263 research outputs found

    High-order resting-state functional connectivity network for MCI classification: High-Order Correlation and FC Network

    Get PDF
    Brain functional connectivity (FC) network, estimated with resting-state functional magnetic resonance imaging (RS-fMRI) technique, has emerged as a promising approach for accurate diagnosis of neurodegenerative diseases. However, the conventional FC network is essentially low-order in the sense that only the correlations among brain regions (in terms of RS-fMRI time series) are taken into account. The features derived from this type of brain network may fail to serve as an effective disease biomarker. To overcome this drawback, we propose extraction of novel high-order FC correlations that characterize how the low-order correlations between different pairs of brain regions interact with each other. Specifically, for each brain region, a sliding window approach is first performed over the entire RS-fMRI time series to generate multiple short overlapping segments. For each segment, a low-order FC network is constructed, measuring the short-term correlation between brain regions. These low-order networks (obtained from all segments) describe the dynamics of short-term FC along the time, thus also forming the correlation time series for every pair of brain regions. To overcome the curse of dimensionality, we further group the correlation time series into a small number of different clusters according to their intrinsic common patterns. Then, the correlation between the respective mean correlation time series of different clusters is calculated to represent the high-order correlation among different pairs of brain regions. Finally, we design a pattern classifier, by combining features of both low-order and high-order FC networks. Experimental results verify the effectiveness of the high-order FC network on disease diagnosis

    Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease

    Get PDF
    Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers

    Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment

    Get PDF
    Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis

    Surface fluid registration of conformal representation: Application to detect disease burden and genetic influence on hippocampus

    Get PDF
    abstract: In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistent surface fluid registration, and multivariate tensor-based morphometty (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometry difference between diagnostic groups. Experimental results show that the new system has better performance than two publicly available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E(is an element of)4 allele (ApoE4), which is considered as the most prevalent risk factor for AD. Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our work provides a new MRI analysis tool that may help presymptomatic AD research.NOTICE: this is the author’s version of a work that was accepted for publication in NEUROIMAGE. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neuroimage, 78, 111-134 [2013] http://dx.doi.org/10.1016/j.neuroimage.2013.04.01

    The Trend of Disruption in the Functional Brain Network Topology of Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive disorder associated with cognitive dysfunction that alters the brain’s functional connectivity. Assessing these alterations has become a topic of increasing interest. However, a few studies have examined different stages of AD from a complex network perspective that cover different topological scales. This study used resting state fMRI data to analyze the trend of functional connectivity alterations from a cognitively normal (CN) state through early and late mild cognitive impairment (EMCI and LMCI) and to Alzheimer’s disease. The analyses had been done at the local (hubs and activated links and areas), meso (clustering, assortativity, and rich-club), and global (small-world, small-worldness, and efficiency) topological scales. The results showed that the trends of changes in the topological architecture of the functional brain network were not entirely proportional to the AD progression. There were network characteristics that have changed non-linearly regarding the disease progression, especially at the earliest stage of the disease, i.e., EMCI. Further, it has been indicated that the diseased groups engaged somatomotor, frontoparietal, and default mode modules compared to the CN group. The diseased groups also shifted the functional network towards more random architecture. In the end, the methods introduced in this paper enable us to gain an extensive understanding of the pathological changes of the AD process

    Machine Learning Methods for Structural Brain MRIs: Applications for Alzheimer’s Disease and Autism Spectrum Disorder

    Get PDF
    This thesis deals with the development of novel machine learning applications to automatically detect brain disorders based on magnetic resonance imaging (MRI) data, with a particular focus on Alzheimer’s disease and the autism spectrum disorder. Machine learning approaches are used extensively in neuroimaging studies of brain disorders to investigate abnormalities in various brain regions. However, there are many technical challenges in the analysis of neuroimaging data, for example, high dimensionality, the limited amount of data, and high variance in that data due to many confounding factors. These limitations make the development of appropriate computational approaches more challenging. To deal with these existing challenges, we target multiple machine learning approaches, including supervised and semi-supervised learning, domain adaptation, and dimensionality reduction methods.In the current study, we aim to construct effective biomarkers with sufficient sensitivity and specificity that can help physicians better understand the diseases and make improved diagnoses or treatment choices. The main contributions are 1) development of a novel biomarker for predicting Alzheimer’s disease in mild cognitive impairment patients by integrating structural MRI data and neuropsychological test results and 2) the development of a new computational approach for predicting disease severity in autistic patients in agglomerative data by automatically combining structural information obtained from different brain regions.In addition, we investigate various data-driven feature selection and classification methods for whole brain, voxel-based classification analysis of structural MRI and the use of semi-supervised learning approaches to predict Alzheimer’s disease. We also analyze the relationship between disease-related structural changes and cognitive states of patients with Alzheimer’s disease.The positive results of this effort provide insights into how to construct better biomarkers based on multisource data analysis of patient and healthy cohorts that may enable early diagnosis of brain disorders, detection of brain abnormalities and understanding effective processing in patient and healthy groups. Further, the methodologies and basic principles presented in this thesis are not only suited to the studied cases, but also are applicable to other similar problems

