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ABSTRACT

 

K. Heath Martin: Intravascular Detection of Microvessel Infiltration in Atherosclerotic Plaques: 

An Intraluminal Extension of Acoustic Angiography. 

(Under the direction of Paul A. Dayton) 

 

Cardiovascular disease is the leading cause of death worldwide, surpassing both stroke 

and cancer related mortality with 17.5 million deaths in 2014 alone. Atherosclerosis is the build-

up of fatty deposits within arteries and is responsible for the majority of cardiovascular related 

deaths. Over the past decade, research in atherosclerosis has identified that a key limitation in the 

appropriate management of the disease is detecting and identifying dangerous fatty plaque build-

ups before they dislodge and cause major cardiovascular events, such as embolisms, stroke, or 

myocardial infarctions. It has been noted that plaques vulnerable to rupture have several key 

features that may be used to distinguish them from asymptomatic plaques. One key identifier of a 

dangerous plaque is the presence of blood flow within the plaque itself since this is an indicator 

of growth and instability of the plaque. Recently, a superharmonic imaging method known as 

“acoustic angiography” has been shown to resolve microvasculature with unprecedented quality 

and could be a possible method of detecting blood vessel infiltration within these plaques. 

This dissertation describes the material and methods used to move the application of 

“acoustic angiography” to a reduced form factor typical of intravascular catheters and to 

demonstrate its ability to detect microvasculature. The implementation of this approach is 

described in terms of the contrast agents used to generate superharmonic signals, the dual-

frequency transducers to image them, and the hardware needed to operate them in order to 
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establish how these design choices can impact the quality of the images produced. Furthermore, 

this dissertation demonstrates how image processing methods such as adaptive windowing or 

automated sound speed correction can further enhance image quality of vascular targets. The 

results of these chapters show how acoustic angiography may be optimized using engineering 

considerations both in signal acquisition and post processing. Overall, these studies demonstrate 

that acoustic angiography can be performed using a catheter-deployable dual-frequency 

transducer to detect microvasculature through superharmonic imaging methods. 
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CHAPTER 1

INTRODUCTION 

 

1.1 Motivation 

Atherosclerotic cardiovascular disease is a leading cause of death worldwide which can 

manifest without warning [1]. Acute coronary syndromes are postulated to be initiated by 

atherosclerotic plaque ruptures in up to 75% of cases [2, 3]. For this reason, detection of 

atherosclerotic plaques prone to rupture is one of the most active areas of research in cardiology 

and biomedical imaging [4].  

Intravascular ultrasound (IVUS) uses standard brightness mode (B-mode) imaging which 

is the current imaging gold standard to determine plaque composition. Tissues containing 

heterogeneous density and compressibility such as plaques, media, and smooth muscle layers are 

detectible on B-mode images, but tissue lacking these variations in material properties do not 

scatter ultrasound well enough to cause measurable reflections. A multitude of plaque 

characteristics exist that, if detected, can indicate whether the plaque is at a higher risk of causing 

a future ischemic event, however current IVUS imaging methods cannot detect these symptoms 

of a vulnerable plaque [5]. 

Recently, a new way of visualizing vessels using ultrasound has been developed and used 

to image tumor vasculature in response to therapy [6]. This technique, termed acoustic 

angiography, has resulted in high resolution and contrast three dimensional imaging of vascular 

networks previously unobtainable when using ultrasound. Acoustic angiography has only 
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recently been developed because it uses wide-band separation between the operating frequencies 

of two different elements that cannot normally be achieved using conventional transducer 

designs. A low frequency element is used to generate nonlinear harmonics using high pressures 

while another high frequency element (4-10x higher) is used to receive only the nonlinear signals 

generated by microbubbles. This produces contrast only images with a very high specificity that 

can clearly resolve vessel networks when the system is operated to acquire 3D volumes. Dual-

frequency transducers are the only type of ultrasound devices that have previously demonstrated 

the ability to produce acoustic angiography images. 

Current intravascular ultrasound transducers are poorly optimized for nonlinear contrast 

imaging strategies such as those used in acoustic angiography based on their inherent high 

frequency design. However, a dual-frequency IVUS transducer could surpass this limitation to 

enable assessment of plaque risk of rupture by using contrast specific imaging (CSI) to detect the 

presence of microvessels within a plaque. Translation of acoustic angiography into the IVUS 

environment has not yet been performed but could result in identifying vulnerable atheroma by 

detecting neovascularization within the plaques associated with the deadly disease of 

atherosclerosis.  

1.2 Dissertation scope and objectives 

The goal of this dissertation is to develop, optimize, and determine the clinical relevance 

of acoustic angiography in an intravascular platform using a newly developed dual-frequency 

transducer. Chapter 2 begins by giving background information regarding the severity of 

atherosclerosis and how the disease is currently managed today. Microbubble contrast agents are 

introduced in the next chapter as theranostic agents capable of both therapy and diagnostics. It is 

then followed by Chapter 4 which is an introduction to dual-frequency transducers. This chapter 
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also highlights important finding gleaned from dual-frequency transducers used in previous 

works while also providing detailed fabrication and operation strategies that are unique to these 

ultra-broad bandwidth devices. In Chapter 5, a prototype dual-frequency IVUS transducer design 

is discussed and preliminary results are gathered using in vitro setups. Chapter 6 is focused on 

optimizing the hardware and operating electronics to improve the image quality and ease of use 

of the prototype device while Chapter 7 provides a series of experiments that quantify the 

behavior of this approach in clinically relevant models included ex vivo and small animal in vivo 

studies to assess image quality metrics. While the previous three chapters were concerned with 

optimizing the acquisition of the data using a dual-frequency probe, Chapter 8 reviews advanced 

post-processing methods that can be applied to these datasets. Beamforming methods are 

introduce for intravascular acoustic angiography as well as automated error correction algorithms 

to estimate the appropriate speed of sound needed to perform image reconstruction. Finally, 

