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Abstract— In this paper, a novel fuzzy Generalized Predictive 

Control (GPC) is proposed for discrete-time nonlinear systems via 

Takagi-Sugeno system based Kernel Ridge Regression (TS-KRR). 

The TS-KRR strategy approximates the unknown nonlinear systems 

by learning the Takagi-Sugeno (TS) fuzzy parameters from the input-

output data. Two main steps are required to construct the TS-KRR: 

the first step is to use a clustering algorithm such as the clustering 

based Particle Swarm Optimization (PSO) algorithm that separates 

the input data into clusters and obtains the antecedent TS fuzzy 

model parameters. In the second step, the consequent TS fuzzy 

parameters are obtained using a Kernel ridge regression algorithm. 

Furthermore, the TS based predictive control is created by integrating 

the TS-KRR into the Generalized Predictive Controller. Next, an 

adaptive, online, version of TS-KRR is proposed and integrated with 

the GPC controller resulting an efficient adaptive fuzzy generalized 

predictive control methodology that can deal with most of the 

industrial plants and has the ability to deal with disturbances and 

variations of the model parameters. In the adaptive TS-KRR 

algorithm, the antecedent parameters are initialized with a simple K-

means algorithm and updated using a simple gradient algorithm. 

Then, the consequent parameters are obtained using the sliding-

window Kernel Recursive Least squares (KRLS) algorithm. Finally, 

two nonlinear systems: A surge tank and Continuous Stirred Tank 

Reactor (CSTR) systems were used to investigate the performance of 

the new adaptive TS-KRR GPC controller. Furthermore, the results 

obtained by the adaptive TS-KRR GPC controller were compared 

with two other controllers. The numerical results demonstrate the 

reliability of the proposed adaptive TS-KRR GPC method for 

discrete-time nonlinear systems.   

 

Index Terms— Generalized Predictive Control; Takagi-Sugeno 

fuzzy system; Kernel ridge regression; clustering algorithm; 

Particle Swarm Optimization; Takagi-Sugeno system based 

Kernel ridge regression; Sliding-window Kernel Recursive Least 

squares. 

I. INTRODUCTION 

The Model Predictive Control (MPC) approaches represent 

one of the most significant control developments in the last 

thirty years (Prett, & Garcia, 1988). The features of the 

predictive controller such as model structures, prediction 

horizon and optimization criteria allow for the modification 

and adjustment of the MPC to suit a large range of engineering 

applications. The predictive control was first introduced by 

Richalet et al. (Richalet, Rault, Testud, & Papon, 1978; 

Richalet, 1993) where their algorithmic formulations have 

benefited from the recent advancement in digital computers 

and became more practical. Another predictive control 

formulation that suits well the open-loop stable processes: the 

dynamic matrix control (DMC). The DMC method became 

famous due to its simplicity as well as its exploitation of the 

step response models which can be easily obtained (Marchetti, 

Mellichamp, & Seborg, 1983; Brujin, & Verbruggen, 1984). 

Moreover, the Generalized Predictive Control (GPC), which 

has been introduced by Clark et al. (Clarke, Mothadi, & Tuffs, 

1989; Clarke, & Mohtadi, 1989), has offered virtuous results 

in handling unstable systems with a wider range of non-

minimum phase. The GPC strategy uses mostly polynomial 

models which limit the number of parameters that describes 

the process, and help obtaining effective and solid algorithms 

(Clarke, & Mohtadi, 1989). The GPC algorithm has been 

applied many times to a wide class of industrial plants and 

showed decent results (Richalet, Rault, Testud, & Papon, 

1978). However, most of the systems controlled by the GPC 

were linear systems since the quadratic optimization in the 

GPC algorithm can only be solved for linear predictions.  

The idea of developing efficient Nonlinear GPC (NGPC) 

algorithms to control nonlinear process was attracted by many 

researchers, and many papers were published in the NGPC 

field. The simplest strategy for using GPC to control nonlinear 

plants is to linearize the nonlinear model of the plants (Zhu, 

Warwick, & Douce, 1991). However, this approach has 

performed poorly since the operating point may change. 

Various strategies have been developed for NGPC such as the 

stabilizing predictive control with nonlinear ARX models 

which was presented by Nicolao et al. (Nicolao, Magi, & 

Scattolini, 1997) to control nonlinear discrete-time systems. 

Kanev et al. (Kanev, & Verhaegen, 2000) combines a multiple 

model estimator and the GPC algorithm for controller 

reconfiguration of nonlinear systems. Chen et al. (Chen, 

Balance, Gawthrop, Gribble, & O’Reilly, 1999) controlled 

nonlinear plants using a class of nonlinear PID controllers that 

have been derived from a nonlinear GPC approach. An 
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automatic differentiation approach is used by Cao in (Cao, 

2005) to formulate a nonlinear model GPC.  

Generally, the models used by all predictive controllers 

(including the GPC) are assumed to be accurate. This can be a 

serious problem since a wide range of plants are complex and 

cannot be mathematically modelled. Moreover, sometimes 

these plants have large uncertainties and strong nonlinearities. 

In the case that no mathematical model is available to describe 

a system, approximation methods, such as fuzzy logic (Zadeh, 

1973; Driankov et al., 1993; Chen et al., 2013; Flores et al., 

2005; Sáez et al., 2007; Babuska, 1998) and neural networks 

(NNs) (Chen, & Billings, 1992), present a good alternative. 

The use of neural networks to approximate functions has 

shown practical results and has been applied successfully by 

many researchers (Tsai et al., 2002; Zamarreno, & Vega, 

1999; Palos et al., 2001; Huang, & Lewis, 2003; Lu, & Tsai, 

2004; Lu, & Tsai, 2004; Eski, & Temürlenk, 2013) in 

modelling complex processes. The results in (Tsai et al., 2002; 

Zamarreno, & Vega, 1999; Palos et al., 2001; Huang, & 

Lewis, 2003; Lu, & Tsai, 2004; Lu, & Tsai, 2004; Eski, & 

Temürlenk, 2013) demonstrated the abilities of the neural 

predictive control techniques for nonlinear dynamic systems. 

On the other hand, Takagi–Sugeno (TS) (Takagi, & Sugeno, 

1985) fuzzy model has been established as an efficient 

approximation model for nonlinear GPC. The Takagi–Sugeno 

(TS) fuzzy model has the ability to accurately approximate 

complex nonlinear systems by using data along with a prior 

knowledge of processes (Mollov, Babuska, Abonyi, & 

Verbruggen, 2004; Bououden, Chadli, & Karimi, 2015). The 

studies presented in (Mollov, Babusˇka, Abonyi, & 

Verbruggen, 2004; Sousa, 2000; Mahfouf, Linkens, & Abbod, 

2000; Sousa, & Kaymak, 2001; Ali, 2003; Flores, Sáez, 

Araya, Berenguel, & Cipriano, 2005; Bououden, Chadli, & 

Karimi, 2015a; Bououden, Chadli, & Karimi, 2015b) reported 

many successful applications of NGPC using fuzzy models. 

Chang et al. (Chang; Tsai, 2013) proposed an adaptive Takagi-

Sugeno-Kang (ATSK) to model nonlinear processes. In this 

method, the membership functions were selected as a 

triangular functions and initialised using the training data, 

while the consequent parameters were identified using the 

recursive least squares algorithm. Then, an adaptive fuzzy 

model adaptive stable generalized predictive control for 

nonlinear discrete-time systems was constructed by integrating 

the ATSK algorithm with the GPC algorithm. Jang (Jang, 

1991; Jang, 1993) proposed an adaptive neuro-fuzzy inference 

system (ANFIS) method that combines the capabilities of the 

artificial neural network in modelling nonlinear processes and 

the fuzzy reasoning in handling uncertainties. The ANFIS 

Algorithm was used many times to construct a NGPC (Zhang, 

Chai, Wang, & Fu, 2010; Abghari, Sadi, 2014).  

Generally, there are two main approaches to obtain TS 

fuzzy models: the off-line and adaptive TS fuzzy algorithms. 

In the presence of input-output data collected from plants, the 

TS fuzzy model can be obtained by implementing the 

following procedure: First, the antecedent TS fuzzy model 

parameters (which includes: rules number, antecedent 

membership functions, and a set of rules) are obtained by 

partitioning the data into subsets (or clusters). This can be 

done using clustering algorithms. Then, the number of 

clusters, the centroid vectors and variance (width) of the 

clusters are used to describe the TS fuzzy model antecedent 

parameters. The second step is to identify the consequent TS 

fuzzy model parameters which can be done using optimization 

algorithms. Unfortunately, the datasets collected from plants 

are usually limited and cannot accurately describe all 

operating areas of the plant. Moreover, the behaviour of the 

plant may change over time. These limitations can seriously 

diminish the accuracy of the approximations made by a TS 

fuzzy model.  On the other hand, introducing adaptive 

capabilities to the TS fuzzy model may improve the accuracy 

of the approximations made by the TS model. Several papers 

described the use of adaptive TS fuzzy models for system 

identification and control. Li et al. (Li, Zhou, Xiang, Li, & An, 

2009) introduced an adaptive fuzzy-modelling approach that 

can automatically determine the right number of rules. In this 

algorithm, the premise parameters are obtained by using a 

fuzzy c-regression model clustering algorithm, while 

exploiting an orthogonal least squares algorithm to identify the 

consequent parameters. Rastegar et al. (Rastegar, Araújo, & 

Mendes, 2014) proposed a new online evolving Takagi–

Sugeno (TS) fuzzy model identification method based on an 

unsupervised fuzzy clustering algorithm (NUFCA). Then, the 

proposed method was integrated with a GPC algorithm 

resulting in an adaptive predictive process control 

methodology. In this algorithm, the input-output data were 

partitioned to identify the antecedent parameters of the fuzzy 

system, while a recursive least squares algorithm (RLS) was 

applied to update the consequent parameters. Mondes et al. 

(Mendes, Araújo, & Souza, 2013) proposed an adaptive 

identification for industrial applications where a hierarchical 

genetic algorithm (HGA) was utilized to approximate the 

unknown nonlinear processes in the presence of input-output 

data.  

