
Information Sciences 388–389 (2017) 172–190 

Contents lists available at ScienceDirect 

Information Sciences 

journal homepage: www.elsevier.com/locate/ins 

Clustering for filtering: Multi-object detection and estimation 

using multiple/massive sensors 

Tiancheng Li a , b , ∗, Juan M. Corchado 

a , c , Shudong Sun 

b , Javier Bajo 

d 

a School of Science, University of Salamanca, Salamanca 37008, Spain 
b School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China 
c Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535-8585, Japan 
d Department of Artificial Intelligence, Technical University of Madrid, Madrid 28660, Spain. 

a r t i c l e i n f o 

Article history: 

Received 8 April 2016 

Revised 7 January 2017 

Accepted 9 January 2017 

Available online 10 January 2017 

Keywords: 

Target detection 

Object recognition 

Filtering 

Tracking 

Sensor fusion 

a b s t r a c t 

Advanced multi-sensor systems are expected to combat the challenges that arise in ob- 

ject recognition and state estimation in harsh environments with poor or even no prior 

information, while bringing new challenges mainly related to data fusion and computa- 

tional burden. Unlike the prevailing Markov-Bayes framework that is the basis of a large 

variety of stochastic filters and the approximate, we propose a clustering-based methodol- 

ogy for multi-sensor multi-object detection and estimation (MODE), named clustering for 

filtering (C4F), which abandons unrealistic assumptions with respect to the objects, back- 

ground and sensors. Rather, based on cluster analysis of the input multi-sensor data, the 

C4F approach needs no prior knowledge about the latent objects (whether quantity or dy- 

namics), can handle time-varying uncertainties regarding the background and sensors such 

as noises, clutter and misdetection, and does so computationally fast. This offers an inher- 

ently robust and computationally efficient alternative to conventional Markov–Bayes filters 

for dealing with the scenario with little prior knowledge but rich observation data. Sim- 

ulations based on representative scenarios of both complete and little prior information 

have demonstrated the superiority of our C4F approach. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Multiple object/target detection and estimation (MODE), which lies at the core of multi-object recognition and tracking,

involves the joint estimation of the number of targets and their states from noisy observations that are received at discrete

time instants in the presence of clutter/false-alarms and misdetection. The standard and prevailing solution, whether for

a single object or multiple objects, is based on the Markov–Bayes framework, which employs a hidden Markov model to

describe the object’s dynamics, and an observation function to link observed variables to the hidden states, namely the state

space model (SSM). This SSM formulation, which functions by finding a Markov–Bayes filter, has been well demonstrated in

the field for decades since the pioneering work of the Kalman filter. It has been forty years since the first survey of multi-

object tracking methods [2] and the related topics are attracting more attention than ever with the introduction of the finite

set statistics [30] . 
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The concept of “simultaneous signal detection and estimation” appeared since as early as [34] where detection was

treated as a special case of estimation, or estimation as a generalized detection process. The primary challenge for MODE

involves a wide range of latent statistical models/uncertainties regarding object quantity and dynamics (including appear-

ance, movement, deformation and disappearance), sensor profiles (such as irregular revisit frequency, misdetection and out-

of-sequence data) and background (such as clutter); simply, real world noises can be distorted, correlated, colored and/or

multiplicative but hardly be additive Gaussian which is required by Kalman filters. Most of the time, these statistical mod-

els are unknown and can only be approximated on the basis of online or offline data [35] , namely system modeling (which

is also referred to as system identification or the design of the prior [43] ). Even if they can be accurately established to a

sufficient extent, the full Bayesian, or even only the necessary likelihood [16,33,37,44] , computation could be prohibitively

intractable and approximation must be resorted to. 

More specifically, the instability and inconsistency of the Bayesian inference for either linear or nonlinear models has

been recognized [15,17] . It has been demonstrated that the use of a stochastic filter could be inefficient or counteractive

in certain cases [23,36] . Recently, we proposed the concept of probability of filter benefit (PoFB) [23] based on the data-

driven observation-only (O 2 ) inference to clarify this issue: it is only when the PoFB is larger than 0.5 that the filter is more

preferable compared to the O 2 inference. 

Despite immense ongoing effort s spent on developing new Markov–Bayes filters, MODE in a harsh environment with

little prior information remains an open challenge, regardless of the real time computing burden. Nowadays, the advent of

multiple/massive sensor systems provides very rich observation at high frequency yet low financial cost. This facilitates a

novel perspective based on sensor data clustering to deal with false alarms and misdetection, named clustering for filtering

(C4F) in this work, without relying on unrealistic statistical assumptions about the objects, sensors and the background.

The proposed multi-sensor C4F methodology has comparably better ‘frequentist’ interpretation, and is expected to prove its

mettle in the challenging scenario with little prior information. 

The paper is organized as follows. Section 2 summarizes the motivation and outline of our methodology. Section

3 presents the idea of the multi-sensor O 2 inference in which typical sensor models used for object recognition and tracking

are also discussed. Section 4 presents the C4F methodology in detail, which constitutes the core contribution of this paper.

Section 5 presents simulation demonstrations including a comparison with state-of-the-art algorithms. Section 6 concludes

the paper and draws attention to our future work. 

2. Motivation and outline 

The SSM design for Markov–Bayes inference involves choosing a dynamical function to describe the state evolving process

over time, and an observation function to link observed variables to the hidden states. Hereafter, the uncertainties about the

object quantity and dynamics, the background and sensor profiles (e.g. detection uncertainty and noise) all of which are

inherently vague in reality, are jointly referred to as the Statistical Model information, which excludes the deterministic part

of the observation function that is precisely given a priori. When designing optimal estimators it is unrealistic to assume

that the statistical model is known perfectly. The issue is then to design a robust estimator that is optimal relative to an

uncertainty class of processes [6] . Efforts have been devoted from various aspects, including the following, to name a few: 

• Non-cooperative/intractable object motion: constrained [28,35,41] /sparse [1] /circular [19] state sequence and maneuvers

[14,27,43] , etc., 
• Unknown background and sensor uncertainties: noise characteristics [8] , detection probability [13] , clutter rate and de-

tection profiles [31,46,49] , network-induced delay [7] , etc., and 

• Imperfect data: asynchronous sensor data [14,42] , intractable likelihood [16,33,37,44] , measurement random latency [48] ,

outlier [32] and continuous-time observation [12] , etc. 

Given that we are particularly interested in the mean-square error (MSE) of the estimation, the optimal estimator is the

least mean squares (LMS, also referred to as minimum MSE, MMSE) estimator, which calculates the conditional expectation

of the state x t given all the collected observations z 1: t to the newest time t as follows: 

ˆ x t = E ( x t | z 1: t ) = ∫ x p ( x | z 1: t ) dx (1)

where the conditional/posterior distribution p ( x t | z 1: t ) consists of the prior information (related to the state transition func-

tion) and the likelihood (related to the observation uncertainty), both of which depend on the statistical models over the

time series m 1: t . 

