
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

SysRT: A Modular Multiprocessor RTOS Simulator for Early Design Space
Exploration

Xiao, J.; Pimentel, A.; Lipari, G.
DOI
10.1109/SAMOS.2017.8344609
Publication date
2017
Document Version
Final published version
Published in
2017 International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS XVII)
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Xiao, J., Pimentel, A., & Lipari, G. (2017). SysRT: A Modular Multiprocessor RTOS Simulator
for Early Design Space Exploration. In Y. Patt, & S. K. Nandy (Eds.), 2017 International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS XVII): proceedings : July 16-20, 2017, Samos, Greece (pp. 38-45). IEEE.
https://doi.org/10.1109/SAMOS.2017.8344609

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://doi.org/10.1109/SAMOS.2017.8344609
https://dare.uva.nl/personal/pure/en/publications/sysrt-a-modular-multiprocessor-rtos-simulator-for-early-design-space-exploration(0f8017ea-7402-444b-a87f-e8d5ef081064).html
https://doi.org/10.1109/SAMOS.2017.8344609

SysRT: A Modular Multiprocessor RTOS Simulator
for Early Design Space Exploration

Jun Xiao∗, Andy Pimentel∗ and Giuseppe Lipari†
∗University of Amsterdam, Amsterdam, The Netherlands

†University of Lille, Lille, France

Email: J.Xiao@uva.nl, A.D.Pimentel@uva.nl, Giuseppe.Lipari@univ-lille1.fr

Abstract—Modern embedded systems increasingly accommo-
date several applications running concurrently on a multiproces-
sor platform managed by a real-time operating system (RTOS).
The increasing design complexity of such systems calls for good
design tools to evaluate real-time performance during the very
early stages of design. To this end, fast system-level simulators
that allow for efficient hardware/software co-simulation are
essential. In this paper, we present SysRT, a generic and high-
level RTOS simulator that is highly suited for early design
space exploration (DSE). The simulator contains different types
of application models and a modular RTOS kernel model,
all developed in SystemC. Efficient and precise modeling of
preemptive scheduling is achieved via an event-driven simulation
approach, allowing simulations to be performed much faster than
cycle-accurate simulations. At the same time, the kernel model is
developed to be generic and modular to support for easy plug-
in of new schedulers as well as new resource sharing protocols.
Comparing SysRT with state-of-art simulators, it achieves faster
simulation speeds with an identically small simulation error. We
demonstrate the flexibility of SysRT and its benefits for early
DSE using experiments with a mixed workload executing on
multiprocessor platforms with different numbers of cores.

I. INTRODUCTION

In the past years, the design of systems-on-chip (SoCs)

has become increasingly complex. Hardware architectures are

migrating from simple single-core based systems to more

complex multi-core architectures. In the embedded systems

domain, together with the increasing hardware complexity,

the software complexity has also been growing dramatically.

Modern embedded systems increasingly execute several ap-

plications of different types concurrently on the underlying

computing platform. These applications can have different

execution requirements. For example, control applications typ-

ically are hard real-time applications and thus have stringent

timing constraints, while best-effort applications prefer a short

task response time. These systems are usually managed by a

Real-Time Operating System (RTOS).

Raising the level of abstraction is generally considered as

a solution to address the design complexity, thus reducing

time-to-market. To provide a simulation environment and to

help in the design space exploration (DSE) at the early stages

of design, various system-level design languages (SLDL) and

methodologies have been proposed, such as SystemC [1] and

SpecC [2]. Originally, SLDLs primarily focused on hardware

modeling and did not properly address the modeling of

software aspects. Later efforts introduced methods to model

timing behavior of software in SLDLs. But most solutions

still lack direct support for simulating the real-time behavior

of concurrent applications, such as preemption or scheduling

within the RTOS. To verify that the timing requirements posed

by applications are met during the early stages of design, a

fast system-level simulator, capturing both the modeling of

software and hardware, is needed.

In this paper, we present SysRT [3], a generic and modular

high-level RTOS simulator that is highly suited for early DSE

to study RTOS design alternatives. The SystemC-based SysRT

simulator improves on current state-of-art RTOS simulators by

providing the unique combination of being, at the same time,

highly accurate, efficient and easy to extend to facilitate early

DSE. SysRT contains different types of application models,

an RTOS kernel model and an abstract architecture model.