Recently, the integration of regression methods based on 

kernel machine in fuzzy modelling has been attracted by many 

researches (Chiang, & Hao, 2004; Lin, Liang, Yeh, & Fan, 

2005; Juang, & Hsieh, 2009; Guo, & Guan, 2015). Kernel 

regression methods, such as Kernel ridge regression 

(Saunders, Gammerman, & Vovk, 1998) and support vector 

regression (SVR) (Cortes, & Vapnik, 1995; Girosi, 1998), 

perform nonlinear input data mapping to a high-dimensional 

feature space using the properties of kernel functions. This 

property gives these methods a high generalization ability and 

strong capacity to deal with nonlinearities in modelling and 

system identification. 

Chiang et al. (Chiang, & Hao, 2004) exploited the 

properties of support vector regression and proposed a fuzzy 

modelling network based on the SVR. In this approach, the 

fuzzy basis function of the fuzzy model is considered as a 

kernel function in a SVR and the antecedent part of the fuzzy 

system is then generated based on the obtained support 

vectors. The main advantage of this method is that the number 

of rules is generated automatically since the number of rules is 

equal to the number of support vectors. However, this 

approach is computationally expensive since the number of 

support vectors in SVR is usually large. Another method that 

uses the properties of SVR to identify the antecedent part of 

fuzzy models was proposed by Lin et al. (Lin, Liang, Yeh, & 
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Fan, 2005). In this method, A SVR-based forward neural 

network (FNN) is introduced where the number of Support 

vectors is equal to the initial number of rules. Then, the size of 

the model (number of rules) is reduced by eliminating the 

irrelevant rules. However, the reduction procedure degrades 

the performance of the original fuzzy model. Juang et al. 

(Juang, & Hsieh, 2009) proposed another approach where the 

SVR is used to identify the consequent parameters of the TS 

fuzzy model, while a simple clustering algorithm is used to 

define the antecedent parameters. However, this method uses 

complex kernel functions and the obtained fuzzy model is too 

complex to be implemented for an adaptive TS identification 

and control. Inspired by Juang, & Hsieh, 2009 work, this 

paper uses a Kernel ridge regress to identify the consequent 

TS fuzzy model parameters; however the obtained TS fuzzy 

model is simple and can be easily converted to an adaptive TS 

fuzzy model for system identification and control. 

In this paper, two main objectives will be discussed. The 

first objective is to introduce the new TS fuzzy model for the 

offline and the online system identifications. In the case of an 

offline TS model, the model is constructed by separating 

input-output data using clustering based Particle Swarm 

Optimization (PSO) algorithm. Then, the antecedent TS fuzzy 

model parameters will be identified. However, the real novelty 

of this approach is to exploit the properties of Kernel functions 

and use a Kernel ridge regression approach to identify the 

consequent TS fuzzy parameters. For the adaptive TS fuzzy 

model algorithm, the structure of the proposed fuzzy model is 

very simple and the consequent parameters can be easily 

updated using a recursive least squares algorithm. However, in 

this paper a different approach is adopted where the 

consequent TS fuzzy model parameters are obtained using a 

modified Kernel Recursive Least squares (KRLS) algorithm 

called the sliding-window KRLS algorithm (Van 

Vaerenbergh, Vía, & Santamaria, 2006). Then, the antecedent 

TS fuzzy model parameters are initialized with a simple 

clustering (K-means) algorithm and updated using a simple 

gradient algorithm. In the sliding-window KRLS algorithm, a 

window of the last M data is stored as its dictionary where in 

each step the new data is added to the dictionary while the 

oldest data is discarded. This can lead to a sliding-window 

approach and reduce the computational time (instead of using 

all data) to execute a single real time step. The second 

objective of this paper is to integrate the proposed TS method 

into GPC to construct a TS fuzzy generalized predictive 

control. By introducing the concept of the dictionary in the 

adaptive TS fuzzy GPC, more values of the previous input-

output data will be involved in the adaptation procedure. This 

can help obtaining more accurate results, and the proposed 

adaptive TS fuzzy GPC can be used to control nonlinear plants 

with time-varying processes, disturbances or nonlinear plants 

with varying operating regions. The performance of the 

proposed adaptive controller is highlighted by comparing the 

adaptive TS-KRR GPC with two different fuzzy predictive 

controllers: The ANFIS GPC and the ATSK GPC controllers. 

The rest of this paper is organized as follows: Section II 

presents the basic mathematical model of the Takagi-Sugeno 

system based Kernel ridge regression (TS-KRR). The theory 

and the mathematical formulations of the TS-KRR as well as 

the clustering based PSO algorithm will be presented in details 

in Section III. Moreover, the adaptive TS-KRR will be 

discussed in Section III. The predictive control law is derived 

in Section IV. Section V discusses both: offline and adaptive 

identification results, and the online/offline TS-KRR GPC 

control results for a simple nonlinear system (surge tank 

system). In this paper, more attentions were given to the 

proposed adaptive algorithm where the disturbances 

capabilities of the adaptive TS-KRR GPC controller are tested 

in Section V by adding disturbances to the surge tank system. 

Section VI presents the offline/online TS-KRR identification 

results as well as the online/offline TS-KRR GPC control 

results for a CSTR nonlinear system. In section VI, more 

investigations were made for the adaptive TS-KRR GPC 

controller where this controller is tested under the presence of 

the disturbances. Furthermore, the performance of the TS-

KRR GPC controller was investigated in the case where the 

reference signal is sinusoidal function and in the presence of 

disturbances. In Section VII, we conclude this paper. 

II. THE TAKAGI-SUGENO FUZZY MODEL 

In this section, the Takagi-Sugeno fuzzy model based 

Kernel ridge regression (TS-KRR) will be discussed. First, the 

TS-KRR algorithm is based on the ―IF-THEN‖ Takagi-Sugeno 

fuzzy rules. Similar to the classical Takagi-Sugeno fuzzy 

rules, the i-th rule in a TS-KRR is presented as follows: 

 

        ( )      
             ( )       

 

        ( )    
   ( )      

   ( )

                                                           

      (1) 

 

where    (           ) is the i-th fuzzy rule and   is the 

number of rules. The input variables are:   ( )     ( ), 
where   is the time increment, and    ( ) is the system output 

of the i-th fuzzy rule.   
                        are the 

linguistic terms where these terms are characterized by the 

fuzzy membership functions  
  
 (  )              

       , and each term describes a local operating region of 

the nonlinear plant. Figure (1) demonstrates the structure of 

the proposed fuzzy system. The proposed TS-KRR has five 

layers. In this section, the mathematical functions for each 

layer are presented in details. 
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Figure 1: The configuration of the TS-KRR structure 
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Layer 1: represents the input variables of the model where 

these input signals are transmitted to layer 2. In layer 2 (or the 

Fuzzification procedure), each   
  represents a membership 

value of the j-th input variable   ( ) in rule i. The value of the 

j-th input variable that satisfies the quantity   
  is defined by 

the membership function  
  
 (  ). The output of each node in 

layer 3 (the rule layer) represents the product of all input 

signals of the node. In layer 3, each node represents an ―IF‖ 

part of ―IF-THEN” rule obtained by fuzzy logic operation 

―AND‖. The results obtained from node i in layer 3 gives the 

firing strength function   ( ). In layer 4, the output of each 

node i has the form of  ̂ 𝜓  where 𝑖 𝜓  is the firing strength of 𝑖

node i in layer 3 multiplied by an input vector, and  ̂  is the 

consequent part of role i. Layer 4 can be seen as the layer that 

computes the consequent values of each node i. Finally, layer 

5, which represents the Defuzzification Operation, computes 

the summation of all incoming signals from layer 4 and gives 

the estimated output   ( ) of the nonlinear plant. As it appears, 

the Defuzzification Operation in the proposed TS-KRR model 

does not perform any normalization operations, and in the next 

section we will prove that the proposed fuzzy model does not 

need any kind of normalizations when the Kernel ridge 

regression algorithm is implemented to identify the 

consequent parameters ( ̂         ). 

 To compute the output   ( ) of the proposed TS-KRR, the 

membership functions are defined as a Gaussian function: 

 

 
  
 (  )     { 

(      )
 

    
 }                      (2) 

where     and     are the centre  and the width of the 

membership function, respectively. The firing strength of each 

node in layer 3 is given as: 
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. In layer 4, the function    is 

defined as        ( ). Then, the output of the TS-KRR 

model is the following: 
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   )    { ∑ (
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   } 
        (4) 

 

Next section, the procedure of identifying the consequent 

vectors  ̂          of the TS-KRR system as well as the 

values of the centre and the width of the membership 

functions are discussed in details.  

III. IDENTIFICATION OF THE ANTECEDENT AND 

CONSEQUENT PARAMETERS OF THE TAKAGI-SUGENO FUZZY 

SYSTEM BASED KERNEL RIDGE REGRESSION  

 

In this section, the kernel ridge regression will be applied to 

identify the TS-KRR consequent parameters. First, several 

definitions of the Kernel methods will be presented and then 

the algorithm will be described in detail. Next, the clustering 

based Particle Swarm Optimization (PSO) algorithm is 

presented to identify the antecedent parameters. Then, the 

proposed adaptive version of the Takagi-Sugeno system based 

Kernel ridge regression (TS-KRR) is introduced. 

A. Basics of Kernel ridge regression 

The kernel ridge regression (KRR) is a very recognized 

regression method in the area of nonlinear regressions. The 

idea of this regression method is to perform a linear regression 

in very high-dimensional spaces in an efficient way by 

exploiting the kernel trick. It is equivalent to performing 

nonlinear regression in the original input space. 

 

Definition 1: A kernel function is a function         that 

for all     from a nonempty set   satisfies: 

 

 (   )  〈 ( )  ( )〉               (5) 

 

where   is a mapping from the set   to a Hilbert space   (also 

called the feature space) and 〈   〉 is the inner product 

operation. To verify that a function   is a valid kernel, the 

properties of positive semi-definite kernel function need to be 

satisfied. 

