. Perform the K-means algorithm to initialize the

antecedent parameters.

4. Measure the output signal

5. Update , and the learning rate .

6. Apply steps: 6 and 7 in Algorithm 4 to obtain the

updated expansion coefficients and then update the

 ̂ in Eq. (31), and then calculate ̅() and

 ̅().
7. Obtain the control increment () using Eq. (51)

8. Obtain control signal () () ()
and apply it to the nonlinear system.

9. Repeat steps 4 - 8.

The system output and the control signal are illustrated in

Figures (9) and (10) respectively. In addition, the system

output obtained by an ANFIS GPC (the ANFIS GPC

parameters are: , , , and the rule

number) and an Adaptive TSK (ATSK) GPC (the

ATSK GPC parameters are: , , ,

and) are also illustrated in Figure (8).

The obtained results show that the proposed adaptive TS-

KRR GPC controller effectively controls the system output at

the desired reference (). The same comments can be made

for the ANFIS GPC and ATSK GPC controllers. However, the

proposed adaptive TS-KRR GPC controller relatively

displayed less overshoots (and undershoots) than the ANFIS

GPC and the ATSK GPC controllers. The mean value of the

execution time for one sample or iteration (the execution of

steps 4, 5, 6, 7 and 8 in Algorithm 6) for a window (or

dictionary size) of is , which is considered

as a short period of time and suits most of the industrial

systems (in this example). On

the other hand, the ANFIS GPC controller has smaller

execution time (0.000713s) since its algorithm does not

require a large number of previous data. The same comment

can be made for the ATSK GPC algorithm where the

execution time for one sample is relatively small (0.000689s).

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

Time (s)

h
(t

)

real output

ANFIS

Adaptive TSK

Adaptive TS-KRR

 14

Figure 8: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK GPC
controllers.

Figure 9: the applied control signal obtained by the adaptive TS-KRR GPC

Next, the disturbance rejection capabilities of the proposed

adaptive TS-KRR GPC controller are investigated. A

disturbance with amplitude of 1 was applied to the system in

samples 200-600 (the time interval s). Next, a

disturbance of amplitude -1 was applied again to the system at

the interval time s (in samples 600-1100).

Then, a disturbance with amplitude of 1 was applied again to

the system in samples 1400-2000 (the time interval
 s). The simulation results are presented in Figures

(10) and (11). The results show that the proposed adaptive TS-

KRR GPC controller have good disturbance rejection

capabilities where the disturbances were eliminated in a short

period of time. Moreover, the proposed controller exhibits

smaller overshoots (and undershoots) than the controllers

based on the ANFIS and ATSK algorithms. In addition, the

ATSK GPC controller exhibits relatively large overshoots

(and undershoots) than the ANFIS GPC controller.

Figure 10: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK

GPC controllers.

Figure 11: the applied control signal obtained by the adaptive TS-KRR GPC

VI. ILLUSTRATIVE EXAMPLE 2: IDENTIFICATION AND

CONTROL OF A CONTINUOUS-STIRRED TANK REACTOR

(CSTR)

As a second example, a continuous-stirred tank reactor plant

(CSTR) (Oviedo, Vandewalle, & Wertz, 2006) presented in

Figure (12) is used to validate the TS-KRR performance in

system identification, and when the TS-KRR is integrated with

the generalized predictive controller.

The nonlinear model is described by the following

differential equations:

 ̇ ()

(()) ()

 ()

 ̇()

(()) ()

 ()

 () (

 ()) (())

 (57)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

Time (s)

h
(t

)

ANFIS GPC

ATSK GPC

TS-KRR GPC

W(t)

0 20 40 60 80 100 120 140 160 180 200
5

6

7

8

9

10

11

12

13

Time (s)

u
(k

)

u(k)

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

9

Time (s)

h
(t

)

ANFIS GPC

ATSK GPC

TS-KRR GPC

W(t)

0 20 40 60 80 100 120 140 160 180 200
5

6

7

8

9

10

11

12

13

14

Time (s)

u
(k

)

u(k)

 15

Ca0 T0

q

Tc0 qc

V Ca
T

Figure 12: continuous-stirred tank reactor

This system describes the process of converting the product

 into a new product . The concentration () is the

concentration of product , while () is the temperature of

the mixture. The reaction described by the nonlinear system is

exothermic and the coolant flow rate () is used to control

this reaction. When the coolant flow is adjusted (or

controlled), the temperature will be controlled and so the

concentration. The constant is the inlet feed concentration,

and is a constant that represents the process flow rate. The

inlet feed and coolant temperatures are assumed to be constant

and defined by and , respectively. The rest of the

thermodynamic and chemical constants are given in Table (3),

and the parameters and are:

,

 and

.

