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Abstract

Multimodal classification methods using different modalities of imaging and non-imaging data 

have recently shown great advantages over traditional single-modality-based ones for diagnosis 

and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive 

impairment (MCI). However, to the best of our knowledge, most existing methods focus on 
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mining the relationship across multiple modalities of the same subjects, while ignoring the 

potentially useful relationship across different subjects. Accordingly, in this paper, we propose a 

novel learning method for multimodal classification of AD/MCI, by fully exploring the 

relationships across both modalities and subjects. Specifically, our proposed method includes two 

subsequent components, i.e., label-aligned multi-task feature selection and multimodal 

classification. In the first step, the feature selection learning from multiple modalities are treated as 

different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of 

relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a 

new label-aligned regularization term is added into the objective function of standard multi-task 

feature selection, where label-alignment means that all multi-modality subjects with the same class 

labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support 

vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final 

classification. To validate our method, we perform experiments on the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The 

experimental results demonstrate that our proposed method achieves better classification 

performance compared with several state-of-the-art methods for multimodal classification of AD/

MCI.
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I. Introduction

Alzheimer’s disease (AD) is a physical disease that affects the brain and is the most 

common cause of dementia. There were more than 26.6 million people worldwide with AD 

in 2010, and it is predicted that 1 in 85 people will be affected by 2050 (Brookmeyer et al. 

2007). So far, there is no treatment for the disease, which worsens as it progresses, and 

eventually leads to death. Thus, it is very important to accurately identify AD, especially for 

its early stage also known as mild cognitive impairment (MCI) which has a high risk of 

progressing to AD (Petersen et al. 1999).

Existing studies have shown that AD is related to the structural atrophy, pathological 

amyloid depositions, and metabolic alterations in the brain (Jr et al. 2010; Nestor et al. 

2004). So far, multiple biomarkers have been shown to be sensitive to the diagnosis of AD 

and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement (Leon et al. 

2007; Du et al. 2007; Fjell et al. 2010; Mcevoy et al. 2009), functional imaging (e.g., FDG-

PET) for hypometabolism quantification (De et al. 2001; Morris et al. 2001), and 

cerebrospinal fluid (CSF) for quantification of specific proteins (Bouwman et al. 2007; 

Mattsson et al. 2009; Shaw et al. 2009; Fjell et al. 2010).

In recent years, machine learning and pattern classification methods, which can learn a 

model from training subjects to predict class label (i.e., patient or normal control) on unseen 

subject, have been widely applied to studies of AD and MCI based on single modality of 

biomarkers. For example, researchers have extracted the features from the structural MRI, 
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such as voxel-wise tissue (Desikan et al. 2009; Fan et al. 2007; Magnin et al. 2009), cortical 

thickness (Desikan et al. 2009; Oliveira et al. 2010) and hippocampal volumes (Gerardin et 

al. 2009; MJ et al. 2004) for AD and MCI classification. Besides structural MRI, some 

researchers also used fluorodeoxyglucose positron emission tomography (FDG-PET) 

(Chételat et al. 2003; Foster et al. 2007; Higdon et al. 2004) for AD or MCI classification.

Different imaging modalities provide different views of brain structure or function. For 

example, structural MRI reveals patterns of gray matter atrophy, while FDG-PET measures 

the reduced glucose metabolism in the brain. It is reported that MRI and FDG-PET provide 

different sensitivity for memory prediction between disease and health (Walhovd et al. 

2010). Using multiple biomarkers may reveal hidden information that could be overlooked 

by using single modality. Researchers have begun to integrate multiple modalities to further 

improve the accuracy of disease classification (Leon et al. 2007; Fjell et al. 2010; Foster et 

al. 2007; Walhovd et al. 2010; Apostolova et al. 2010; Dai et al. 2012; Gray et al. 2012; 

Hinrichs et al. 2011; Huang et al. 2011; Landau et al. 2010; Westman et al. 2012; L. Yuan et 

al. 2012; D. Zhang et al. 2011). For instance, Hinrichs et al. (Hinrichs et al. 2011) used two 

modalities (including MRI and FDG-PET) for AD classification. Zhang et al. (D. Zhang et 

al. 2011) combined MRI, FDG-PET and cerebrospinal fluid (CSF) for classifying patients 

with AD/MCI from normal controls. Dai et al. (Dai et al. 2012) integrated structural MRI 

(sMRI) and functional MRI (fMRI) for AD classification. Gray et al. (Gray et al. 2012) used 

MRI, FDG-PET, CSF and categorical genetic information for AD/MCI classification.

Although promising results were achieved by existing multimodal classification methods, 

the problem of small number of subjects and large feature dimensions limits further 

performance improvement of the above methods. For neuroimaging data, even after feature 

extraction, the dimension of feature is still relatively high compared to the size of subject. 

Also, there may exist redundant or irrelevant features for subsequent classification task. 

Thus, those irrelevant and redundant features need to be removed for reducing feature 

dimension by feature selection. In the literature, most existing feature selection methods are 

often performed for each modality individually, which ignores the potential relationship 

among different modalities. To the best of our knowledge, only a few studies focus on 

jointly selecting features from multi-modality neuroimaging data for AD/MCI classification. 