      

Theorem 1: a function  (   ) of a two points (or vectors)     

defined on    is a positive semi-definite kernel if it satisfies 

the Mercer’s theorem (Mercer, 1909): 

 
∑      (     )

 
                      (6) 

 

for any numbers       and any points       where     

      , and    represents the size of training data. In this 

paper, the sum of kernel functions will be needed to define our 

model and to identify the consequent parameters. This leads to 

the following theorem: 

 

Theorem 2: Let    and    be valid kernel functions, then 

      is a valid kernel function. 

 

Proof: 

 

It is easy to prove this using the Mercer’s theorem in Eq. 

(6): 
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 ∑     (  (     )    (     ))
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 ∑       (     )
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  Another important definition that needs to be mentioned in 

this section is the Representer Theorem (Schölkopf, Herbrich, 

& Smola, 2001). This theorem suggested that for a large class 

of optimization problems in reproducing kernel Hilbert space 

(RKHS), the solutions can be expressed as kernel expansions 

in terms of the training data only. According to Representer 

Theorem, the objective of kernel-based learning methods is to 

find a nonlinear relationship         expressed as the 

following kernel expansion: 

 

 ( )  ∑    (    )
  
                  (7) 

 
where    is the number of available training data,         
       are the expansion coefficients. Next, the regularized 

problem for kernel ridge regression is defined as (Saunders, 

Gammerman, & Vovk, 1998): 

 

      ∑ (    (  ))
   

     ‖ ‖ 
          (8) 

 

where     and  ( ) is given in Eq. (7). Let define the 

vectors:   (        
)
 
,   (        

)
 
 and  

  (

 (     )   (      
)

⋮  ⋮
 (     )   (      

)

), then the problem in Eq. 

(8) can be expressed as: 

 

        (    ) (    )              (9) 

 

The minimisation of the quadratic problem in Eq. (9) is 

simple and the resulted expansion coefficients are given by:  

 

  (    )                   (10) 

 

And the matrix   is a       identity matrix.  

B. Identification of the consequent parameters of the 

proposed TS-KRR  

 

To obtain the TS-KRR formulation presented in Eq. (4), two 

choices has to be made: the number of kernel functions needed 

for the TS-KRR, and the form of the mapping    to define 

each kernel function    (as in definition 1). The main idea of 

constructing the TS-KRR is to propose the form of the 

mapping and then the kernel functions. In this paper, the 

kernel function is defined such as: 

 

 (   )  ∑   (   )  ∑ 〈  ( )   ( )〉
 
   

 
       (11) 

 

 where   is the number of rules for the Takagi-Sugeno system 

based Kernel ridge regression (TS-KRR), and the mapping 

           are defined as: 

  ( )  ( )   ( )  ( )    { ∑
(      )

 

    
 

 
   }    

      

 ( )    { 
 

 
(    )

    (    )}            (12) 

 

In Eq. (12), the vectors:   (       )
  and    

(         )
  are the input and the centroid vectors, 

respectively. The width vector is    (         )
  and the 

matrix   [
   

   
⋮  ⋮
     

 
]

  

. As seen in Eq. (12), the 

mapping function   ( ) is defined as a vector that has the 

same size of the input vector  . Then, the result of the 

mapping inner product is: 〈  ( )   ( )〉    ( )
    ( ). 

Moreover, it is clear that the functions   (   )  
〈  ( )   ( )〉         are valid kernel functions. 

 

Proof: 

 

∑       (     )

  

     

 ∑     〈  (  )   (  )〉

  

     

 ∑〈    (  )     (  )〉

  

     

  

 

By using the properties of the inner product operation, it is 

obvious that: 

 

∑       (     )

  

     

 〈∑    (  )

  

   

 ∑    (  )

  

   

〉

 ‖∑    (  )

  

   

‖

 

    

 

Then,   (   )  〈  ( )   ( )〉         are valid 

kernel functions (   was proved to be a valid kernel function 

without even replacing   ( ) with its proposed form), and 

according to theorem 2, the function  (   )  ∑   (   )
 
    is 

a valid Kernel function as well.  

By replacing Eq. (11) in Eq. (7), we obtain the following: 

 

 ( )  ∑   (    )
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( ) 
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    ( ) 

It is obvious that by setting  ̂  (∑     (  )
  
   )  

∑       (  )
  
   , then the Takagi-Sugeno system based Kernel 

ridge regression (TS-KRR) defined in Eq. (4) is attained 

where the consequent parameters are:  
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 ̂  ∑        (  )
  
                  

 ∑         { ∑
(      )

 

    
 

 
   }

  
        (13)  

 

and the model is: 

 ( )  ∑  ̂ 
  

     ( )  ∑  ̂ 
  

       ( )       

 ∑ (𝜽̂𝑙
𝑇  ) 

       { ∑
(      )

 

    
 

 
   }   (14)  

 

Clearly, for a certain training input-output dataset, the 

consequent parameters of the proposed TS fuzzy model are 

identified using expansion coefficients   (        
)
 
 

which can be easily obtained from the quadratic problem in 

Eq. (9). The only missing part of the TS-KRR is the 

antecedent parameters (number of rules,    and   ). In this 

paper, a clustering algorithm will be used to identify the 

antecedent parameters. In the next subsection, a clustering 

based PSO algorithm number is discussed where the number 

of rules will be defined as the number of clusters, while    

and    are the centroid and the width of each cluster  , 
respectively. 

 

C. Identification of the antecedent parameters of the 

proposed TS-KRR  

 

In this subsection, the antecedent parameters of the TS-KRR 

fuzzy model are identified using a clustering algorithm, where 

the centroid and the width of the clusters will represent the 

vectors    and    of the kernel functions. There are many 

possibilities to choose a clustering algorithm. In the case of an 

adaptive TS-KRR fuzzy model (which will be presented later), 

a simple K-means clustering (Forgy, 1965) algorithm could be 

sufficient to initialise the algorithm while the vectors    and 

   are adjusted in each iteration. However, for offline TS-

KRR model an accurate clustering algorithm helps getting 

better approximations.  

In this paper, a clustering based PSO algorithm is used for 

the offline TS-KRR model. This algorithm is proposed by Van 

der Merwe et al. (Van der Merwe, & Engelbrecht, 2003). In 

this algorithm, first a K-means clustering (Forgy, 1965) 

algorithm is used to initialise the initial swarm. Then, the PSO 

algorithm refines the clusters formed by the K-means. 

 The K-means algorithm is a very recognized tool for data 

clustering.  This algorithm attempts to assemble data vectors 

into a predefined number of clusters, where the Euclidean 

distance is used as a similarity measure. As a result, the data 

vectors within the same cluster have small Euclidean distances 

from one another. Each cluster is then associated with one 

centroid vector, which represents the "midpoint" of that cluster 

(the centroid vector is the mean of the data that belongs to the 

same cluster). Furthermore, the width of each cluster is 

defined by the variance of the data belongs to the same cluster. 

 

The Particle swarm optimization (PSO) is a population-

based optimization algorithm that has been introduced by 

Kennedy and Eberhart (Kennedy, & Eberhart, 1995). This 

algorithm was inspired from the behaviour of flocks of birds 

(particles) in nature. In the standard PSO algorithm, particles 

(or individuals) represent potential solutions to the 

optimization problem where each particle   is composed of 

three vectors; its position in the search space, which is given 

by  ̌  ( ̌ 
     ̌ 

 ), the best position that has been found by 

the individual (or particle)    (  
      

 ) and the velocity 

   (  
      

 ) of the individual  . In this algorithm, both: 

positions and the velocities of the particles are randomly 

initialized in the search space. During the implementation of 

the PSO algorithm, each particle moves around the search 

space by updating its velocity and position vector. Various 

equations can be used to update the velocity of particles.  

However, the version with the inertia weight will be used in 

this paper. The velocity equation that updates particle i is 

given by:  

 

           (    ̌ )      (  
 
  ̌ )      (15) 

 

where the influence of the previous velocities in Eq. (15) is 

adjusted by introducing an inertia weight  .    and    are 

random values.    and    are the local and global influence 

factors, respectively. The simulations inertia weight is reduced 

during the algorithm evaluation to allow local search, where 

  
              

        
   , where    is the initial weight,      is 

the current iteration of the algorithm while the total number of 

iterations is defined by         .     

The position vector is then updated using:  

 ̌   ̌                      (16) 

The PSO algorithm is terminated after running Eqs. (15) and 

(16) for a specified number of iterations         . 

To adjust the PSO algorithm for clustering, a particle  ̌  

contains all centroid of the clusters such as  ̌  (  
      

 ), 

where all particles represent a possible solution for an accurate 

centroids. The fitness function is then defined by: 

 

   
∑ (∑

 (     )

|  |
       

) 
   

 
             (17) 

 

where    represents the cluster   and |  | is the number of data 

vectors belongs to the cluster    . The distance is defined as: 

 (     )  √∑ (      )
  

   , and for each cluster, the 

centroid is calculated as    
 

|  |
∑          

 and the widths 

of clusters are:     
 

|  |
(∑ (       )

 
       

)

 

 
. Note that 

   represents particle  ̌  that belongs to the cluster   . 

The clustering algorithm is summarized as follows: 

 

Algorithm 1 (PSO clustering): 

 

1) Initialise each particle to contain N centroids. The 

particles are randomly initialised except for one particle 

which has the results of the K-means algorithm. 
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2) For i=1:          

a) For each particle   do 

i) For each data vector    do 

(1) The distance to all centroids is calculated. 

(2) Assign the vector    to the cluster that has 

minimum distance   

(3) Calculate the fitness using Eq. (17) 

ii) Updates the global and local best positions using 

Eqs. (15) and (16). 

iii) Update the clusters centroids and widths. 

 

 

Finally, to perform an identification procedure using the 

offline TS-KRR, the following steps must be executed: 

 

Algorithm 2: (offline TS-KRR) 

 

1) Initialize the input size, number of clusters N, the 

PSO parameters ( ,   ,   ,          and the 

number of particles).  

2) Perform Algorithm 1.  

3) Obtain the expansion coefficients using Eq. (10). 