To have a concentration of , the nominal

conditions for the temperature and coolant flow are

and , respectively.

Table 3: Nominal parameters of the CSTR nonlinear system

Parameters Explanation Nominal value
 Process flow-rate

 Reaction rate constant

 Volume of the Reactor
 Feed temperature

 Activation energy

 Inlet coolant temperature

 Reaction heat
 Liquid densities

 Specific heats

 Inlet feed concentration
 Coefficient of heat transfer

A. The offline Identification

To model the CSTR plant using the TS-KRR, the sampling

time is set to () and the nonlinear system

presented in Eq. (57) is used to generate samples;

the first 400 samples were used to train the TS-KRR, while the

last 500 were used to validate the proposed fuzzy method. The

samples were obtained by applying the control signal (the

coolant flow rate ()) represented in Figure (14b). The size

of the input variable vector is set to 8 (and),

and the number of clusters is usually equal to the number of

the operating zones described by the training data. The

number of clusters is identified with the same technique

described earlier in the previous example.

Figure 13: The variation of Dunn index

As a result, the obtained number of clusters (number of

fuzzy rules) is . To validate this approach, the Dunn

index method is used once more to find the number of clusters

where the correct number of clusters always has the highest

value of the Dunn index (see the upper value in Figure 13). To

cluster the data, the number of particles used in the PSO

algorithm is set to while the PSO parameters , , ,

 are set to and , respectively. As

mentioned in the first example, the K-means algorithm is

performed and the resulted centroids are stored in ̌ . The rest

of the particles are randomly selected where the particles

maximum and minimum boundaries are defined as: ̌
 ̌ ̌ and ̌ ̌ ̌ , respectively. To

perform the quadratic problem in Eq. (9), the constant is set

to . After running the TS-KRR steps in Algorithm 2,

the identification results of the CSTR output () are

presented in Figure (14a).

To investigate the performance of the clustering based PSO

algorithm, the offline identification results obtained by this

algorithm are compared with the results obtained by the

standard K-means and the clustering based GA algorithms. To

perform the clustering based GA algorithm, the mutation rate

is set 0.2, population size is set to 12, the selection rate is set

to 0.5, the crossover rate is equal to 0.7 and the same

maximum and minimum boundaries are used to initialise the

population. Figure (14a) contains the TS-KRR results when

the antecedent parameters are computed by three different

clustering methods: TS-KRR (PSO), TS-KRR (GA) and TS-

KRR (K-means). Besides, the result of the TS-KRR (PSO),

when a disturbance of 6% is contaminating the training data, is

presented in Figure (14a). Furthermore, Figure (14a) includes

the GNN-FIS and the TSFS-SVR prediction results.

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30
Dunn's index

number of clusters

in
d

e
x
 v

a
lu

e

 16

(a)

(b)

Figure 14: Identification of the nonlinear system: (a) The modelling

performance of the proposed algorithm TR-KRR (b) control signal.

As expected, the TS-KRR algorithm performs well (with

and without noise) and provided good results (see Figure 14a).

In addition, the improvements made by clustering based PSO

algorithm are minor (see Table 4), where the accuracy tests

show that the results obtained by TS-KRR (PSO) are slightly

better than the results obtained by TS-KRR with other two

clustering algorithms.

Table 4: Comparison results for the surge tank system

Methods Rules Number

of

inputs

RMSE MAE MAPE

(%)

sMAPE

(%)

Simulation

time (s)

TS-

KRR

(PSO)

07

14.1892

TS-

KRR

(GA)

07

14.6214

TS-

KRR

(K-

means)

07

05.1732

TS-

KRR

(PSO)

(6%)

07

14.1892

GNN-

FIS

20

 0.9874

TSFS-

SVR

14

 55.4168

In the first case where no disturbances (noise) are included,

the obtained errors were: ,
 , and
 . These values indicate that the TS-KRR

(PSO) performs well and accurately predicts the signal output

 (). The same comments can be made in the second case

when a noise of 6% is applied to the learning data, and the

obtained errors remain low (,
 , ,
). The TS-KRR method outperforms the TSFS-SVR and

GNN-FIS methods where only 7 fuzzy rules were used in the

identification process while the TSFS-SVR and GNN-FIS

algorithms used 14 and 20 rules, respectively. Again, the TS-

KRR method gave better accuracy results than the TSFS-SVR

and GNN-FIS algorithms (see the error values in Table 4)

while only less number of rules were used by the TS-KRR

predictor.