For example, Huang et al. (Huang et al. 2011) proposed a sparse composite linear 

discriminant analysis model (SCLDA) for identification of disease-related brain regions of 

early AD from multi-modality data. Zhang and Shen (D. Zhang and Shen 2012) proposed a 

multi-modal multi-task learning for joint feature selection for AD classification and 

regression. Liu et al. (F. Liu et al. 2014) proposed inter-modality relationship constrained 

multi-task feature selection for AD/MCI classification. Jie et al. (Jie et al. 2015) presented a 

manifold regularized multi-task feature selection method for multimodal classification of 

AD/MCI. However, except for Jie et al.’s work, most of the existing multi-modality feature 

selection methods focus on using multi-modality information from the same subjects, while 

ignoring the intrinsic relationship across different subjects, which may also contain useful 

information for further improving the classification performance. Different from Jie et al.’s 

method, the proposed approach not only considers the information of each modality, but also 

regards the relationship across different modalities as extra information. Hence, Jie et al.’s 

method can be regarded as a special case of our proposed method.
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In this paper, we propose a novel learning method that can fully explore the relationships 

across both modalities and subjects through mining and fusing discriminative features from 

multi-modality data for AD/MCI classification. Specifically, our proposed learning method 

includes two major steps: 1) label-aligned multi-task feature selection, and 2) multimodal 

classification. First, we treat the feature selections from multi-modality data as different 

learning tasks and adopt a group sparsity regularizer to ensure a subset of relevant features to 

be jointly selected from multi-modality data. Moreover, to utilize the discriminative 

information among labeled subjects, we introduce a new label-aligned regularization term 

into the objective function of standard multi-task feature selection. Here, label-alignment 

means that all multi-modality subjects with the same class label should be closer in the new 

feature-reduced space. Then, we use a multi-kernel support vector machine (SVM) to fuse 

the selected features from multi-modality data for final classification. The proposed method 

has been evaluated on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, 

demonstrating better results compared to several state-of-the-art multi-modality-based 

methods.

II. Method

A. Neuroimaging Data

We use the data obtained from the Alzheimer’s disease Neuroimaging Initiative (ADNI) 

database (www.loni.usc.edu) in this paper. The ADNI was launched in 2003 by the National 

Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering 

(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and 

non-profit organizations, as a $60 million, 5-year public-private partnership. Determination 

of sensitive and specific markers of very early AD progression is intended to aid researchers 

and clinicians to develop new treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials. The initial goal of ADNI was to recruit approximately 

200 cognitively normal older individuals to be followed for three years, 400 MCI patients to 

be followed for three years, and 200 early AD patients to be followed for two years.

We use imaging data from 202 ADNI participants with corresponding baseline MRI and 

FDG-PET data. In particular, it includes 51 AD patients, 99 MCI patients and 52 normal 

controls (NC). The MCI patients were divided into 43 MCI converters (MCI-C) who have 

progressed to AD with 18 months and 56 MCI non-converters (MCI-NC) whose diagnoses 

have still remain stable within 18 months. Table I lists the clinical and demographic 

information for the study population. A detailed description on acquiring MRI and PET 

from ADNI as used in this paper can be found in (D. Zhang et al. 2011). All structural MR 

scans were acquired from 1.5 T scanners. Raw Digital Imaging and Communications in 

Medicine (DICOM) MRI scans were downloaded from the public ADNI site 

(adni.loni.usc.edu), reviewed for quality, and automatically corrected for spatial distortion 

caused by gradient nonlinearity and B1 field inhomogeneity. PET images were acquired 30–

60 minutes post-injection, averaged, spatially aligned, interpolated to a standard voxel size, 

intensity normalized, and smoothed to a common resolution of 8 mm full width at half 

maximum.
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Image pre-processing and feature extraction are performed for all MR and PET images by 

following the same procedures as in (D. Zhang et al. 2011). First, we do anterior 

commissure (AC)-posterior commissure (PC) correction on all images, and use the N3 

algorithm (Sled et al. 1997) to correct the intensity inhomogeneity. Next, we do skull-

stripping on structural MR images using both brain surface extractor (BSE) (Shattuck et al. 

2001) and brain extraction tool (BET) (Smith and Stephen 2002), followed by manual 

edition and intensity inhomogeneity correction. After removal of cerebellum, FAST in the 

FSL package (Y. Zhang et al. 2001) is used to segment structural MR images into three 

different tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). 

After registration using HAMMER (Shen and Davatzikos 2002), we obtain the subject-

labeled image based on a template with 93 manual labels. Then, we compute the GM tissue 

volume of each region as a feature. For PET image, we first align it to its respective MR 

image of the same subject using a rigid transformation, and then compute the average 

intensity of each ROI in the PET image as a feature. Therefore, for each subject, we totally 

obtain 93 features from MR image and another 93 features from PET image.

B. Label-aligned Multi-task Feature Learning

In this section, we will first briefly introduce the conventional multi-task feature selection 

(Evgeniou and Pontil 2004; Kumar and Daume Iii 2012; Obozinski et al. 2010; Obozinski et 

al. 2006; M. Yuan and Lin 2006), and then derive our proposed label-aligned multi-task 

feature selection model, as well as the corresponding optimization algorithm. Finally, we use 

the multi-kernel support vector machine for classification. Fig. 1 gives the overview of the 

proposed classification method.