Chapter 9 discusses the conclusions derived from this work, areas of future research, and other 

applications for dual-frequency IVUS probes.  
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CHAPTER 2

CLINICAL BACKGROUND OF ATHEROSCLEROSIS 

 

Atherosclerosis is a pathological build-up of a lipid burden in arteries that can result in 

ensuing cardiac events such as stroke or myocardial infarction. Atherosclerosis is associated with 

a large portion of reported sudden deaths in the United States as well as world-wide.  While the 

etiology of the atherosclerosis is still being studied, the epidemiology of the disease as well as 

the consequences of leaving the matter untreated necessitates further advances in its field of 

study to preserve global health. A background of atherosclerosis outlining the phases of 

development, diagnosis, and treatment will be covered in this chapter. Finally, the relationship of 

microvasculature with vulnerable plaques will be defined in terms of lesion assessment and 

treatment response.   

2.1 Dysfunction of normal vasculature due to atherosclerosis 

Atherosclerosis impedes the function of normal, healthy arteries preventing them from 

exchanging metabolites and waste products from regions of tissue that they would normally 

supply (Figure 2.1). Arteries are composed of 3 basic layers that serve different functions – the 

intima, media, and adventitia. The outermost layer is the adventitia or tunica externa and is 

composed mainly of connective tissue and provides a support function for the artery. Owing to 

its composition of mostly collagen and elastin fibers, the adventitial layer is tough and durable to 

give protection to the remaining, inner two layers which are considerably more delicate. The 

adventitia of larger arteries also functions similar to basement membranes found in other organs 
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given they support a delicate network of vessels (vasa vasorum) and nerves (nervi vasorum). The 

vasa vasorum is a microvascular network that provides blood flow to diffusion limited regions of 

larger arteries while the nervi vasorum are primarily used to control vasoconstriction and 

vasodilation performed by the smooth muscle cells located in the media. The majority of vasa 

vasorum originates form the adventitia, but some vasa vasorum comes from the intimal or 

medial layers [7]. Vasa vasorum is present only in larger arteries and typically will not be found 

in healthy human vasculature with a lumen less than  0.5 mm in diameter [8] or in vessels having 

a wall thickness less than 29 cells [9, 10]. While it is still undetermined if their role is causal or 

reactive, vasa vasorum proliferation is enhanced in regions affected by cardiovascular diseases 

such as atherosclerosis and the detection of enhanced microvascular networks would be a 

valuable diagnostic tool as an indicator of imminent rupture [8].  

 

Figure 2.1:  Comparative anatomy of cardiovascular disease states. The artery is composed of 3 

distinct layers that may be affected differently depending upon cardiovascular health. Figure 

reused with permission from [11] (Copyright © 2014 Wolters Kluwer Health)  

 The media or tunica media is the middle layer of an artery and is oftentimes the thickest 

layer of an artery. The layer is populated by a lamella of smooth muscle cells responsible for 

adjusting the size of the blood vessel. Vascular patency is important for maintaining proper 
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systemic blood pressure and can also be used to regulate blood flow to specific regions. Smaller 

arteries may only have a single layer of smooth muscle cells, but larger arteries will have 

multiple layers connected with elastic tissue arranged in varying orientations. The elastic tissues 

in the media not only connect individual sheets of muscle, but also provide pulsation dampening 

which gives smaller arteries a nearly time-invariant blood velocity. Additionally, elastin has roles 

that exist outside structural support such as the prevention of over-proliferation of smooth 

muscle cells [12]. 

Finally, the innermost layer is the intima or tunica intima and is composed mainly of 

endothelial cells. Except in the largest arteries, the intima is composed of a single layer of cells 

attached with a delicate connective layer. The intima is in direct contact with blood flow and is 

the principal site for molecular imaging strategies since microbubbles cannot extravasate (see 

Chapter 3 for more discussion). The intimal layer of arteries is the primary site affected by 

atherosclerosis where the buildup of plaque burden occurs within the arteries.  

Atherosclerotic related cardiovascular disease is a principal cause of death worldwide and 

is a disease which can manifest without warning [1]. Acute coronary syndromes are postulated to 

be initiated by atherosclerotic plaque ruptures in up to 75% of cases [2, 3]. For this reason, 

detection of atherosclerotic plaques prone to rupture is one of the most active areas of research in 

cardiology and biomedical imaging [4]. The imaging of coronary atherosclerosis and developing 

methods to noninvasively assess the instability of atheromatous plaques is critically important to 

reduce patient mortality due to cardiovascular disease. Furthermore, the identification of 

vulnerable plaques that may detach would enhance patient treatment and reduce the risk of 

complications such as myocardial infarction [13-17]. Computed tomography, magnetic 

resonance angiography, and gray scale intravascular ultrasound are currently utilized in 
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atherosclerotic plaque assessment, but all of these methods provide limited information in 

regards to degree of stenosis or plaque morphology [18].  

Atherosclerosis is often considered in light of its consequences, namely coronary 

blockages that cause heart attacks in unhealthy individuals. The disease is one that culminates 

over several decades and is a silent killer that manifests itself in a sudden thrombolytic event 

which causes the most significant impacts on health. Thrombosis formation is a result of 

atherosclerotic lesions building up and exposing their inner core to the blood where the body’s 

natural thrombolytic cascade begins and forms a clot. When the thrombosis dislodges, it 

becomes an embolism and travels downstream in the circulatory system where it occludes the 

vessel. At this point, the embolism cannot travel further and will block blood flow to regions 

normally supplied by the artery. Atherosclerosis mediated embolisms are the principal cause of 

deadly complications such as heart attacks and stroke and it is very difficult to detect plaques 

prone to rupture when they are relatively safe to treat.  