The TS-KRR (GA) and TS-KRR (K-means) algorithms

give results slightly different from the TS-KRR (PSO) which

indicates that the K-means algorithm efficiently clusters the

data, and the improvements made by the PSO algorithms were

minor.

B. Fuzzy predictive Control of the CSTR plant

In this subsection, an offline TS-KRR GPC controller is

used to control the CSTR plant. First, an offline TS-KRR is

used to model the CSTR plant where the size of the input

vector is kept the same which is 8 (and) while

the fuzzy rule number is set to . The parameters of the

GPC algorithm are: , , and the

parameters of the TS-KRR identification are similar to those

discussed earlier. The TS-RR GPC (with offline identification)

procedure is summarized earlier in Algorithm 5. The system

output and the applied control signal are illustrated in Figures

(15) and (16) respectively. The results obtained by the TS-

KRR GPC controllers when the K-means and the clustering

based GA algorithms are used to compute the antecedent

parameters are also presented in Figure (15). The obtained

results show that the proposed controller was successfully able

to control the system output at the desired reference signal

 (). Furthermore, the proposed controller response is fast

since it moves from the initial values to the desired reference

signal (as well as moving from one reference level to another)

in a reasonable amount of time. Furthermore, the results

obtained by all versions of the TS-KRR GPC controllers are

almost the same (the TS-KRR GPC controller based on the K-

means algorithm is slightly slower than the other two

controllers). As a conclusion, the k-means algorithm appears

to perform well when the training data is relatively simple.

Thus, the k-means algorithm will be used to initialise the

antecedent parameters in the adaptive version of the TS-KRR

method. Next, the performance of the adaptive TS-KRR

method is investigated by modelling and controlling the CSTR

plant.

0 10 20 30 40 50 60 70 80 90
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Time (min)

y
(k

)

TS-KRR (PSO)

TS-KRR-noise

TSFS-SVR

TS-KRR (GA)

TS-KRR (K)

GNN-FIS

real output

0 10 20 30 40 50 60 70 80 90
75

80

85

90

95

100

105

Time (min)

u
(k

)

u(k)

 17

Figure 15: Results of the proposed offline TS-KRR GPC when three different

clustering algorithms are used to compute the antecedent parameters.

Figure 16: the applied control signal obtained by the TS-KRR GPC when the

clustering based PSO algorithm is used to compute the antecedent parameters.

C. Online Identification

In this subsection, the adaptive TS-KRR method is

considered for the identification of the CSTR plant. The

previous samples were used to test the adaptive TS-KRR.

The first 400 samples were used to initialize the online

(adaptive) TS-KRR while the rest were used for validation.

The same size of the input variables and fuzzy rules number

were used to model the system. The dictionary size is set to

 and the constant is set to . A K-means

clustering algorithm is used to initialize the antecedent

parameters. After running the adaptive TS-KRR steps in

Algorithm 4, the CSTR output () is presented in Figure

(17). The obtained results are compared with those attained by

the ANFIS and ATSK algorithms. The Comparison results are

presented in Table (5).

Figure 17: The online modelling performance of the proposed TR-KRR
algorithm.

The adaptive TS-KRR generates an error values of

 , ,
 and . The values

obtained indicate that the adaptive TS-KRR effectively

predicted the output signal () and gives better accuracy

than both ANFIS and ATSK algorithms (see Table 5). Also,

the number of rules used in the TS-KRR is less than that used

by the ANFIS and ATSK algorithms. The errors obtained by

the ATSK algorithm were relatively high (
 , , and

) which might be related to the fixed

values of the antecedent parameters (the Adapted TSK

algorithm initialises the antecedent parameters without any

adaptation during the online simulation).

Table 5: Comparison results for the surge tank system

Methods Rules Number

of inputs

RMSE MAE MAPE

(%)

sMAPE

(%)

TS-KRR 07

ANFIS 20

ATSK 20

Next, the adaptive TS-KRR algorithm is integrated with the

GPC and used to control the CSTR plant.