1) Multi-task feature selection—Denote  as the 

training data matrix on the m-th modality, where  represents the corresponding (column) 

feature vector of the i-th subject, d is the dimension of features, and N is the number of 

subjects. Let Y = [y1, …, yi, …, yN]T ∈ ℝN be the label vector corresponding to N training 

samples, where the value of yi is +1 or −1 (i.e., patient or normal control). Then, the 

objective function of multi-task feature selection (MTFS) model is as follows (M. Yuan and 

Lin 2006):

(1)

where wm ∈ ℝd is the regression coefficient vector for the m-th modality and the coefficient 

vectors for all M modalities form a coefficient matrix, W = [w1, …, wm, …, wM] ∈ ℝd×M 

and M is the total number of modalities. In (1), ‖W‖2,1 is the ℓ2,1-norm of matrix W defined 

as , where wj is the j-th row of matrix W. Here, λ1 is a regularization 

parameter controlling the relative contributions of the two terms.

The ℓ2,1-norm ‖W‖2,1 can be seen as the sum of the ℓ2-norms of the rows of matrix W (M. 

Yuan and Lin 2006), which encourages the weights corresponding to the same feature across 

Zu et al. Page 5

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different modalities to be grouped together and then a small number of common features 

will be jointly selected. So, the solution of MTFS results in a weight matrix W whose 

elements in many rows are all zeros for the characteristic of ‘group sparsity’. It is worth 

noting that when there is only one modality (i.e., M =1), the MTFS model will degenerate 

into the least absolute shrinkage and selection operator (LASSO) model (Tibshirani 1994).

2) Label-aligned multi-task feature selection—One limitation of the standard multi-

task feature selection model is that only the relationship between modalities of the same 

subjects is considered, while ignoring the important relationship among labeled subjects. To 

address this issue, we introduce a new term called label-aligned regularization term, which 

minimizes the distance between within-class subjects in the feature-reduced space as 

follows:

(2)

where, Sij is defined as:

(3)

The regularization term (2) can be explained as follows. 

measures the distance between  and  in the projected space. It implies that if  and 

are from the same class, the distance between them should be as small as possible in the 

projected space. It is worth noting that 1) when p = q the local geometric structure of the 

same modality data is preserved in the feature-reduced space; 2) when p < q the 

complementary information provided from different modalities are used to guide the 

estimation of the feature-reduced space. Therefore, the equation (2) preserves the intrinsic 

label relatedness among multi-modality data and also explores the complementary 

information conveyed by different modalities. Generally speaking, the goal of (2) is to 

preserve label relatedness by aligning paired within-class subjects from multiple modalities.

By incorporating the regularizer (2) into (1), we can obtain the objective function of our 

label-aligned multi-task feature selection model as below:

(4)

where λ1 and λ2 are the two positive constants that control the sparseness and the degree of 

preserving the distance between subjects, respectively. From (4), we can not only jointly 

select a subset of common features from multi-modality data, but also preserve label 
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relatedness by aligning paired within-class subjects. Fig. 2 illustrates the used relationships 

among modalities and subjects in our proposed model as compared with the traditional 

multi-modality methods. In Fig. 2(a), traditional multimodal methods only concern the 

relationships of different modalities (i.e., the single line connecting MRI and PET) from the 

same subject. As we can see from Fig. 2(b), our proposed method can preserve not only the 

multi-modality relationship from the same subject, but also the correlation across modalities 

between different subjects.

3) Optimization algorithm—At present, there are several algorithms developed to solve 

the optimization problem in (4). Here, we choose the widely applied Accelerated Proximal 

Gradient (APG) method (Nesterov 2003; Chen et al. 2009) to get the solution of our 

proposed method. Specifically, we separate the objective function in (4) to the smooth part: 

and non-smooth part:

(5)

and non-smooth part:

(6)

Then, the following function is constructed for approximating the composite function f(W) + 

g(W):

(7)

where ‖·‖F is the Frobenius norm, ∇f(Wk) is the gradient of f(W) at point Wk of the k-th 

iteration, and l is the step size. Finally, the update step of AGP algorithm is defined as:

(8)

where l can be determined by line search, and .

The key of AGP algorithm is how to solve the update step efficiently. The study in (J. Liu 

and Ye 2010) shows that this problem can be decomposed into d separate subproblems, and 

the analytical solutions of these sub-problems can be easily obtained.

In addition, according to the technique in (Chen et al. 2009), instead of computing (7) based 

on Wk, we use Qk to calculate Ωl(W, Qk) and the search point Qk is defined as:
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(9)

where  and . The algorithm for Eq. (4) can achieve a convergence 

rate of O(1 / K2), where K is the maximum iteration.

C. Multi-kernel Support Vector machine

Multi-kernel SVM can effectively integrate data from multiple modalities for classification 

of Alzheimer’s disease (D. Zhang et al. 2011). Given a set of training subjects, m = 1, … M, 

 is the kernel function for the subjects  and  of the m-

th modality. Linear combined kernel,  is adopted for fusing 

information from different modalities. Here βm is the combining weight of the m-th kernel 

and . In our experiments, the optimal βm is determined via a coarse-grid search 

through cross-validation on the training set.

III. Experiments and Results

We test the performance of the proposed method on 202 ADNI participants with 

corresponding baseline MRI and FDG-PET data. Classification performance is assessed 

between three clinically relevant pairs of diagnostic groups (AD vs. NC, MCI vs. NC, and 

MCI-C vs. MCI-NC). The proposed method is compared with three existing multi-kernel-

based multimodal classification methods, including multi-kernel method (D. Zhang et al. 