While atherosclerosis is considered a systemic disease that affects the cardiovascular 

system, the most dangerous plaques tend to develop in specific locations of the arterial anatomy. 

It is important to note that the plaques that are frequently studied are those that cause the more 

severe complications since they impact patient health severely and researchers acknowledge that 

there may be a bias on underreporting plaques that do not cause significant medical issues [19]. 

The propensity of plaques to form in the aorta, coronary, carotid, and femoral arties is higher 

than in other regions of the cardiovascular system [20].  The spatial distribution of acute 

coronary occlusions in 208 patients have identified that the majority of occlusions happen within 

the proximal third of the right coronary (RCA), left anterior descending (LAD), and left 

circumflex (LCx) arteries [21].  A graphical depiction of the frequency of occlusions is given in 
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Figure 2.2 which summarizes the findings of Wang et al. The coronary sites within 25 mm of the 

ostium contained at least 50% of the observed occlusions.  

 

Figure 2.2:  Spatial distribution of coronary occlusions indicates that the vast majority of lesions 

prone to rupture develop in the proximal portions of the right coronary (RCA), left anterior 

descending (LAD), and left circumflex (LCx) arteries. The percentage of all occlusions identified 

in the study of 208 patients is given per artery. Image modified and reused with permission from 

[21] (Copyright © 2004 Wolters Kluwer Health, Inc.) 

The formation of plaques is promoted based on the rheological conditions of the artery. 

As blood flows through an artery, the velocity profile through the lumen varies spatially as well 

as temporally in larger arteries. Near the center of the vessel, blood velocities are typically at 

their highest as predicted by the Poiseuille model for pressure driven flow through a tube. While 

this model is not satisfactory to model hemodynamics due to its simplicity, it does demonstrate 
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that the velocity of the blood flow through the artery approaches zero near the vessel wall. 

Conservation of energy requires that shear stress develops at the wall-fluid interface and this 

shear stress has been studied with respect to atherogenesis. It was observed in the carotid 

bifurcation that regions having lower wall shear stress (τwss) have a positive correlation with 

plaque formation [22]. Computational fluid dynamics have studied patient derived blood flow 

simulations and have confirmed that low τwss promotes plaque formation and that certain blood 

flow patterns such as flow separation can additionally increase propensity for lesions to form 

[23]. Figure 2.3 illustrates an example of the complex flow profiles that can be found in the 

carotid bifurcation. While under-stressed regions of the endothelium promotes atherogenesis and 

lipid culmination, it has been observed that high regions of τwss can destabilize plaque bodies and 

is a likely route to plaque rupture [24].   

 

 

Figure 2.3:  Spatial variations of atheroma formation at the carotid bifurcation. Regions of flow 

separation correspond to areas of low wall shear stress and lipid accumulation (yellow) in the 

sub-intimal space. Blood flow stream lines are depicted in solid black arrows and show regions 

of flow detachment. ESS – Endothelial Wall Shear Stress. Illustration modified and reused with 

permissions from [25] (Copyright © 2007 Elsevier). 
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2.2 Plaque classification 

 The American Heart Associate has established a classification system used to describe 

plaques based on morphology and associated risks. This classification system is the result of a 

mid-1990s Committee on Vascular Lesions of the Council on Arteriosclerosis that reviewed 

histological sectioning of numerous plaques types [26-28]. In this classification system, plaques 

are numbered using Roman numerals with letter suffixes to designate specific variations from the 

general histological motif of the current plaque level. The table below (Table 2.1) summarizes 

the AHA classification system and gives a brief description of plaque features that describe the 

plaques within that category while Figure 2.4 provides an illustration of the morphologies within 

a given type. An overview of the different plaque types will be highlighted briefly.  

Table 2.1:  Descriptive summary of the AHA plaque classification system. 
AHA Atherosclerotic Plaque Classification 

Type Description 

Non atherosclerotic 

0 Normal, healthy artery 

I 

Adaptive thickening due to mechanical 

stresses. Present from birth. Intimal 

macrophage foam cell accumulation. 

II 
Intimal xanthoma: Fatty streaks visible and 

infiltration of SMC with foam cells 

III 
Pre-atheroma: Extracellular lipid in small, 

isolated pools appear. Intermediate lesion. 

Atherosclerotic 

IV 

Atheroma: Lipid pool or necrotic core 

encapsulated by fibrous tissue, potentially 

symptom producing 

V 
Fibroatheroma: Thick fibrous cap covering a 

lipid/necrotic core 

VI 
Complicated lesion: Fissures, ulcers, or other 

indications of previous damage present 

b 
Subtype indicating the presence of 

calcification within the lesion 

c 
Subtype indicating the lipid core has been 

replaced with fibrous tissue  
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Figure 2.4:  Graphical summary of the AHA plaque classification system. Figure reprinted with 

permission from  [28] (Copyright © 1995, Wolters Kluwer Health, Inc.).  

The first type of plaque identified in the AHA classification system is Type I lesions. 

