89 research outputs found

    Assessment of Tumour Growth in Murine Cancer Models with Three-Dimensional High-Frequency Ultrasound

    Get PDF
    Preclinical cancer research could benefit from quantitative, non-invasive measurements of tumour growth provided by three-dimensional high-frequency ultrasound imaging. High-frequency ultrasound has been shown to be appropriate for tracking experimental liver metastases from a variety of cell fines without exogenous contrast agents. Tumour growth over time can be monitored on an individual tumour basis, allowing a growth curve to be constructed and the tumour to act as its own control in a treatment study. In order to quantify tumour volume and growth, the measurement variability must be known. Inter- and intra-observer variability was determined for tumours in four size ranges with average volume from 0.43 mm3 to 60.42 mm3. Intrarobserver variability was as low as 4% for mid-sized tumours averaging 2.39 mm3, while the inter-observer variability for the smallest and largest tumours measured had the highest variability at 25% and 15%, respectively. Breathing motion did not significantly effect the volume measurements, however, having the region of interest beyond the geometric focus resulted in significantly different measured volumes. Measurement variability is one factor that influences how well growth data can be characterized mathematically through curve fitting. Simulations of tumour growth were performed to relate experimental imaging parameters, such as intervals between acquiring images, minimum and maximum volume recorded and length of time over which data is acquired, to the quality of curve fitting results. Simulations show that improving the ability of the ultrasound system to image small (\u3c1 mm diameter) tumours would improve the ability to draw conclusions from growth parameters. The spatially variant point-spread function influences lesion-size measurement variability and consequently growth curve fitting. The transducer employed is tightly focused, so spatial image resolution is high at the focus but rapidly degrades away from the focus. Synthetic aperture focusing was employed with a variety of weighting techniques to retrospectively focus the images through a range of depths. The iii improvement in focusing was measured using point-like targets and the effect on measurement variability was evaluated using lesion phantom images. Synthetic aperture focusing did not produce a significant reduction in lesion-size measurement variability but did diminish the sensitivity of the measured size to lesion depth

    Design and Simulation of a Ring-Shaped Linear Array for Microultrasound Capsule Endoscopy

    Get PDF
    Video capsule endoscopy (VCE) has significantly advanced visualization of the gastrointestinal tract (GI tract) since its introduction in the last 20 years. Work is now under way to combine VCE with microultrasound imaging. However, small maximum capsule dimensions, coupled with the electronics required to integrate ultrasound imaging capabilities, pose significant design challenges. This paper describes a simulation process for testing transducer geometries and imaging methodologies to achieve satisfactory imaging performance within the physical limitations of the capsule size and outlines many of the trade-offs needed in the design of this new class of ultrasound capsule endoscopy (USCE) device. A hybrid MATLAB model is described, incorporating KLM circuit elements and digitizing and beamforming elements to render a grey-scale B-mode. This model is combined with a model of acoustic propagation to generate images of point scatterers. The models are used to demonstrate the performance of a USCE transducer configuration comprising a single, unfocused transmit ring of radius 5 mm separated into eight segments for electrical impedance control and a 512-element receive linear array, also formed into a ring. The MATLAB model includes an ultrasonic pulser circuit connected to a piezocrystal composite transmit transducer with a center frequency of 25 MHz. B-scan images are simulated for wire target phantoms, multilayered phantoms, and a gut wall model. To demonstrate the USCE system’s ability to image tissue, a digital phantom was created from single-element ultrasonic transducer scans of porcine small bowel ex vivo obtained at a frequency of 45 MHz

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun

    Ultrasound Imaging

    Get PDF
    In this book, we present a dozen state of the art developments for ultrasound imaging, for example, hardware implementation, transducer, beamforming, signal processing, measurement of elasticity and diagnosis. The editors would like to thank all the chapter authors, who focused on the publication of this book

    Photoacoustic microscopy

    Get PDF
    Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (∼1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional, molecular, flow dynamic and metabolic contrasts in vivo. Focusing on state-of-the-art developments in PAM, this Review discusses the key features of PAM implementations and their applications in biomedical studies

    Novel Techniques for Tissue Imaging and Characterization Using Biomedical Ultrasound