When the statistical model is not given a priori, a general Bayesian solution shall estimate the statistical model m 1: t 

jointly with the state x t (also referred to as hierarchical Bayesian modeling), i.e., 

p ( x t , m 1: t | z 1: t ) = p ( x t | z 1: t , m 1: t ) p ( m 1: t | z 1: t ) (2)
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Given a model set M consisting of a sufficient number of candidate models, the full probability formula and the Bayes’

rule show us 

p ( x t | z 1: t ) = 

∑ 

∀ i ∈ [1 ,t]: m i ∈M 

p ( x t | z 1: t , m 1: t ) p ( m 1: t | z 1: t ) 

= 

1 

p ( z 1: t ) 

∑ 

∀ i ∈ [1 ,t]: m i ∈M 

p ( x t | z 1: t , m 1: t ) p ( z 1: t | m 1: t ) p ( m 1: t ) 

where p( z 1: t ) = 

∑ 

∀ i ∈ [1 ,t]: m i ∈M 

p( z 1: t | m 1: t ) p( m 1: t ) . (3) 

Clearly, the model set M shall be complete to contain all significant potential candidates (if not impossible), which how-

ever will cause remarkable computing requirements. A useful strategy in this aspect is to adaptively interact between the

candidate models assumed in the set M which can save the required number of parallel filters, such as the so-called inter-

acting multiple model (IMM) [27] . Still, the real system may change so frequently that the algorithm can hardly catch up,

or even the best models may be inadequate for representing key features of the real system, suffering from erroneous frac-

tions. The situation will become much worse in the case of tracking an unknown and time-varying number of maneuvering

objects by using heterogeneous sensors. In any case, the performance of the Markov–Bayes estimator depends greatly on

the coinciding degree between the real system and the model assumed [27,45] . 

Compared with single object detection and estimation (SODE), clutter and misdetection will significantly affect the object

detection (which is related to determining the number of objects). Even in an ideal situation where the dynamic models are

established and objects are detected perfectly, the correspondence between the observations and the objects in the clut-

tered environment is often ambiguous and poses another fundamental challenge. The way in which this correspondence

is identified distinguishes two main groups of existing solutions. First, conventional solutions decompose the MODE prob-

lem into multiple SODE problems based on observation-to-object association, which is inherently able to provide complete

‘track’ information. One of the main obstacles in this aspect is that the number of possible associations will exponentially

increase over time and must be merged or pruned at the expense of reducing precision for real time filtering. Secondly,

solutions based on finite set statistics such as the probability hypothesis density (PHD) filters and multi-Bernoulli filters

[30,31,46] provide an approximation of the multi-object Bayesian recursion without explicit observation-to-object associa- 

tion. In both cases, approximation is indispensable for both modeling and computing in nonlinear systems. 

On the other hand, the rapid development and joint deployment of sensors (with a gradually improved revisit frequency

and accuracy but a lower cost) facilitate combating either the poor prior knowledge or individual sensor failures, providing

richer and more reliable observation [5,18] . For instance, an ordinary smartphone encompasses a variety of sensors that

permit multi-source WIFI, Bluetooth, GPS signals as well as altitude, acceleration, direction and even context information

based on embedded software, which can all be explored for the same task of “mobile positioning”. While the hardware

strength will increase the capacity of the system, leading to a favorable advantage for more accurate estimation, it will also

pose new challenges for optimal data fusion and real time computation. It is worth noting that, the more accurate the data

are, the more sensitive the estimator is to model errors [23] . 

Given all the problems, challenges and opportunities for multi/massive-sensor MODE in harsh environments with little

prior information, an interesting question is whether we have other efficient solutions that can avoid the need to design a

sophisticated, computationally intensive and model-sensitive filter in order to maximally meet the requirement for reliable

and real time MODE. This forms the starting point of our work, by which we advocate the use of clustering technologies for

filtering, named C4F. The present C4F solution comprises three major steps: 

1) Project all (synchronous) sensor observations from the observation space to the state space, to generate multiple

detections that correspond to real objects and false alarms; the detail is given in Sections 3.1 –3.2 . 

2) Cluster the detections according to their spatial distribution density and certain constraints: those congregating/ clus-

tering correspond to the same or close object(s) while those that are scattered will be identified as false alarms (and

discarded); the detail is given in Sections 4.1 –4.2 . 

3) The detections that are identified as belonging to the same object will be fused in the manner of least squares esti-

mation, which forms a final state-estimate of that object; the detail is given in Section 4.3 . 

The present multiple sensor C4F approach differs from existing filter-based target detection algorithms by releasing the

need to make statistical assumptions about the object quantity and dynamics, sensor detection profiles and even observation

noises. We noticed a few works that employ clustering within filters, e.g., [20] and various adaptive/robust estimators that

have been proposed to accommodate little/poor prior information; however, their core is a model-specific filter. While a

limited part of this work appeared earlier in [21] for identically distributed sensors only, new and detailed content will be

presented in this paper. 

3. Multi-sensor O 2 inference 

The concerned multi-sensor MODE scenario is general, which can be described as follows: an unknown and time-varying

number of objects evolve in terms of birth, disappearance, deformation (including merging and splitting) and maneuvering
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both in state space and in time. A number of conditionally independent sensors are used for observing the scenario, whose

observation function and positions are known. The objects may be detected or missed by the sensors with unknown prob-

abilities, perhaps at irregular observation rates, in the presence of latent and time-varying significance levels of clutter and

noises. To avoid deeper technical issues that detract from the core idea of our work, some common assumptions are made

to the objects, clutter and sensors, respectively: 

(A.1) Each object generates observations independently of the others, and one object generates no more than one obser-

vation at each sensor at each scan. In other words, we contend with only the point-object (regardless of extended

object or multiple-observation due to reflection) and neither convoys nor engagements are involved. 

(A.2) The clutter will not congregate or cluster in the view field of each sensor. This assumption is restrictive albeit com-

mon in the literature since in special cases clutter can congregate in closely placed sensors. For instance, spikes due

to the sea surface returns are likely to be detected by multiple maritime radars; however, we will not account for

tricky cases like this at the present time. 

(A.3) All sensors work independently, synchronously and the average object detection probability they provide is not too

low, otherwise tracking before detection (TBD) is advised. 

3.1. Projecting observations to the state space 

In the general formulation, the sensor performs periodic scans based on a known observation function h t ( ·) 
z t = h t ( x t , v t ) (4)

where t indicates the observation time − instant, x t denotes the state, z t the observation, and v t the observation noise. 

As the concern of this paper, no statistical information is feasible about the target motion and the clutter. We resort to

the pure sensor data for detection and estimation, namely O 2 inference. It can be conceptually written as follows (as long

as the observation function is generally invertible): 

ˆ χt = h 

−1 
t ( z t , ̄v t ) (5)

where h 

−1 
t is the “generalized” inversing function of h t in real variable space, ˆ χt is the inference of “the observed component

of” the state x t and v̄ t is an average used to compensate the observation error and can be specified as the mean of the noise

distribution E ( v t ). In a fully observed system, ˆ χt is a full-dimensional state estimate ˆ x t which should be the best fit of the

observation data, i.e., ̂ x t = argmin 

x 
‖ z t − h t 

(
x , v t 

)‖ (6)

or in a time series manner, 

̂ x t 1 : t 2 = argmin 

x t 1 : t 2 

t 2 ∑ 

t= t 1 
‖ z t − h t 

(
x t , v t 

)‖ (7)

where ‖ x −y ‖ is a measure of the distance to be defined between x and y , [ t 1 , t 2 ] is the time window under consideration

and the summation is over all the sampling instants in the time window. 