2011) without performing feature selection (denoted as Baseline), multi-kernel method with 

LASSO feature selection performed independently on single modalities (denoted as SMFS), 

and multi-kernel method using multi-modal feature selection method (denoted as MMFS) 

proposed in (D. Zhang and Shen 2012). We also directly concatenate 93 features from MRI 

and 93 features from FDG-PET into a 186 dimensional vector, and then perform t-test and 

LASSO as feature selection methods, followed by the standard SVM with linear kernel for 

classification (with the corresponding methods denoted as t-test and LASSO, respectively). 

It is worth noting that the same training and test subjects are used in all methods for fair 

comparison.

A. Validation

In our experiments, we use a 10-fold cross-validation strategy to evaluate the effectiveness 

of our proposed method. Specifically, the whole set of subject samples are equally 

partitioned into 10 subsets. For each cross-validation, the nine subsets are chosen for 

training and the remaining subjects are used for testing. The process is independently 

repeated 10 times to avoid any bias introduced by randomly partitioning the dataset in cross-

validation. We evaluate the performance of different methods by computing the 

classification accuracy (ACC), as well as the sensitivity (SEN), the specificity (SPE) and the 

area under receiver operating characteristic (ROC) curve (AUC). Here, the accuracy 

measures the proportion of subjects correctly classified among the whole population, the 

Zu et al. Page 8

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensitivity represents the proportion of AD or MCI patients correctly classified, and the 

specificity denotes the proportion of normal controls correctly classified. The SVM classifier 

is implemented using the LIBSVM toolbox (Chang and Lin 2007), with a linear kernel and a 

default value for the parameter C (i.e., C = 1). The optimal values of regularization 

parameters λ1, λ2 and the weights in the multi-kernel classification method are determined 

by another 10-fold cross-validation on the training subjects.

B. Results of AD/MCI vs. NC Classification

The classification results of AD vs. NC and MCI vs. NC produced by different methods are 

listed in Table II. As can be seen from Table II, our proposed method consistently achieves 

better performance than other methods for the classification between AD/MCI patients and 

normal controls. Specifically, for classifying AD from NC, our proposed method achieves a 

classification accuracy of 95.95%, while the best accuracy of other methods is only 92.25% 

(obtained by SMFS). In addition, for classifying MCI from NC, our proposed method 

achieves a classification accuracy of 80.26%, while the best accuracy of other methods is 

only 74.34% (obtained by Baseline). Furthermore, we perform the significance test using 

paired t-test on the classification accuracies between our proposed method and other 

compared methods, with the corresponding results given in Table II. From Table II, we can 

see that our proposed method is significantly better than the compared methods (i.e., the 

corresponding p values are very small).

For further validation, in Fig. 3 we plot the ROC curves of four multi-modality based 

classification methods for AD/MCI vs. NC classification. Fig. 3 shows that our proposed 

method consistently achieves better classification performances than other multi-modality 

based methods for both AD vs. NC and MCI vs. NC classifications. Specifically, as can be 

seen from Table II, our method achieves the area under the ROC curve (AUC) of 0.97 and 

0.81 for AD vs. NC and MCI vs. NC classifications, respectively, showing better 

classification ability compared with other methods.

C. Results of MCI Conversion Prediction

The classification results for MCI-C vs. MCI-NC are shown in Table III. As can be seen 

from Table III and Fig. 4, our proposed method consistently outperforms other methods in 

MCI-converter classification. Specifically, our proposed method achieves a classification 

accuracy of 69.78%, while the best one of other methods is only 61.67%, which is obtained 

by SMFS. The classification accuracy of our proposed method is significantly (p < 0.001) 

higher than any compared methods.

Fig. 4 plots the corresponding ROC curves of four multi-modality based methods for MCI-C 

vs. MCI-NC classification. We can see from Fig. 4 that the superior classification 

performance is obtained by our proposed method. Table III also lists the area under the ROC 

curve (AUC) of different classification methods. As can be seen from Table III, AUC 

achieved by our proposed method is 0.69 for MCI-C vs. MCI-NC classification, while the 

best one of other methods is only 0.64, obtained by t-test, indicating the outstanding 

classification performance of our proposed method.
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The most discriminative regions are defined as those that are most frequently selected in 

cross-validation. For each selected discriminative feature, the standard paired t-test is 

performed to evaluate its discriminative power between patients and normal control groups. 

Top 10 ROIs detected from both MRI and FDG-PET data for MCI classification are listed in 

Table IV. Fig. 5 plots these regions in the template space. As can be seen from Table IV and 

Fig. 5, the most important regions for MCI classification include hippocampal, amygdale, 

etc., which are in agreement with other recent AD/MCI studies (Sole et al. 2008; Derflinger 

et al. 2011; Al 2008; St et al. 2011; Wolf et al. 2003).

IV. Discussion

In this paper, we proposed a novel label-aligned multi-task feature learning method for 

multimodal classification of Alzheimer’s disease and mild cognitive impairment. The 

experimental results on the ADNI database show that our proposed method achieves high 

classification accuracies of 95.95%, 80.26%, and 69.78% for AD vs. NC, MCI vs. NC and 

MCI-C vs. MCI-NC classifications, in comparison with several state-of-the-art multimodal 

AD/MCI classification methods.

A. Multi-task Learning

Multi-task learning is a recently developed technique in machine learning field, which can 

jointly learn multiple tasks via a shared representation. Because the domain information or 

some commonality is contained in the learning tasks, multi-task learning can usually 

improve the performances by learning classifiers for multiple tasks together.