4) Finally, obtain the estimated  ̂  from Eq. (13). 

5) Obtain the model in Eq. (4) (The same model in 

Eq. (14)). 

 

D. The adaptive TS-KRR algorithm 

 

In the previous 2 subsections, the off-line TS-KRR was 

introduced where the offline TS-KRR model can be easily 

obtained from the input-output data that belongs to certain 

plants. However, the main disadvantage of the off-line 

algorithms is that the collected data is limited and the model 

obtained may not be sufficiently accurate. This inspires the 

implementation of the adaptive (online) version of the TS-

KRR algorithm for identifications and control systems. 

Adaptive techniques are designed to learn from one data 

instance at a time. They are typically used in real-time 

scenarios, such as control systems or tracking problems, where 

the data arrive sequentially and instant decisions must be 

made. The adaptive TS-KRR algorithm consists of two steps. 

The first step is to adjust the antecedent parameters (   and 

  ,        ) where this can be done by a simple back-

propagation learning algorithm. The second step is to use an 

online regression method to update the consequent parameters. 

The easiest way is to use the famous RLS algorithm to update 

the  ̂         . However, the RLS algorithm has been 

used many times. Also, the accuracy of this algorithm is not 

ensured since the proposed TS-KRR model does not require 

normalization in the defuzzification Operation. In this paper, 

an alternative scenario is investigated where a modified 

version of the Kernel RLS (sliding-window kernel RLS) 

algorithm is exploited to update these parameters. The idea is 

then to recursively update the expansion coefficients, and then 

use these coefficients to obtain the  ̂         .   

To update the parameters     and     of the TS-KRR in Eq. 

(4), the following error function is introduced: 

 

 ( )  
 

 
( ( )    ( ))              (18) 

 

where  ( ) is the actual output and   ( ) is the approximated 

output obtained by the TS-KRR at the instant  . By applying 

the backpropagation learning algorithm, the updated values of 

    and     at the instant     are given by: 

 

 

   (   )     ( )   
  ( )

    
            

    ( )   ( ( )    ( ))
   ( )

    
     (19) 

 

   (   )     ( )   
  ( )

    
             

    ( )   ( ( )    ( ))
   ( )

    
     (20) 

 

where   is a positive learning rate, and: 

 

   ( )

    
 

   ( )

   
( )

 
   

( )

  
  
 (  )

 
  

  
 (  )

    
           

  
 

 ( ) ( 
 
( ) (∑   

 
   )   ̂ ) 

(      )

   
    (21) 

 

   ( )

    
 

   ( )

   
( )

 
   

( )

  
  
 (  )

 
  

  
 (  )

    
           

  
 

 ( ) ( 
 
( ) (∑   

 
   )   ̂ ) 

(      )
 

   
    (22) 

 

and   is the size of the dictionary used by the sliding-window 

kernel RLS algorithm. To update the expansion coefficients, 

the kernel RLS method (Engel, Mannor, & Meir, 2004) is 

implemented. In addition, the modifications made in the 

sliding-window kernel RLS are presented. Suppose that      

data have been received and processed at the (   )-th 

iteration. The regression solution from Eq. (10) can be 

expressed as: 

 

       ́   
                      (23) 

 

The matrix  ́ in Eq. (23) is the regularized kernel matrix 

 ́       . When a new data pair ( ( )  ( ) ) is arrived, 

several steps are required to update Eq. (23) recursively. First, 

the predicted output will be calculated such as:   ( )  
  

     , where    ( ( ( )  ( ))    ( ( )  (   ))) , 

and the error between the real and the predicted output is 

 ( )   ( )    ( ). The kernel matrix at the instance   is 

then given by: 

 

 ́  (
 ́     

  
  ( ( )  ( ))   

)        (24) 

 

By introducing the new variables:     ́   
     and 

    ( ( )  ( ))      
   , the new inverse matrix is 

defined by: 
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 ́ 
   

 

  
(
   ́   

       
    

    
)       (25) 

 

Finally, the updated values of the expansion coefficients 

are: 

 

   (
     

   ( )

  

 ( )

  

)            (26) 

 

The size of the Kernel inverse matrix increases with time, 

which is difficult to be implemented in real time applications. 

To deal with the size problem, a modified version with a fixed 

dictionary size, the sliding-window kernel RLS algorithm, is 

implemented to update the expansion coefficients. The idea of 

this algorithm is to store a fixed size of the last   data as its 

dictionary. In each step, the algorithm adds the new arrived 

data pair ( ( )  ( ) ) and removes the oldest one from its 

dictionary (which is obvious since the latest data are more 

relevant than the old one), and this will lead to a sliding-

window approach.  

Given the kernel matrix  ́   , the new regularized kernel 

 ́  at the instance   is constructed by removing the first row 

and column of  ́    (downsizing the kernel matrix step), and 

the resulting matrix is denoted as     . Then, kernels of the 

new arrived data are added to     as the last row and column 

of  this matrix: 

 

 ́  (
      

  
  ( ( )  ( ))   

)        (27) 

 

the vector    ( ( ( )  (   ))    ( ( )  (   ))) . 

The inverse of this matrix can be easily obtained using the 

same steps used earlier for matrix in Eq. (24). Then, the 

inverse matrix  ́ 
   is described as: 

 

 ́ 
   

 

 ̅ 
(
 ̅     

  
  ̅  ̅ 

   ̅ 

  ̅  
)        (28) 

 

where  ̅      

  
   and  ̅   ( ( )  ( ))      

  ̅ , 

and the inverse matrix     

  
 can be obtained from the matrix 

 ́   
   (which is already recursively obtained in the previous 

instant or iteration). First, the inverse matrix  ́   
   is divided 

as:  ́   
   (

   

  
), and we already know that: 

 

  ́    (
 ( (   )  (   ))    ̂   

 ̂   
     

)   (29) 

 

where   is the size of dictionary and  ̂    ( ( (  
 )  (     ))    ( (   )  (   ))) . Then, the 

inverse matrix     

  
 is obtained as: 

 

    

  
   

   

 
                (30) 

 

The sliding-window kernel RLS algorithm is summarized 

as follows: 

 

Algorithm 3 (sliding-window kernel RLS algorithm): 

 

1. Compute the error  ( )  

2. Update inverse matrix in Eq. (25) 

3. : If the dictionary size is more than   

(1) Calculate the inverse matrix in Eq. (30) 

(2) Calculate the matrix in Eq. (27) 

(3) Calculate the inverse matrix in Eq. (28) 

(4) Update expansion coefficients     ́ 
     

4. Else : 

        (1)  Update expansion coefficients in Eq. (26) 

 

 

After obtaining expansion coefficients, the consequent 

parameters  ̂          are updated using only   pairs 

of the input-output data (the size of dictionary) such as: 

 

 ̂  ∑    (  )    { ∑
(      )

 

    
 

 
   } 

        (31) 

 

The adaptive TS-KRR is summarized as follows: 

 

Algorithm 4: (online TS-KRR steps) 

 

1. Initialize the input size, number of clusters N) 

2. Execute K-means algorithm to initialize the 

antecedent parameters (an offline procedure).  

3. Set the size of the dictionary   

4. Measure the output signal 

5. Update    ,     in Eq.(19) and (20). 

6. Run Algorithm 3 to obtain the updated expansion 

coefficients. 

 Obtain the estimated variables 7. 𝜽̂𝑙 from Eq. (31), and 

obtain the model in Eq. (4) 

 8. Go to 4 

 

K-means algorithm is performed in the Note that, only 

adaptive TS fuzzy system since the antecedent parameters are 

going to be updated further at each instant. Also, the updated 

value of the learning rate   will be introduced later in the 

simulation example. 

IV. DERIVATION OF THE GENERALIZED PREDICTIVE 

CONTROL LAW 

In this section, a generalized predictive control law is 

described. The GPC controller is implemented by removing 

the nonlinear effects of the system, which is done by replacing 

the original nonlinear plants with the TS-KRR when the 

control signal is computed. A nonlinear plant is considered to 

have the following general nonlinear structure: 

 

 ( )   ( (   )  (   )    (    )  (  

 )  (     )    (    ))   (32) 
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where   and   are the output  and the control signals of the 

nonlinear system, respectively. The function   represents a 

nonlinear mapping that describes the relation between the 

output and the control signals, where the form of this mapping 

function is assumed to be unknown.    and    are the orders 

of the control signal and the output respectively, and   is the 

time delay of the system. The nonlinear mapping   ( ) is 

approximated using several local affine models where the 

system in Eq. (32) can be described by the following TS fuzzy 

rules (similar to the TS rules in Eq. (1)):  
 

        ( )      
             ( )       

 

        ( )    ( 
  ) (   )    ( 

  )

                                                           

 (     ) (33) 

 

where the input vector:  ( )  (  ( )     ( ))  

( (   )    (    )  (     )    (    )),   ( 
  ) 

and   ( 
  ) are linear polynomials with       and       

such as: 

 

  ( 
  )    

         
                

  ( 
  )    

   
 

 
        

      
       (34) 

 

From Eq. (33), the estimated TS-KRR model is defined 

as: 

 

  ( )  ∑ (  ( 
  ) (   )    ( 

  ) (     
   

 ))    { ∑ (
(      )

 

    
 ) 

   }     (35) 

 

where   ̂  (     )         is obtained by Eq. (13) 

(or Eq. (31) in the case of an adaptive control). To obtain 

the control signal,   Eq. (35) is written as follows: 
 

 ̅(   ) ( )   ̅(   ) (     )      (36) 

 

with  ̅(   )     ̅        ̅        and  ̅(   )   ̅  

 ̅        ̅      , and: 
 

 ̅  ∑   
     { ∑ (

(      )
 

    
 ) 

   } 
   

 ̅  ∑   
     { ∑ (

(      )
 

    
 ) 

   } 
   

       (37) 

 

The control law of the GPC algorithm is obtained to 

minimize the following cost function:  

 

 ( )  ∑ (  (   | )   (   ))
   

     
         

 ∑  (   )  (       | ) 
      
         (38) 

 

where   (   | ) is an optimum   step ahead prediction of the 

system on time  .    and    are the output and control signal 

horizons, respectively.   (   ) is the reference trajectory. 