However, if any target motion model information is given a priori or can be learned from the online sensor data (e.g.,

the state evolving is a stationary process), such as the deterministic part of the state transition [17] , state constraints [47] ,

model error [3] or even only a context-information like “trajectory is smooth” [25] , it should be taken into account in the

formulation of ( 7 ), to be addressed in Section 6. 

When the statistics of the sensor noise is available, the Monte Carlo (MC) inversing approach can be applied to accom-

modate nonlinear observation function h t for unbiased estimation, for which a set of samples are randomly sampled from

the noise distribution v (i ) 
t ∼ v t , i = 1 , 2 , . . . I in order to carry out the inversing calculation of ( 5 ), i.e., for i = 1, 2, …I 

ˆ χ( i ) 
t = h 

−1 
t 

(
z t , v ( i ) t 

)
(8)

Then, it is straightforward to calculate the unbiased estimate and its covariance as follows 

ˆ χt = 

1 

I 

I ∑ 

i =1 

ˆ χ( i ) 
t (9)

Cov 
(

ˆ χt 

)
= 

1 

I − 1 

I ∑ 

i =1 

(
ˆ χ( i ) 

t − ˆ χt 

)(
ˆ χ( i ) 

t − ˆ χt 

)T 

(10)

To speed up the computation, the samples can be created in a deterministic manner such as sigma-points. We must note

that the sensor uncertainty cannot be exactly known in the real world, not to say that only suffering from a single white

noise. If the statistics of v t is unknown, an approximate error such as that caused by omitting the noise will not affect the

O inference as much as does to the sequential Bayesian filters. 
2 
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More challenging, the observation function may be mathematically irreversible and therefore prevents the direct invers-

ing calculation. Practical treatments to this issue, referred to as dynamic inverse problem [38] , can be found. However, in

the context of object tracking, sensors are limited to a few types and the joint use of multiple or even massive sensors can

improve the observability to circumvent the irreversibility. In the case of massive sensors, it would be interesting to find an

optimal observation configuration by properly grouping the sensors based on their spatial distribution (such as minimizing

the squared position error bound [40] ) and optimally fusing their results. In this paper, we concentrate on the case that

each sensor is a sufficient sensory unit for simplicity. 

3.2. O 2 inference on typical tracking sensors 

We consider three representative sensors for observation in the two dimensional Cartesian coordinate. 

Position observation (e.g., visual camera) : the observation is directly made on the planar position [ p x, t , p y, t ] 
T of the

object, given by 

z t = 

[
z x,t 

z y,t 

]
= 

[
p x,t 

p y,t 

]
+ v t (11) 

where [ z x, t , z y, t ] 
T is the observed position of the object in x and y dimensions, respectively. 

As addressed, the unbiased O 2 inference is given by [
ˆ p x,t 

ˆ p y,t 

]
= 

[
z x,t 

z y,t 

]
− E ( v t ) (12) 

The variance of the estimate is equivalent to that of the observation noise v t . 

Range-bearing observation (active radar) : the observation is a noisy range and bearing vector, given by 

z t = 

[
r t 
θt 

]
= 

[ 

√ 

( p x,t − S x,t ) 
2 + ( p y,t − S y,t ) 

2 

arctan 

(
p y,t −S y,t 
p x,t −S x,t 

) ] 

+ v t (13) 

where [ p x,t , p y,t ] 
T and [ S x,t , S y,t ] 

T are the position of the object and of the sensor, respectively. 

To implement the O 2 inference, one estimate can be inferred by inversing ( 13 ) after taking off v t , yielding [
ˆ p x,t 

ˆ p y,t 

]
= + / −

⎡ ⎣ 

√ 

r 2 t 

1+ θ2 
t 

tan ( θt ) 

√ 

r 2 t 

1+ θ2 
t 

⎤ ⎦ + 

[
S x,t 

S y,t 

]
(14) 

As shown, inversing the arctan function involves a sign problem, denoted by ̈ + / −¨ in ( 14 ). Often, the state is constrainted

in either positive or negative state space and the sign problem is avoided; see our simulation in Section 5.1 . Otherwise at

least two active sensors placed at different positions are needed to infer the sign by triangulation. 

As stated, the estimate given by ( 14 ) by simply abandoning the noise is actually biased even if E ( v t ) = 0. If the statistics

of the noise v t = [ v 1, t , v 2, t ] 
T is known, the MC debiasing scheme can be applied, i.e., sampling a set of samples according to

the noise distribution [ v (i ) 
1 ,t 

, v (i ) 
2 ,t 

] T ∼ p( v t ) , i = 1 , 2 , . . . I, yielding simulating estimates as follows: 

[ 

ˆ p ( 
i ) 

x,t 

ˆ p ( 
i ) 

y,t 

] 

= + / −

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

√ √ √ √ 

(
r t −v ( i ) 

1 ,t 

)2 

1+ 
(
θt −v ( i ) 

2 ,t 

)2 

tan 

(
θt − v ( i ) 

2 ,t 

)√ √ √ √ 

(
r t −v ( i ) 

1 ,t 

)2 

1+ 
(
θt −v ( i ) 

2 ,t 

)2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

[
S x,t 

S y,t 

]
(15) 

The mean and variance of the estimate (for each object) can be obtained respectively by 

[
ˆ p x,t 

ˆ p y,t 

]
= 

⎡ ⎢ ⎣ 

1 
I 

I ∑ 

i =1 

ˆ p ( 
i ) 

x,t 

1 
I 

I ∑ 

i =1 

ˆ p ( 
i ) 

y,t 

⎤ ⎥ ⎦ 

(16) 

[ 

V ar 
(

ˆ p x,t 

)
V ar 

(
ˆ p y,t 

)] 

= 

⎡ ⎢ ⎣ 

1 
I−1 

I ∑ 

i =1 

(
ˆ p ( 

i ) 
x,t − ˆ p x,t 

)2 

1 
I−1 

I ∑ 

i =1 

(
ˆ p ( 

i ) 
y,t − ˆ p y,t 

)2 

⎤ ⎥ ⎦ 

(17) 
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Bear ing-only observation (passive radar) : the observation is bearing only, given by 

θt = actan 

(
p y,t − S y,t 

p x,t − S x,t 

)
+ v t (18)

To improve the observability, two bearing sensors located at different positions can be coordinated to infer the position

of objects by triangulation. Assuming that they are located at positions [ S x 1, t , S y 1, t ] 
T and [ S x 2, t , S y 2, t ] 