Recently, multi-task learning has been introduced into medical imaging field. For example, 

Zhang et al. (D. Zhang and Shen 2012) applied multi-task learning for joint prediction of 

both regression variables (i.e., clinical scores) and classification variable (i.e., class labels) in 

Alzheimer’s disease. In their method, multi-task feature selection was first used to select the 

common subset features corresponding to different tasks, and then multi-kernel SVM was 

performed for final regression and classification. It is worth noting that the feature selection 

step in (D. Zhang and Shen 2012) was performed separately for each modality, while 

ignoring the potential relationship among different modalities. Afterwards, Liu et al. (F. Liu 

et al. 2014) considered the inter-modality relationship within each subject to preserve the 

complementary information among modalities. However, in their method only information 

corresponding to individual subject is concerned. Suk et al. (Suk et al. 2014) first assumed 

the data classes were multipeak distribution, and then formulated a multi-task learning 

problem in a R-2,1 framework with new label encodings obtained by clustering. However, 

the method in (Suk et al. 2014) still did not consider the potential information across 

different modalities. More recently, Jie et al. (Jie et al. 2015) proposed a manifold 

regularized multi-task feature learning method, which only considered the manifold 

information in each modality separately and thus cannot reflect the information across 

different modalities. It is worth noting that our proposed method and Jie et al.’s method are 

developed based on different considerations. Jie et al.’s method only concerns preserving the 

manifolds existing in each modality of the data. Different from Jie et al.’s method, the 

proposed approach not only takes the structure information of each modality into account, 
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but also regards the relationship across different modalities as extra information. Hence, Jie 

et al.’s method can be regarded as a special case of our proposed method. Although our 

proposed method has a more general feature selection framework compared with Jie et al.’s 

approach, the objective function of our method is still convex. Thus, the optimal solution can 

still be obtained, i.e., by using Accelerated Proximal Gradient (APG) method.

In contrast, our proposed label-aligned multi-task feature learning method can preserve the 

relationships not only across different modalities in the same subjects but also among 

different modalities in different subjects. Our proposed method is evaluated on the ADNI 

database using baseline MRI and FDG-PET data for three clinical groups classifications 

including AD vs. NC, MCI vs. NC and MCI-C vs. MCI-NC, and the experimental results 

demonstrate the effectiveness of our proposed method.

B. Comparison with Existing Methods

To compare our proposed method with existing methods, in this section we perform the 

comparisons between the results of our proposed method and those of existing state-of-the-

art multi-modality methods, as shown in Table V. As can be seen from Table V, Hinrichs et 
al. (Hinrichs et al. 2011) used 48 AD subjects and 66 NC subjects, and obtained an accuracy 

of 87.6% by using two modalities (MRI + PET). Huang et al. (Huang et al. 2011) used 49 

AD patients and 67 NC with MRI and PET modalities for AD classification, achieving an 

accuracy of 94.3%. In (Gray et al. 2012), authors used 37 AD patients, 75 MCI patients and 

35 NC and reported classification accuracies of 89.0%, 74.6% and 58.0% for AD, MCI and 

MCI-converter classification, respectively, using four different modalities (MRI+PET+CSF

+genetic). Jie et al. (Jie et al. 2015) achieved the accuracies of 95.03%, 79.27% and 68.94% 

for classification of AD/NC, MCI/NC and MCI-C/MCI-NC, respectively. Liu et al. (F. Liu et 

al. 2014) obtained the accuracies of 94.37%, 78.80% and 67.83% for AD, MCI and MCI-

converter classifications, respectively. It is worth noting that the dataset used in (Jie et al. 

2015) and (F. Liu et al. 2014) are the same as that in the current study. Table V indicates that 

our proposed method consistently outperform other methods, which further validate the 

efficacy of our proposed method for AD diagnosis.

C. The Effect of Regularization Parameters

In our method, there are two regularization items, i.e., the sparsity regularizer λ1 and label-

aligned regularization term λ2. The two parameters control the relative contribution of those 

regularization terms. Here, the values of λ1 and λ2 are set from 0 to 50 at a step size of 10, 

respectively, to observe the effect of the regularization parameters on the classification 

performance of our proposed method. Fig. 6 shows the classification results with respect to 

different values of λ1 and λ2. When λ1 = 0, all features extracted from MRI and FDG-PET 

data are used for classification, and thus our method will degenerate to multi-kernel method 

proposed in (D. Zhang et al. 2011). Also, when λ2 = 0, no label-aligned regularization item 

is introduced, and thus our method will degenerate to the MMFS method proposed in (D. 

Zhang and Shen 2012).

As we can observe from Fig. 6, under all values of λ1 and λ2, our proposed method 

consistently outperforms the MMFS methods on three classification tasks (i.e., AD vs. NC, 

Zu et al. Page 11

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MCI vs. NC, and MCI-C vs. MCI-NC), which further indicates the advantage of using label-

aligned regularization term. Also, Fig. 6 shows that when fixing the value of λ1, the curves 

corresponding to different values of λ2 are very smooth on three classification tasks, which 

shows our method is relatively robust to the regularization parameter λ2. Finally, as can be 

seen from Fig. 6, when fixing the value of λ2, the results on three classification tasks are 

largely affected with different values of λ1, which implies that the selection of λ1 is very 

important for final classification results. This is reasonable since λ1 controls the sparsity of 

model and thus determines the size of the optimal feature subset.

