409 research outputs found

    Ensembles for feature selection: A review and future trends

    Get PDF
    © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Bolón-Canedo, V. and Alonso-Betanzos, A. (2019) ‘Ensembles for Feature Selection: A Review and Future Trends’ has been accepted for publication in: Information Fusion, 52, pp. 1–12. The Version of Record is available online at https://doi.org/10.1016/j.inffus.2018.11.008.[Abstract]: Ensemble learning is a prolific field in Machine Learning since it is based on the assumption that combining the output of multiple models is better than using a single model, and it usually provides good results. Normally, it has been commonly employed for classification, but it can be used to improve other disciplines such as feature selection. Feature selection consists of selecting the relevant features for a problem and discard those irrelevant or redundant, with the main goal of improving classification accuracy. In this work, we provide the reader with the basic concepts necessary to build an ensemble for feature selection, as well as reviewing the up-to-date advances and commenting on the future trends that are still to be faced.This research has been financially supported in part by the Spanish Ministerio de Economa y Competitividad (research project TIN 2015-65069-C2-1-R), by the Xunta de Galicia (research projects GRC2014/035 and the Centro Singular de Investigación de Galicia, accreditation 2016–2019, Ref. ED431G/01) and by the European Union (FEDER/ERDF).Xunta de Galicia; GRC2014/035Xunta de Galicia; ED431G/0

    Statistical interpretation of machine learning-based feature importance scores for biomarker discovery

    Full text link
    Motivation: Univariate statistical tests are widely used for biomarker discovery in bioinformatics. These procedures are simple, fast and their output is easily interpretable by biologists but they can only identify variables that provide a significant amount of information in isolation from the other variables. As biological processes are expected to involve complex interactions between variables, univariate methods thus potentially miss some informative biomarkers. Variable relevance scores provided by machine learning techniques, however, are potentially able to highlight multivariate interacting effects, but unlike the p-values returned by univariate tests, these relevance scores are usually not statistically interpretable. This lack of interpretability hampers the determination of a relevance threshold for extracting a feature subset from the rankings and also prevents the wide adoption of these methods by practicians. Results: We evaluated several, existing and novel, procedures that extract relevant features from rankings derived from machine learning approaches. These procedures replace the relevance scores with measures that can be interpreted in a statistical way, such as p-values, false discovery rates, or family wise error rates, for which it is easier to determine a significance level. Experiments were performed on several artificial problems as well as on real microarray datasets. Although the methods differ in terms of computing times and the tradeoff, they achieve in terms of false positives and false negatives, some of them greatly help in the extraction of truly relevant biomarkers and should thus be of great practical interest for biologists and physicians. As a side conclusion, our experiments also clearly highlight that using model performance as a criterion for feature selection is often counter-productive