D. Fuzzy adaptive predictive control of the CSTR plant

Again, the previous identification parameters such as: the

input vector and the number of fuzzy rules are retained in this

section. The parameters of the GPC algorithm are similar to

the previous subsection (, and).

The dictionary size is kept equal to and the K-means

algorithm was used to initialize the antecedent parameters.

The adaptive learning rate is the same as the first example

where . The adaptive TS-KRR GPC procedure

0 20 40 60 80 100 120 140 160 180 200
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Time (min)

y
(t

)

TS-KRR GPC (GA)

TS-KRR GPC (K-means)

TS-KRR GPC (PSO)

W(t)

0 20 40 60 80 100 120 140 160 180 200
75

80

85

90

95

100

105

110

Time (min)

u
(t

)

u(t)

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (min)

y
(k

)

ANFIS

Adaptive TSK

real output

Adaptive TS-KRR

 18

summarized in algorithm 6 was executed and the system

output and the control signal are illustrated in Figures (18) and

(19), respectively. The ANFIS GPC and The ATSK GPC

controllers were also applied to control the CSTR plant where

the control parameters for both algorithms are: ,

 , , . The output obtained by the

ANFIS GPC and the ATSK GPC controllers are also

illustrated in Figure (18).

Figure 18: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK

GPC controllers

Figure 19: The applied control signal obtained by the adaptive TS-KRR GPC

The obtained results show that the proposed adaptive TS-

KRR GPC controller effectively controls the system output at

the desired reference (). The mean value of the execution

time for one sample or iteration (the execution of steps 4, 5, 6,

7 and 8 in Algorithm 5) for a window is ,

which suits most of the industrial systems (less than
). The ANFIS GPC controller has relatively small

execution time (for one iteration) since only few

previous input-output data are required to determine the

control signal. On the other hand, the ATSK GPC controller

has the lowest exclusion time (for one iteration)

which is obvious since this algorithm does not require an

adaptation for its antecedent parameters.

Figure (20) represents the absolute error, the error between

the output signal and the reference trajectory signal ()
| () ()|, produced by the three controllers . As

expected, the adaptive TS-KRR GPC controller is fast and

shows less error when it moves from a reference level to

another. Moreover, the results indicate that the ATSK GPC

controller produces relatively the largest errors when moving

from between references which might be related to

membership functions used in this algorithm.

Figure 20: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS

GPC and ATSK GPC controllers

To investigate the performance of the TS-KRR GPC under

disturbances, a disturbance with an amplitude of 0.012 was

applied to the system in samples 600-1000 (at time interval

 min). Another disturbance of amplitude 0.02

was applied again to the system at the interval time
 min (in samples 1000-1400). The simulation results

are presented in Figures (21) and (22).

0 20 40 60 80 100 120 140 160 180 200
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Time (min)

y
(t

)

ATSK GPC

ANFIS GPC

TS-KRR GPC

W(t)

0 20 40 60 80 100 120 140 160 180 200
75

80

85

90

95

100

105

110

Time (min)

u
(k

)

u(k)

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (min)

A
b

s
o

lu
te

 E
rr

o
r

ATSK GPC

ANFIS GPC

TS-KRR GPC

 19

Figure 21: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK

GPC controllers

Figure 22: The applied control signal obtained by the adaptive TS-KRR GPC

The results show that the proposed adaptive controller has

good disturbance rejection capabilities. Also, the overshoots

(and undershoots) displayed by the TS-KRR GPC controller

were smaller than those displayed by the ANFIS GPC and

ATSK GPC controllers. This can be verified from Figure (23)

where the absolute error of the adaptive TS-KRR GPC (when

the disturbances are applied) is less than the absolute errors

produced by the other two controllers. Again, the results in

Figure (23) show that the ATSK GPC controller produces

relatively the largest errors when the disturbances are applied

to the system. It is clear that the triangular membership

functions used by the ATSK system have a negative impact on

the controller accuracy (the ATSK algorithm does not update

the antecedent parameters during the controlling process).

Figure 23: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS

GPC and ATSK GPC controllers

E. The adaptive predictive control of the CSTR plan: A

sinusoidal reference trajectory

In this subsection, the adaptive TS-KRR GPC is investigated

when the reference trajectory is varying during the simulation.