Efficient and precise modeling of preemptive scheduling is

achieved via an event-driven simulation approach, which

utilizes scheduling events associated with task states and

interrupts. At the same time, the kernel model is developed

to be generic and modular to support for easy plug-in of

new schedulers as well as new resource sharing protocols. We

have compared the accuracy and simulation performance of

SysRT with state-of-art RTOS simulators, of which the results

show that our simulator is faster while still producing the most

accurate results.

The rest of the paper is organized as follows. Section II gives

an overview of the related work. The overall RTOS simulation

framework is described in Section III. Section IV describes

the application models. In Section V, the kernel model is

detailed, and Section VI presents a range of experimental

results. Section VII concludes the paper.

II. RELATED WORK

The modeling and simulation of RTOS with SLDL have

received widespread attention from many researchers, [4],

[5], [6]. In [7], the modeling capability of SystemC has

been extended by RTOS services to provide more realistic

software modeling features. However, to realize features such

as preemption and scheduling, a scheduler model is invoked

every simulation quantum, similar to the way a real OS

scheduler behaves. This quantum-granularity based simulation

approach therefore introduces large overheads, resulting in low

simulation speeds. Later efforts such as [8], [9] focused on

improving the accuracy of high-level simulation via while

978-1-5386-3437-0/17/$31.00 ©2017 IEEE978-1-5386-3437-0/17/$31.00 ©2017 IEEE 38
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

maintaining high performance. However, these works still

trade-off speed for accuracy.

In [10], a host-compiled multi-core system simulator is

presented for early real-time performance evaluation. They

present an integrated approach for automatic timing granular-

ity adjustment to optimally navigate simulation speed versus

accuracy. This approach switches between prediction mode

and fallback mode. In prediction mode, a prediction of the next

scheduling points is performed based on the simulation param-

eters and states of periodic tasks. Schirner et al. [11] introduce

preemptive scheduling in abstract RTOS models using Result

Oriented Modeling (ROM). To speed up simulation, ROM

optimistically predicts the finish time of a process already at

the start time by a ”run to finish” assumption. ROM records

any possible preemption that may alter the predicted outcome.

While time passes, it validates the prediction and takes cor-

rective measures to ensure accuracy. However, predictions of

preemption points are difficult if the simulation uses more

complex task models like Directed Acyclic Graphs (DAGs)

and resource sharing models as supported by SysRT.

SysRT provides a framework of RTOS services in SystemC

that allows developers and researchers to easily explore and

validate embedded RTOS design alternatives. Compared with

quantum-granularity based simulators and prediction-based

simulators, SysRT has two main advantages: (i) it has been

developed to be generic and modular to support for easy

plug-in of new schedulers as well as new resource sharing

protocols. Thus, it is more flexible to simulate various real-

time scheduling algorithms; (ii) it typically achieves higher

simulation speeds via an event-driven simulation approach

while obtaining identical accuracy results.

III. MODELING FRAMEWORK

SysRT consists of three layers, as shown in Fig. 1: the

application layer, the kernel layer, and the architecture layer.

In the application layer, the user can model a set of processes.

A process can be a single job instance (named ST in Fig. 1),

a Periodic Task (PT) of which job instances are invoked

periodically, or a process with execution precedences modeled

by a DAG, as will be explained in Section IV.

The application layer interacts with the RTOS kernel layer.

The application informs the kernel of its execution states,

while the kernel model returns task scheduling decisions. We

model four functionalities of the OS kernel, namely process

management, resource management, interrupt handling and

real-time scheduling. A queue in the OS kernel is used to

order the tasks that become ready for execution. The OS

kernel further has a resource manager sub-module that controls

access to resources shared between tasks. The resource block

queues store tasks waiting to get access to a particular resource

due to mutual exclusion. Moreover, interrupt service routines

are defined in the OS kernel model. When an interrupt is

generated, either from software or hardware, the OS kernel

schedules the corresponding interrupt handler depending on

the handler priority. Different real-time (preemptive) sched-

ulers are implemented in the scheduling module of the OS

kernel model. The architecture layer models the hardware

computing platform. It specifies the number of cores in the

SoC platform, the interconnection between the cores, and

the hardware interrupt interfaces. The current architecture

model mainly accounts for the scheduling overhead including

migration and context switching overhead after a scheduling

decision is made by the OS kernel. The implementation details

of the architecture model are beyond the scope of this paper.

• 
• 

• 
• 

Fig. 1: Simulation framework of SysRT.

Application layer, OS kernel layer and architecture layer

are implemented on top of the basic classes and primitives

provided by SystemC. We use event-driven simulation, where

events are modeled by the sc event class. This class allows

explicit triggering of events by means of a notification method.