Commonly referred to as initial lesions, Type I “plaques” are typically comprised of regions of 

adaptive wall thickening with the presence of a few lipid-filled macrophages (foam cells) in the 

intima. Adaptive wall thickening refers to hypertrophy of vascular tissue in response to the 

mechanical stresses imparted on the vessel wall due to blood flow and are found from birth 

onward. The defining feature that distinguishes Type I lesions from adaptive thickening is the 

presence of foam cells in the intimal regions of the vessel wall which marks the beginnings of 

atherosclerosis. Type II lesions (intimal xanthomas) have an escalated amount of lipid in the 

form of streaks, which are bands of foam cells. Smooth muscle cells are noticeably more 

proliferated at this stage and contain some foam cell infiltration.  Type III lesions are classified 
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as “pre-atheroma” or intermediate lesions because they represent the stages between those that 

are typically asymptomatic and those that cause complications (Type IV+). Lipid accumulation 

appears not only within foam cells, but also in the extracellular space of the vessel wall in small, 

isolated pools. Until this point, all listed classifications of atherosclerotic lesions were considered 

non-atherosclerotic and are generally not symptom producing. Type IV lesions are atheroma and 

are potentially symptom producing lesions. The plaque is formed by a lipid or necrotic core that 

is encapsulated with connective tissue. If the encapsulating material is breached, the core of the 

plaque is considered ruptured and exposes thrombogenic material to the blood to promote the 

formation of a blood clot and possible embolism. Because of the lesions intimal disorganization 

and predisposition to sudden advancement to ischemic events, the Type IV plaque is classified as 

an advance lesion and at risk for future complications. If the encapsulating material is 

considerably thick, the plaque may be classified as Type V. The Type V lesion may also be 

referred to as a fibroatheroma or sub-classified to Type Vb (if calcifications are present) or Type 

Vc (if the lipid pool is minimal or absent). If any signs of rupture, hemorrhage or ulceration 

occurs in the plaque, it is immediately classified into the final category, Type VI. Type VI 

lesions are considered complicated lesions and may be sub-categorized based on any identified 

feature including (a) surface disruption, (b) bleeding, or (c) thrombosis. In contrast to other 

lesions, Type VI lesions are very obstructive and oftentimes are detected due to the symptoms 

that they cause. Ruptured and healed plaques are stentotic with the majority of them (75%) 

reducing lumen diameters by 50% or more [29].  

Recently, Virmani has proposed a modification to the AHA classification system to 

include possible causes of thrombosis other than rupture such as endothelial erosion and the 

exposure of calcified nodules to the lumen of the vessel [30]. This modified classification was 
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formed in response to growing evidence that suggests that other origins of atherothrombosis 

manifests itself in poor clinical outcomes. In one study, 75% of patients with acute myocardial 

infarction occurred due to plaque ruptures and the remaining 25% were caused by plaque erosion 

[31].  

2.3 The vulnerable plaque and implications of intraplaque blood flow 

While disease progression of atherosclerosis is still under investigation, lesions with 

certain characteristics are more prone to rupture and are considerably more dangerous than 

others. Muller was the first to describe these lesions as “vulnerable plaques” referring to their 

likelihood to cause future coronary thrombosis [32].  Since then, clinicians and researchers have 

been identifying key features of vulnerable plaques that may be used to distinguish them from 

plaques that under changes in stress or rheological environment will not rupture and thus 

considered stable.  Transient ischemic events are a severe complication arising from untreated 

vulnerable plaques and there is an unmet need of identifying these plaques early, before 

complications can arise. Both morphological and functional differences exist between stable and 

unstable (vulnerable plaques).   

The characteristics that define a vulnerable plaque results from the pathological course 

preceding those plaques that have been found to rupture. A graphical summary is given from 

Vancraeynest et al. (Figure 2.5). 
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Figure 2.5:  Identifying features of a vulnerable plaque.  Figure reprinted with permission from  

[5] (Copyright © 2011, Elsevier). 

Of the several characteristics said to identify a vulnerable plaque, several of them may be 

detected using contrast enhanced ultrasound methods. Active areas of inflammation are common 

in vulnerable plaques and it has been shown that molecularly targeted microbubbles can be used 

to selectively enhance areas of inflammation from atherosclerosis using ultrasound [33]. Areas of 

platelet aggregation are also a characteristic found in vulnerable plaques [1] which are possible 

targets for molecular imaging by using GPIIb IIIa binding receptors [34]. Intraplaque blood flow 

in the form of complex ulcerations, hemorrhage, or neoangiogenesis also signifies a lesion that is 

either at risk for rupture or has already ruptured and healed. Current imaging methods have 

difficulty detecting this blood flow, especially in coronary arteries. Methods like contrast 

enhanced ultrasound have a great potential for detecting this complication in vivo and has already 

shown improvement of plaque visualization in carotid lesions using transcutaneous contrast 

enhanced ultrasound [35]. By designing an IVUS transducer capable of contrast specific 

imaging, vessels other than the carotid arteries could be imaged to classify and assess plaque 

vulnerability and would be a valuable addition to current percutaneous interventions.  
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2.4 Imaging modalities 

Intravascular ultrasound is one of the leading technologies used in the assessment of 

atherosclerosis disease progression. While other modalities can image the vessel lumen with the 

aid of contrast, no other imaging modality can resolve the small structure composition of plaques 

and endothelial structure in real time. Some of the competing technologies are in the fields of X-

ray, nuclear medicine, magnetic resonance (MR) or optics, but there are also several other 

ultrasound based modalities that provide assessment of the vascular health of a patient. A review 

of all these modalities will be discussed in context of assessing vascular health describing their 

use, benefits, and disadvantages. 

2.4.1 X-ray 

X-ray based approaches are invaluable tools for clinicians assessing vascular health by 

visualizing vast regions of the body. They provide a large field of view, can be noninvasive, and 

have excellent resolution. However, these approaches have limited application in disease models 

such as atherosclerosis which is characterized by complications associated with plaques growing 

inside the vessel. While they can provide a detailed view of the lumen of the vessel, the majority 

of atherosclerotic vessels do not exhibit narrowing of the vessel lumen until the final stage of the 

disease. Instead, as plaque continues to build up, the arteries compensate by dilating outward 

such that blood flow remains largely unchanged in a process known as Glagov remodeling [36]. 