    Contributions to Ensemble Classifiers with Image Analysis Applications

    Get PDF
    134 p.Ésta tesis tiene dos aspectos fundamentales, por un lado, la propuesta denuevas arquitecturas de clasificadores y, por otro, su aplicación a el análisis deimagen.Desde el punto de vista de proponer nuevas arquitecturas de clasificaciónla tesis tiene dos contribucciones principales. En primer lugar la propuestade un innovador ensemble de clasificadores basado en arquitecturas aleatorias,como pueden ser las Extreme Learning Machines (ELM), Random Forest (RF) yRotation Forest, llamado Hybrid Extreme Rotation Forest (HERF) y su mejoraAnticipative HERF (AHERF) que conlleva una selección del modelo basada enel rendimiento de predicción para cada conjunto de datos específico. Ademásde lo anterior, proveemos una prueba formal tanto del AHERF, como de laconvergencia de los ensembles de regresores ELMs que mejoran la usabilidad yreproducibilidad de los resultados.En la vertiente de aplicación hemos estado trabajando con dos tipos de imágenes:imágenes hiperespectrales de remote sensing, e imágenes médicas tanto depatologías específicas de venas de sangre como de imágenes para el diagnósticode Alzheimer. En todos los casos los ensembles de clasificadores han sido la herramientacomún además de estrategias especificas de aprendizaje activo basadasen dichos ensembles de clasificadores. En el caso concreto de la segmentaciónde vasos sanguíneos nos hemos enfrentado con problemas, uno relacionado conlos trombos del Aneurismas de Aorta Abdominal en imágenes 3D de tomografíacomputerizada y el otro la segmentación de venas sangineas en la retina. Losresultados en ambos casos en términos de rendimiento en clasificación y ahorrode tiempo en la segmentación humana nos permiten recomendar esos enfoquespara la práctica clínica.Chapter 1Background y contribuccionesDado el espacio limitado para realizar el resumen de la tesis hemos decididoincluir un resumen general con los puntos más importantes, una pequeña introducciónque pudiera servir como background para entender los conceptos básicosde cada uno de los temas que hemos tocado y un listado con las contribuccionesmás importantes.1.1 Ensembles de clasificadoresLa idea de los ensembles de clasificadores fue propuesta por Hansen y Salamon[4] en el contexto del aprendizaje de las redes neuronales artificiales. Sutrabajo mostró que un ensemble de redes neuronales con un esquema de consensogrupal podía mejorar el resultado obtenido con una única red neuronal.Los ensembles de clasificadores buscan obtener unos resultados de clasificaciónmejores combinando clasificadores débiles y diversos [8, 9]. La propuesta inicialde ensemble contenía una colección homogena de clasificadores individuales. ElRandom Forest es un claro ejemplo de ello, puesto que combina la salida de unacolección de árboles de decisión realizando una votación por mayoría [2, 3], yse construye utilizando una técnica de remuestreo sobre el conjunto de datos ycon selección aleatoria de variables.2CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 31.2 Aprendizaje activoLa construcción de un clasificador supervisado consiste en el aprendizaje de unaasignación de funciones de datos en un conjunto de clases dado un conjunto deentrenamiento etiquetado. En muchas situaciones de la vida real la obtenciónde las etiquetas del conjunto de entrenamiento es costosa, lenta y propensa aerrores. Esto hace que la construcción del conjunto de entrenamiento sea unatarea engorrosa y requiera un análisis manual exaustivo de la imagen. Esto se realizanormalmente mediante una inspección visual de las imágenes y realizandoun etiquetado píxel a píxel. En consecuencia el conjunto de entrenamiento esaltamente redundante y hace que la fase de entrenamiento del modelo sea muylenta. Además los píxeles ruidosos pueden interferir en las estadísticas de cadaclase lo que puede dar lugar a errores de clasificación y/o overfitting. Por tantoes deseable que un conjunto de entrenamiento sea construido de una manera inteligente,lo que significa que debe representar correctamente los límites de clasemediante el muestreo de píxeles discriminantes. La generalización es la habilidadde etiquetar correctamente datos que no se han visto previamente y quepor tanto son nuevos para el modelo. El aprendizaje activo intenta aprovecharla interacción con un usuario para proporcionar las etiquetas de las muestrasdel conjunto de entrenamiento con el objetivo de obtener la clasificación másprecisa utilizando el conjunto de entrenamiento más pequeño posible.1.3 AlzheimerLa enfermedad de Alzheimer es