The Event.notify(sc time t) method notifies or posts an event

after time t. If a simulation process is set to be sensitive to an

event, then this process acts as the corresponding event han-

dler. When an event occurs, the corresponding event handler

is invoked and scheduled by the SystemC simulation kernel.

Scheduled events may be canceled with the event.cancel()
method.

Modelling preemption is always a challenging topic for a

RTOS simulator. Most RTOS simulators that are built on top

of SystemC use wait(sc time time) to model task execution

latency. If a task is preempted for some time, then the

preemption time is counted as extra task execution latency,

resulting in another execution of wait(sc time time) for that

task. However, this approach comes with a speed penalty

due to the frequent computations of the preemption time and

the frequent executions of wait(sc time time). Unlike this

approach, SysRT adopts an event-driven approach that uses

only sc event to model preemption. Events are extracted from

the task execution states, which will be discussion soon. Once

a task is preempted, the only work to do is to cancel the

task finishing event. When this task is scheduled again, a new

task finishing event is posted after the remaining execution

time. compared with the wait(sc time time) method, this event-

driven approach introduces less simulation overhead.

39
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

IV. APPLICATION MODEL

The Application is a program that contains a set of coor-

dinated tasks modeled by the user through the Task module.

In this work, the actual task functionality is abstracted away,

and only the timing of task execution is simulated. Here, we

assume that timing information of task execution latencies are

estimated or known a priori.

A. Task Model

In the task model, three kinds of constraints specified on

real-time tasks are considered: timing constraints, precedence

relations, and access control on shared resources. Timing

constraints, such as execution times and job deadlines, are

specified at the creation of a real-time task object. Precedence

constraints are realized by a DAG task model [12]. Contention

on shared resources is simulated by adding wait/signal instruc-

tions in the task execution routine, as will be explained below.

A task module contains a list of high-level instructions that

are executed in sequence. Instruction sub-modules are added

to a task module by the InsertCode method. For example, con-

sider a task T1 that computes for 500 milliseconds, then tries

to get access to a shared variable R1 after which it occupies

the resource for 50 milliseconds once the access is granted,

and after releasing the shared resource the task finishes its

current job by computing for another 300 milliseconds. This

can be modeled by: T1.InsertCode(“execute(500); wait(R1);
execute(50); signal(R1); execute(300)”). Details about the in-

struction module will be described in Section IV-B.

The simulation is driven by events generated by the first

job of each task. The typical events generated for a task are

illustrated in Fig. 2. A job arrival event is posted at the

activation offset (start time) φi by the start of simulation()
method in the Task module which is called at the beginning

of the simulation. A job arrival event is notified every time

when the task becomes ready to execute. Between the job

arrival time and finish time, a job may miss its relative

deadline. For such cases, a deadline miss event is posted

at time φi+Di, where Di is the relative deadline of task i.
The action of the deadline miss event handler is specified

by the user. Possible actions are to kill the job instance,

to ignore the deadline miss or even to stop the simulation.

Once a job starts its execution, a job end event is posted at

time φi+Ci, where Ci is the execution latency of task i. The

responsibility of the job end event handler is to cancel the

pending deadline miss event and to call the kernel interface

to inform it to schedule another task. A schedule event is

posted by the OS kernel to a specific task if it was selected

to be scheduled. The schedule event handler schedule() then

schedules the instructions of the task. A deschedule event

is generated if a task is preempted by another task with a

higher priority. The deschedule event handler deschedule()

cancels the pending job end event, records the current time

stamp and computes the executed job length. When the task

is re-scheduled, a new job end event is posted for the job’s

remaining execution time.

Fig. 2: Task events.

The UML class diagram of task modules is shown in

Fig. 3(a). AbsTask defines the interface that must be imple-

DagNode

PeriodicTask

Task

sc_module AbsRTTask

AbsTask

SMPKernel

UNPKernel

sc_module AbsKernel

PartiKernel

(a) (b)

Fig. 3: (a) Task module and (b) Kernel module.

mented by a general task. It includes an activate() method,

which activates the task, as well as schedule()/deschedule()
methods, which modify the task state and related variables

when a task is scheduled/descheduled. AbsRTTask defines the

interface that should be provided by a real-time task and

contains methods for getting the absolute and relative deadline

of a task.

Periodic Task Model: Periodic tasks consist of a number

of instances or jobs that are regularly activated at each period.

Periodic tasks are reactivated by the job arrival event handler,

which posts a new job arrival event at the next period.