The trajectory reference of the concentration () is defined

as the following sinusoidal equation: ()
 (). The parameters of the TS-KRR GPC

algorithm are: , , and the

dictionary size is . Again, the K-means algorithm was

used to initialize the antecedent parameters while the adaptive

learning rate is set to . The system output and the

control signal are illustrated in Figures (24) and (25)

respectively. The ANFIS GPC and the ATSK GPC controllers

were also applied to control the same plants with the same

desired sinusoidal reference signal, and the parameters for

both controllers are: , , , .

The outputs obtained by the ANFIS GPC and the ATSK GPC

controllers are also illustrated in Figure (24).

0 20 40 60 80 100 120 140 160 180 200
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Time (min)

y
(t

)

ANFIS GPC

ATSK GPC

TS-KRR GPC

W(t)

0 20 40 60 80 100 120 140 160 180 200
80

85

90

95

100

105

110

Time (min)

u
(t

)

u(t)

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (min)

A
b

s
o

lu
te

 E
rr

o
r

ANFIS GPC

ATSK GPC

TS-KRR GPC

 20

Figure 24: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK

GPC controllers

Figure 25: The applied control signal obtained by the adaptive TS-KRR GPC

The results show that the TS-KRR GPC controller effectively

controls the nonlinear system at the desired reference ().

However, the ANFIS GPC and ATSK GPC controllers were

displaying outputs with relatively large errors (see Figure 24).

The efficiency of the adaptive TS-KRR GPC controller can

also be verified from Figure (26) where the absolute error for

the three controllers were plotted. As expected, the error

obtained by the adaptive TS-KRR GPC controller is less than

those obtained by the ANFIS GPC and the ATSK GPC

controllers. Again, the results in Figure (26) confirm that the

ATSK GPC controller produces relatively the less accurate

results among the three algorithms.

Figure 26: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS

GPC and ATSK GPC controllers

Again, the performance of the TS-KRR GPC controller in the

presence of disturbances is investigated where a disturbance

with an amplitude of 0.012 was applied to the system at time

interval min) while another disturbance of

amplitude 0.02 was applied to the system at the time interval

 min.

The output and control signals of the adaptive TS-KRR GPC

controller are illustrated in Figures (27) and (28), respectively.

Figure 27: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK

GPC controllers

0 20 40 60 80 100 120 140 160 180 200
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Time (min)

y
(t

)

ANFIS GPC

ATSK GPC

TS-KRR GPC

W(t)

0 20 40 60 80 100 120 140 160 180 200
88

90

92

94

96

98

100

102

104

Time (min)

u
(t

)

u(t)

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (min)

A
b

s
o

lu
te

 E
rr

o
r

ANFIS GPC

ATSK GPC

TS-KRR GPC

0 20 40 60 80 100 120 140 160 180 200
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Time (min)

y
(t

)

ATSK GPC

ANFIS GPC

TS-KRR GPC

W(t)

 21

Figure 28: The applied control signal obtained by the adaptive TS-KRR GPC

Once again, the results show that the proposed adaptive TS-

KRR GPC controller has good disturbance rejection

capabilities. Also, the overshoots (and undershoots) displayed

by the TS-KRR GPC controller were very small compared to

the overshoots (and undershoots) displayed by the ANFIS

GPC and ATSK GPC controllers. This can be verified from

Figure (29) where the absolute error obtained by the adaptive

TS-KRR GPC controller is less than those obtained by the

ANFIS GPC and the ATSK GPC controllers when the

disturbances were applied. Once more, the results in Figure

(29) show that the ATSK GPC controller creates relatively the

largest errors when the disturbances are applied to the system.

Figure 29: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS

GPC and ATSK GPC controllers

VII. CONCLUSION

In this paper, a Takagi-Sugeno system based Kernel ridge

regression (TS-KRR) was proposed for nonlinear system

identification and control. In this approach, the antecedent

parameters of the TS-KRR fuzzy system were identified using

a clustering algorithm while the consequent parameters are

calculated using a Kernel ridge regression algorithm. The

proposed TS-KRR model effectively used to identify two

nonlinear systems: a surge tank and CSTR systems. Then, the

offline TS-KRR was integrated with a generalized predictive

controller to control these two nonlinear systems. The

proposed TS-KRR GPC methodology used input-output data

to learn model parameters and successfully controlled both

nonlinear systems.

In the offline TS-KRR, the KRR method is used to perform

a linear regression in very high-dimensional spaces in an

efficient way by exploiting the properties of kernel function.

This is equivalent to performing a nonlinear regression in the

original input space. Thus, the proposed offline TS-KRR

showed promising results in system identification and control

system.