una de las causas más importantes de discapacidaden personas mayores. Dado el envejecimiento poblacional que es una realidaden muchos países, con el aumento de la esperanza de vida y con el aumentodel número de personas mayores, el número de pacientes con demencia aumentarátambién. Debido a la importancia socioeconómica de la enfermedad enlos países occidentales existe un fuerte esfuerzo internacional focalizado en laenfermedad del Alzheimer. En las etapas tempranas de la enfermedad la atrofiacerebral suele ser sutil y está espacialmente distribuida por diferentes regionescerebrales que incluyen la corteza entorrinal, el hipocampo, las estructuras temporaleslateral e inferior, así como el cíngulo anterior y posterior. Son muchoslos esfuerzos de diseño de algoritmos computacionales tratando de encontrarbiomarcadores de imagen que puedan ser utilizados para el diagnóstico no invasivodel Alzheimer y otras enfermedades neurodegenerativas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 41.4 Segmentación de vasos sanguíneosLa segmentación de los vasos sanguíneos [1, 7, 6] es una de las herramientas computacionalesesenciales para la evaluación clínica de las enfermedades vasculares.Consiste en particionar un angiograma en dos regiones que no se superponen:la región vasculares y el fondo. Basándonos en los resultados de dicha particiónse pueden extraer, modelar, manipular, medir y visualizar las superficies vasculares.Éstas estructuras son muy útiles y juegan un rol muy imporntate en lostratamientos endovasculares de las enfermedades vasculares. Las enfermedadesvasculares son una de las principales fuentes de morbilidad y mortalidad en todoel mundo.Aneurisma de Aorta Abdominal El Aneurisma de Aorta Abdominal (AAA)es una dilatación local de la Aorta que ocurre entre las arterias renal e ilíaca. Eldebilitamiento de la pared de la aorta conduce a su deformación y la generaciónde un trombo. Generalmente, un AAA se diagnostica cuando el diámetro anterioposteriormínimo de la aorta alcanza los 3 centímetros [5]. La mayoría delos aneurismas aórticos son asintomáticos y sin complicaciones. Los aneurismasque causan los síntomas tienen un mayor riesgo de ruptura. El dolor abdominalo el dolor de espalda son las dos principales características clínicas que sugiereno bien la reciente expansión o fugas. Las complicaciones son a menudo cuestiónde vida o muerte y pueden ocurrir en un corto espacio de tiempo. Por lo tanto,el reto consiste en diagnosticar lo antes posible la aparición de los síntomas.Imágenes de Retina La evaluación de imágenes del fondo del ojo es una herramientade diagnóstico de la patología vascular y no vascular. Dicha inspecciónpuede revelar hipertensión, diabetes, arteriosclerosis, enfermedades cardiovascularese ictus. Los principales retos para la segmentación de vasos retinianos son:(1) la presencia de lesiones que se pueden interpretar de forma errónea comovasos sanguíneos; (2) bajo contraste alrededor de los vasos más delgados, (3)múltiples escalas de tamaño de los vasos.1.5 ContribucionesÉsta tesis tiene dos tipos de contribuciones. Contribuciones computacionales ycontribuciones orientadas a una aplicación o prácticas.CHAPTER 1. BACKGROUND Y CONTRIBUCCIONES 5Desde un punto de vista computacional las contribuciones han sido las siguientes:¿ Un nuevo esquema de aprendizaje activo usando Random Forest y el cálculode la incertidumbre que permite una segmentación de imágenes rápida,precisa e interactiva.¿ Hybrid Extreme Rotation Forest.¿ Adaptative Hybrid Extreme Rotation Forest.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales.¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.Desde un punto de vista práctico:¿ Imágenes médicas¿ Aprendizaje activo combinado con HERF para la segmentación deimágenes de tomografía computerizada.¿ Mejorar el aprendizaje activo para segmentación de imágenes de tomografíacomputerizada con información de dominio.¿ Aprendizaje activo con el clasificador bootstrapped dendritic aplicadoa segmentación de imágenes médicas.¿ Meta-ensembles de clasificadores para detección de Alzheimer conimágenes de resonancia magnética.¿ Random Forest combinado con aprendizaje activo para segmentaciónde imágenes de retina.¿ Segmentación automática de grasa subcutanea y visceral utilizandoresonancia magnética.¿ Imágenes hiperespectrales¿ Unmixing no lineal y reconstrucción utilizando ensembles de regresoresELM.¿ Métodos de aprendizaje semisupervisados espectrales-espaciales concorrección espacial usando AHERF.¿ Método semisupervisado de clasificación utilizando ensembles de ELMsy con regularización espacial