T and report bearing θ1, t

and θ2, t , respectively, the estimate [ ̂  p x,t , ˆ p y,t ] 
T can be calculated by solving the following equation set ⎧ ⎨ ⎩ 

θ1 ,t = actan 

(
ˆ p y,t −S y 1 ,t 
ˆ p x,t −S x 1 ,t 

)
θ2 ,t = actan 

(
ˆ p y,t −S y 2 ,t 
ˆ p x,t −S x 2 ,t 

) (19)

which gives (ignoring the sign problem here by treating it as positive) ⎧ ⎨ ⎩ 

ˆ p x,t = 

tan θ1 S x 1 ,t −tan θ2 S x 2 ,t + S y 2 ,t −S y 1 ,t 
tan θ1 −tan θ2 

ˆ p y,t = 

tan θ1 ( tan θ2 S x 1 ,t −tan θ2 S x 2 ,t + S y 2 ,t −S y 1 ,t ) 
tan θ1 −tan θ2 

+ S y 1 ,t 

(20)

To guarantee that ( 20 ) uniquely exists, neither [ S x 1, t , S y 1, t ] 
T and [ S x 2, t , S y 2, t ] 

T nor θ1, t and θ2, t can be the same, namely

the equation set needs to be consistent. As stated, if the noise v t is exactly given, debiasing shall be applied. 

Likewise, if the observation is only a range (or equivalent, such as range-rate [50] ), at least two sensors placed at different

positions are required to infer the planar position/velocity, which is omitted here. In fact, the idea of projecting the sensor

data to the state space has been involved in wireless triangulation, trilateration and multilateration positioning technologies

based on angle of arrival, signal strength observations and time difference of arrival information, respectively; see e.g., [29] .

3.3. Observability 

One active range-bearing sensor or one position-observed sensor suffices to conduct O 2 inference and is referred to

as a sufficient sensory sensor; to do so, at least two range-only or bearing-only sensors located at different positions are

required to work jointly for position estimation. We will not emphasize this issue here as a sufficient number of sensors

are used in our case and the observability is always strongly guaranteed. The challenge here is not under-observability but

over-observability. 

Clearly, the basic O 2 approach only estimates the dimensions of the state that have been observed. Note that even in

filters the unobserved dimensions are inferred from the observed dimensions based on the physical law contained in the

Markov transition matrix, e.g., the differentiation of the position over time is the velocity and the differentiation of the

velocity is the acceleration. Therefore, based on successive estimates of position or velocity, we can infer one from the other.

When further target motion information is available, such as “nearly constant velocity”, the estimates can be coordinated by

fitting them over time-series and their accuracy be improved [25] . In this paper, we are only interested in object detection

and position estimation. 

4. Multi-sensor data clustering for MODE 

As assumed in (A.1–3), all sensors work synchronously, reporting massive conditionally independent detections in the

observation space. Realizing the O 2 inference on these detections will generate corresponding potential estimates (also called

detections in the following) in the state space, consisting of the real estimates of objects and false alarms because of the

clutter. In the sequence, we will present a constrained clustering approach to distinguish the real estimates of individual

objects from each other and from the false alarms, which is the core task required for MODE as compared with SODE, and

forms a novel perspective for “decluttering”. 

4.1. Expected cluster size 

The cluster size is given by the number of detections in the cluster, which depends on both the number of sensors whose

field of view (FoV) covers that cluster, and their respective detection probabilities. In most cases, the sensor’s detection

capacity is state-sensitive and therefore, we denote the object detection probability of sensor s at area a as p D,s ( a ) which

is smaller than 1. Denoting the set of all sensors as S and the set of sensors whose FoV covers area a as S a , the expected

number of sensors that detect an object existing at area a is given by 

E ( n a ) = 

∑ 

s ∈ S a 
p D,s ( a ) � | S a | (21)

where n a is the number of detections reported (for a single object) at area a , | S a | gives the number of elements in set S a
and “ � ” means “smaller than or approximately equal to” in which “approximately equal to” is because clutter may fall in

the cluster. 
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Algorithm 1 Multi-sensor data clustering. 

Step 1 . Project all sensor observations into the same Cartesian coordinate based on the O 2 inference, obtaining undistinguished detections 

corresponding to either real objects or false alarms; see Section 3 . 

Step 2 . Detections from different sensors will be identified as connected if they satisfy ( 22 ) and ( 24 ). 

Step 3 . Calculate the number of detections in each cluster and identify whether the cluster is over-sized via ( 25 ). If k a ≥ 2, cluster C a will be further 

partitioned into k a sub-clusters conditioned on (21–22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Decluttering via clustering 

Based on (A1–3), the detections of a single object given by different sensors will cluster locally, while false alarms will

not. Consequently, we have the following criterion to distinguish the real objects from false alarms: 

Criterion 1 The detections are of high density in the area containing objects and are of low density anywhere else. 

While a general density-based clustering method (such as DBSCAN [9] ) that distinguishes the areas of high data density

from low-density regions will be helpful to distinguish distant objects, we also need to distinguish between close objects

(namely overlapping clusters) that share the same cluster. To do so, two constraints should be satisfied: 

Constraint 1 The detections reported by the same sensor cannot be clustered into the same cluster. 

Constraint 2 The size of each cluster shall be determined such that ( 21 ) is respected. 

Constraint 1 is due to the point-object assumption (A.1) and is referred to as the ‘cannot link’ (CL) constraint. Denote all

the detections generated in sensor s as a set X s = { x s 
1 
, x s 

2 
, . . . x s m s 

} where m s = | X s | is the total number of detections. The CL

constraint states that 

c 	 = 
(
x s i , x 

s 
j 

)
, ∀ i 	 = j (22) 

where c 	 = ( x s i , x 
s 
j 
) means that x s 

i 
, x s 

j 
cannot belong to the same cluster/object. To this end, their distance ‖ x s 

i 
− x s 

j 
‖ can be

treated as infinite in the distance-based clustering algorithm design. In the Cartesian coordinate for x s 
i 
= [ p s 

x,i 
, p s 

y,i 
] T , x m 

j 
=

[ p m 

x, j 
, p m 

y, j 
] T , the � 2 norm Euclidean distance ‖ x s 

i 
− x m 

j 
‖ 2 is given by 

‖ x s i − x m 

j ‖ 2 := 

(
x s i − x m 

j 

)T (
x s i − x m 

j 

)
= 

√ (
p s 

x,i 
− p m 

x, j 

)2 + 

(
p s 

y,i 
− p m 

y, j 

)2 
(23) 

The proposed constrained density-based clustering method can be described as shown in Algorithm 1 . In Step 2 of the

algorithm, a ‘neighbor distance’ threshold (which resembles the parameter “neighbor radius ε” used in DBSCAN and gives

the maximum distance between two detections from different sensors for their direct connection to be included in one

cluster) is required to associate detections from different sensors that very likely correspond to the same object. Our solution

is to determine it according to the covariance of the distribution of all detections for that object, reflecting the average

observation accuracy of all sensors. Considering the most common case of ellipsoidal cluster shape, we propose to use the

rule of ellipsoidal validation, i.e., two detections x s 
i 
, x m 

j 
are considered to be included in the same cluster if they satisfy (

x s i − x m 

j 

)T (
Cov 

(
ˆ x t 
))−1 (

x s i − x m 

j 

)
≤ l 1 (24) 

where Cov ( ̂  x t ) is the covariance of the estimation given by the proposed MC sampling method as shown in ( 10 ), on average

over all sensors and l 1 is the first parameter needed in our approach. We suggest a scaling scope l 1 ∈ [1, 4]. 