The clustering based PSO algorithm used to compute the

antecedent parameters (centroid and the width of the clusters)

provided minor improvements which has been expected due to

the nature of the training data. However, more non-linear

systems with relatively complex training data will be

considered in future work. The offline TS-KRR method can be

helpful to model systems when enough data about the systems

are available, and the sampling times of these systems are very

short. Thus, the offline TS-KRR reduces the computational

costs since no adaptations are needed to update the antecedent

and consequent parameters. Furthermore, more studies will be

considered regarding the influence of the clustering algorithms

when complex training data is available.

In this paper, more attentions were giving to the adaptive

version of the TS-KRR method. The adaptive TS method is

introduced to deal with real time applications. The proposed

adaptive fuzzy model was investigated for both: system

identification and control. The new adaptive methodology

performed well in system identification and gave good

predictions with less errors. Moreover, the adaptive TS-KRR

GPC controller effectively controlled the two nonlinear

systems. Furthermore, the disturbance rejection capabilities of

the proposed adaptive TS-KRR GPC methodology were

investigated by disturbing the nonlinear systems in preselected

instants. The proposed adaptive TS-KRR GPC methodology

successfully eliminated these disturbances. Finally, the

adaptive TS-KRR GPC methodology was investigated when

the reference signal varies as a sinusoidal function. The CSTR

plant was controlled using the TS-KRR GPC and the results

show that the adaptive TS-KRR GPC has a good performance.

Again, the adaptive TS-KRR GPC controller successfully

eliminated the disturbances under a sinusoidal reference

signal.

As a conclusion, the proposed adaptive controller showed

good results and was able to deal with disturbances. In future

work, more generalized kernel approaches will be used to

introduce more effective online/offline TS fuzzy systems for

system identification and control.

0 20 40 60 80 100 120 140 160 180 200
88

90

92

94

96

98

100

102

104

Time (min)

u
(t

)

u(t)

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (min)

A
b

s
o

lu
te

 E
rr

o
r

ANFIS GPC

ATSK GPC

TS-KRR GPC

 22

REFERENCES

Abghari, S. Z., Sadi, M. (2014). Application of adaptive neuro-fuzzy

inference system for the prediction of the yield distribution of the main
products in the steam cracking of atmospheric gasoil. J Taiwan Inst

Chem Eng, 44, 365-76.

Ali, E. (2003). Heuristic on-line tuning for nonlinear model predictive
controllers using fuzzy logic. Journal of Process Control, 13, 383-396.

Babuska, R. (1998). Fuzzy Modeling for Control, Kluwer Academic

Publishers.
Bououden, S., Chadli, M., Allouani, F., & Filali, S. (2013). A new approach

for fuzzy predictive adaptive controller design using particle swarm

optimization algorithm. International Journal of Innovative Computing,
Information and Control, 9(9), 3741-3758.

Bououden, S., Chadli, M., & Karimi, H. R. (2015). An ant colony

optimization-based fuzzy predictive control approach for nonlinear
processes. Information Sciences, 299, 143-158.

Bououden, S., Chadli, M., & Karimi, H. R. (2015). Control of uncertain

highly nonlinear biological process based on Takagi–Sugeno fuzzy
models. Signal Processing, 108, 195-205.

Brujin, P. M., & Verbruggen, H. B. (1984). Model algorithmic control using

impulse response model. Journal A, 25(2), 69-74.
Cao, Y. (2005). A formulation of nonlinear model predictive control using

automatic differentiation. Journal of Process Control, 15, 851-858.

Chang, Y.L., & Tsai, C.C. (2013). Adaptive stable generalized predictive
control using TSK fuzzy model for nonlinear discrete-time systems with

time-delays. International Journal of Fuzzy Systems, 15(2), 133-141.

Chen, W. H., Balance, D. J., Gawthrop, P. J., Gribble, J. J., & O’Reilly, J.
(1999). Nonlinear PID predictive controller. IEE Proceedings Control

Theory and Applications, 146(6), 603-611.

Chen, S., & Billings, S. (1992). Neural networks for nonlinear dynamic
system modelling and identification. Intl. J. Control, 56, 319-346.

Chen, D., Zhao, W., Sprott, J. C., & Ma, X. (2013). Application of Takagi-

Sugeno fuzzy model to a class of chaotic synchronization and anti-
synchronization. Nonlinear Dynamics, 73, 1495-1505.