    Polyhedral+Dataflow Graphs

    Get PDF
    This research presents an intermediate compiler representation that is designed for optimization, and emphasizes the temporary storage requirements and execution schedule of a given computation to guide optimization decisions. The representation is expressed as a dataflow graph that describes computational statements and data mappings within the polyhedral compilation model. The targeted applications include both the regular and irregular scientific domains. The intermediate representation can be integrated into existing compiler infrastructures. A specification language implemented as a domain specific language in C++ describes the graph components and the transformations that can be applied. The visual representation allows users to reason about optimizations. Graph variants can be translated into source code or other representation. The language, intermediate representation, and associated transformations have been applied to improve the performance of differential equation solvers, or sparse matrix operations, tensor decomposition, and structured multigrid methods

    Recent Trends in Computational Intelligence

    Get PDF
    Traditional models struggle to cope with complexity, noise, and the existence of a changing environment, while Computational Intelligence (CI) offers solutions to complicated problems as well as reverse problems. The main feature of CI is adaptability, spanning the fields of machine learning and computational neuroscience. CI also comprises biologically-inspired technologies such as the intellect of swarm as part of evolutionary computation and encompassing wider areas such as image processing, data collection, and natural language processing. This book aims to discuss the usage of CI for optimal solving of various applications proving its wide reach and relevance. Bounding of optimization methods and data mining strategies make a strong and reliable prediction tool for handling real-life applications

    Ensemble learning with discrete classifiers on small devices

    Get PDF
    Machine learning has become an integral part of everyday life ranging from applications in AI-powered search queries to (partial) autonomous driving. Many of the advances in machine learning and its application have been possible due to increases in computation power, i.e., by reducing manufacturing sizes while maintaining or even increasing energy consumption. However, 2-3 nm manufacturing is within reach, making further miniaturization increasingly difficult while thermal design power limits are simultaneously reached, rendering entire parts of the chip useless for certain computational loads. In this thesis, we investigate discrete classifier ensembles as a resource-efficient alternative that can be deployed to small devices that only require small amounts of energy. Discrete classifiers are classifiers that can be applied -- and oftentimes also trained -- without the need for costly floating-point operations. Hence, they are ideally suited for deployment to small devices with limited resources. The disadvantage of discrete classifiers is that their predictive performance often lacks behind their floating-point siblings. Here, the combination of multiple discrete classifiers into an ensemble can help to improve the predictive performance while still having a manageable resource consumption. This thesis studies discrete classifier ensembles from a theoretical point of view, an algorithmic point of view, and a practical point of view. In the theoretical investigation, the bias-variance decomposition and the double-descent phenomenon are examined. The bias-variance decomposition of the mean-squared error is re-visited and generalized to an arbitrary twice-differentiable loss function, which serves as a guiding tool throughout the thesis. Similarly, the double-descent phenomenon is -- for the first time -- studied comprehensively in the context of tree ensembles and specifically random forests. Contrary to established literature, the experiments in this thesis indicate that there is no double-descent in random forests. While the training of ensembles is well-studied in literature, the deployment to small devices is often neglected. Additionally, the training of ensembles on small devices has not been considered much so far. Hence, the algorithmic part of this thesis focuses on the deployment of discrete classifiers and the training of ensembles on small devices. First, a novel combination of ensemble pruning (i.e., removing classifiers from the ensemble) and ensemble refinement (i.e., re-training of classifiers in the ensemble) is presented, which uses a novel proximal gradient descent algorithm to minimize a combined loss function. The resulting algorithm removes unnecessary classifiers from an already trained ensemble while improving the performance of the remaining classifiers at the same time. Second, this algorithm is extended to the more challenging setting of online learning in which the algorithm receives training examples one by one. The resulting shrub ensembles algorithm allows the training of ensembles in an online fashion while maintaining a strictly bounded memory consumption. It outperforms existing state-of-the-art algorithms under resource constraints and offers competitive performance in the general case. Last, this thesis studies the deployment of decision tree ensembles to small devices by optimizing their memory layout. The key insight here is that decision trees have a probabilistic inference time because different observations can take different paths from the root to a leaf. By estimating the probability of visiting a particular node in the tree, one can place it favorably in the memory to maximize the caching behavior and, thus, increase its performance without changing the model. Last, several real-world applications of tree ensembles and Binarized Neural Networks are presented

    Acta Cybernetica : Volume 19. Number 1.

    Get PDF
    corecore