When multiple objects appear closely, their detections can be easily clustered into one cluster. Therefore, to partition the

over-sized cluster, another threshold ρ is needed to give the average number of detections in a single-object cluster. It will

be designed with respect to the expected number E ( n a ) of detections for a single object at local, e.g., ρa = l 2 ×E ( n a ), where

0 < l 2 < 1 is scalable and involves a trade-off between missing detections and causing false alarms. We recommend l 2 ∈
[0.6, 0.9]. According to Constraint 2, the number k a of sub-clusters contained in cluster C a satisfies 

k a ρa ≤ | C a | < ( k a + 1 ) ρa (25) 

Given that the number of sub-clusters is determined by ( 25 ), the over-sized cluster can be then easily partitioned since

false alarm is no longer involved and the standard k -means clustering algorithm is applicable. To note, each sub-cluster shall

have approximately ρa but no more than | S a | detections while satisfying ( 22 ). 

Remark 1. Scaling parameters l 1 and l 2 imply confidence levels assigned to coordinating the neighbor distance ε and the

cluster size ρ , with reference to the sensors’ observation noise variance and detection probabilities. They are essentially

correlated, as a larger l 1 indicates more detections to be associated in each cluster and correspondingly a larger l 2 to be

used. 

Remark 2. In the case of extended/group objects, the cluster can be of non-ellipsoidal shapes, for which extra constraints

have to be made on the cluster shape and taken into account for finer partitioning of the overlapped cluster in Step 3 of

Algorithm 1 . 

In this paper, we assume the sensors’ profiles are either known or easy to approximate in order to facilitate the calcula-

tion of ( 21 ) and ( 24 ), which is indeed a fair assumption commonly made. As long as not too many objects simultaneously
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Fig. 1. Real object-positions (red “x”), detections (green ‘.’), clustering estimates (black “o”) and FoV bounds (blue circle) of 10 sensors (located at ‘ � ’). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

appear at the same place (which are hard to differentiate), a slight change of l 1 or l 2 will not affect the result much. This

adds to the flexibility and robustness of our approach, which accommodates inaccurate knowledge of the sensors and is

little sensitive to the accuracy of the parameters. 

Moreover, adaptive online learning procedures were proposed to deal with unknown sensor profiles including the noise

statistics and detection probability in [22] , in which the neighbor distance ε and the cluster size ρ can not be calculated

directly as addressed, but must be learned from the sensor data. To this end, the average number of detections that originate

from the same sensor in the over-sized cluster was used to approximate the single-target cluster size. Then, instead of ( 25 ),

for over-sized cluster C a , the number of sub-clusters can be given as 

k a ≈
[ 

1 

| S a | 
∑ 

s ∈ S a 
| X s ∩ C a | 

] 

(26)

where [ ·] gives the nearest integer to the content. Clearly, a larger | S a | indicates a better estimation. Given that only one

object exists in cluster C a , we have E(| X s ∩ C a ) = 1 . 

For illustration purposes, an example is given in Fig. 1 for one scenario of the simulation conducted in Section 5.1 . In

this example, 10 homogeneous range-bearing sensors (marked as ‘ � ’ ) of different FoVs (their bounds are given in individual

blue circles) are placed on a horizontal line. The detections from different sensors are all projected into the same planar

space as shown by the green dots in the figure. Using the proposed constrained clustering method (with parameters l 1 =2,

l 2 =0.6), detections are clustered and fused (see the next subsection), obtaining the final estimates (marked by black ‘o’)

which are apparently quite close to the true position of the six objects (marked by red ‘x’). In particular, close objects are

correctly distinguished from each other and the number of objects is correctly estimated. Quantitative analysis will be given

in Section 5.1 . 

4.3. MMSE cluster fusion 

Given that the real object-detections are distinguished from false alarms and from each other by the given clustering

algorithm, and that their variances are calculated by the proposed MC sampling approach, we can next fuse these relevant

detections contained in each cluster to extract the final state-estimate for each object. 

Denoting the mean and (co)variance of the detections (which are not necessary Gaussian variables) in the same cluster

as m i and P i , i = 1, …N respectively, the best linear unbiased estimator (BLUE, also referred to as linear MMSE estimator)

fuses these conditionally independent detections according to their (co)variance as 

m { 1 , 2 , ... N } = 

∑ N 
i =1 P 

−1 
i 

m i ∑ N 
i =1 P 

−1 
(27)
i 
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If all these detections are subject to Gaussian distribution, the final estimate is also Gaussian and its variance is 

P { 1 , 2 , ... N } = 

( 

N ∑ 

i =1 

P 

−1 
i 

) −1 

(28) 

Furthermore, if these sensors are of the same accuracy over the surveillance area (namely the same observation noise of

variance), then (27–28) reduce to 

m { 1 , 2 , ... N } = 

1 

N 

N ∑ 

i =1 

m i (29) 

P { 1 , 2 , ... N } = 

P 

N 

(30) 

Remark 3. Eq. (29) is free of P indicating that the fusion can be optimally carried out without exactly knowing the statistics

of the sensors as long as they are known to be of the same accuracy. This facilitates MMSE data fusion of homogeneous

sensors of unknown statistics. 

When the detection is defined in constrained, bounded or circular state spaces, constrained fusion will be involved. The

reader is referred to [19,35] and the references therein. Compared to a Markov–Bayes filter, the proposed C4F approach may

not be precise when few sensors of low quality are used, but its accuracy will be surely improved with the increase in the

number of unbiased sensors as shown in ( 28 )/( 30 ). This however may not hold in practice for a Markov-model-specific filter,

to be shown in our simulation study next. 

While (parametric) Cramér–Rao and Weiss–Weinstein lower bounds [10] imply the best possible performance (in the

sense of lowest mean square error) of any estimator, the O 2 inference gives the worst performance of any effective estimators

with respect to a particular observation sequence. In this sense, the C4F approach that extends the O 2 approach to the

multi-object case in cluttered environments therefore indicates the worst performance of any effective MODE solutions with

respect to particular sequences of observations of multiple sensors. We will show next that based on this definition, the

suboptimal filters are not always effective . 