Chiang, J. H., & Hao, P. Y. (2004). Support vector learning mechanism for

fuzzy rule-based modeling: a new approach, IEEE Transactions on
Fuzzy Systems, 12(1), 1-11.

Clarke, D. W., Mothadi, C., & Tuffs, P.S.C. (1989). Generalized predictive

control - Part 1. The basic algorithm. Automatica, 23, 137-148.
Clarke, D. W., & Mohtadi, C. (1989). Properties of generalized predictive

control. Automatica, 25(6), 859-875.

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine
Learning, 20(3), 273-297.

Driankov, D., Hellendoorn, H., & Reinfrank, M. (1993). An Introduction to

Fuzzy Control, Springer-Verlag.
Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in

Detecting Compact Well-Separated Clusters. Journal of Cybernetics. 3

(3): 32-57.
Engel, Y., Mannor, S., & Meir, R. (2004). The kernel recursive least squares

algorithm. IEEE Transactions on Signal Processing, 52(8), 2275- 2285.

Eski, I., & Temürlenk, A. (2013). Design of neural network-based control
systems for active steering system, Nonlinear Dynamic, 73, 1443-1454.

Flores, A., Sáez, D., Araya, J., Berenguel, M., & Cipriano, A. (2005). Fuzzy
predictive control of a solar power plant. IEEE Transactions on Fuzzy

Systems, 13(1), 58-68.

Forgy, E. (1965). Cluster Analysis of Multivariate Data: Efficiency versus
Interpretability of Classification, Bio- metrics, 2, 768-769.

Girosi, F. (1998). An equivalence between Sparse Approximation and Support

Vector Machines. Neural Computation, 10(6), 1455-1480.
Guo, Z., & Guan, X. (2015). Nonlinear generalized predictive control based

on online least squares support vector machines, Nonlinear Dynamic,

79, 1163-1168.
Huang, J.Q., & Lewis, F.L. (2003). Neural-network predictive control for

nonlinear dynamic systems with time-delay. IEEE Transactions on

Neural Networks, 14(2), 377-389.
Jang, J. S. R. (1991). Fuzzy Modeling Using Generalized Neural Networks

and Kalman Filter Algorithm, Proc. of the Ninth National Conf. on

Artificial Intelligence (AAAI-91), 762-767.
Jang, J. S. R. (1993). ANFIS: Adaptive-Network-based Fuzzy Inference

Systems, IEEE Transactions on Systems, Man, and Cybernetics, 23(3),

665-685.
Juang, C. F. & Hsieh, C. D. (2009). TS-fuzzy system-based support vector

regression, Fuzzy Sets and Systems, 160, 2486-2504, 2009.

Kanev, S., & Verhaegen, M. (2000). Controller reconfiguration for non-linear

systems, Control Engineering Practice 8: 1223-1235, 2000.
Kennedy, J., & Eberhart, R. C. (1995). Particle Swarm Optimization,

Proceedings of the IEEE International Joint Conference on Neural

Networks, 4, 1942-1948.
Li, C., Zhou, J., Xiang, X., Li, Q., & An, X. (2009). T-S fuzzy model

identification based on a novel fuzzy C-regression model clustering

algorithm. Engineering Applications of Artificial Intelligence, 22(4-5),
646-653.

Lin, C.T., Liang, S.F., Yeh, C.M., & Fan, K.W. (2005). Fuzzy neural network

design using support vector regression for function approximation with
outliers, in: Proc. IEEE Internat. Conf. on System, Man and Cybernetics,

3, 2763-2768.

Lu, C. H., & Tsai, C.C. (2004). Adaptive neural predictive control for
industrial multivariable processes, Journal of Systems and Control

Engineering, 218(7), 557-567.

Lu, C. H., & Tsai, C. C. (2007). Generalized predictive control using recurrent
fuzzy neural networks for industrial processes. Journal of process

control,17(1), 83-92.

Mahfouf, M., Linkens, D.A., & Abbod, M.F. (2000). Multi-objective genetic
optimization of GPC and SOFLC tuning parameters using a fuzzybased

ranking method, IEE Proceedings—Control Theory and Applications,

147(3), 344-354.
Marchetti, J. L., Mellichamp, D. A., & Seborg, D.E. (1983). Predictive control

based on discrete convolution models. Industrial Engineering Chemical

Process Design and Development, 22, 488-495.
Mendes, J., Araújo, R., & Souza, F. (2013). Adaptive fuzzy identification and

predictive control for industrial processes. Expert Systems with
Applications, 40(17), 6964-6975.