DAG Task Model: A DAG is a graph of real-time subtasks

(also called nodes) that captures their execution precedences.

The subtasks share the same deadline and period but differ

in their WCET. The DagNode module is used to construct a

DAG application model in SysRT.

B. Instruction Model

Instructions inside tasks are modeled using the Instruc-
tion class. There are two kinds of instructions. First, exe-
cute(sc time time) is used to model the execution time required

to execute a real code segment in an application. It can be

described by a random variable, making it is possible to

model a portion of code with an arbitrarily distributed random

execution time. The other instruction type is wait(Resource
res)/signal(Resource res), which models the request or release

of a shared resource. A task executes all the instructions

in sequence. A job instance is completed only after its last

instruction was executed. If a task is activated again (i.e. firing

40
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

a new job), then the instruction pointer is reset to the first

instruction.

The schedule/deschedule event propagates from a task to

its instructions. If a task is selected to execute at time t,
the task calls its instruction interface and notifies a schedule
event in the Instruction module. Suppose that the execution

duration of the instruction is instr time, the schedule event

handler in the Instruction module will post an end instr event

at time t+instr time. The end instr event handler increments

the instruction pointer to the next instruction in the task

and posts a new end instr event for the next instruction. If

there are no more instructions to execute, the interface of

the task module is invoked and a job end event is posted.

During instruction execution, a task may be preempted and

rescheduled. A similar event propagation mechanism between

a task and its instructions applies to the deschedule event.

Based on the assumption that the actual requesting and

releasing of a resource takes zero time, the end instr event

is notified immediately if the current scheduled instruction

is wait or signal. The end instr event handler for the wait
instruction communicates with operating system kernel by

calling the interface request resource(Kernel, Resource, re-
source quantity). As a result, the task gets the resource if a

sufficient quantity of that resource is available. Otherwise, the

task is blocked by the operating system kernel. For the signal
instruction, the end instr event handler invokes the interface

release resource(Kernel, Resource, resource quantity) in the

operating system kernel module. The task releases the resource

quantity used.

V. RTOS KERNEL MODEL

Fig. 3(b) shows the UML class diagram of the OS kernel

module. The AbsKernel class is an abstract class that defines

the minimal functionality of a kernel. The UNPKernel and

SMPKernel classes are implemented to model an OS kernel

running on a uniprocessor system (UNP) or a symmetric mul-

tiprocessor system (SMP), respectively. Traditional real-time

multiprocessor schedulers can be classified in two categories:

global and partitioned schedulers. Global Earliest-Deadline-

First (G-EDF) and Partitioned-EDF (P-EDF) are examples of

each category. The SMPKernel class models a general OS

kernel with a global scheduler, whereas the PartiKernel class

models an OS kernel with partitioned schedulers.

In this work, we mainly consider services of process

management, resource management, interrupt handling and

real-time scheduling provided by the OS kernel. We have

developed the modules of the OS kernel model with the aim

to provide a flexible and extendable framework to facilitate

implementation, testing and evaluation of different real-time

schedulers with various resource sharing protocols.

A. UNPKernel Model

The UNPKernel module is developed to model a real-

time OS kernel running on a uniprocessor. It contains sub-

components such as the Scheduler module and the ResMan-
ager module that is responsible for performing resource access

related operations. These sub-components are set through

methods set sched (Scheduler* s) and set resmanager (Res-
Manager* rm).

At initialization, a CPU pointer, which points to the mod-

eled architecture, is created in the UNPKernel module to get

information of the architecture platform. Since at most one

task is allowed to execute at a time in a uniprocessor system,

one pointer cur exe is enough to track the current executing

task.

For the communication with tasks, the UNPKernel module

provides several functions. These include the functions Ar-
rival(AbsRTTask* t) and End(AbsRTTask* t). The function Ar-
rival(AbsRTTask* t) is called by the task arrival event handler.

This method inserts the task in the ready queue, followed by

a function call to make a schedule decision. End(AbsRTTask*
t) is invoked by a task when the task completes its execution.

This function removes the task from the ready queue and sets

the cur exe pointer to null. To suspend a task, the UNPKernel

class implements a Suspend(AbsRTTask* t) function. This

function removes the task from the ready queue. If the task

was executing, then it will first be descheduled. When a task

is resumed (from suspension by the OS or from being blocked

on a resource), the kernel reactivates the task by calling

Activate(AbsRTTask* t) which simply inserts the task in the

ready queue and changes the task’s state to ready.

