757 research outputs found

    Combining Multiple Sensors for Event Detection of Older People

    Get PDF
    International audienceWe herein present a hierarchical model-based framework for event detection using multiple sensors. Event models combine a priori knowledge of the scene (3D geometric and semantic information, such as contextual zones and equipment) with moving objects (e.g., a Person) detected by a video monitoring system. The event models follow a generic ontology based on natural language, which allows domain experts to easily adapt them. The framework novelty lies on combining multiple sensors at decision (event) level, and handling their conflict using a proba-bilistic approach. The event conflict handling consists of computing the reliability of each sensor before their fusion using an alternative combination rule for Dempster-Shafer Theory. The framework evaluation is performed on multisensor recording of instrumental activities of daily living (e.g., watching TV, writing a check, preparing tea, organizing week intake of prescribed medication) of participants of a clinical trial for Alzheimer's disease study. Two fusion cases are presented: the combination of events (or activities) from heterogeneous sensors (RGB ambient camera and a wearable inertial sensor) following a deterministic fashion, and the combination of conflicting events from video cameras with partially overlapped field of view (a RGB-and a RGB-D-camera, Kinect). Results showed the framework improves the event detection rate in both cases

    Robust sensor fusion in real maritime surveillance scenarios

    Get PDF
    8 pages, 14 figures.-- Proceedings of: 13th International Conference on Information Fusion (FUSION'2010), Edinburgh, Scotland, UK, Jul 26-29, 2010).This paper presents the design and evaluation of a sensor fusion system for maritime surveillance. The system must exploit the complementary AIS-radar sensing technologies to synthesize a reliable surveillance picture using a highly efficient implementation to operate in dense scenarios. The paper highlights the realistic effects taken into account for robust data combination and system scalability.This work was supported in part by a national project with NUCLEO CC, and research projects CICYT TEC2008-06732-C02-02/TEC, CICYT TIN2008-06742-C02-02/TSI, SINPROB, CAM CONTEXTS S2009/TIC-1485 and DPS2008-07029-C02-02.Publicad

    Overview of contextual tracking approaches in information fusion

    Get PDF
    Proceedings of: Geospatial InfoFusion III. 2-3 May 2013 Baltimore, Maryland, United States.Many information fusion solutions work well in the intended scenarios; but the applications, supporting data, and capabilities change over varying contexts. One example is weather data for electro-optical target trackers of which standards have evolved over decades. The operating conditions of: technology changes, sensor/target variations, and the contextual environment can inhibit performance if not included in the initial systems design. In this paper, we seek to define and categorize different types of contextual information. We describe five contextual information categories that support target tracking: (1) domain knowledge from a user to aid the information fusion process through selection, cueing, and analysis, (2) environment-to-hardware processing for sensor management, (3) known distribution of entities for situation/threat assessment, (4) historical traffic behavior for situation awareness patterns of life (POL), and (5) road information for target tracking and identification. Appropriate characterization and representation of contextual information is needed for future high-level information fusion systems design to take advantage of the large data content available for a priori knowledge target tracking algorithm construction, implementation, and application.Publicad

    Combining Multiple Sensors for Event Detection of Older People

    Get PDF
    International audienceWe herein present a hierarchical model-based framework for event detection using multiple sensors. Event models combine a priori knowledge of the scene (3D geometric and semantic information, such as contextual zones and equipment) with moving objects (e.g., a Person) detected by a video monitoring system. The event models follow a generic ontology based on natural language, which allows domain experts to easily adapt them. The framework novelty lies on combining multiple sensors at decision (event) level, and handling their conflict using a proba-bilistic approach. The event conflict handling consists of computing the reliability of each sensor before their fusion using an alternative combination rule for Dempster-Shafer Theory. The framework evaluation is performed on multisensor recording of instrumental activities of daily living (e.g., watching TV, writing a check, preparing tea, organizing week intake of prescribed medication) of participants of a clinical trial for Alzheimer's disease study. Two fusion cases are presented: the combination of events (or activities) from heterogeneous sensors (RGB ambient camera and a wearable inertial sensor) following a deterministic fashion, and the combination of conflicting events from video cameras with partially overlapped field of view (a RGB-and a RGB-D-camera, Kinect). Results showed the framework improves the event detection rate in both cases

    Active Contours and Image Segmentation: The Current State Of the Art

    Get PDF
    Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-regions with continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, often produce discontinuous boundaries. The use of level set theory has provided more flexibility and convenience in the implementation of active contours. However, traditional edge-based active contour models have been applicable to only relatively simple images whose sub-regions are uniform without internal edges. Here in this paper we attempt to brief the taxonomy and current state of the art in Image segmentation and usage of Active Contours

    Scanpath assessment of visible and infrared side-by-side and fused video displays

    Get PDF

    Data Fusion for Materials Location Estimation in Construction

    Get PDF
    Effective automated tracking and locating of the thousands of materials on construction sites improves material distribution and project performance and thus has a significant positive impact on construction productivity. Many locating technologies and data sources have therefore been developed, and the deployment of a cost-effective, scalable, and easy-to-implement materials location sensing system at actual construction sites has very recently become both technically and economically feasible. However, considerable opportunity still exists to improve the accuracy, precision, and robustness of such systems. The quest for fundamental methods that can take advantage of the relative strengths of each individual technology and data source motivated this research, which has led to the development of new data fusion methods for improving materials location estimation. In this study a data fusion model is used to generate an integrated solution for the automated identification, location estimation, and relocation detection of construction materials. The developed model is a modified functional data fusion model. Particular attention is paid to noisy environments where low-cost RFID tags are attached to all materials, which are sometimes moved repeatedly around the site. A portion of the work focuses partly on relocation detection because it is closely coupled with location estimation and because it can be used to detect the multi-handling of materials, which is a key indicator of inefficiency. This research has successfully addressed the challenges of fusing data from multiple sources of information in a very noisy and dynamic environment. The results indicate potential for the proposed model to improve location estimation and movement detection as well as to automate the calculation of the incidence of multi-handling

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches
    • 

    corecore