D. The Effect of Weights for Multimodal Classification

We investigate how the two combining kernel weights βMRI and βPET affect the 

classification performance of our proposed method. The combining kernel weights are set 

from 0 to 1 at a step size of 0.1, with the constraint of βMRI + βPET = 1. Fig. 7 shows the 

classification accuracy and AUC value under different combination of kernel weights of 

MRI and PET. As we can observe from Fig. 7, the relative high classification performance is 

obtained in the middle part, which demonstrates the effectiveness of combining two 

modalities for classification. Moreover, the intervals with higher performance mainly lie in a 

larger interval of [0.2, 0.8], implying that each modality is indispensable for achieving good 

classification performances.

E. Limitations

There are several limitations that should be further considered in the future study. First, in 

the current study, we only investigated binary classification problem (i.e., AD vs. NC, MCI 

vs. NC, and MCI-C vs. MCI-NC), and did not test the ability of the classifier for the multi-

class classification of AD, MCI and normal controls. Although multi-class classification is 

more challenging than binary-class classification, it is very important to diagnose different 

stage of dementia. Second, the proposed method requires the same number of features from 

different modalities. Other modalities in ADNI database, such as CSF and genetic data, 

which have different feature numbers, may also carry important pathological information 

that can help further improve the classification performance. Finally, longitudinal data may 

contain very important information for classification, while our proposed method can only 

deal with the baseline data.

V. Conclusion

This paper proposed a novel multi-task feature learning method for jointly selecting features 

from multi-modality neuroimaging data for AD/MCI classification. By introducing the 

label-aligned regularization term into the multi-task learning framework, the proposed 

method can utilize the relationships across both modalities and subjects to seek out the most 

discriminative features subset. Experimental results on the ADNI database demonstrate that 

our proposed method outperforms the state-of-the-art methods for multimodal classification 

of AD/MCI.

Zu et al. Page 12

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Nos. 61422204, 61473149, 
61170151), the Jiangsu Natural Science Foundation for Distinguished Young Scholar (No. BK20130034), the 
Specialized Research Fund for the Doctoral Program of Higher Education (No. 20123218110009), and the NUAA 
Fundamental Research Funds (No. NE2013105), and by NIH grants EB006733, EB008374, EB009634, 
MH100217, AG041721, and AG042599.

References

Al NFE. Principal component analysis of FDG PET in amnestic MCI. European Journal of Nuclear 
Medicine & Molecular Imaging. 2008; 35(12):2191–2202. (2112). [PubMed: 18648805] 

Apostolova LG, Hwang KS, Andrawis JP, Green AE, Babakchanian S, Morra JH, et al. 3D PIB and 
CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiology of Aging. 
2010; 31(8):1284–1303. [PubMed: 20538372] 

Bouwman FH, Flier WM, Van Der Schoonenboom NSM, Elk EJ, Van Kok A, Rijmen F. Longitudinal 
changes of CSF biomarkers in memory clinic patients. Neurology. 2007; 69(10):1006–1011. 
[PubMed: 17785669] 

Brookmeyer R, Johnson E, Ziegler-Grahamm K, Arrighi HM, Brookmeyer R, Johnson E. O1-02-01 
Forecasting the Global Burden of Alzheimer's Disease. Alzheimers & Dementia the Journal of the 
Alzheimers Association. 2007; 3(3):186–191.

Chang CC, Lin CJ. LIBSVM: a library for support vector machines. Acm Transactions on Intelligent 
Systems & Technology. 2007; 2(3):389–396.

Chen X, Pan W, Kwok JT, Carbonell JG. Accelerated Gradient Method for Multi-task Sparse Learning 
Problem. Proceedings of the International Conference on Data Mining. 2009:746–751.

Chételat G, Desgranges B, Sayette V, De La, Viader F, Eustache F, J-C B. Mild cognitive impairment: 
Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? Neurology. 2003; 60(8):
1374–1377. [PubMed: 12707450] 

Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, et al. Discriminative analysis of early Alzheimer's 
disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). 
Neuroimage. 2012; 59(3):2187–2195. [PubMed: 22008370] 

De SS, de Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, et al. Hippocampal formation 
glucose metabolism and volume losses in MCI and AD. Neurobiology of Aging. 2001; 22(4):529–
539. [PubMed: 11445252] 

Derflinger S, Sorg C, Gaser C, Myers N, Arsic M, Kurz A, et al. Grey-matter atrophy in Alzheimer's 
disease is asymmetric but not lateralized. Journal of Alzheimers Disease. 2011; 25(2):347–357.

Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, et al. Automated MRI 
measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain. 
2009; 132(Part 8):2048–2057. [PubMed: 19460794] 

Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional 
patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain. 2007; 
130(4):1159–1166. [PubMed: 17353226] 

Evgeniou T, Pontil M. Regularized multi--task learning. Proceedings of the tenth ACM SIGKDD 
international conference on Knowledge discovery and data mining. 2004:109–117.

Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C. COMPARE: Classification of Morphological Patterns 
Using Adaptive Regional Elements. IEEE Transactions on Medical Imaging. 2007; 26(1):93–105. 
[PubMed: 17243588] 

Fjell AM, Walhovd KNC, Mcevoy LK, Hagler DJ, Holland D, Brewer JB, et al. CSF biomarkers in 
prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease. 
Journal of Neuroscience the Official Journal of the Society for Neuroscience. 2010; 30(6):2088–
2101.

Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves 
accuracy in distinguishing frontotemporal dementia and Alzheimer's disease. Brain. 2007; 
130(10):2616–2635. (2620). [PubMed: 17704526] 

Zu et al. Page 13

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gerardin E, Chételat Gl, Chupin M, Cuingnet R, Desgranges B, Kim HS, et al. Multidimensional 
classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive 
impairment from normal aging. Neuroimage. 2009; 47(4):1476–1486. [PubMed: 19463957] 

Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D. Random forest-based similarity 
measures for multi-modal classification of Alzheimer's disease. Neuroimage. 2012; 65:167–175. 
[PubMed: 23041336] 

Higdon R, Foster NL, Koeppe RA, DeCarli CS, Jagust WJ, Clark CM, et al. A comparison of 
classification methods for differentiating fronto-temporal dementia from Alzheimer's disease using 
FDG-PET imaging. Statistics in Medicine. 2004; 23(2):315–326. [PubMed: 14716732] 

Hinrichs C, Singh V, Xu G, Johnson SC. Predictive markers for AD in a multi-modality framework: an 
analysis of MCI progression in the ADNI population. Neuroimage. 2011; 55(2):574–589. 
[PubMed: 21146621] 

Huang, S.; Li, J.; Ye, J.; Wu, T.; Chen, K.; Fleisher, A., et al. Identifying Alzheimer s Disease-Related 
Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear 
Discrimination Analysis. In: Shawe-Taylor, J.; Zemel, RS.; Bartlett, PL.; Pereira, F.; Weinberger, 
KQ., editors. Advances in Neural Information Processing Systems. Vol. 24. Curran Associates, 
Inc.; 2011. 

Jie B, Zhang D, Cheng B, Shen D. Manifold regularized multitask feature learning for multimodality 
disease classification. Human Brain Mapping. 2015; 36(2):489–507. [PubMed: 25277605] 

Jr CRJ, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of 
dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurology. 2010; 9(1):119. 
[PubMed: 20083042] 

Kumar A, Daume Iii H. Learning Task Grouping and Overlap in Multi-task Learning. Computer 
Science - Learning. 2012

Landau SM, Harvey DMadison CM, Reiman EM, Foster NL, Aisen PS, Petersen RC, et al. Comparing 
predictors of conversion and decline in mild cognitive impairment. Neurology. 2010; 75(3):230–
238. [PubMed: 20592257] 

Leon MJD, Mosconi L, Li J, Santi SD, Yao Y, Tsui WH, et al. Longitudinal CSF isoprostane and MRI 
atrophy in the progression to AD. Journal of Neurology. 2007; 254(12):1666–1675. [PubMed: 
17994313] 

Liu F, Wee CY, Chen H, Shen D. Inter-modality relationship constrained multi-modality multi-task 
feature selection for Alzheimer's Disease and mild cognitive impairment identification. 
Neuroimage. 2014; 84:466–475. [PubMed: 24045077] 

Liu J, Ye J. Efficient L1/Lq Norm Regularization. Cambridge University Pub. 2010

Magnin, Bt; Mesrob, L.; Kinkingnéhun, S.; Pélégrini-Issac, M.; Colliot, O.; Sarazin, M., et al. Support 
vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI. 
Neuroradiology. 2009; 51(2):73–83. [PubMed: 18846369] 

Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, et al. CSF Biomarkers and 
Incipient Alzheimer Disease in Patients With Mild Cognitive Impairment. Jama-Journal of the 
American Medical Association. 2009; 302(4):385–393.

Mcevoy LK, Fennema-Notestine C, Roddey JC, Jr DJH, Holland D, Karow DS, et al. Alzheimer 
Disease: Quantitative Structural Neuroimaging for Detection and Prediction of Clinical and 
Structural Changes in Mild Cognitive Impairment1. Radiology. 2009; 251(1):195–205. [PubMed: 
19201945] 

MJ W, CH K, WF S, GL R, JC T. Hippocampal neurons in pre-clinical Alzheimer's disease. 
Neurobiology of Aging. 2004; 25(25):1205–1212. [PubMed: 15312966] 

Morris J, Storandt M, Miller J, McKeel D, Price J, Rubin E, et al. Mild cognitive impairment 
represents early-stage Alzheimer disease. Archives of Neurology. 2001; 58(3):397–405. [PubMed: 
11255443] 

Nesterov Y. Introductory Lectures on Convex Optimization: A Basic Course. Computer Programming. 
2003 Oct.:49–50.

Nestor PJ, Scheltens P, Hodges JR. Advances in the early detection of Alzheimer's disease. Nature 
Medicine. 2004; 10(suppl)(7suppl):S34–S41.

Zu et al. Page 14

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Obozinski G, Jordan M, Taskar B. Multi-task feature selection. The Workshop of Structural 
Knowledge Transfer for Machine Learning in International Conference on Machine Learning 
Citeseer. 2006; 7(2):1693–1696.

Obozinski G, Taskar B, Jordan MI. Joint covariate selection and joint subspace selection for multiple 
classification problems. Statistics & Computing. 2010; 20(2):231–252.

Oliveira PPD, Nitrini R, Busatto G, Buchpiguel C, Sato JR, Amaro E. Use of SVM Methods with 
Surface-Based Cortical and Volumetric Subcortical Measurements to Detect Alzheimer's Disease. 
Journal of Alzheimers Disease. 2010; 19(4):1263–1272.

Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild Cognitive Impairment: 
Clinical Characterization and Outcome. Archives of Neurology. 1999; 56(3):303–308. [PubMed: 
10190820] 

Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. Magnetic resonance image 
tissue classification using a partial volume model. Neuroimage. 2001:856–876. [PubMed: 
11304082] 

Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. 
Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. 
Annals of Neurology. 2009; 65(4):403–413. [PubMed: 19296504] 

Shen D, Davatzikos C. HAMMER: hierarchical attribute matching mechanism for elastic registration. 
IEEE Trans. on Medical Imaging. 2002:1421–1439. [PubMed: 12575879] 

Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity 
nonuniformity in MRI data. Medical Imaging IEEE Transactions on. 1997; 17(1):87–97.

Smith, Stephen M. Fast robust automated brain extraction. Human Brain Mapping. 2002; 17(3):143–
155. [PubMed: 12391568] 

Sole AD, Clerici F, Chiti A, Lecchi M, Mariani C, Maggiore L, et al. Individual cerebral metabolic 
deficits in Alzheimer's disease and amnestic mild cognitive impairment: an FDG PET study. Eur J 
Nucl Med Mol Imaging. 2008; 35(7):1357–1366. [PubMed: 18418593] 

St, eacute; Poulin, pP; Dautoff, R.; Morris, JC.; Barrett, LF., et al. Amygdala atrophy is prominent in 
early Alzheimer's disease and relates to symptom severity. Psychiatry Research Neuroimaging. 
2011; 194(1):7–13. [PubMed: 21920712] 

Suk HI, Lee SW, Shen D. Subclass-based multi-task learning for Alzheimer's disease diagnosis. 
Frontiers in Aging Neuroscience. 2014; 6(6):168–168. [PubMed: 25147522] 

Tibshirani R. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical 
Society. 1994; 58(1):267–288.

Walhovd KB, Fjell AM, Dale AM, Mcevoy LK, Brewer J, Karow DS, et al. Multi-modal imaging 
predicts memory performance in normal aging and cognitive decline. Neurobiology of Aging. 
2010; 31(7):1107–1121. [PubMed: 18838195] 

Westman E, Muehlboeck JS, Simmons A. Combining MRI and CSF measures for classification of 
Alzheimer's disease and prediction of mild cognitive impairment conversion. Neuroimage. 2012; 
62(1):229–238. [PubMed: 22580170] 

Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO. A critical discussion of the role of 
neuroimaging in mild cognitive impairment. Acta Neurologica Scandinavica. 2003; 
179(Supplement s179):52–76. [PubMed: 12603252] 

Yuan L, Wang Y, Thompson PM, Narayan VA, Ye J. Multi-source feature learning for joint analysis of 
incomplete multiple heterogeneous neuroimaging data ☆. Neuroimage. 2012; 61(3):622–632. 
[PubMed: 22498655] 

Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the 
Royal Statistical Society. 2006; 68(1):49–67. As the access to this document is restricted, you may 
want to look for a different version under "Related research" (further below) or for a different 
version of it.

Zhang D, Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and 
classification variables in Alzheimer's disease. Neuroimage. 2012; 59(2):895–907. [PubMed: 
21992749] 

Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classification of Alzheimer's disease and 
mild cognitive impairment. Neuroimage. 2011; 55:856–867. [PubMed: 21236349] 

Zu et al. Page 15

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field 
model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging. 2001; 
20(1):45–57. [PubMed: 11293691] 

Zu et al. Page 16

Brain Imaging Behav. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic illustration of the proposed classification pipeline.
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Fig. 2. 
Illustrations on the relationship among modalities and subjects in (a) traditional multi-

modality methods and (b) proposed method in identifying subjects in class 1 and class 2. 

Circles and rectangles represent MRI and PET data, respectively. Red and blue denote 

different classes.
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Fig. 3. 
ROC curves of four multi-modality based methods. (a) Classification of AD vs. NC, (b) 

Classification of MCI vs. NC.
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Fig. 4. 
ROC curves of four multi-modality based methods for classification of MCI converters.
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Fig. 5. 
Top 10 ROIs selected by the proposed method for MCI.
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Fig. 6. 
The classification accuracy with regularization parameters λ1 and λ2. (a) AD classification, 

(b) MCI classification, and (c) MCI conversion classification. Each curve denotes the 

performance for different selected value for λ1. X-axis represents diverse values for λ2.
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Fig. 7. 
The classification results on three classification tasks with respect to different combining 

weights of MRI and PET (Top: classification accuracy; Bottom: AUC value).
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TABLE IV

Top 10 ROIs Selected by the Proposed Method for MCI classification

Selected ROIs MRI FDG-PET

Entorhinal cortex left p < 0.0001 p = 0.0286

Hippocampal formation left p < 0.0001 p = 0.0109

Angular gyrus left p = 0.0309 p < 0.0001

Amygdala right p < 0.0001 p = 0.0352

Precuneus left p = 0.0001 p = 0.0005

Hippocampal formation right p < 0.0001 p = 0.0309

Cuneus left p = 0.0741 p = 0.0626

Temporal pole left p = 0.0004 p = 0.0624

Middle temporal gyrus left p < 0.0001 p = 0.0816

Occipital pole left p = 0.1638 p = 0.0390
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