 (   )        
              

 (       ) is the 

weighting polynomial, and        . First, we consider 

the following Diophantine equation: 

 

    ( 
  )  ̅(   )       ( 

  )       (39) 

 

The degrees of the polynomials   ( 
  ) and    ( 

  ) are 

    and   , respectively. To simplify the Diophantine 

equation,  ̃(   ) is introduced such as  ̃(   )    ̅(   ). 

Both   ( 
  ) and    ( 

  ) are obtained when 1 is divided 

by  ̃(   ). If Eq. (36) is multiplied by    ( 
  )   and the 

Eq. (39) is used for simplification, then the best prediction 

of  (   | ) is: 

 
 (   | )    ( 

  ) ( )    ( 
  ) ̅(   ) (       ) 

(40) 

 

where   ( 
  )    ( 

  ) ̅(   ). The polynomials   ( 
  ) 

and    ( 
  ) expressed in Eq. (41) are obtained recursively 

(see Clarke et al., 1989 for more details).   

 

  ( 
  )         

            
 (   )

  ( 
  )            

          
        

      (41) 

 

Given   ( 
  ), the polynomial     ( 

  ) is obtained as 

follows: 

  

    ( 
  )    ( 

  )                    (42) 

 

where             . The coefficient of   ( 
  ) are obtained 

as: 

 

                   ̃                     (43) 

 

where      
  . The coefficients of   ( 

  ) are also 

obtained recursively where the first   coefficients of     ( 
  ) 

are equal to   ( 
  ) coefficients. The rest of the coefficients 

are obtained such as: 
 

                                       (44) 

 

From Eq. (40), we can write the following:  

 
  ( )    ( )   (   ) ( )   (   )       (45) 

 

where 

 

 ( )   

[
 
 
 
 (     )

 (     )
⋮

 (    ) ]
 
 
 

  ( )  [

  ( )

  (   )
⋮

  (      )

]  (46) 

 (   )  

[
 
 
 
    ( 

  )

    ( 
  )

⋮
   

(   ) ]
 
 
 

   

[
 
 
 

       
          
⋮

        

⋮
        

  
          ]

 
 
 

(47) 
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 (   )  

[
 
 
 
 
 (    ( 

  )   ̃   ( 
  ))    (   )

(    ( 
  )   ̃   ( 

  ))     (   )

⋮

(   
(   )   ̃  

(   ))      (   ) ]
 
 
 
 
 

    (48) 

 

and  ̃ ( 
  )            

              
     . Next, the 

weighting polynomial is set to be constant:  (   )   , and 

Eq. (45) is used to simply the cost function  described in Eq. 

(38). Then, the new form of the cost function is given by: 

 

  ( )  (  ( )   (   ) ( )   (   )   ) (  ( )  

 (   ) ( )   (   )   )     ( )  ( )  (49) 

 

where the vector   ( (     )    (    ))
 
. By 

minimizing the Eq. (49) ( 
  ( )

  ( )
  ), the obtained solution is 

given by: 

 
 ( )  (      )    (   (   ) ( )   (   ))  (50) 

 

where   is an identity matrix. The control signal sent to the 

process is only the first element of the vector  ( ). In this 

case, the increment of the control signal is: 

 

  ( )   (   (   ) ( )   (   ))  (51) 

 

where   is the first row of the matrix (      )    .  

V. ILLUSTRATIVE EXAMPLE 1: IDENTIFICATION AND 

CONTROL OF A SURGE TANK SYSTEM 

 

In this subsection, the surge tank system (Eski,   & 

Temürlenk, 2013) represented in Figure (2) is considered for 

system identification using the TS-KRR algorithm (and 

control using TS-KRR GPC controller). The mathematical 

model of this nonlinear system is given by: 

 
   ( )

  
 

   √     ( )

 (  ( ))
 

 

 (  ( ))
 ( )     (52) 

 

where  ( ) is the control input (the input flow of the system), 

  ( ) is the liquid level in the tank and the constants      

and        . The cross section area of the tank is defined as: 

 (  ( ))    (  ( ))
 
   . The constants:         and 

      .  
u(t)

h(t)

 
Figure 2: The surge tank system 

A. The offline Identification 

To obtain the offline TS-KRR system of the surge tank 

system, the sampling time is set to              and the 

nonlinear mathematical model presented in Eq. (52) is used to 

generate        samples; the first 400 samples were used 

to train the TS-KRR system, while the rest of these samples 

were used to validate the proposed TS-KRR method. The 

control signal represented in Figure (4b) was used to generate 

these 900 samples. The size of the input variable vector is set 

to 4 (     and     ).  

Generally, there are several methods to identify the right 

number of clusters from the training data.  Mendes et al. 

(Mendes, Araújo, Souza, 2013) used the number of the 

operating zones (or the hyper-planes) of the system described 

by the training data as the number of clusters. This method is 

not very accurate since one operating zone might be repeated 

many times in the training data. In this paper, the number of 

clusters is identified as follows: First, the number of clusters is 

initialized (equal to the number of the operating zones). Then, 

the K-means algorithm is applied to obtain the centers of the 

clusters. Next, the similarities among these clusters are 

eliminated since two clusters (or more) may describe a similar 

hyper-plane. The number of clusters will be reduced if 

similarities are detected. This process will be repeated till no 

similarities between clusters are excited.  

Due to the simplicity of the training data, the previous 

approach can be easily applied. Thus, the obtained number of 

clusters (number of fuzzy rules) is    . The number of 

clusters can also be identified using Dunn index (Dunn, 1973) 

method. To apply this method, the number of clusters is set to 

be changing from 2 to 16. Then, the k-means algorithm is 

performed for all possible numbers of clusters and the Dunn 

index is calculated. The right number of clusters is selected 

according to the highest value of the Dunn index (see the 

upper value of the index in Figure 3). It is clear that the Dunn 

index method obtained the same number of clusters. 

 

Figure 3: The variation of Dunn index 

Next, the clustering based PSO algorithm is used to 

initialise the centroid and the width of the clusters. The 

number of particles used in the PSO algorithm is set to    

while the PSO parameters   ,   ,   ,          are set to: 

             and    , respectively. To initialize the 16 

particles, first the K-means algorithm is performed and the 

results obtained will be considered as the first particles (store 

it in  ̌ ). The rest of the particles are randomly selected where 

the maximum and minimum boundaries of these particles are 

defined as:  ̌     ̌        ̌  and  ̌     ̌  
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      ̌ , respectively. To perform the quadratic problem in 

Eq. (9), the constant   is set to      . After running the offline 

TS-KRR steps in Algorithm 2, the identification results of the 

liquid level   ( ) are presented in Figure (4a). 

The performance of the clustering based PSO algorithm is 

evaluated by comparing its offline identification results with 

the results obtained by two different clustering algorithms: the 

standard K-means algorithm and clustering based Genetic 

Algorithm (GA) algorithm. The clustering based GA 

algorithm parameters are: the population size is equal to 16, 

the mutation rate is 0.2, the selection rate is 0.5, the crossover 

rate is 0.7 and the same PSO maximum and minimum 

boundaries are used to initialise the GA population. To 

perform the clustering based GA algorithm, the same steps in 

Algorithm 1 are executed except step 3 where the global and 

local best positions are updated using the following GA 

operators: selection, mutation and crossover. 

 
(a) 

 
(b) 

Figure 4: Identification of the nonlinear system: (a) the modelling 
performance of the proposed algorithm TR-KRR. (b) The control signal. 

 

Figure (4a) displays the TS-KRR results when three 

different clustering algorithms are used to compute the 

antecedent parameters. The obtained results are referred to as: 

TS-KRR (PSO), TS-KRR (GA) and TS-KRR (K-means). 

Additionally, two different algorithms: the Takagi–Sugeno 

Fuzzy System-based Support Vector Regression (TSFS-SVR) 

(Juang, & Hsieh, 2009) and the generalized neural networks 

based fuzzy inference system (GNN-FIS) (Jang, 1991) are also 

are also presented in Figure (4a).  

The results show that the TS-KRR algorithm (in all cases) 

performed well and the accuracy of the modelling is better 

than both: GNN-FIS and TSFS-SVR algorithms. Moreover, 

the TS-KRR (PSO), TS-KRR (GA) and TS-KRR (K-means) 

appear to have similar results which have been expected due 

to the simplicity of the training data.  

To have an efficient comparison between the TS-KRR 

(PSO), TS-KRR (GA), TS-KRR (K-means), GNN-FIS and 

TSFS-SVR algorithms, the Root Mean Squared Error 

(RMSE), the Mean Absolute Error (MAE), the Mean Absolute 

Percentage Error (MAPE) and the symmetric Mean Absolute 

Percentage Error (sMAPE) are computed for all algorithms. 

The RMSE is described by: 

 

     √
 

  
∑ ( ( )    ( )) 

  
           (53) 

 

where  ( ) is the actual (or real) output,   ( ) is the predicted 

output obtained by the TS-KRR and    is the number of 

samples. The MAE, MAPE and the sMAPE (Shcherbakov et 

al., 2013) are given by Eq. (54), Eq. (55) and Eq. (56), 

respectively: 

    
 

  
∑ | ( )    ( )|

  
             (54) 

 

     
   

  
∑ |

 ( )   ( )

 ( )
|

  
              (55) 

 

      
   

  
∑

| ( )   ( )|

| ( )| |  ( )|

  
             (56) 

 

where | | represents the absolute value of  . The comparison 

results are presented in Table (1). 