While it is true that stenotic vessels are at a greater risk for complications compared to non-

stenotic vessels, the frequency of non-stenotic vessels is much greater in the population and thus 

imaging of the blood lumen alone cannot provide a means of detecting the disease for the 

majority of those afflicted by it [1]. 
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X-ray angiography is performed by injecting a radio-opaque contrast agent into the lumen 

of the vessel and then imaging a patient with x-rays to track the flow of the contrast. Dynamic 

and real-time information can be extracted by analyzing the flow of radio-contrast agents directly 

using x-ray fluoroscopy and provides a wide field of view that is very useful for interventional 

procedures. Cardiac interventions such as tracking guidewire advancement or confirming 

coronary blood flow after angioplasty are almost exclusively performed using this imaging 

modality. Fluoroscopy provides detailed 2D projections which may be combined with 3D 

morphological information by advancing the gantry that houses the receiving equipment around 

the patient in a rotational angiography procedure. Computed tomography angiography (CTA) 

create 3D volumes of the patient’s vasculature in a similar manner by injecting a dye 

systemically in a peripheral artery instead of catheter delivery as done in the previously 

described approach.  X-ray angiography requires contrast and ionizing radiation, but has 

excellent resolution, can be done in real time, and can image a large area quickly making it the 

workhorse of the interventional radiology department.  

Nuclear medicine is a field of medicine that uses radiolabeled isotopes to selectively 

image areas of disease. The method is performed by injecting a radioactive isotope into the 

patient, typically designed to accumulate at regions of interest such as markers of disease. The 

injected marker will spontaneously decay to a lower energy level which typically produces high 

energy (140-512 keV) ionizing radiation that can be detected with gamma cameras to form 

images. Three dimensional imaging in nuclear medicine is primarily performed with single 

photon emission computed tomography (SPECT) using rotating gamma cameras or with positron 

emission tomography (PET) using a detection ring to measure simultaneous pairs of positrons. 

SPECT and PET can image a variety of diseases by conjugating radioactive labels such as 
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technetium-99m or fludeoxyglucose (FDG) to binding ligands, peptides, monoclonal antibody 

fragments, or cellar receptors that would enhance uptake of the material into tissue to 

preferentially target specific areas within the body. Nuclear medicine has numerous applications 

in the field of cardiology. Some of the more popular methods include radionuclide 

ventriculography and myocardial perfusion which allow physicians to measure cardiac output 

and identify regions of cell viability within the heart tissue, respectively. Imaging atherosclerotic 

lesions have been studied with SPECT to identify regions of enhanced lipid uptakes in diseased 

arteries, sites of endothelial damage, and macrophage accumulation [37]. Likewise, similar 

studies in carotid, femoral, and iliac arteries have been conducted to track inflammation in 

atherosclerosis using PET imaging of 18F-FDG [38]. Nuclear medicine approaches are extremely 

valuable diagnostic tools that can be implemented in assessing plaque functionality in 

atherosclerosis, but image quality degrades substantially when trying to image coronary vessels 

due to the high mobility of the heart and tidal blood volume [37]. 

2.4.2 Magnetic Resonance 

Similar to CTA, magnetic resonance angiography (MRA) can create excellent images of 

blood vasculature either with or without contrast agents by magnetically inducing decaying 

nuclear spins (typically hydrogen). Several methods exist to image blood flow, but MRA is most 

different from CTA in that images of vessels are gathered using non-ionizing magnetic fields by 

gathering spectral information in k-space. MRA can visualize vessels with or without the aid of 

contrast agent making it an attractive option for patients with kidney disease, but without 

contrast the technique is sensitive to flow making it more difficult to image smaller vessels that 

have lower flow rates. The resolution obtained using MR techniques depends upon how well 

sampled the image is in k-space. Thus, higher resolution MRA images take longer to acquire 
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making them subject to motion artifacts which must be accounted for in moving structures like 

coronary vessels. Additionally, the MR equipment used to obtain vascular images are expensive 

to purchase, operate, and maintain [39]. MRA approaches have improved over the past decade 

and provide an alternative to ionizing imaging approaches with spatial and temporal resolutions 

coming close to those achieved through X-ray methods [40].  

2.4.3 Ultrasound 

Intravascular ultrasound is commonly performed by inserting a catheter in a large 

peripheral vein and then guiding it to the target location. Once in place, an ultrasound transducer 

is passed within the catheter to image the surrounding structure by using conventional pulse-echo 

B-mode imaging to reveal the internal structure of the vessel. Because the ultrasound transducer 

is located very close to the target to be imaged, ultrasound attenuation is low allowing for the use 

of high frequency sound waves which give better axial and lateral resolution (typically ~40 MHz 

single elements, ~20 MHz for arrays). B-mode images using such frequencies allow visualization 

of vessel structures such as endothelium, media, and adventitia in healthy vessels and can also 

image plaques to determine composition based on morphology. Traditional IVUS imaging is 

frequently used to determine the accuracy of stent placement for coronary interventions and can 

determine if a vessel is hemorrhaging from vessel dissection post-balloon angioplasty.  

Intravascular ultrasound has many specializations that can compete with the presented 

dual-frequency transducer design presented herein. Of these specializations, several seek to 

better characterize plaques based on the composition of the plaque. One such commercially 

available tool is Virtual Histology (VH) provided by Volcano. VH incorporates spectral analysis 

of raw radiofrequency (RF) data in order to determine composition of the area by categorizing 

tissue in one of four categories (fibrofatty, fibrous tissue, necrotic core, or dense calcium) and it 
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has been shown that VH correlates well with traditional histology following atherectomy [41]. 