The operation of allocating the CPU for task execution is

referred to as dispatching. The dispatching activity is simulated

by the dispatch() function. Any circumstance that may change

the current executing task should invoke dispatch() to make a

scheduling decision:

• when a new task becomes ready;

• when a task finishes its current job;

• when a task is blocked;

• when an interrupt arrives, activating its corresponding

interrupt handler.

On uniprocessor systems, just one execution flow can progress

at a time. Therefore, dispatch() is simple in UNPKernel as

compared with its implementation in other kernel modules.

It simply compares the executing task with the first task in

the ready queue. If they are different, it forces a context

switch, which involves the participation of architecture model

to simulate the context switch overhead. When the context

switch has finished, the kernel schedules the newly dispatched

task. Important to realize is that the dispatch() function has
been decoupled from the scheduler that actually determines

the order of the tasks in the ready queue, according to the

implemented scheduling algorithm.

B. SMPKernel Model

The SMPKernel is a module modeling a real-time kernel

with a global scheduler for (SMP) multiprocessor systems.

On multiprocessor systems, multiple tasks are allowed to run

concurrently. The SMPKernel module keeps track of the status

of each individual processor, storing information about which

task is executing on which processor, which tasks are about

41
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

to be dispatched to which processor, and whether or not

processors are in the process of performing a context switch.

The functions provided to the Task module and methods

related to process management in the SMPKernel module

are similar to those in the UNPKernel module. However,

the function to make a scheduling decision, dispatch(), is

more complicated. Pseudocode 1 shows the procedure of the

dispatch() method in SMPKernel. In this code, the variable

newtasks denotes the number of tasks that are not executing

but need to be scheduled. Assuming a simulated architecture

with m processors, newtasks therefore equals to the number

of tasks that are among the first m tasks in the task ready

queue that are not yet executing or being dispatched. Newly

scheduled tasks are dispatched to free processors if there are

any available. If all processors are busy, then task preemption

will take place.

Pseudocode 1: The procedure of dispatch() with a system architecture with
m processors

1: while newtasks > 0 do
2: tnew ← first non-executing task in ready queue that

needs to be scheduled (i.e., among the first m entries)

3: c ← find next free core {return NULL if no more free

cores}
4: if c == NULL then
5: tremove ← first executing task in ready queue not

part of the first m entries ;

6: c ← get the index of core executing task tremove

7: end if
8: dispatch to proc(tnew, c)

9: newtasks ← newtasks - 1

10: end while

The dispatch() method decides on the index of the selected

cores for task dispatch. By calling dispatch to proc(Task *
newtask, CPU *c), the OS kernel also deschedules any task

currently executing on processor c and computes the schedul-

ing overhead including the context switch and task migration

costs. The computed scheduling overhead is passed from the

kernel layer to the architecture layer, which subsequently

simulates this overhead. Hereafter, a newly dispatched task

is selected to start execution on processor c. The procedure

of dispatch to proc(Task * newtask, CPU *c) is shown in

Pseudocode 2.

C. PartiKernel Model

In a partitioned scheduler, ready tasks are first inserted in

a global ready queue. Through this global scheduler, ready

tasks are then dispatched to a specific local task queue

according to the task’s affinity. Each processor has its own

local queue in which the order depends on the local scheduler.

Each processor may use a different scheduler. Since the

structure of such a partitioned scheduler is different from the

global scheduler, a different kernel module, PartiKernel, has

been implemented to facilitate the development of partitioned

schedulers. The interface provided to the Task module and

Pseudocode 2: The procedure of dispatch to proc(Task ∗
newtask, CPU ∗ c)

1: AbsRTTask current task ← the task currently executing

on core c
2: if current task �= NULL then
3: deschedule current task
4: end if
5: if newtask == NULL then
6: RETURN

7: else
8: prepare newtask to execute on core c
9: end if

10: Compute the scheduling overhead

11: Send the overhead to architecture model

functions related to process management in the PartiKernel
module are slightly different than those in SMPKernel due

to task affinity. However, the dispatch() method has been

completely re-implemented. If a task is inserted to or is

removed from a local queue, instead of calling dispatch(),
PartiKernel invokes a dispatch(CPU *cpu) function that passes

the task affinity as a parameter to make a local rescheduling

decision for the processor in question. Changes on a local

queue have no effect on the ordering of other local queues.

In this sense, the dispatch(CPU *cpu) function is similar to

dispatch() in UNPKernel.

D. Scheduler Model

When a task becomes ready to execute, it is inserted to

the ready queue managed by the scheduler, which is a sub-

component of a kernel module. The ready queue is ordered

by task priority assigned by the scheduling algorithm. At a

scheduling point, the scheduler (i.e. dispatcher) is responsible

for selecting the task(s) at the front of the ready queue to

execute. In SysRT, the following schedulers have currently

been implemented:

• Global Earliest Deadline First [13] (G-EDF)

• First Come First Out (FIFO)

• Fixed Priority Scheduler (FPS)

• Rate Monotonic Scheduler (RMS)

• Round Robin (RR).

• Proportional Fairness [14] (P-FAIR)

• Partitioned-based Scheduler (PS) including P-EDF

• Non-Preemptive EDF (NP-EDF)

E. Resource Management Model

The Resource module models a resource shared by two or

more tasks. It provides an interface to the OS kernel module

to, for example, perform locking operations for providing

access to these shared resources. The resource availability

is checked by the method IsAvailable(int amount). It returns

false if the quantity of a certain resource is not sufficient.

Every task uses resources through a critical section sur-

rounded by wait and signal instructions. If the executing

task requests/releases a certain resource quantity, the resource

42
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

manager in the OS kernel invokes the interface of the resource,

lock(int amount)/unlock(int amount), to decrease/increase re-

source availability for that particular resource.

The ResManager module models a resource manager that

implements the resource accessing protocol. It contains multi-

ple block queues, each associated with a particular resource to

store tasks blocked on that resource. These block queues are

ordered by task priority. Different resource sharing protocols

can be implemented by the ResManager module. Taking the

Priority Inheritance Protocol [15] as an example, requesting

a resource is implemented by first checking the availability

of the requested resource. If there are not enough available

resources, the resource manager calls the kernel interface to

suspend the task that is requesting the resource. Furthermore,

the priority of the resource owner is changed to the maximum

priority of those tasks that are blocked for the resource. If

the requested resources are available, the resource manager

invokes the unlock interface of the resource and grants the

resources to the task. Releasing a resource unlocks the re-

sources and changes the priority of the releasing task back

to its original priority, after which it checks if the resource

block queue is empty. If the queue is not empty, the resource

manager removes the first task from the block queue, and

activates the task through the kernel interface and locks the

resource for the new owner.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy and simulation

performance of SysRT, and demonstrate its flexibility and

benefit in DSE. All experiments were conducted on a 3.4GHZ

Intel Core I5. The default time unit of the task parameters in

the following experiments is the simulation resolution set by

SystemC.

A. Simulation performance and accuracy

The first experiment is to evaluate the accuracy and sim-

ulation performance of SysRT by comparing it with four

other simulators: the state-of-art (prediction-based) HCSim

simulator [10] and three conventional quantum-granularity

based simulators (also described in [10]) with a simulation

quantum of 1ms, 10ms and 100ms, respectively. All simulators

model a Partitioned-Fixed Priority scheduler, where tasks have

been uniformly partitioned over the simulated processors. Task

execution costs and periods, priorities are randomly distributed

over the intervals [50ms, 150ms], [100ms,10s] and [1, 100],

respectively. The simulated time is 10 minutes. Note that all

these tasks are not necessarily real-time tasks.

Figures 4 (a), (b) and (c) show the simulation times taken

by each simulator simulating a different number of processors,

ranging from 1 to 16, where the number of tasks is 16, 100 and

1000. Figure 4 clearly shows that SysRT achieves the fastest

simulation speed in these experiments. Both SysRT and HC-

Sim are scalable with respect to the number of processors and

the number of tasks. The simulation speed of the conventional

simulator with largest simulation quantum is similar to that of

HCSim and SysRT. However, it suffers from a lower accuracy,

as will be discussed later on. Conventional simulators get

much slower if the simulation quantum size decreases.

To derive a reference for the task response times, we have

also performed the experiment with the same task sets on a

real Linux-based RTOS, i.e. Litmus [16], varying the number

of active processors from 1 to 4. For each task, we calculate

the relative errors between the response times obtained from

simulators and the actual response times from Litmus. The

accuracy is measured by the average error of all tasks in the

testing task set.

Table I is the average simulation error of those tests. The

number of active processors and the number of tasks in

different testing sets is not reported since it turns out that these

factors have little effect on the relative error of each individual

task. SysRT, HCSim and conventional simulation with the

smallest simulation quantum yield high accuracy, whereas

conventional simulators with a larger simulation quantum

suffer from degraded accuracy.