 
Table 1: Comparison results for the surge tank system 

Methods Rules Number 

of 

inputs 

RMSE MAE MAPE 

(%) 

sMAPE 

(%) 

Simulation 

time (s) 

TS-

KRR 

(PSO) 

07       
      

0.0039194 0.0018413 0.04609 0.04621 12.9901 

TS-

KRR 

(GA) 

07       
      

0.0039194 0.0018413 0.04609 0.04621 13.4612 

TS-

KRR (k-

means) 

07       
      

0.0039219 0.0018427 0.04611 0.04628 07.1240 

GNN-

FIS 

20       
      

0.1812871 0.0947221 3.0451 3.1132 00.8104 

TSFS-

SVR 

14       
      

0.0787312 0.0354782 0.8247 0.8098 52.0758 

 

The TS-KRR (PSO) and (GA) have produced the same 

error values (RMSE, MAE, MAPE and sMAPE) while the 

values obtained by the TS-KRR (K-means) are slightly 
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different (see Table 1). This indicates that the K-means 

algorithm efficiently clusters the data, and can be used to 

compute the centroid and the width of the clusters without any 

modifications. In this example, the improvements made by the 

PSO and GA algorithms are minor due to simplicity of the 

data and the K-means algorithm is sufficient to compute the 

antecedent parameters. On the other hand, the proposed TS-

KRR approach outperforms both GNN-FIS and TSFS-SVR 

algorithms. This can be seen in Table (1) where the TS-KRR 

requires less fuzzy rules (only 7 rules for the TS-KRR) than 

the other two algorithms. Also, the values of errors (the values 

of RMSE, MAE, MAPE and sMAPE) obtained by the TS-

KRR are smaller than those obtained by GNN-FIS and TSFS-

SVR algorithms. Despite that the GNN-FIS had relatively a 

poor performance (RMSE=0.1813, MAE= 0.0947, MAPE= 

3.0451% and sMAPE = 3.1132%), this algorithm is faster than 

both TS-KRR and TSFS-SVR algorithms where the GNN-FIS 

simulation time was less than 1 sec (the time of performing 

clustering and obtaining the consequent parameters). 

B. Fuzzy predictive Control of the surge tank system 

Usually, the offline TS-KRR algorithm could be enough to 

approximate nonlinear systems when sufficient data about 

these systems are available. In this case, the GPC controller is 

then implemented by replacing the original nonlinear plants 

with the offline TS-KRR model when the control signal is 

computed. To implement the TS-KRR GPC controller with 

offline identification, several parameters are selected by the 

designer such as: the size of the input vector which is set to 4 

(     and     ) and the parameters of the GPC algorithm 

which are:     ,      and     . The number of fuzzy 

rules is equal to     and the rest of the TS-KRR parameters 

are similar to those discussed earlier (PSO parameters and  ). 

The TS-KRR GPC (with offline identification) procedure is 

summarized as follows: 

 

Algorithm 5: (TS fuzzy GPC with offline identification) 

 

1. The reference signal  ( ) is selected.  

2. The identification parameters such as: number of 

rules, the PSO algorithm parameters, and the 

control parameters (  ,    and  ) are selected. 

3. Perform Algorithm 2 to obtain the antecedent and 

consequent parameters, and then obtain  ̅(   ) and 

 ̅(   ). 
4. The control signal increment   ( ) is computed 

using Eq. (51). 

5. The new control signal   ( )   (   ) is 

applied to the surge tank system. 

6. Repeat steps 4 and 5.  

 

By running the above algorithm, the system output and the 

applied control signal are illustrated in Figures (5) and (6) 

respectively. Again, the performance of the TS-KRR GPC 

controller is investigated when another two different clustering 

algorithms are used to compute the centroid and the width of 

the clusters. The simulation results are included in Figures (5). 

The results show that the proposed controller was successfully 

able to control the system output at the desired reference 

signal  ( ). Furthermore, the proposed controller response is 

fast since it moves from the initial values to the desired 

reference signal (as well as moving from one reference level 

to another) in a reasonable amount of time. As expected, due 

to the simplicity of the data, the offline TS-KRR GPC with the 

three clustering methods gave similar results. This concludes 

that the K-means algorithm is sufficient to compute the 

antecedent parameters and control the surge tank system.  

 
Figure 5: Results of the proposed offline TS-KRR GPC when three different 

clustering algorithms are used to compute the antecedent parameters. 

 
Figure 6: The applied control signal obtained by the TS-KRR GPC when the 

clustering based PSO algorithm is used to compute the antecedent parameters. 

In general, the precision of the offline fuzzy models is 

limited due to the uncertainties associated with plants. Also, 

the collected data is incomplete and cannot describe all 

operating zones of the plants. Furthermore, the behaviour of 

the plants may change over time. In this case, introducing the 

adaptive capabilities is considered more practical since the 

TS-KRR parameters can be refined to improve its 

approximations. In the next subsection, the adaptive (or 

online) TS-KRR algorithm is investigated when the same 

system is controlled. The K-means algorithm will be used to 

initialise the antecedent parameters of the adaptive TS 
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algorithm since the improvements made by PSO algorithm are 

minor. Moreover, the antecedent parameters are updated in 

each iteration according to Eqs. (19) and (20). 

C. The Online Identification 

Again, the same     samples obtained earlier from Eq. (52) 

are used to test the adaptive TS-KRR performance. The first 

400 samples were used to initialize the online TS-KRR while 

the rest of samples were used to validate the proposed 

adaptive fuzzy method. The same size of the input variables 

was chosen and the fuzzy rule is equal to    . The 

dictionary size is set to      and the constant   is set to 

     . A K-means clustering algorithm is used to initialise the 

antecedent parameters. After running the adaptive TS-KRR 

steps in Algorithm 4, the liquid level   ( ) of the surge tank 

system is presented in Figure (7). 

 

Figure 7: The online modelling performance of the adaptive TR-KRR, 

ANFIS and ATSK algorithms. 

Figure (7) also contains the original signal of the liquid level 

  ( ), the signal predicted by the ANFIS algorithm and the 

signal obtained by the adaptive Takagi-Sugeno-Kang (TSK) 

method (Chang; Tsai, 2013). As illustrated in Figure (7), the 

three algorithms performed well and the accuracy of their 

modelling is relatively virtuous. Table 2 illustrates the 

accuracy results for the three algorithms where the RMSE, 

MAE, MAPE and sMAPE error measurements are calculated 

for the three algorithms. Clearly, the adaptive TS-KRR 

algorithm outperformed both the ANFIS and the adaptive TSK 

algorithms where the adaptive TS-KRR requires less fuzzy 

rules (only 7 rules) than the ANFIS and adaptive TSK 

algorithms. Furthermore, the error values obtained by the 

adaptive TS-KRR are smaller than those obtained by the 

ANFIS and the ATSK algorithms (see Table 2). 

Table 2: Comparison results for the surge tank system 

Methods Rules Number 

of inputs 

RMSE MAE MAPE 

(%) 

sMAPE 

(%) 

Adaptive 

TS-KRR 

07       
      

0.0347 0.0130 0.9030 0.8848 

ANFIS 20       
      

0.09864 0.0396 2.7151 2.7062 

Adaptive 

TSK 

20       
      

0.18332 0.0752 5.1174 5.2018 

 

D. Fuzzy adaptive predictive control 

In this subsection, the adaptive TS-KRR GPC is 

investigated. Again, the same size of the input vector (     

and     ) was chosen as well as the fuzzy rule number 

(equal to    ). The parameters of the GPC algorithm are: 

    ,     ,     , the dictionary size is set to      

and the K-means algorithm is used to initialize the antecedent 

parameters. The adaptive learning rate   (the same form of   

in (Lu, & Tsai, 2007) was chosen) is defined as: 

   
 

∑ ∑ ((
  ̂( )

    
)

 

 (
  ̂( )

    
)

 

) 
   

 
   

, where        and the 

adaptive fuzzy GPC procedure is summarized as following: 

 

Algorithm 6: (adaptive TS-KRR GPC) 

 

1. The reference signal W(k) is selected  

2. The identification parameters such as: number of 

rules, and the control parameters (  ,    and  ) are 

selected. 

3. Perform the K-means algorithm to initialize the 

antecedent parameters. 

4. Measure the output signal 

5. Update    ,     and the learning rate  . 

6. Apply steps: 6 and 7 in Algorithm 4 to obtain the 

updated expansion coefficients and then update the 

 ̂ in Eq. (31), and then calculate  ̅(   ) and 

 ̅(   ). 
7. Obtain the control increment   ( ) using Eq. (51) 

8. Obtain control signal  ( )    ( )   (   ) 
and apply it to the nonlinear system. 

9. Repeat steps 4 - 8.  

 

The system output and the control signal are illustrated in 

Figures (9) and (10) respectively.  In addition, the system 

output obtained by an ANFIS GPC (the ANFIS GPC 

parameters are:     ,     ,     ,      and the rule 

number     ) and an Adaptive TSK (ATSK) GPC (the 

ATSK GPC parameters are:     ,     ,     ,      

and     ) are also illustrated in Figure (8). 

The obtained results show that the proposed adaptive TS-

KRR GPC controller effectively controls the system output at 

the desired reference  ( ). The same comments can be made 

for the ANFIS GPC and ATSK GPC controllers. However, the 

proposed adaptive TS-KRR GPC controller relatively 

displayed less overshoots (and undershoots) than the ANFIS 

GPC and the ATSK GPC controllers. The mean value of the 

execution time for one sample or iteration (the execution of 

steps 4, 5, 6, 7 and 8 in Algorithm 6) for a window (or 

dictionary size) of      is          , which is considered 

as a short period of time and suits most of the industrial 

systems (in this example                       ).  On 

the other hand, the ANFIS GPC controller has smaller 

execution time (0.000713s) since its algorithm does not 

require a large number of previous data. The same comment 

can be made for the ATSK GPC algorithm where the 

execution time for one sample is relatively small (0.000689s). 
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Figure 8: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK GPC 
controllers. 

 

Figure 9: the applied control signal obtained by the adaptive TS-KRR GPC 

Next, the disturbance rejection capabilities of the proposed 

adaptive TS-KRR GPC controller are investigated. A 

disturbance with amplitude of 1 was applied to the system in 

samples 200-600 (the time interval         s). Next, a 

disturbance of amplitude -1 was applied again to the system at 

the interval time         s (in samples 600-1100). 