However, VH and other methods like it have room to improve since (1) the broad categorization 

of plaque composition is limited to only 4 categories, (2) these categories do not fully describe 

the characteristics of a vulnerable plaque, and (3) must be gated to occur only during the R-wave 

portion of the cardiac cycle [1, 42]. Other composition determining methods have been 

developed such as integrated backscatter IVUS and iMAP, but are similar to VH because they 

perform spectral analysis to identify tissue types in plaques [43-45]. 

While the previously discussed methods seek to characterize plaques based on their 

composition, analysis of plaques may be based on their mechanical properties to provide 

additional information into the behavior of the plaque. Elastography in ultrasound is a method of 

imaging the stiffness of tissue and can be performed in a number of ways. One such way is by 

using acoustic radiation force (ARF) using 2 different pulse types – one pulse to push tissue and 

another to track the motion of the tissue upon release of the pushing pulse [46]. Tissue properties 

such as viscoelasticity and stiffness can be estimated from this type of imaging and can be used 

to map the relative mechanical properties of a plaque highlighting areas of concern. This method 

is a major advancement in determining deformation behavior of tissue types using IVUS and was 

initially developed as displacement tracking of vessel walls under diastole compared to systole 

[47, 48]. However, ARF imaging is computationally expensive and processing of individual 

images is usually performed offline and thus not real-time, although there are studies that use 

graphical processing units to significantly decrease processing time, leading to real-time ARF 

imaging at lower resolutions [49]. Elastography is a promising field of research in assessing the 

vulnerability of atherosclerotic lesions by determining the varying degrees of stiffness of the 

tissue and thus provides valuable information on the morphology of the plaque. However, to 
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accurately identify a vulnerable plaque, one needs to know both the morphology and the activity 

[1]. Active plaques exhibit inflammation, invasion of foam cells and macrophages, have higher 

metabolic activity, and undergo angiogenesis in the plaque. The critical need to assess the 

activity level of plaques is left largely unanswered by most in vivo imaging modalities presenting 

an opportunity for contrast agent use in IVUS. 

Microbubble contrast agents (MCAs) have already been used to identify molecular 

markers associated with intravascular inflammation [50] and new transducers in IVUS are being 

developed for the sole purpose of detecting contrast flow in microvessels such as the vasa 

vasorum which are considered possible etiologic factors associated with a growing, active plaque 

requiring treatment. Much research has already been performed studying MCAs in molecular 

imaging. Thus, the remaining challenge behind using contrast in IVUS is detecting the presence 

of an agent while suppressing surrounding tissue signal. Numerous approaches exist to create a 

contrast only image that would be competitive to acoustic angiography. These contrast detection 

methods can broadly be categorized into single pulse or multiple pulse detection strategies.  

Multiple pulse contrast detection can be performed on a limited bandwidth transducer and 

is currently the preferred method used by commercial vendors in transcutaneous contrast 

imaging. The most basic contrast imaging technique is pulse inversion which sums the traces 

recorded by a pair of inverted waveforms in order to cancel out the linear reflectors, such as 

tissue, while retaining the even harmonics generated by nonlinear scatterers, such as contrast 

agents [51]. Although easy to implement, pulse inversion imaging is not ideal to create images 

with high contrast to tissue ratio (CTR) since it has been shown that tissues can produce 

harmonic signal in the first harmonic which composes the majority of the signal content used to 

create pulse inversion imaging [52, 53]. 
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Single element transducers for second harmonic and subharmonic imaging have been 

developed to have high transmission efficiency at the fundamental frequency, fc, while 

maximizing reception sensitivity at 2fc or 0.5fc [54, 55]. However, strong fundamental signals are 

present due to the combined channel sensitivity so filtering and pulse inversion are required to 

make contrast-only images [56]. Other pulse inversion approaches in IVUS have been studied 

and compared to chirp reversal contrast imaging by Maresca [57]. The use of pairs of either up-

sweeping or down-sweeping chirps delivers more energy into the tissue, but requires match 

filtering of the received signal to compress the rather long transmitted pulse length to retain 

decent axial resolution. This matched filtering is not perfect and usually results in poorer 

resolution than other approaches (as noted by Maresca, ultrasonic pulse inversion could resolve a 

200 µm channel that chirp reversal imaging could not). Radial modulation in IVUS imaging has 

also been demonstrated to detect contrast agents using a 20 MHz IVUS commercial catheter in 

vitro by (likely) exploiting non-thickness mode excitations exhibited by a commercial catheter 

[58]. Care has to be used when using radial modulation since the low frequency pulse used to 

modulate microbubbles can cause distortion of properties that varies with depth [59]. This can be 

corrected for if nonlinearity parameters can be obtained, but presents a problem in environments 

with multiple structures each having different nonlinearity as seen in the layers that compose a 

vessel. 

2.4.4 Optical  

The final imaging modality to discuss would be those pertaining to optical imaging. 

Optical based approaches are attractive because the wavelength of light is extremely small giving 

them resolution on the order of several microns [60]. Additionally, some biological tissue can 

selectively absorb different wavelengths of light much like infrared spectroscopy is used to 
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identify chemical structures in analytical chemistry. Near infrared spectroscopy has been used to 

identify and help characterize plaques using this patented idea [61]. Lipid rich plaques have been 

noted to be characterized especially well using this technique [62]. However, using light as the 

source for imaging also presents a limiting depth since it is subject to a higher degree of 

scattering. Since the wavelengths of the light source are so small, small scatterers such as 

individual red blood cells can severely limit the depth at which this imaging technique may be 

used (~ 1 mm). Optical coherence tomography (OCT) is yet another way of using light to image 

the endothelial layer of plaques but also makes a trade-off between higher resolution and reduced 

depth of penetration that is common to most coherent imaging.  