5. Simulations 

In this section, two representative scenarios of respective complete and little prior information are considered. The well-

defined optimal sub-pattern assignment (OSPA) metric [39] is used to evaluate the multi-object estimation accuracy. For

finite subsets X = { x 1 , x 2 , …, x m 

} and Y = { y 1 , y 2 , …, y n } where m, n ∈ N 0 = { 0 , 1 , 2 , . . . } , the OSPA metric of order p between

X and Y is defined as (if m ≤ n ) 

d̄ ( 
c ) 

p ( X , Y ) = 

( 

1 

n 

( 

min 

q ∈ �n 

m ∑ 

i =1 

d c 
(
x i , y q ( i ) 

)p + c p ( n − m ) 

) ) 

1 
p 

(31) 

where d c ( x, y ) = min( c, d ( x, y )), the cut off parameter c > 0 and d ( x, y ) is the Euclidean distance as defined by ( 23 ).

d̄ (c) 
p ( X, Y ) = d̄ (c) 

p ( Y , X ) if m > n and d̄ (c) 
p ( X, Y ) = 0 if m = n = 0. 

The order parameter p determines the sensitivity to outliers, and the cut-off parameter c determines the relative weight-

ing of the penalties assigned to cardinality and localization errors. Clearly, a better target detection capacity that renders

more accurate estimation of the target number will significantly reduce the OSPA metric. 

5.1. Completely known background 

To set up the simulation, the real object trajectories are given in Fig. 2 where each starts at ‘ �’ and ends at ‘ �’ (with

both the origin and ending times noted in the figure). The object birth process is subject to Poisson with intensity γt =∑ 4 
i =1 r t,i N ( ·; B i , Q ) , where B 1 = [ −1500, 0250, 0, 0] T , B 2 = [ −250, 0, 10 0 0, 0, 0] T , B 3 = [250, 0750, 0, 0] T , B 4 = [10 0 0, 0, 150 0,

0, 0] T , Q = diag([10, 10, 10, 10, π /180] T ) 2 and r t , 1 = r t , 2 =0.02, r t , 3 = r t , 4 =0.03. 

The object state x t = [ ̃  x t , w t ] 
T consists of the planar position and velocity ˜ x t = [ p x,t , ˙ p x,t , p y,t , ˙ p y,t ] 

T and the turn rate w t .

Each object either continues to exist with survival probability p S =0.98 and move to a new state based on a nearly constant

turn-rate (NCT) transition model, or disappears with probability 0.02. The NCT object state transition model can be written

as 

˜ x t = F ( w t−1 ) ̃  x t−1 + U t−1 , w t = w t−1 + 	u w 

(32) 

where 

F ( w ) = 

⎡ ⎢ ⎣ 

1 sin ( w 	) w 

−1 0 

0 cos ( w 	) 0 

0 

0 

w 

−1 ( 1 − cos ( w 	) ) 
sin ( w 	) w 

−1 

1 

0 

w 

−1 ( cos ( w 	) − 1 ) 
−sin ( w 	) 

sin ( w 	) w 

−1 

cos ( w 	) w 

−1 

⎤ ⎥ ⎦ 

, U t−1 = 

⎡ ⎢ ⎣ 

	2 

2 
0 

	 0 

0 

0 

	2 

2 

	

⎤ ⎥ ⎦ 

[
u x 

u y 

]
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Fig. 2. An unknown number of objects observed by a sensor array: different colors indicate different sets of sensors that are used gradually in order; 

origin time (highlighted in magenta) and ending time (highlighted in cyan) of each trajectory are noted. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{ u x , u y } ∼ N ( ·; 0 , σ 2 
u ) , u w 

∼ N ( ·; 0 , σ 2 
w 

) , 	 = 1s , σu = 15m / s 2 and σ w 

=π /180 rad/s. 

An array of homogeneous active radars (totally 40 ×5 = 200 as shown in Fig. 2 ) are used and all have a FoV of the half

disc of radius 20 0 0 m, centralized with their respect positions [ s x,i , s y,i ] 
T , i = 1, 2, …200. Without loss of generality, these

sensors are used gradually in order as noted in Fig. 2 . The object detection probability function of sensor i is p D,i ( x t ) =
0 . 95 N ( [ p x,t − s x,i , p y,t − s y,i ] 

T ; 0 , 60 0 0 2 I 2 ) / N ( 0 ; 0 , 60 0 0 2 I 2 ) . The observation function of each sensor is given as shown in

( 13 ) with v t ∼ N ( ·; 0 , R t ) , where R t = diag ( [ σ 2 
r , σ

2 
θ

] 
T 
) , σ r = 20 m, σ θ = π /90 rad/s. Clutter is uniformly distributed over the

region with an average rate of r t points per scan and we will set different r t (but constant over time for simplicity). 

In our approach, the O 2 detections and their variances are given in ( 16 ) and ( 17 ) where we use I = 100 for debiasing and

l 1 =2, l 2 =0.6 are used in Algorithm 1 for clustering. The C4F approach will be compared with the SMC-PHD (sequential

Monte Carlo-PHD) filter [24,30] . In the latter, 500 particles per expected object are used and the total number of particles

is hard-limited to be not fewer than 300. The OSPA parameters are set as c = 500, p = 2. 

The filter is provided with completely correct models and suitable parameters for the most favorable performance. There

are several ways to incorporate different sensors to work for the SMC-PHD filter, differing from one another in terms of how

to fuse the sensor data [4] . First, we apply a naive track-to-track (T2T) fusion that will run the SMC-PHD filter separately

on each sensor, and then fuse their estimates based on the nearest neighbour association at the end of each filtering step.

The overestimation of the number of objects by one filter as compared to the average of others will be simply eliminated,

although this may not be the best choice. Secondly, a filter is assumed with the use of a single “super” sensor positioned at

[0, 0] T which is affected by a smaller observation noise v t ∼ N ( ·; 0 , R 

′ 
t ) , where R 

′ 
t = diag ( [ σ

′ 2 
r , σ

′ 2 
θ

] 
T 
) = R t /N, i.e., σ ′ 

r = 

20 √ 

N 
m,

σ ′ 
θ

= 

π
90 

√ 

N 
rad/s. This corresponds to an observation accuracy that is equivalent to the MMSE fusion of N sensors and is an

ideal assumption (in practice, such good a sensor may not exist). This is referred to as observation fusion and tracking (OFT).

First, we set the clutter rate r t =10. Different parameter N from two to 200 will be used for simulating different numbers

of sensors in the C4F approach and the T2T SMC-PHD filter or different magnitudes of the observation noise for the OFT

SMC-PHD filter. Fig. 3 gives the average OSPA (over 100 steps ×10 MC runs) and average processing time for each run (over

10 MC runs), obtained by different estimators for different N . The results show that if only two sensors are used, the C4F

approach performs really badly, but with an increase in the number of sensors N , better results can be gained up to a stable

level. This does not hold, however, with the SMC-PHD filters. Specifically, the OFT SMC-PHD filter remarkably degrades

with the increase of N . We conjecture that this is because a very small observation noise corresponds to a sharp likelihood

distribution that can easily cause severe sample degeneracy (this is a notorious problem of the SMC [26] ). The naive version

of the T2T SMC-PHD filter is slightly better but still significantly underperforms the C4F approach when more than six

sensors are used. The results indicate that the filter may not benefit from the use of more precise or a greater number

of sensors for one reason or another. Advanced implementations of the SMC, e.g., using the newest observation to design

the proposal that best matches with the posterior distribution to accommodate sharp likelihood may help to correct this,

yielding better filtering results; but the opposite can also occur as shown in the simulation study presented in Section 4.2 of

[23] . In contrast, the proposed C4F approach avoids this problem and guarantees a reliable performance that is consistent

with the observation condition. 

