258,543 research outputs found

    Is the Universe More Transparent to Gamma Rays Than Previously Thought?

    Get PDF
    The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to \gray s than our calculations indicate. Our analysis indicates that in the energy range between ~80 and ~500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index ~1.78 using our fast evolution model and ~2.19 using our baseline model. However, we also find that spectral indices in the range of 0.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indices, we estimate that the MAGIC flare was ~3 times brighter than the EGRET flare observed 15 years earlier.Comment: version accepted for publication in ApJ Letter

    X-ray Spectroscopy of QSOs with Broad Ultraviolet Absorption Lines

    Get PDF
    For the population of QSOs with broad ultraviolet absorption lines, we are just beginning to accumulate X-ray observations with enough counts for spectral analysis at CCD resolution. From a sample of eight QSOs [including four Broad Absorption Line (BAL) QSOs and three mini-BAL QSOs] with ASCA or Chandra spectra with more than 200 counts, general patterns are emerging. Their power-law X-ray continua are typical of normal QSOs with Gamma~2.0, and the signatures of a significant column density [N_H~(0.1-4)x10^{23} cm^{-2}] of intrinsic, absorbing gas are clear. Correcting the X-ray spectra for intrinsic absorption recovers a normal ultraviolet-to-X-ray flux ratio, indicating that the spectral energy distributions of this population are not inherently anomalous. In addition, a large fraction of our sample shows significant evidence for complexity in the absorption. The subset of BAL QSOs with broad MgII absorption apparently suffers from Compton-thick absorption completely obscuring the direct continuum in the 2-10 keV X-ray band, complicating any measurement of their intrinsic X-ray spectral shapes.Comment: 9 pages, 6 figures, uses AASTeX. Accepted to the Astrophysical Journa

    The X-ray variability of the Seyfert~1 galaxy MCG-6-30-15 from long ASCA and RXTE observations

    Get PDF
    We present an analysis of the long RXTE observation of the Seyfert~1 galaxy MCG-6-30-15, taken in July 1997. Our results show that the behaviour is complicated. We find clear evidence from colour ratios and direct spectral fitting that changes to the intrinsic photon index are taking place. Spectral hardening is evident during periods of diminished intensity; in particular, a general trend for harder spectra is seen in the period following the hardest RXTE flare. Flux-correlated studies further show that the 3-10 keV photon index steepens while that in the 10-20 keV band, flattens with flux. The largest changes come from the spectral index below 10keV; however, changes in the intrinsic power law slope, and reflection both contribute in varying degrees to the overall spectral variability. We find that the iron line flux is consistent with being constant over large time intervals on the order of days (although the ASCA and RXTE spectra show that FKαF_{K\alpha} changes on shorter time intervals of order < 10ks), and equivalent width which anticorrelates with the continuum flux, and reflection fraction. Flux-correlated studies point at possible ionization signatures, while detailed spectral analysis of short time intervals surrounding flare events hint tentatively at observed spectral responses to the flare. We present a simple model for partial ionization where the bulk of the variability comes from within 6r_g. Temporal analysis further provides evidence for possible time (< 1000s) and phase (phi~0.6 rad) lags. Finally, we report an apparent break in the power density spectrum (~ 4-5 x 10^{-6}Hz) and a possible 33 hr period. Estimates for the mass of the black hole in MCG-6-30-15 are discussed in the context of spectral and temporal findings.Comment: 19 pages, 38 figures total (19 figure captions), accepted for publication in MNRAS July 200

    Spectral Variations in Early-Type Galaxies as a Function of Mass

    Get PDF
    We report on the strengths of three spectral indicators - Mg_2, Hbeta, and Hn/Fe - in the integrated light of a sample of 100 field and cluster E/S0 galaxies. The measured indices are sensitive to age and/or and metallicity variations within the galaxy sample. Using linear regression analysis for data with non-uniform errors, we determine the intrinsic scatter present among the spectral indices of our galaxy sample as a function of internal velocity dispersion. Our analysis indicates that there is significantly more intrinsic scatter in the two Balmer line indices than in the Mg_2 index, indicating that the Balmer indices provide more dynamic range in determining the age of a stellar population than does the Mg_2 index. Furthermore, the scatter is much larger for the low velocity dispersion galaxies, indicating that star formation has occurred more recently in the lower mass galaxies.Comment: 4 pages, 1 figure, 1 table, to appear in the Astrophysical Journal Letter