    Get PDF
    The use of ultrasound technology in the biomedical field has been widely increased in recent decades. Ultrasound modalities are considered more safe and cost effective than others that use ionizing radiation. Moreover, the use of high-frequency ultrasound provides means of high-resolution and precise tissue assessment. Consequently, ultrasound elastic waves have been widely used to develop non-invasive techniques for tissue assessment. In this work, ultrasound waves have been used to develop non-invasive techniques for tissue imaging and characterization in three different applications.;Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. They also may carry known risks of cancer generation or may be limited in accurate diagnosis scope. Ultrasonic guided waves are sensitive to changes in microstructural properties, while high-frequency ultrasound has been used to reconstruct high-resolution images for tissue. The use of these ultrasound techniques may provide means for early diagnosis of marrow ischemic disorders via detecting focal osteoporotic marrow defect, chronic nonsuppurative osteomyelitis, and cavitations in the mandible (jawbone). The first part of this work investigates the feasibility of using guided waves and high frequency ultrasound for non-invasive human jawbone assessment. The experimental design and the signal/image processing procedures for each technique are developed, and multiple in vitro studies are carried out using dentate and non-dentate mandibles. Results from both the ultrasonic guided waves analysis and the high frequency 3D echodentographic imaging suggest that these techniques show great potential in providing non-invasive methods to characterize the jawbone and detect periodontal diseases at earlier stages.;The second part of this work describes indirect technique for characterization via reconstructing high-resolution microscopic images. The availability of well-defined genetic strains and the ability to create transgenic and knockout mice makes mouse models extremely significant tools in different kinds of research. For example, noninvasive measurement of cardiovascular function in mouse hearts has become a valuable need when studying the development or treatment of various diseases. This work describes the development and testing of a single-element ultrasound imaging system that can reconstruct high-resolution brightness mode (B-mode) images for mouse hearts and blood vessels that can be used for quantitative measurements in vitro. Signal processing algorithms are applied on the received ultrasound signals including filtering, focusing, and envelope detection prior to image reconstruction. Additionally, image enhancement techniques and speckle reduction are adopted to improve the image resolution and quality. The system performance is evaluated using both phantom and in vitro studies using isolated mouse hearts and blood vessels from APOE-KO and its wild type control. This imaging system shall provide a basis for early and accurate detection of different kinds of diseases such as atherosclerosis in mouse model.;The last part of this work is initialized by the increasing need for a non-invasive method to assess vascular wall mechanics. Endothelial dysfunction is considered a key factor in the development of atherosclerosis. Flow-mediated vasodilatation (FMD) measurement in brachial and other conduit arteries has become a common method to assess the endothelial function in vivo. In spite of the direct relationship that could be between the arterial wall multi-component strains and the FMD response, direct measurement of wall strain tensor due to FMD has not yet been reported in the literature. In this work, a noninvasive direct ultrasound-based strain tensor measuring (STM) technique is presented to assess changes in the mechanical parameters of the vascular wall during post-occlusion reactive hyperemia and/or FMD, including local velocities and displacements, diameter change, local strain tensor and strain rates. The STM technique utilizes sequences of B-mode ultrasound images as its input with no extra hardware requirement. The accuracy of the STM algorithm is assessed using phantom, and in vivo studies using human subjects during pre- and post-occlusion. Good correlations are found between the post-occlusion responses of diameter change and local wall strains. Results indicate the validity and versatility of the STM algorithm, and describe how parameters other than the diameter change are sensitive to reactive hyperemia following occlusion. This work suggests that parameters such as local strains and strain rates within the arterial wall are promising metrics for the assessment of endothelial function, which can then be used for accurate assessment of atherosclerosis

    Simultaneous transmission and reception on all elements of an array: binary code excitation