Lastly, researchers have explored combining different modalities together to get the best 

picture of how vessel diseases such as atherosclerosis behave. The finer resolution of OCT is 

used in the near-field while the depth of penetration of IVUS is exploited to look at deeper 

structures that cannot be seen with optical based approaches [63]. Hybrid OCT/IVUS catheters 

are promising, but are difficult to manufacture since the specialized needs of two separate 

imaging modalities must be combined in a limited amount of space. Additionally, this type of 

system may be better at assessing fine morphological features such as the presence of a thin 

fibrous cap, but would have trouble detecting vasa vasorum and intraplaque neovascularizations 

since they typically originate from the adventitial layer of the vessel and would likely be too 

deep to image using either modality. 

2.5 Vascular response to statin therapy 

Patients diagnosed with atherosclerosis or those with prior history of cardiovascular 

disease may be prescribed lipid lowering treatments either for treatment of disease or prevention 

of it. Low cholesterol diets can help some patients with atherosclerosis, but not others especially 
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if anabolism of cholesterol is hyperactive. Coupled with dietary and activity level precautions, 

patients are often prescribed a class of drugs called statins. Statins help reduce cholesterol levels 

by inhibiting the rate limiting enzyme of cholesterol synthesis in the liver, 3-hydroxy-3-

methyglutarl-coenzyme-A reductase (HMG-CoA reductase). Statins such as lovastatin produced 

by the fungus Aspergillus terreus prevent this enzyme from creating 3R-mevalonate which is one 

of the first reagents needed toward synthesis of cholesterol [64]. 

When plaques are detected and statins administered for treatment, the ideal outcome is 

regression of the plaque to a small, stable level. Thus, it is likely to suspect that statin therapy 

alters the physical composition of the plaque itself. Analysis of clinical outcomes of patients 

undergoing statin therapy compared to those that do not suggests that plaques are targeted by the 

therapy; the growth of plaques is retarded, and in some cases, regression of the plaques may 

occur [65]. Statins lower levels of low density lipoprotein (LDL) concentration and may increase 

high density lipoprotein (HDL) concentration not only systemically, but also within the plaque 

[66, 67]. This intraplaque decrease in cholesterol levels indicate that plaques are at a lower risk 

of causing future cardiac events becoming more “stabilized.”  

One hallmark of plaque vulnerability this course of study wishes to leverage is the 

presence or absence of neovascularizations in the plaque as an indicator of increased 

susceptibility to plaque rupture. The presence of blood vessels in a plaque has already been 

identified to precede plaque growth and reacts to anti-angiogenic therapies [68]. While not anti-

angiogenic in nature, vasa vasorum has similarly shown response to statin therapies with 

decreasing vascular density in plaques undergoing reduced progression or regression [69, 70]. It 

is possible that the loss of vascularity in plaques could be used as an indicator of growth 

inhibition and effective treatment in response to statin therapies.  
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Since the proposed transducer is designed to visualize microvessel contrast flow, 

specifically originating inside the plaque, future in vivo validation must be considered. It has 

been suggested that a minimum of 19.7 months of statin treatment are required to identify plaque 

regression in atherosclerosis [65]. Based on the previously discussed literature, we expect to see 

vasa vasorum reduction near the conspicuous plaque, meaning the signal of interest should go 

away in response to effective statin therapies. Studies with measurands that reduce over time can 

be difficult to perform since conducting the study incorrectly could have the same results as the 

expected longitudinal outcome from treatment. Additionally, statins are contraindicated with 

patients with liver disease. Since the primary site of elimination of most contrast agents are the 

lungs for gas core release and the liver for shell material removal [71, 72], it is unclear if the 

injection of a phospholipid shell contrast agent will cause liver dysfunction for the animals or 

patient undergoing statin therapy. A secondary form of measurement is proposed by following 

the precedent set by contrast enhanced ultrasound examination of carotid plaques. A review of 

the benefits associated with this approach is given by Feinstein, some of which are not applicable 

upon translation to IVUS such as enhanced delineation of intima-media thickness (IMT), which 

is normally easy to see in IVUS without contrast since higher frequencies are used [35, 73]. 

However, contrast enhancement for complex lesions such as those with dissections or ulcers 

could be improved by using a transducer designed to image contrast agents [74].  
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CHAPTER 3

CURRENT STATUS AND PROSPECTS FOR MICROBUBBLES IN ULTRASOUND 

THERANOSTICS 

 

Microbubble contrast agents are capable of performing diagnostic and therapeutic 

behaviors based on their application and design when manufacturing them. The first section of 

this chapter will provide a brief discussion of the advantages of microbubbles combined with 

ultrasound. The following section will give a detailed description on how the design of the 

microbubble material impacts its utility in theranostics and will be followed by a section that 

details the physics of how microbubbles behave when insonified. The chapter will then conclude 

by providing both diagnostic and therapeutic applications of microbubble contrast agents 

(MCAs) as well as address some of the current challenges of using MCAs.  

Theranostics refers to the combination of diagnostic and therapeutic approaches, typically 

for assessing response to therapy. Although it is possible for an agent to be used simultaneously 

for imaging and therapy, by definition, theranostics is fundamentally the combination of a 

diagnostic test with a therapeutic approach. Thus, theranostics can involve either application of a 

diagnostic technique followed by a therapeutic, or vice versa [75]. Theranostic approaches are a 

key aspect in the drive toward personalized medicine, where the tailoring of decisions and 
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treatment practices for individual patients is based on diagnostic information specifically from 

that patient. In this chapter, we illustrate how microbubbles can be used for imaging, for therapy, 

or for both simultaneously. Because of this broad application, microbubbles combined with 

acoustics may be one of the most universal theranostic tools. 