The following theoretical and experimental evidences are highly relevant: 



182 T. Li et al. / Information Sciences 388–389 (2017) 172–190 

2 10 20 40 80 120 160 200
100

200

300

400

500

N
M

ea
n 

O
SP

A

2 10 20 40 80 120 160 200
0

200

400

600

N

M
ea

n 
tim

e(
s)

 

 SMCPHD filter(OFT)
SMCPHD filter(T2T)
Clustering for filtering

Fig. 3. Mean OSPA (over 100 steps ×10 MC runs) and average processing time of 100 steps (over 10 MC runs), for different N . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• An analytical tracker performance model has been proposed in [5] , which suggests that “scan-based tracking performance

improves with increasing numbers of sensors, but only to a certain point beyond which degradation is observed. ” The optimal

choice for the number of sensors depends on the false track requirement. 
• Seeking increasingly precise approximations of the Kalman filter (e.g. extended, unscented, cubature, etc.) can be of

limited benefit, particularly when the measurement noise is low enough and nonlinearities of the measurement function

are non-negligible [11] . 
• When the objects do not display any significant random motions at the length and time scales of interest, variational

methods based on deterministic-model trajectory-optimization (however non-sequential) may be more appropriate than 

stochastic filters (such as Kalman filters and particle filters) [17] . 

On the computing speed, the C4F approach shows more obvious advantage than the T2T SMC-PHD filter, but unsurpris-

ingly, both have a speed proportional to the number of sensors which is slower (when N ≥ 6 in this case) than that of the

single-sensor based OFT SMC-PHD filter. 

For further insight, Fig. 4 shows the detections given by all sensors and the C4F estimates when 200 sensors are used

for time t = 42, where only four sensors in the corners of the array and their FoV bounds are noted. The results show that

the C4F estimates are apparently very close to the truth. Secondly, we set N = 10, i.e., 10 sensors (located in the bottom

horizontal line) for the C4F approach and the T2T filter. The C4F estimates have been given in Fig. 1 in Section 4.2 for time

t = 42 in one simulation run (with clutter rate r t =10). The average estimated number of objects and the mean OSPA over

10 MC runs by using different methods are given in Fig. 5 . The results show clearly that the C4F approach outperforms the

SMC-PHD filters. 

In particular, the performance of all estimators turns out to degrade in the periods t ∈ {20 ∼ 28} and t ∈ {40 ∼ 70}

because some objects move out of the FoV of sensors, for which no compensating strategies were adopted. To exclude this

we next control the scenario so that all the objects to be considered are always in the common area that can be detected

by all sensors, as shown in Fig. 6 . We also reduce the clutter rate to r t =5. Then, for different N , the average OSPA (over

100 steps ×10 MC runs) and average processing time of 100 steps (over 10 MC runs) are given in Fig. 7 which show again,

unsurprisingly, that the C4F approach outperforms the filters when N ≥ 6. Different to the last scenario, both SMC-PHD

filters seemingly achieve a relatively stable level of estimation accuracy with an increase in the number of sensors used.

To get more insights, all sensors’ detections and the C4F estimates in one run are given in Fig. 8 . The average OSPA and

average number of objects estimated by different methods against time are given for N = 10 in Fig. 9 , which shows that

the clustering approach exhibits better capacity to detect the appearance and disappearance of objects instantly (with no

time-delay) and so the number of objects is better estimated (especially in the period t ∈ {20 ∼ 40}). In contrast, the object

appearance and disappearance are confirmed by successive scans in the filter due to the infinite impulse response nature of

recursive filtering. 

We iterate that such perfect prior statistical knowledge about the objects, the clutter and even the sensors, which ideally

complies with the ground truth in the simulation, does not hold in the real world. Consequently, the same filters can hardly

yield as good a result as shown here. For example, mismatches on clutter rate r t and detection probability p D, t can cause

remarkably biased estimation in the multi-object filters [31,46] . However, the C4F approach will perform the same since it



T. Li et al. / Information Sciences 388–389 (2017) 172–190 183 

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

x (m)

y 
(m

)

 

 

Sensors Detections Objects C4F Estimates
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does not require rigorous and precise statistical assumptions on the objects, clutter and even the sensor uncertainty. The

next simulation will consider an intractable scenario of which very little prior statistical model knowledge is available. 

5.2. Poor prior information 

In this simulation, we consider an extremely challenging scenario where almost no prior information is given about

the objects, the clutter rate and even the sensor profiles. The latent objects may appear and disappear anywhere, anytime,

whether jointly, adjacently or solitarily, and they may split, merge or cross each other, to name a few possibilities. The

real trajectories of objects over the view region [ −100, 100]m × [ −100, 100]m are given in Fig. 10 . Only the deterministic

observation function is given a priori by ( 11 ) but nothing is known about v . 
k 
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As shown in Table 1 , the dynamic models of the objects under concern consist of NCT, nearly constant velocity (NCV),

nearly circular constant turn-rate (NCCT), constant velocity (CV) and a stationary object. The latter two deterministic models

represent the case being affected with negligible noises. To note, the object motion does not have to be modeled by a

Markov-transition model, e.g., neither (33) nor (34) are given in the form of a Markov jump. However, these latent models

are sealed in a black box, unseen by all estimators. According to our knowledge, there is no report of a single filter that is

able to handle all of these unknown statistics about the objects, the clutter and the sensor uncertainty jointly, as requested

herein. 

For simulation only, we assume the x −y position-observation noise as v t = [ v x, t , v y, t ] 
T , where v x, t and v y, t as mutually

independent zero-mean Gaussian noise with variance 5. Clutter is uniformly distributed with an average rate of r = 10 points

per scan of each sensor. To accommodate unknown sensor uncertainty for which ( 24 ) is prevented, two detections x s 
i 
, x m 

j 

are assigned to the same cluster if they satisfy ‖ x s 
i 
− x m 

j 
‖ 2 ≤ 10 , which is equivalent to assuming a neighbor radius ε= 10

(then l 1 is no more needed). We set l 2 =0.7. To note, our experiments have exposed that choosing ε = 8 ∼ 15 does not make

an obvious difference, indicating that the C4F approach is less sensitive to the preciseness of the assumption on noises. In

the meanwhile, it also indicates that we must have some sense of the uncertainty of the sensors, even if we cannot exactly

know it – which is arguably the reality at most of the time. In the C4F approach, the estimate is simply given by the center

of each cluster (assuming these sensors are of the same accuracy), regardless of the prior information given in Table 1 . 
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First, we use 10 sensors. The detections from 10 sensors, real object positions and the clustering estimates are given

in Fig. 11 for time instant t = 16, where different clusters are marked differently for better illustration. The result given by

the clustering approach is apparently quite reasonable, overcoming the problems of clutter and misdetections. The average

estimate of the number of objects and average OSPA over 10 MC runs are given in Fig. 12 . The mean OSPA over 100 steps ×10

MC runs is 9.756 m, which is arguably very good with regard to OSPA parameters c = 100, p = 2, considering that almost no

prior information is given for this complicated scenario. 

