6,726 research outputs found

    Optimal Clustering under Uncertainty

    Full text link
    Classical clustering algorithms typically either lack an underlying probability framework to make them predictive or focus on parameter estimation rather than defining and minimizing a notion of error. Recent work addresses these issues by developing a probabilistic framework based on the theory of random labeled point processes and characterizing a Bayes clusterer that minimizes the number of misclustered points. The Bayes clusterer is analogous to the Bayes classifier. Whereas determining a Bayes classifier requires full knowledge of the feature-label distribution, deriving a Bayes clusterer requires full knowledge of the point process. When uncertain of the point process, one would like to find a robust clusterer that is optimal over the uncertainty, just as one may find optimal robust classifiers with uncertain feature-label distributions. Herein, we derive an optimal robust clusterer by first finding an effective random point process that incorporates all randomness within its own probabilistic structure and from which a Bayes clusterer can be derived that provides an optimal robust clusterer relative to the uncertainty. This is analogous to the use of effective class-conditional distributions in robust classification. After evaluating the performance of robust clusterers in synthetic mixtures of Gaussians models, we apply the framework to granular imaging, where we make use of the asymptotic granulometric moment theory for granular images to relate robust clustering theory to the application.Comment: 19 pages, 5 eps figures, 1 tabl

    Application of probabilistic PCR5 Fusion Rule for Multisensor Target Tracking

    Full text link
    This paper defines and implements a non-Bayesian fusion rule for combining densities of probabilities estimated by local (non-linear) filters for tracking a moving target by passive sensors. This rule is the restriction to a strict probabilistic paradigm of the recent and efficient Proportional Conflict Redistribution rule no 5 (PCR5) developed in the DSmT framework for fusing basic belief assignments. A sampling method for probabilistic PCR5 (p-PCR5) is defined. It is shown that p-PCR5 is more robust to an erroneous modeling and allows to keep the modes of local densities and preserve as much as possible the whole information inherent to each densities to combine. In particular, p-PCR5 is able of maintaining multiple hypotheses/modes after fusion, when the hypotheses are too distant in regards to their deviations. This new p-PCR5 rule has been tested on a simple example of distributed non-linear filtering application to show the interest of such approach for future developments. The non-linear distributed filter is implemented through a basic particles filtering technique. The results obtained in our simulations show the ability of this p-PCR5-based filter to track the target even when the models are not well consistent in regards to the initialization and real cinematic

    Information theoretic approach to robust multi-Bernoulli sensor control

    Full text link
    A novel sensor control solution is presented, formulated within a Multi-Bernoulli-based multi-target tracking framework. The proposed method is especially designed for the general multi-target tracking case, where no prior knowledge of the clutter distribution or the probability of detection profile are available. In an information theoretic approach, our method makes use of R\`{e}nyi divergence as the reward function to be maximized for finding the optimal sensor control command at each step. We devise a Monte Carlo sampling method for computation of the reward. Simulation results demonstrate successful performance of the proposed method in a challenging scenario involving five targets maneuvering in a relatively uncertain space with unknown distance-dependent clutter rate and probability of detection

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Global Optimization for Future Gravitational Wave Detectors' Sites

    Get PDF
    We consider the optimal site selection of future generations of gravitational wave detectors. Previously, Raffai et al. optimized a 2-detector network with a combined figure of merit. This optimization was extended to networks with more than two detectors in a limited way by first fixing the parameters of all other component detectors. In this work we now present a more general optimization that allows the locations of all detectors to be simultaneously chosen. We follow the definition of Raffai et al. on the metric that defines the suitability of a certain detector network. Given the locations of the component detectors in the network, we compute a measure of the network's ability to distinguish the polarization, constrain the sky localization and reconstruct the parameters of a gravitational wave source. We further define the `flexibility index' for a possible site location, by counting the number of multi-detector networks with a sufficiently high Figure of Merit that include that site location. We confirm the conclusion of Raffai et al., that in terms of flexibility index as defined in this work, Australia hosts the best candidate site to build a future generation gravitational wave detector. This conclusion is valid for either a 3-detector network or a 5-detector network. For a 3-detector network site locations in Northern Europe display a comparable flexibility index to sites in Australia. However for a 5-detector network, Australia is found to be a clearly better candidate than any other location.Comment: 30 pages, 23 figures, 2 table
    • …
    corecore