Then, a disturbance with amplitude of 1 was applied again to 

the system in samples 1400-2000 (the time interval     
      s). The simulation results are presented in Figures 

(10) and (11). The results show that the proposed adaptive TS-

KRR GPC controller have good disturbance rejection 

capabilities where the disturbances were eliminated in a short 

period of time. Moreover, the proposed controller exhibits 

smaller overshoots (and undershoots) than the controllers 

based on the ANFIS and ATSK algorithms. In addition, the 

ATSK GPC controller exhibits relatively large overshoots 

(and undershoots) than the ANFIS GPC controller. 

 
Figure 10: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK 

GPC controllers. 

 
Figure 11: the applied control signal obtained by the adaptive TS-KRR GPC 

VI. ILLUSTRATIVE EXAMPLE 2: IDENTIFICATION AND 

CONTROL OF A CONTINUOUS-STIRRED TANK REACTOR 

(CSTR) 

As a second example, a continuous-stirred tank reactor plant 

(CSTR) (Oviedo, Vandewalle, & Wertz, 2006) presented in 

Figure (12) is used to validate the TS-KRR performance in 

system identification, and when the TS-KRR is integrated with 

the generalized predictive controller.  

The nonlinear model is described by the following 

differential equations: 

 

 ̇ ( )  
 

 
(      ( ))      ( ) 

 
 

  ( )

 ̇( )  
 

 
(    ( ))      ( ) 
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     ( ) (   
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Figure 12: continuous-stirred tank reactor 

This system describes the process of converting the product 

   into a new product   . The concentration   ( ) is the 

concentration of product   , while  ( ) is the temperature of 

the mixture. The reaction described by the nonlinear system is 

exothermic and the coolant flow rate   ( ) is used to control 

this reaction. When the coolant flow is adjusted (or 

controlled), the temperature will be controlled and so the 

concentration. The constant     is the inlet feed concentration, 

and   is a constant that represents the process flow rate. The 

inlet feed and coolant temperatures are assumed to be constant 

and defined by    and    , respectively. The rest of the 

thermodynamic and chemical constants are given in Table (3), 

and the parameters       and    are: 

   
    

   
,    

     

    
 and    

  

     
.  

To have a concentration of             , the nominal 

conditions for the temperature and coolant flow are          

and          , respectively. 

 
Table 3: Nominal parameters of the CSTR nonlinear system  

Parameters  Explanation  Nominal value 
  Process flow-rate           

   Reaction rate constant                

  Volume of the Reactor       
   Feed temperature        

    Activation energy          

    Inlet coolant temperature       

   Reaction heat                
     Liquid densities           

       Specific heats             

    Inlet feed concentration          
   Coefficient of heat transfer                   

 

A. The offline Identification 

To model the CSTR plant using the TS-KRR, the sampling 

time is set to            (       ) and the nonlinear system 

presented in Eq. (57) is used to generate        samples; 

the first 400 samples were used to train the TS-KRR, while the 

last 500 were used to validate the proposed fuzzy method. The 

samples were obtained by applying the control signal (the 

coolant flow rate   ( )) represented in Figure (14b). The size 

of the input variable vector is set to 8 (     and      ), 

and the number of clusters is usually equal to the number of 

the operating zones described by the training data. The 

number of clusters is identified with the same technique 

described earlier in the previous example.  

 

 
Figure 13: The variation of Dunn index 

As a result, the obtained number of clusters (number of 

fuzzy rules) is    . To validate this approach, the Dunn 

index method is used once more to find the number of clusters 

where the correct number of clusters always has the highest 

value of the Dunn index (see the upper value in Figure 13). To 

cluster the data, the number of particles used in the PSO 

algorithm is set to    while the PSO parameters   ,   ,   , 

         are set to             and    , respectively. As 

mentioned in the first example, the K-means algorithm is 

performed and the resulted centroids are stored in  ̌ . The rest 

of the particles are randomly selected where the particles 

maximum and minimum boundaries are defined as:  ̌    
 ̌        ̌  and  ̌     ̌        ̌ , respectively. To 

perform the quadratic problem in Eq. (9), the constant   is set 

to       . After running the TS-KRR steps in Algorithm 2, 

the identification results of the CSTR output   ( ) are 

presented in Figure (14a). 

To investigate the performance of the clustering based PSO 

algorithm, the offline identification results obtained by this 

algorithm are compared with the results obtained by the 

standard K-means and the clustering based GA algorithms. To 

perform the clustering based GA algorithm, the mutation rate 

is set 0.2, population size is set to 12, the selection rate is set 

to 0.5, the crossover rate is equal to 0.7 and the same 

maximum and minimum boundaries are used to initialise the 

population. Figure (14a) contains the TS-KRR results when 

the antecedent parameters are computed by three different 

clustering methods: TS-KRR (PSO), TS-KRR (GA) and TS-

KRR (K-means). Besides, the result of the TS-KRR (PSO), 

when a disturbance of 6% is contaminating the training data, is 

presented in Figure (14a). Furthermore, Figure (14a) includes 

the GNN-FIS and the TSFS-SVR prediction results. 
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(a) 

 
(b) 

Figure 14: Identification of the nonlinear system: (a) The modelling 

performance of the proposed algorithm TR-KRR (b) control signal. 

 

As expected, the TS-KRR algorithm performs well (with 

and without noise) and provided good results (see Figure 14a). 

In addition, the improvements made by clustering based PSO 

algorithm are minor (see Table 4), where the accuracy tests 

show that the results obtained by TS-KRR (PSO) are slightly 

better than the results obtained by TS-KRR with other two 

clustering algorithms. 

 
Table 4: Comparison results for the surge tank system 

Methods Rules Number 

of 

inputs 

RMSE MAE MAPE 

(%) 

sMAPE 

(%) 

Simulation 

time (s) 

TS-

KRR 

(PSO) 

07       
      

        
      

        
      

        
      

        
      

14.1892 

TS-

KRR 

(GA) 

07       
      

        
      

        
      

        
      

        
      

14.6214 

TS-

KRR 

(K-

means) 

07       
      

        
      

        
      

        
      

        
      

05.1732 

TS-

KRR 

(PSO) 

(6%) 

07       
      

        
      

        
      

        
      

        
      

14.1892 

GNN-

FIS 

20       
      

        
      

        
      

                  0.9874 

TSFS-

SVR 

14       
      

        
      

        
      

                  55.4168 

 

In the first case where no disturbances (noise) are included, 

the obtained errors were:                ,     
          ,                  and        
           . These values indicate that the TS-KRR 

(PSO) performs well and accurately predicts the signal output 

  ( ). The same comments can be made in the second case 

when a noise of 6% is applied to the learning data, and the 

obtained errors remain low (               ,     
          ,                 ,             
    ). The TS-KRR method outperforms the TSFS-SVR and 

GNN-FIS methods where only 7 fuzzy rules were used in the 

identification process while the TSFS-SVR and GNN-FIS 

algorithms used 14 and 20 rules, respectively. Again, the TS-

KRR method gave better accuracy results than the TSFS-SVR 

and GNN-FIS algorithms (see the error values in Table 4) 

while only less number of rules were used by the TS-KRR 

predictor.  

The TS-KRR (GA) and TS-KRR (K-means) algorithms 

give results slightly different from the TS-KRR (PSO) which 

indicates that the K-means algorithm efficiently clusters the 

data, and the improvements made by the PSO algorithms were 

minor. 

 

B. Fuzzy predictive Control of the CSTR plant 

 

In this subsection, an offline TS-KRR GPC controller is 

used to control the CSTR plant. First, an offline TS-KRR is 

used to model the CSTR plant where the size of the input 

vector is kept the same which is 8 (     and     ) while 

the fuzzy rule number is set to    . The parameters of the 

GPC algorithm are:      ,     ,          and the 

parameters of the TS-KRR identification are similar to those 

discussed earlier. The TS-RR GPC (with offline identification) 

procedure is summarized earlier in Algorithm 5. The system 

output and the applied control signal are illustrated in Figures 

(15) and (16) respectively. The results obtained by the TS-

KRR GPC controllers when the K-means and the clustering 

based GA algorithms are used to compute the antecedent 

parameters are also presented in Figure (15). The obtained 

results show that the proposed controller was successfully able 

to control the system output at the desired reference signal 

 ( ). Furthermore, the proposed controller response is fast 

since it moves from the initial values to the desired reference 

signal (as well as moving from one reference level to another) 

in a reasonable amount of time. Furthermore, the results 

obtained by all versions of the TS-KRR GPC controllers are 

almost the same (the TS-KRR GPC controller based on the K-

means algorithm is slightly slower than the other two 

controllers). As a conclusion, the k-means algorithm appears 

to perform well when the training data is relatively simple. 

Thus, the k-means algorithm will be used to initialise the 

antecedent parameters in the adaptive version of the TS-KRR 

method. Next, the performance of the adaptive TS-KRR 

method is investigated by modelling and controlling the CSTR 

plant. 
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Figure 15: Results of the proposed offline TS-KRR GPC when three different 

clustering algorithms are used to compute the antecedent parameters. 

 
Figure 16: the applied control signal obtained by the TS-KRR GPC when the 

clustering based PSO algorithm is used to compute the antecedent parameters. 

C. Online Identification 

In this subsection, the adaptive TS-KRR method is 

considered for the identification of the CSTR plant. The 

previous     samples were used to test the adaptive TS-KRR. 

The first 400 samples were used to initialize the online 

(adaptive) TS-KRR while the rest were used for validation. 

The same size of the input variables and fuzzy rules number 

were used to model the system. The dictionary size is set to 

     and the constant   is set to       . A K-means 

clustering algorithm is used to initialize the antecedent 

parameters. After running the adaptive TS-KRR steps in 

Algorithm 4, the CSTR output   ( ) is presented in Figure 

(17). The obtained results are compared with those attained by 

the ANFIS and ATSK algorithms. The Comparison results are 

presented in Table (5). 

 

Figure 17: The online modelling performance of the proposed TR-KRR 
algorithm. 