TABLE I: Average Simulation Error of Five Simulators

HCSim SysRT Quantum:1ms Quantum:10ms Quantum:100ms

0.166% 0.166% 0.166% 4.182% >100%

Note that, although SysRT and HCSim are supposed to be

theoretically accurate, several factors in Litmus such as context

switches and kernel tasks with high priorities could lead to

small simulation errors. Fortunately, both SysRT and HCSim

provide support to model the scheduling overhead to improve

accuracy.

B. Flexibility of SysRT

As most prediction-based RTOS simulators do not support

simulating real-time resource access protocols due to difficul-

ties in predicting preemption points, we show the flexibility

of SysRT by simulating a set of four periodic tasks T1, ..., T4

that exclusively access two shared resources R1 and R2. Task

parameters are listed in Table II. Pi is the task activation period

and Ci the execution time. Variable ξj,i denotes the duration

of the critical section that Ti occupies Rj . The value 0 for

ξj,i means that Ti does not use Rj . Tasks are scheduled on

an uniprocessor by a RM scheduler with priority inheritance

as resource sharing protocol.

TABLE II: Task Parameters and Theoretical WCRT.

Tasks Pi Ci ξ1,i ξ2,i WCRTi

T1 100 5 0 0 5
T2 110 16 3 3 71
T3 200 70 20 0 142
T4 350 102 0 30 310

The analytically calculated Worst Case Response Time

(WCRT) for each task is given in the last column of Table II.

We have run the simulation for 80000 time units. The sim-

ulated response time of the first 200 jobs of each task are

shown in Fig. 5. As can be seen from Fig. 5, the response

times obtained from simulation are consistently lower than

43
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

(a) 16 tasks (b) 100 tasks (c) 1000 tasks

Fig. 4: Simulation time of five simulators.

the theoretical WCRTs. Thanks to the modular and flexible

implementation of SysRT, the resource sharing protocol is

correctly simulated.

Fig. 5: Response time of jobs in tasks.

C. Benefit of SysRT in DSE

The second experiment demonstrates the flexibility of

SysRT and its benefits for early DSE. An embedded system

with a mixed application workload is simulated. The task set

is composed of three Hard Real-Time (HRT) tasks, five Soft

Real-Time (SRT) tasks and three Best-Effort (BE) tasks. Task

types, parameters and utilization (Pi divided by Ci) are listed

in Table III. If an interval [a, b] is assigned to Pi (or Ci), then

Pi (or Ci) is a random variable uniformly distributed in that

interval. This models workload variations.

The application requirement for hard real-time tasks is to

guarantee that deadlines are always met. SRT tasks are allowed

to miss deadlines, thus their performance is measured by the

deadline miss ratio. For best-effort tasks, the performance

is calculated by their average response time. We have run

TABLE III: Task Type and Parameters.

Tasks Type Pi Ci Ui

T1 HRT 50 20 0.4
T2 HRT 90 30 0.333
T3 HRT 140 50 0.357
T4 SRT 190 30 0.157
T5 SRT 350 80 0.228
T6 SRT 500 170 0.34
T7 SRT 1000 [200, 700] [0.2, 0.7]
T8 SRT 1300 [500, 900] [0.385, 0.692]
T9 BE [1000, 5000] 200 [0.04, 0.2]
T10 BE [3000, 9000] 500 [0.056, 0.167]
T11 BE [5000, 15000] 1500 [0.1, 0.3]

simulations with three kinds of schedulers on different ar-

chitecture models. EDF and FPS schedulers are tested with

systems containing 2 to 8 processors, and a partitioned-based

scheduler (PS) has been tested for systems with 3 to 5 cores.

For the latter, Table IV lists the local scheduling policies and

scheduled task(s) on each processor. The simulation is aborted

if a HRT task misses a deadline.

TABLE IV: Patitioned-based Scheduler Configuration.

Processors Processor Local Scheduler Tasks
1 FPS T1,T2,T9,T11

3 2 EDF T3,T4,T6

3 RR T5,T7,T8,T10

1 P-FAIR T1,T2,
4 2 FPS T3,T4,T6

3 EDF T5,T7,T8

4 RR T9,T10,T11

1 P-FAIR T1,T2,T5

2 FPS T3

5 3 NP-EDF T4,T7

4 EDF T6,T8

5 RR T9,T10,T11

The average deadline miss ratio of the five SRT tasks is

shown in Fig. 6(a). The deadline miss ratio decreases as

the number of processors increases and becomes 0 for five

processors. HRT tasks are not schedulable under EDF if the

number of processors is less than four, thus no results are

44
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 6: (a) Average deadline miss ratio (b) Scheduling over-

head.

plotted for EDF for 2 and 3 processors.