Mercer, J. (1909). Functions of positive and negative type, and their

connection with the theory of integral equations. Philosophical
Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character, 209, 415-446.

Mollov, S., Babuska, R., Abonyi, J., & Verbruggen, H.B. (2004). Effective
optimization for fuzzy model predictive control, IEEE Transactions on

Fuzzy Systems, 12(5), 661-675.

Nicolao, G. D., Magi, L., & Scattolini, R. (1997). Stabilizing predictive
control of nonlinear ARX Models, Automatica, 33(9), 1691-1697.

Oviedo, J. J. E., Vandewalle, J. P., & Wertz, V. (2006). Fuzzy logic,

identification and predictive control. Springer Science & Business
Media.

Palos, A.G., Parthasarathy, S., & Atiya, A.F. (2001). Neural-predictive

process control using on-line controller adaptation, IEEE Transactions
on Control System Technology, 9(5), 741-755.

Prett, D. M., & Garcia, C. E. (1988). Fundamental Process Control.

Butterworths, Boston.
Rastegar, S., Araújo, R., & Mendes, J. (2014). A new approach for online TS

fuzzy identification and model predictive control of nonlinear systems.

Journal of Vibration and Control, 1077546314544894.
Richalet, J. (1993). Industrial applications of model based predictive control.

Automatica, 29, 1251-1274.

Richalet, J., Rault, A., Testud, J. L., & Papon, J. (1978). Model predictive
heuristic control: Applications to industrial processes. Automatica 14,

413-428.

Rossiter, J., Kouvaritakis, B., & Dunnett, R. (1991). Application of
generalised predictive control to a boiler-turbine unit for electricity

generation. IEE Proceedings Part D, 138(1), 59-67.

Sáez, D., Milla, F., & Vargas, L. (2007). Fuzzy Predictive Supervisory
Control based on Genetic Algorithms for Gas Turbines of Combined

Cycle Power Plants. IEEE Transaction on Energy Conversion, 22(3),

689-696.
Saunders, C., Gammerman, A., & Vovk, V. (1998). Ridge regression learning

algorithm in dual variables, 15th International Conference on Machine

Learning, 515-521, Madison, WI.
Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer

theorem. In Computational learning theory, 416-426, Springer.

Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P.,
Janovsky, T. A., & Kamaev, V. A. E. (2013). A survey of forecast error

measures. World Applied Sciences Journal, 24, 171-176.

Sousa, J.M. (2000). Optimization issues in predictive control with fuzzy
objective functions, International Journal of Intelligent System 15, 879-

899.

Sousa, J.M.D.C., & Kaymak, U. (2001). Model prediction control using fuzzy
decision functions, IEEE Transactions on System, Man, and

Cybernetics— part B: Cybernetics, 31(1), 54-65.

 23

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its

application to modeling and control, IEEE Trans. Syst., Man, Cybern,
15, 116-132.

Tsai, P.F., Chu, J.Z., Jang, S.S., & Shieh, S.S. (2002). Developing a robust

model predictive control architecture through regional knowledge
analysis of artificial neural networks, Journal of Process Control, 13,

423-435.

Van der Merwe, D. W., & Engelbrecht, A. P. (2003). Data clustering using
particle swarm optimization. In Evolutionary Computation, 2003

CEC'03. The 2003 Congress, 1, 215-220.

Van Vaerenbergh, S., Vía, J., & Santamaria, I. (2006). A sliding-window
kernel RLS algorithm and its application to nonlinear channel

identification. In 2006 IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP), 789-792, Toulouse, France.
Zadeh, L. (1973). Outline of a new approach to the analysis of complex

systems and decision processes, IEEE Trans. Syst., Man, Cybern, Part B

3(1), 28-44.
Zamarreno, J.M., & Vega, P. (1999). Neural predictive control, application to

a highly non-linear system, Engineering Applications of Artificial

Intelligence, 12, 149-158.
Zhang, Y., Chai, T., Wang H., & Fu, J. (2010). Generalized predictive control

method for a class of nonlinear systems using ANFIS and multiple

models. In: 49th IEEE conference on decision and control, Atlanta, GA:
15-17.

Zhu, Q., Warwick, K., & Douce, J. (1991). Adaptive general predictive

controller for nonlinear systems. IEE Proceedings Part D, 138(1), 33-40.