The adaptive TS-KRR generates an error values of 

               ,                ,      
            and                  . The values 

obtained indicate that the adaptive TS-KRR effectively 

predicted the output signal   ( ) and gives better accuracy 

than both ANFIS and ATSK algorithms (see Table 5). Also, 

the number of rules used in the TS-KRR is less than that used 

by the ANFIS and ATSK algorithms. The errors obtained by 

the ATSK algorithm were relatively high (           
    ,               ,              and 

             ) which might be related to the fixed 

values of the antecedent parameters (the Adapted TSK 

algorithm initialises the antecedent parameters without any 

adaptation during the online simulation).   

Table 5: Comparison results for the surge tank system 

Methods Rules Number 

of inputs 

RMSE MAE MAPE 

(%) 

sMAPE 

(%) 

TS-KRR 07       
      

     
      

     
      

     
      

     
      

ANFIS 20       
      

     
      

     
      

              

ATSK 20       
      

     
      

     
      

              

 

Next, the adaptive TS-KRR algorithm is integrated with the 

GPC and used to control the CSTR plant. 

D. Fuzzy adaptive predictive control of the CSTR plant 

 

Again, the previous identification parameters such as: the 

input vector and the number of fuzzy rules are retained in this 

section. The parameters of the GPC algorithm are similar to 

the previous subsection (     ,      and         ). 

The dictionary size is kept equal to      and the K-means 

algorithm was used to initialize the antecedent parameters. 

The adaptive learning rate   is the same as the first example 

where      . The adaptive TS-KRR GPC procedure 
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summarized in algorithm 6 was executed and the system 

output and the control signal are illustrated in Figures (18) and 

(19), respectively.  The ANFIS GPC and The ATSK GPC 

controllers were also applied to control the CSTR plant where 

the control parameters for both algorithms are:     , 

     ,     ,          . The output obtained by the 

ANFIS GPC and the ATSK GPC controllers are also 

illustrated in Figure (18). 

 
Figure 18: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK 

GPC controllers 

 
Figure 19: The applied control signal obtained by the adaptive TS-KRR GPC 

The obtained results show that the proposed adaptive TS-

KRR GPC controller effectively controls the system output at 

the desired reference  ( ). The mean value of the execution 

time for one sample or iteration (the execution of steps 4, 5, 6, 

7 and 8 in Algorithm 5) for a window      is         , 

which suits most of the industrial systems (less than     
      ).  The ANFIS GPC controller has relatively small 

execution time (          for one iteration) since only few 

previous input-output data are required to determine the 

control signal. On the other hand, the ATSK GPC controller 

has the lowest exclusion time (          for one iteration) 

which is obvious since this algorithm does not require an 

adaptation for its antecedent parameters.   

Figure (20) represents the absolute error, the error between 

the output signal and the reference trajectory signal  ( )  
| ( )   ( )|, produced by the three controllers . As 

expected, the adaptive TS-KRR GPC controller is fast and 

shows less error when it moves from a reference level to 

another. Moreover, the results indicate that the ATSK GPC 

controller produces relatively the largest errors when moving 

from between references which might be related to 

membership functions used in this algorithm.  

 
Figure 20: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS 

GPC and ATSK GPC controllers 

To investigate the performance of the TS-KRR GPC under 

disturbances, a disturbance with an amplitude of 0.012 was 

applied to the system in samples 600-1000 (at time interval 

         min). Another disturbance of amplitude 0.02 

was applied again to the system at the interval time     
      min (in samples 1000-1400). The simulation results 

are presented in Figures (21) and (22). 
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Figure 21: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK 

GPC controllers 

 
Figure 22: The applied control signal obtained by the adaptive TS-KRR GPC 

The results show that the proposed adaptive controller has 

good disturbance rejection capabilities. Also, the overshoots 

(and undershoots) displayed by the TS-KRR GPC controller 

were smaller than those displayed by the ANFIS GPC and 

ATSK GPC controllers. This can be verified from Figure (23) 

where the absolute error of the adaptive TS-KRR GPC (when 

the disturbances are applied) is less than the absolute errors 

produced by the other two controllers. Again, the results in 

Figure (23) show that the ATSK GPC controller produces 

relatively the largest errors when the disturbances are applied 

to the system. It is clear that the triangular membership 

functions used by the ATSK system have a negative impact on 

the controller accuracy (the ATSK algorithm does not update 

the antecedent parameters during the controlling process).  

 
Figure 23: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS 

GPC and ATSK GPC controllers 

E. The adaptive predictive control of the CSTR plan: A 

sinusoidal reference trajectory 

 

In this subsection, the adaptive TS-KRR GPC is investigated 

when the reference trajectory is varying during the simulation. 

The trajectory reference of the concentration   ( ) is defined 

as the following sinusoidal equation:  ( )       
       (      ). The parameters of the TS-KRR GPC 

algorithm are:      ,     ,           and the 

dictionary size is     . Again, the K-means algorithm was 

used to initialize the antecedent parameters while the adaptive 

learning rate   is set to      . The system output and the 

control signal are illustrated in Figures (24) and (25) 

respectively. The ANFIS GPC and the ATSK GPC controllers 

were also applied to control the same plants with the same 

desired sinusoidal reference signal, and the parameters for 

both controllers are:     ,      ,     ,          . 

The outputs obtained by the ANFIS GPC and the ATSK GPC 

controllers are also illustrated in Figure (24). 
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Figure 24: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK 

GPC controllers 

 
Figure 25: The applied control signal obtained by the adaptive TS-KRR GPC 

The results show that the TS-KRR GPC controller effectively 

controls the nonlinear system at the desired reference  ( ). 

However, the ANFIS GPC and ATSK GPC controllers were 

displaying outputs with relatively large errors (see Figure 24). 

The efficiency of the adaptive TS-KRR GPC controller can 

also be verified from Figure (26) where the absolute error for 

the three controllers were plotted. As expected, the error 

obtained by the adaptive TS-KRR GPC controller is less than 

those obtained by the ANFIS GPC and the ATSK GPC 

controllers. Again, the results in Figure (26) confirm that the 

ATSK GPC controller produces relatively the less accurate 

results among the three algorithms. 

 

Figure 26: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS 

GPC and ATSK GPC controllers 

Again, the performance of the TS-KRR GPC controller in the 

presence of disturbances is investigated where a disturbance 

with an amplitude of 0.012 was applied to the system at time 

interval          min) while another disturbance of 

amplitude 0.02 was applied to the system at the time interval 

          min.  

The output and control signals of the adaptive TS-KRR GPC 

controller are illustrated in Figures (27) and (28), respectively.  

 
Figure 27: Results of the adaptive TS-KRR GPC, ANFIS GPC and ATSK 

GPC controllers 
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Figure 28: The applied control signal obtained by the adaptive TS-KRR GPC 

Once again, the results show that the proposed adaptive TS-

KRR GPC controller has good disturbance rejection 

capabilities. Also, the overshoots (and undershoots) displayed 

by the TS-KRR GPC controller were very small compared to 

the overshoots (and undershoots) displayed by the ANFIS 

GPC and ATSK GPC controllers. This can be verified from 

Figure (29) where the absolute error obtained by the adaptive 

TS-KRR GPC controller is less than those obtained by the 

ANFIS GPC and the ATSK GPC controllers when the 

disturbances were applied. Once more, the results in Figure 

(29) show that the ATSK GPC controller creates relatively the 

largest errors when the disturbances are applied to the system.  

 
Figure 29: The absolute error resulted by the adaptive TS-KRR GPC, ANFIS 

GPC and ATSK GPC controllers 

VII. CONCLUSION 

 

In this paper, a Takagi-Sugeno system based Kernel ridge 

regression (TS-KRR) was proposed for nonlinear system 

identification and control. In this approach, the antecedent 

parameters of the TS-KRR fuzzy system were identified using 

a clustering algorithm while the consequent parameters are 

calculated using a Kernel ridge regression algorithm. The 

proposed TS-KRR model effectively used to identify two 

nonlinear systems: a surge tank and CSTR systems. Then, the 

offline TS-KRR was integrated with a generalized predictive 

controller to control these two nonlinear systems. The 

proposed TS-KRR GPC methodology used input-output data 

to learn model parameters and successfully controlled both 

nonlinear systems.  

In the offline TS-KRR, the KRR method is used to perform 

a linear regression in very high-dimensional spaces in an 

efficient way by exploiting the properties of kernel function. 

This is equivalent to performing a nonlinear regression in the 

original input space. Thus, the proposed offline TS-KRR 

showed promising results in system identification and control 

system. 

The clustering based PSO algorithm used to compute the 

antecedent parameters (centroid and the width of the clusters) 

provided minor improvements which has been expected due to 

the nature of the training data. However, more non-linear 

systems with relatively complex training data will be 

considered in future work. The offline TS-KRR method can be 

helpful to model systems when enough data about the systems 

are available, and the sampling times of these systems are very 

short. Thus, the offline TS-KRR reduces the computational 

costs since no adaptations are needed to update the antecedent 

and consequent parameters. Furthermore, more studies will be 

considered regarding the influence of the clustering algorithms 

when complex training data is available.  

In this paper, more attentions were giving to the adaptive 

version of the TS-KRR method. The adaptive TS method is 

introduced to deal with real time applications. The proposed 

adaptive fuzzy model was investigated for both: system 

identification and control. The new adaptive methodology 

performed well in system identification and gave good 

predictions with less errors. Moreover, the adaptive TS-KRR 

GPC controller effectively controlled the two nonlinear 

systems. Furthermore, the disturbance rejection capabilities of 

the proposed adaptive TS-KRR GPC methodology were 

investigated by disturbing the nonlinear systems in preselected 

instants. The proposed adaptive TS-KRR GPC methodology 

successfully eliminated these disturbances. Finally, the 

adaptive TS-KRR GPC methodology was investigated when 

the reference signal varies as a sinusoidal function. The CSTR 

plant was controlled using the TS-KRR GPC and the results 

show that the adaptive TS-KRR GPC has a good performance. 

Again, the adaptive TS-KRR GPC controller successfully 

eliminated the disturbances under a sinusoidal reference 

signal. 

As a conclusion, the proposed adaptive controller showed 

good results and was able to deal with disturbances. In future 

work, more generalized kernel approaches will be used to 

introduce more effective online/offline TS fuzzy systems for 

system identification and control. 
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