Fig. 6(b) shows the scheduling overhead including the

total number of context switches and task migrations. It is

interesting to observe that partitioned schedulers have no task

migration but suffer from a large number of context switches

incurred by P-FAIR, which serves as a local scheduler.

Fig. 7 illustrates the average response times of the BE tasks.

As the number of processors increases, the average response

time becomes smaller. The response times are very large if the

number of processors is less than 4, thus they are not plotted.

Evidently, such system performance estimates as obtained by

SysRT are helpful to make design decisions at the very early

system design stages.

Fig. 7: Response time of BE tasks.

VII. CONCLUSION

In this paper, we presented SysRT, a generic and high-level

SystemC-based multiprocessor RTOS simulator. It provides

the unique and novel combination of being highly accurate,

efficient and easy to extend to facilitate early DSE. To this

end, it contains different types of application models and a

modular RTOS kernel model. Efficient and precise modeling

of preemptive scheduling is achieved via an event-driven

simulation approach. Its modular design allows for easy plug-

in of new schedulers as well as new resource sharing protocols.

Comparing SysRT with state-of-art simulators, it achieves

faster simulation speeds with the same small simulation error.

We demonstrated the flexibility of SysRT by experiments with

a mixed workload executing on multiprocessor platforms with

different numbers of cores.

For future work, we plan to establish co-simulation with

more advanced hardware simulators developed in SystemC.

Moreover, we are interested in designing and studying new

schedulers for mixed application workloads executing on em-

bedded platforms.

REFERENCES

[1] SystemC, http://www.accellera.org.
[2] SpecC, http://www.cecs.uci.edu/ specc/.
[3] SysRT, https://github.com/jxiao90/SysRT.
[4] Y. Yi, D. Kim, and S. Ha, “Fast and time-accurate cosimulation

with os scheduler modeling,” Des. Autom. Embedded Syst.,
vol. 8, no. 2-3, pp. 211–228, Jun. 2003. [Online]. Available:
http://dx.doi.org/10.1023/B:DAEM.0000003963.20442.29

[5] H. Zabel, W. Müller, and A. Gerstlauer, Accurate RTOS modeling and
analysis with SystemC. Netherlands: Springer Netherlands, 2009, pp.
233–260.

[6] R. L. Moigne, O. Pasquier, and J. P. Calvez, “A generic rtos model
for real-time systems simulation with systemc,” in Proceedings Design,
Automation and Test in Europe Conference and Exhibition, vol. 3, Feb
2004, pp. 82–87 Vol.3.

[7] P. Hastono et al., “Real-time operating system services for realistic
systemc simulation models of embedded systems,” in Proc. of FDL’04,
2004, pp. 380–391.

[8] R. S. Khaligh and M. Radetzki, “Modeling constructs and kernel
for parallel simulation of accuracy adaptive tlms,” in 2010 Design,
Automation Test in Europe Conference Exhibition (DATE 2010), March
2010, pp. 1183–1188.

[9] S. Stattelmann, O. Bringmann, and W. Rosenstiel, “Fast and accurate
resource conflict simulation for performance analysis of multi-core
systems,” in 2011 Design, Automation Test in Europe, March 2011, pp.
1–6.

[10] P. Razaghi and A. Gerstlauer, “Host-compiled multicore system simu-
lation for early real-time performance evaluation,” ACM Trans. Embed.
Comput. Syst., no. 5s, pp. 166:1–166:26, Dec. 2014.

[11] G. Schirner and R. Dömer, “Introducing preemptive scheduling in ab-
stract rtos models using result oriented modeling,” in Proc. of DATE’08,
New York, NY, USA, 2008, pp. 122–127.

[12] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in Proceedings of
the 2011 IEEE 32Nd Real-Time Systems Symposium, ser. RTSS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 217–226.
[Online]. Available: http://dx.doi.org/10.1109/RTSS.2011.27

[13] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, Jan. 1973. [Online]. Available:
http://doi.acm.org/10.1145/321738.321743

[14] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
ALGORITHMICA, vol. 15, pp. 600–625, 1996.

[15] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: an approach to real-time synchronization,” IEEE Transactions on
Computers, vol. 39, 1990.

[16] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson,
“Litmusrt: A testbed for empirically comparing real-time multiprocessor
schedulers,” in Proc. of the 27th IEEE Real-Time Systems Symposium,
2006, pp. 111–123.

45
Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on August 24,2020 at 19:02:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

