182 research outputs found

    Introducing Preemptive Scheduling in Abstract RTOS Models using Result Oriented Modeling

    Full text link

    SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space Exploration

    Get PDF
    International audienc

    Distributed real-time operating system (DRTOS) modeling in SpecC

    Get PDF
    System level design of an embedded computing system involves a multi-step process to refine the system from an abstract specification to an actual implementation by defining and modeling the system at various levels of abstraction. System level design supports evaluating and optimizing the system early in design exploration.;Embedded computing systems may consist of multiple processing elements, memories, I/O devices, sensors, and actors. The selection of processing elements includes instruction-set processors and custom hardware units, such as application specific integrated circuit (ASIC) and field programmable gate array (FPGA). Real-time operating systems (RTOS) have been used in embedded systems as an industry standard for years and can offer embedded systems the characteristics such as concurrency and time constraints. Some of the existing system level design languages, such as SpecC, provide the capability to model an embedded system including an RTOS for a single processor. However, there is a need to develop a distributed RTOS modeling mechanism as part of the system level design methodology due to the increasing number of processing elements in systems and to embedded platforms having multiple processors. A distributed RTOS (DRTOS) provides services such as multiprocessor tasks scheduling, interprocess communication, synchronization, and distributed mutual exclusion, etc.;In this thesis, we develop a DRTOS model as the extension of the existing SpecC single RTOS model to provide basic functionalities of a DRTOS implementation, and present the refinement methodology for using our DRTOS model during system level synthesis. The DRTOS model and refinement process are demonstrated in the SpecC SCE environment. The capabilities and limitations of the DRTOS modeling approach are presented

    Real-Time Operating Systems and Programming Languages for Embedded Systems

    Get PDF
    In this chapter, we present the different alternatives that are available today for the development of real-time embedded systems. In particular, we will focus on the programming languages use like C++, Java and Ada and the operating systems like Linux-RT, FreeRTOS, TinyOS, etc. In particular we will analyze the actual state of the art for developing embedded systems under the WORA paradigm with standard Java [1], its Real-Time Specification and with the use of Real-Time Core Extensions and pico Java based CPUs [5]. We expect the reader to have a clear view of the opportunities present at the moment of starting a design with its pros and cons so it can choose the best one to fit its case.Fil: Orozco, Javier Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Laboratorio de Sistemas Digitales; ArgentinaFil: Santos, Rodrigo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Laboratorio de Sistemas Digitales; Argentin

    Timing Predictability in Future Multi-Core Avionics Systems

    Full text link

    Modeling of Preemptive RTOS Scheduler with Priority Inheritance

    Get PDF
    This work describes an approach to generate accurate system-level model of embedded software on a targeted Real-Time Operating System (RTOS). We design a RTOS emulation layer, called RTOS_SC, on top of the SystemC kernel. The system level model can be used for software optimization in the early stage of a processor design. The model precision is obtained by integrating key features which are provided in typical RTOS schedulers. We first discuss a case study which shows the impact of the implemented features on a priority-driven scheduler. We then present the abstraction of tasks scheduling and communication mechanisms. To validate the accuracy of our model we use the tasks response time metric with industrial-size examples such as MP3, Vocoder and Jpeg encoder. The experimental results show a significant improvement compared to existing RTOS models

    High Performance Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systemsThe work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio
    • …
    corecore