    Dealing with heterogeneity in the prediction of clinical diagnosis

    Full text link
    Le diagnostic assisté par ordinateur est un domaine de recherche en émergence et se situe à l’intersection de l’imagerie médicale et de l’apprentissage machine. Les données médi- cales sont de nature très hétérogène et nécessitent une attention particulière lorsque l’on veut entraîner des modèles de prédiction. Dans cette thèse, j’ai exploré deux sources d’hétérogénéité, soit l’agrégation multisites et l’hétérogénéité des étiquettes cliniques dans le contexte de l’imagerie par résonance magnétique (IRM) pour le diagnostic de la maladie d’Alzheimer (MA). La première partie de ce travail consiste en une introduction générale sur la MA, l’IRM et les défis de l’apprentissage machine en imagerie médicale. Dans la deuxième partie de ce travail, je présente les trois articles composant la thèse. Enfin, la troisième partie porte sur une discussion des contributions et perspectives fu- tures de ce travail de recherche. Le premier article de cette thèse montre que l’agrégation des données sur plusieurs sites d’acquisition entraîne une certaine perte, comparative- ment à l’analyse sur un seul site, qui tend à diminuer plus la taille de l’échantillon aug- mente. Le deuxième article de cette thèse examine la généralisabilité des modèles de prédiction à l’aide de divers schémas de validation croisée. Les résultats montrent que la formation et les essais sur le même ensemble de sites surestiment la précision du modèle, comparativement aux essais sur des nouveaux sites. J’ai également montré que l’entraînement sur un grand nombre de sites améliore la précision sur des nouveaux sites. Le troisième et dernier article porte sur l’hétérogénéité des étiquettes cliniques et pro- pose un nouveau cadre dans lequel il est possible d’identifier un sous-groupe d’individus qui partagent une signature homogène hautement prédictive de la démence liée à la MA. Cette signature se retrouve également chez les patients présentant des symptômes mod- érés. Les résultats montrent que 90% des sujets portant la signature ont progressé vers la démence en trois ans. Les travaux de cette thèse apportent ainsi de nouvelles con- tributions à la manière dont nous approchons l’hétérogénéité en diagnostic médical et proposent des pistes de solution pour tirer profit de cette hétérogénéité.Computer assisted diagnosis has emerged as a popular area of research at the intersection of medical imaging and machine learning. Medical data are very heterogeneous in nature and therefore require careful attention when one wants to train prediction models. In this thesis, I explored two sources of heterogeneity, multisite aggregation and clinical label heterogeneity, in an application of magnetic resonance imaging to the diagnosis of Alzheimer’s disease. In the process, I learned about the feasibility of multisite data aggregation and how to leverage that heterogeneity in order to improve generalizability of prediction models. Part one of the document is a general context introduction to Alzheimer’s disease, magnetic resonance imaging, and machine learning challenges in medical imaging. In part two, I present my research through three articles (two published and one in preparation). Finally, part three provides a discussion of my contributions and hints to possible future developments. The first article shows that data aggregation across multiple acquisition sites incurs some loss, compared to single site analysis, that tends to diminish as the sample size increase. These results were obtained through semisynthetic Monte-Carlo simulations based on real data. The second article investigates the generalizability of prediction models with various cross-validation schemes. I showed that training and testing on the same batch of sites over-estimates the accuracy of the model, compared to testing on unseen sites. However, I also showed that training on a large number of sites improves the accuracy on unseen sites. The third article, on clinical label heterogeneity, proposes a new framework where we can identify a subgroup of individuals that share a homogeneous signature highly predictive of AD dementia. That signature could also be found in patients with mild symptoms, 90% of whom progressed to dementia within three years. The thesis thus makes new contributions to dealing with heterogeneity in medical diagnostic applications and proposes ways to leverage that heterogeneity to our benefit

    MODELING ALZHEIMER'S DISEASE PROGRESSION ON A PATHOLOGICAL TIMELINE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore