12,818 research outputs found

    Restoration of the cantilever bowing distortion in Atomic Force Microscopy

    Get PDF
    Due to the mechanics of the Atomic Force Microscope (AFM), there is a curvature distortion (bowing effect) present in the acquired images. At present, flattening such images requires human intervention to manually segment object data from the background, which is time consuming and highly inaccurate. In this paper, an automated algorithm to flatten lines from AFM images is presented. The proposed method classifies the data into objects and background, and fits convex lines in an iterative fashion. Results on real images from DNA wrapped carbon nanotubes (DNACNTs) and synthetic experiments are presented, demonstrating the effectiveness of the proposed algorithm in increasing the resolution of the surface topography. In addition a link between the flattening problem and MRI inhomogeneity (shading) is given and the proposed method is compared to an entropy based MRI inhomogeniety correction method

    Dynamical Imaging with Interferometry

    Get PDF
    By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as the Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic Center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ~20 seconds and exhibits intra-hour variability. To address this challenge, we develop several techniques to reconstruct dynamical images ("movies") from interferometric data. Our techniques are applicable to both single-epoch and multi-epoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.Comment: 16 Pages, 12 Figures, Accepted for publication in Ap

    Discovery of a Ringlike Dark Matter Structure in the Core of the Galaxy Cluster Cl 0024+17

    Get PDF
    We present a comprehensive mass reconstruction of the rich galaxy cluster Cl 0024+17 at z~0.4 from ACS data, unifying both strong- and weak-lensing constraints. The weak-lensing signal from a dense distribution of background galaxies (~120 per square arcmin) across the cluster enables the derivation of a high-resolution parameter-free mass map. The strongly-lensed objects tightly constrain the mass structure of the cluster inner region on an absolute scale, breaking the mass-sheet degeneracy. The mass reconstruction of Cl 0024+17 obtained in such a way is remarkable. It reveals a ringlike dark matter substructure at r~75" surrounding a soft, dense core at r~50". We interpret this peculiar sub-structure as the result of a high-speed line-of-sight collision of two massive clusters 1-2 Gyr ago. Such an event is also indicated by the cluster velocity distribution. Our numerical simulation with purely collisionless particles demonstrates that such density ripples can arise by radially expanding, decelerating particles that originally comprised the pre-collision cores. Cl 0024+17 can be likened to the bullet cluster 1E0657-56, but viewed alongalong the collision axis at a much later epoch. In addition, we show that the long-standing mass discrepancy for Cl 0024+17 between X-ray and lensing can be resolved by treating the cluster X-ray emission as coming from a superposition of two X-ray systems. The cluster's unusual X-ray surface brightness profile that requires a two isothermal sphere description supports this hypothesis.Comment: To appear in the June 1 issue of The Astrophysical Journa

    Image Reconstruction in Optical Interferometry

    Full text link
    This tutorial paper describes the problem of image reconstruction from interferometric data with a particular focus on the specific problems encountered at optical (visible/IR) wavelengths. The challenging issues in image reconstruction from interferometric data are introduced in the general framework of inverse problem approach. This framework is then used to describe existing image reconstruction algorithms in radio interferometry and the new methods specifically developed for optical interferometry.Comment: accepted for publication in IEEE Signal Processing Magazin

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Weak Lensing Mass Reconstruction using Wavelets

    Full text link
    This paper presents a new method for the reconstruction of weak lensing mass maps. It uses the multiscale entropy concept, which is based on wavelets, and the False Discovery Rate which allows us to derive robust detection levels in wavelet space. We show that this new restoration approach outperforms several standard techniques currently used for weak shear mass reconstruction. This method can also be used to separate E and B modes in the shear field, and thus test for the presence of residual systematic effects. We concentrate on large blind cosmic shear surveys, and illustrate our results using simulated shear maps derived from N-Body Lambda-CDM simulations with added noise corresponding to both ground-based and space-based observations.Comment: Accepted manuscript with all figures can be downloaded at: http://jstarck.free.fr/aa_wlens05.pdf and software can be downloaded at http://jstarck.free.fr/mrlens.htm
    corecore