    Get PDF
    Pulse-echo arrays are used in radar, sonar, seismic, medical and non-destructive evaluation. There is a trend to produce arrays with an ever-increasing number of elements. This trend presents two major challenges: (i) often the size of the elements is reduced resulting in a lower signal-to-noise ratio (SNR) and (ii) the time required to record all of the signals that correspond to every transmit–receive path increases. Coded sequences with good autocorrelation properties can increase the SNR while orthogonal sets can be used to simultaneously acquire all of the signals that correspond to every transmit–receive path. However, a central problem of conventional coded sequences is that they cannot achieve good autocorrelation and orthogonality properties simultaneously due to their length being limited by the location of the closest reflectors. In this paper, a solution to this problem is presented by using coded sequences that have receive intervals. The proposed approach can be more than one order of magnitude faster than conventional methods. In addition, binary excitation and quantization can be employed, which reduces the data throughput by roughly an order of magnitude and allows for higher sampling rates. While this concept is generally applicable to any field, a 16-element system was built to experimentally demonstrate this principle for the first time using a conventional medical ultrasound probe

    Intravascular Detection of Microvessel Infiltration in Atherosclerotic Plaques: An Intraluminal Extension of Acoustic Angiography

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide, surpassing both stroke and cancer related mortality with 17.5 million deaths in 2014 alone. Atherosclerosis is the build-up of fatty deposits within arteries and is responsible for the majority of cardiovascular related deaths. Over the past decade, research in atherosclerosis has identified that a key limitation in the appropriate management of the disease is detecting and identifying dangerous fatty plaque build-ups before they dislodge and cause major cardiovascular events, such as embolisms, stroke, or myocardial infarctions. It has been noted that plaques vulnerable to rupture have several key features that may be used to distinguish them from asymptomatic plaques. One key identifier of a dangerous plaque is the presence of blood flow within the plaque itself since this is an indicator of growth and instability of the plaque. Recently, a superharmonic imaging method known as “acoustic angiography” has been shown to resolve microvasculature with unprecedented quality and could be a possible method of detecting blood vessel infiltration within these plaques. This dissertation describes the material and methods used to move the application of “acoustic angiography” to a reduced form factor typical of intravascular catheters and to demonstrate its ability to detect microvasculature. The implementation of this approach is described in terms of the contrast agents used to generate superharmonic signals, the dual-frequency transducers to image them, and the hardware needed to operate them in order to establish how these design choices can impact the quality of the images produced. Furthermore, this dissertation demonstrates how image processing methods such as adaptive windowing or automated sound speed correction can further enhance image quality of vascular targets. The results of these chapters show how acoustic angiography may be optimized using engineering considerations both in signal acquisition and post processing. Overall, these studies demonstrate that acoustic angiography can be performed using a catheter-deployable dual-frequency transducer to detect microvasculature through superharmonic imaging methods.Doctor of Philosoph

    Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound:A Porcine Study

    Get PDF
    Wireless capsule endoscopy has been used for the clinical examination of the gastrointestinal (GI) tract for two decades. However, most commercially available devices only utilise optical imaging to examine the GI wall surface. Using this sensing modality, pathology within the GI wall cannot be detected. Micro-ultrasound (μUS) using high-frequency (>20 MHz) ultrasound can provide a means of transmural or cross-sectional image of the GI tract. Depth of imaging is approximately 10 mm with a resolution of between 40–120 μm that is sufficient to differentiate between subsurface histologic layers of the various regions of the GI tract. Ultrasound capsule endoscopy (USCE) uses a capsule equipped with μUS transducers that are capable of imaging below the GI wall surface, offering thereby a complementary sensing technique to optical imaging capsule endoscopy. In this work, a USCE device integrated with a ∼30 MHz ultrasonic transducer was developed to capture a full 360° image of the lumen. The performance of the device was initially evaluated using a wire phantom, indicating an axial resolution of 69.0 μm and lateral resolution of 262.5 μm. Later, in vivo imaging performance was characterised in the oesophagus and small intestine of anaesthetized pigs. The reconstructed images demonstrate clear layer differentiation of the lumen wall. The tissue thicknesses measured from the B-scan images show good agreement with ex vivo images from the literature. The high-resolution ultrasound images in the in vivo porcine model achieved with this device is an encouraging preliminary step in the translation of these devices toward future clinical use

    Photoacoustic microscopy

    Get PDF
    Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (∼1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional, molecular, flow dynamic and metabolic contrasts in vivo. Focusing on state-of-the-art developments in PAM, this Review discusses the key features of PAM implementations and their applications in biomedical studies
    corecore