    The X-ray spectral properties of X-ray selected AGN : ROSAT spectra of EMSS AGN

    Get PDF
    Using a sample of 63 AGNs extracted from the EinsteinEinstein Extended Medium Sensitivity Survey (EMSS), we study the X-ray spectral properties of X-ray selected AGN in the 0.1−-2.4 keV ROSAT band. These objects are all the EMSS AGN detected with more than 300 net counts in ROSAT PSPC images available from the public archive (as of May 31, 1995). A Maximum-Likelihood analysis is used to find the mean power-law spectral index and the intrinsic dispersion $\sigma_p$. We find =1.42 with σp\sigma_p=0.44. This value is significantly steeper (Δα∌\Delta \alpha \sim0.4) than the mean EinsteinEinstein/IPC spectral index obtained applying the ML analysis on the whole sample of EMSS AGN. This result shows that the soft excess already noted in optically selected AGN is present also in X-ray selected AGN. The relatively high value obtained for the intrinsic dispersion confirms that in the soft band AGN are characterized by a variety of spectral indices and the increase with respect to results obtained from the analysis of Einstein data (Δσp∌\Delta \sigma_p \sim0.16) suggests a further broadening of the spectral index distribution as one moves to softer energies. A comparison between the mean spectral index of Radio-quiet and Radio-loud subsamples shows that the mean index of the RL sample is flatter than that of RQ, both in the IPC (Δα∌\Delta \alpha \sim0.3) and in the PSPC (Δα∌\Delta \alpha \sim0.4) data. This suggests that the additional X-ray component in RL AGN dominates the X-ray emission of RL AGN over almost two decades of energy (∌\sim0.1−-10 keV).Comment: 8 pages LaTex file; mn.sty macro (enclosed), 5 LaTex Tables, 12 Postscript figures; accepted for publication in MNRA

    A short-graph Fourier transform via personalized PageRank vectors

    Full text link
    The short-time Fourier transform (STFT) is widely used to analyze the spectra of temporal signals that vary through time. Signals defined over graphs, due to their intrinsic complexity, exhibit large variations in their patterns. In this work we propose a new formulation for an STFT for signals defined over graphs. This formulation draws on recent ideas from spectral graph theory, using personalized PageRank vectors as its fundamental building block. Furthermore, this work establishes and explores the connection between local spectral graph theory and localized spectral analysis of graph signals. We accompany the presentation with synthetic and real-world examples, showing the suitability of the proposed approach

    Chandra Observations of 3C Radio Sources with z<0.3: Nuclei, Diffuse Emission, Jets and Hotspots

    Get PDF
    We report on our Chandra Cycle 9 program to observe half of the 60 (unobserved by Chandra) 3C radio sources at z<0.3 for 8 ksec each. Here we give the basic data: the X-ray intensity of the nuclei and any features associated with radio structures such as hot spots and knots in jets. We have measured fluxes in soft, medium and hard bands and are thus able to isolate sources with significant intrinsic column density. For the stronger nuclei, we have applied the standard spectral analysis which provides the best fit values of X-ray spectral index and column density. We find evidence for intrinsic absorption exceeding a column density of 10^{22} cm^{-2} for one third of our sources.Comment: 12 pages, 37 figures (the complete version of the paper with all figures is available on line, see appendix for details), ApJ accepte

    The XMM-Newton wide-field survey in the COSMOS field. IV: X-ray spectral properties of Active Galactic Nuclei

    Get PDF
    We present a detailed spectral analysis of point-like X-ray sources in the XMM-COSMOS field. Our sample of 135 sources only includes those that have more than 100 net counts in the 0.3-10 keV energy band and have been identified through optical spectroscopy. The majority of the sources are well described by a simple power-law model with either no absorption (76%) or a significant intrinsic, absorbing column (20%).As expected, the distribution of intrinsic absorbing column densities is markedly different between AGN with or without broad optical emission lines. We find within our sample four Type-2 QSOs candidates (L_X > 10^44 erg/s, N_H > 10^22 cm^-2), with a spectral energy distribution well reproduced by a composite Seyfert-2 spectrum, that demonstrates the strength of the wide field XMM/COSMOS survey to detect these rare and underrepresented sources.Comment: 16 pages, ApJS COSMOS Special Issue, 2007 in press. The full-resolution version is available at http://www.mpe.mpg.de/XMMCosmos/PAPERS/mainieri_cosmos.ps.g
    • 

    corecore