Fig. 13 gives the mean OSPA and mean processing time of 100 steps over 10 MC runs, both against the number of

sensors used. The results show again that with an increase in the number of sensors, the present clustering approach will

get a gradually better estimation on average, though it will also cost proportionally more processing time. 

Overall, both simulations with complete and poor prior information have demonstrated that the proposed C4F approach

enjoys increasing MODE accuracy with the increase in the number of sensors. It can perform even better than the perfectly
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Table 1 

Black box : latent dynamic models of the objects. 

Object model 1 . Stationary – one object. 

The position of the object [ p x, t , p y, t ] 
T is constant over time. 

{
p x,t = p x 
p y,t = p y 

(33) 

where we set constant p x = −30 m, p y =50 m. 

Object model 2 . NCCT – two objects. 

{
p x,t = r × cos ( θt ) + u x,t 

p y,t = r × sin ( θt ) + u y,t 
(34) 

where r = 65m , u x,t ∼ N ( 0 , 9 ) , u y,t ∼ N ( 0 , 9 ) for one object and r = 30m , u x,t ∼ N ( 0 , 1 ) , u y,t ∼ N ( 0 , 1 ) for the other. In both cases, θ t = t ×π /50 rad. 

Object model 3 . CV – two objects. 

x t = 

⎡ ⎢ ⎣ 

1 	
0 1 

0 0 

0 0 

0 0 

0 0 

1 	
0 1 

⎤ ⎥ ⎦ 

x t−1 (35) 

where x t = [ p x,t , ˙ p x,t , p y,t , ˙ p y,t ] 
T , 	 = 1 s . One object is initialized with x 0 = [ −100 m, 3 m/s, 5m, 0 m/s] T and the other x 0 = [ −5 m, 0 m/s, 100 m, 

−3 m/s] T . 

Object model 4 . NCV – three objects. 

x t = 

⎡ ⎢ ⎣ 

1 	
0 1 

0 0 

0 0 

0 0 

0 0 

1 	
0 1 

⎤ ⎥ ⎦ 

x t−1 + 

⎡ ⎢ ⎣ 

	2 

2 
0 

	 0 

0 

0 

	2 

2 

	

⎤ ⎥ ⎦ 

[
u x,t 

u y,t 

]
(36) 

where u x,t ∼ N ( 0 , 1 ) , u y,t ∼ N ( 0 , 0 . 01 ) . Three objects are initialized as x 0 = [0 m, 3 m/s, 0 m, −3 m/s] T , [0 m, 1.6 m/s, 1 m, −2.1 m/s] T , and [ −20 m, 

30 m/s, 10 m, −15 m/s] T respectively. 

Object model 5 . NCT – two objects. 

The model is the same as given in ( 32 ) except a different turn-rate statistics σ w =5 m/s 2 . Two objects are initialized as x 0 = [ −50 m, 0 m/s, −50 m, 

0 m/s] T and [50 m, 0 m/s, 50 m, 0 m/s] T respectively, both with an initial turn rate w 0 ∼ N ( 0 , π/ 180 ) . 
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modelled filter when a sufficient number of sensors are used. This is not surprising, considering that the single sensor based

O 2 inference can even outperform the filters in certain cases [23] . The joint use of massive sensors in the C4F approach has

shown to be favorable for circumventing the poor prior knowledge and complicated scenario, which however does not

readily hold in filters. 

6. Conclusions and future work 

We have proposed a clustering for filtering (C4F) paradigm for the purpose of multiple object detection and estimation

(MODE) in a challenging cluttered environment with little prior knowledge, yet multiple or massive sensors are available

for observation. Significantly different to the conventional sequential Bayesian inference, the present C4F approach solves
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Fig. 13. Mean OSPA and processing time of 100 steps ×10 MC runs against different numbers of sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODE from the sensor data mining perspective (more precisely, clustering) which amplifies the strength of rich sensor data

to circumvent the background unawareness. It can handle significant object maneuvering, unknown and time varying noises

and clutter density, etc., and can do so computationally fast and reliably by releasing impractical albeit sophisticated models.

Simulations have demonstrated that the C4F approach can even outperform Markov-Bayes filters that use correct models in

average multi-sensor cases, and is able to handle the unknown scenario that makes traditional filter modelling awkward.

The proposed C4F approach enjoys increasing accuracy with the increase in whether the number or the accuracy of sensors,

which however does not readily hold in filters. We point out that advanced object tracking solutions have to accommodate

intractable sensor conditions such as heterogeneity, asynchrony, correlation, inconsistency etc., as well as account for more

tracking issues such as track formation and management, for which more sensor data mining and learning technologies are

worth considering. 

We do not argue that the C4F approach should replace any Markov–Bayes filters when the system and background can

be well modelled ensuring a high PoFB but that it should be viewed as an alternative for the case little/no background

information but high-performance sensors are available. In fact, if reliable object motion information is available, the C4F

estimates can be then refined and even the continuous-time target trajectory can be formed. In this regard, a part of our

follow-up work appeared in [25] , which assumed the object trajectory is a smooth function of time (rather than a Markov

jump model) and that C4F/O 2 estimates over the time series can then be fitted by a function and correspondingly opti-

mized online. The core idea is to model the state evolving by a continuous function of time F ( t ), which provides a unified

framework for smoothing, tracking and forecasting (STF) based on optimization 

argmin 

F ( t ) 

t 2 ∑ 

t= t 1 
‖ z t − h t 

(
F ( t ) , v t 

)‖ (37) 

where F ( t ) is the desired trajectory function of continuous-time t which gives ˆ x t = F (t) for any time instant t ≥ t 1 that does

not need to be an integer, even if the sampling instants from t 1 to t 2 are intermittent. 

By placing the series of estimates in ( 7 ) in the form of a deterministic trajectory function, ( 37 ) unifies the goals of STF

as simply seeking a trajectory function that best explains the sensor data series in the time domain. To accommodate any a

priori model information, F ( t ) may be specified as being a specific form of a few parameters or subject to certain constraints,

denoted as F ( t; C ) where C denotes the set of the parameters or constraints. This will integrate both useful model knowledge

and online data information for estimation and forms the key of our work on a unified Markov-free framework for STF. It

is worth noting that, this formula, most being non-convex, does not admit a simple exact solution in general, but it can

be simplified if the sensor data are projected into the state space, as is done with the O 2 /C4F approach. The problem then

reduces to performing fitting on the intermediate O 2 /C4F estimates ˆ x t 1 : t 2 , i.e., 

argmin 

F ( t;C ) 

t 2 ∑ 

t= t 1 
‖ ̂

 x t − F ( t;C ) ‖ (38) 

This embodies one important use of the presented C4F approach. 
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