3.1 Introduction 

3.1.1 Advantages of ultrasound 

Ultrasound is already one of the most widespread diagnostic modalities, routinely used in 

cardiology and obstetrics, but also commonly used for imaging soft tissues [76]. The utility of 

the ultrasound platform is further enabled by recent advances in electronics. Rapidly shrinking 

and more powerful application-specific integrated circuits have led to ultrasound being one of 

the most portable imaging modalities. Many ultrasound manufacturers now offer imaging 

systems which are the size of laptop computers, and some of the latest devices are only slightly 

larger than smart phones. In contrast, the sizes of other clinical imaging systems such as MRI, 

CT, SPECT, and PET are substantially larger and therefore remain less portable and accessible. 

Although ultrasound does not provide the large region volumetric imaging that is provided by 

these other modalities, its acquisition rates exceed that of MRI and nuclear imaging technologies 

by several fold. This high-frame rate provides an advantage in therapeutic applications with real-

time feedback, which can be cumbersome with other imaging techniques. Another advantage of 

ultrasound is the significant soft-tissue contrast obtained in its images, although tissue 

attenuation severely limits the resolution and contrast of ultrasound for deep tissue applications. 

Furthermore, ultrasound imaging delivers no ionizing radiation, and thus is considered one of the 

safest imaging modalities [77]. Although the safety of ultrasound contrast agents still needs to be 

examined for many applications, initial evaluations of contrast ultrasound in cardiology suggest 
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that adverse effects resulting from contrast use are very rare [78-80]. Furthermore, ultrasound 

contrast may play an important role in patient populations where MRI and CT contrast agents are 

contraindicated (such as renally compromised patients) [81]. Along with the inherent safety and 

portability of ultrasound imaging, the equipment cost is significantly lower in comparison with 

other imaging modalities. With these advantages, the future role of the microbubble platform in 

both diagnostics and therapeutics is highly promising. 

3.1.2 Advent of microbubbles for medical imaging 

Ultrasound image formation relies on the reception and interpretation of acoustic 

reflections scattered by blood and tissue. However, the scattering components associated with 

blood are weak, and thus blood flow in tissues and small vessels is challenging to image. 

Gramiak and Shah are credited with the first publication of the contrast ultrasound technique as 

they described the application of bubbles produced by rapid intracardiac saline injections to 

enhance delineation of aortic blood flow [82]. It was not until over two decades later, with the 

marketing of Albunex, Mallinckrodt Medical, Inc., St. Louis, MO, that microbubbles became 

commercially available for use as an ultrasound contrast agent [83]. 

3.2 Microbubble composition 

3.2.1 Encapsulating shell 

Initial studies of gas bubbles for acoustic enhancement utilized unencapsulated 

microbubbles that were generated in situ. Because of the solubility of air in blood, 

unencapsulated microbubbles dissolved in seconds [84], and could not traverse the pulmonary 

vasculature [85, 86]. First generation contrast agents utilized a stabilizing albumin shell which 

improved circulation time substantially over unencapsulated microbubbles. The shell reduces the 
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rate at which the gaseous core diffuses into the surrounding media [87]. Microbubbles are 

normally injected intravenously as suspensions meaning they are exposed to aqueous solutions 

during clinical use. As such, shells composed of amphiphilic molecules help ensure 

microbubbles can achieve thermodynamic stability with a hydrophobic gas core. Various 

compositions have since been used to provide an encapsulating shell, including proteins, lipids, 

and polymers. The commercially produced contrast agents Optison (Mallinckrodt, San Diego, 

CA) and Definity (DuPont Pharmaceuticals Co., North Billerica, MA) are currently the only two 

Food and Drug Administration (FDA) approved agents in the United States still in production. 

Optison and Definity utilize albumin and phospholipid encapsulation, respectively, to provide 

their stabilizing shell material for the inner gas core [88]. 

The diversity of encapsulating material composition, thickness, stiffness, charge, and 

surface area enables tailoring of bubble design for custom applications [89]. Shell material 

choice is important in microbubble formulation and design because the shell functions as a 

scaffold for ligand binding, prevents core gases from diffusing, and influences biocompatibility. 

Phospholipid shells are widely used because they are easily modifiable for ligand-binding and 

targeting applications. The polar heads of these phospholipids are frequently the site of 

conjugation to make targeted microbubbles [90]. Direct modifications of the microbubble shells 

have been used in specialized applications to explore novel methods of enhancing microbubble 

function [90-95]. 

Polyethylene glycol (PEG) chains of varying length attached to the shell of the 

microbubble act as steric brushes, reducing microbubble aggregation and immune recognition 

while also providing an attachment point for bioconjugates [90, 96, 97]. 
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3.2.2 Gas core 

The composition of the gas core also determines the stability of the microbubble. 

Commercial formulations of the inner gas core have included air (Albunex), sulfur hexafluoride 

(Sonovue, Bracco SpA, Milan, Italy), or perfluorocarbons (Definity, Lantheus Medical Imaging, 

North Billerica, MA).The transition from air to high molecular weight fluorinated gas cores has 

improved microbubble stability. Gases with lower blood solubility and higher molecular weight 

take longer to diffuse across the microbubble shell allowing for longer persistence times [98]. 

3.2.3 Microbubble size control 

Most lipid and protein encapsulated microbubbles are formed through either mechanical 

agitation or sonication to produce a suspension of encapsulated bubbles. These methods result in 

microbubble populations that are polydisperse. The acoustic response of microbubbles varies 

with respect to many parameters but the largest contributor is diameter [99, 100]. Acoustic 

scattering cross section is a function of size, and microbubbles of decreasing diameter naturally 

oscillate at higher resonant frequencies. By tailoring microbubble size distribution, imaging 

sensitivity can be optimized [101-104]. Microbubble size also plays a significant role in 

therapeutic effects, as size is proportional to drug loading, and smaller microbubbles require 

lower pressure magnitudes to cause shell rupture [105]. Microbubble size is also related to 

cavitation magnitude and corresponding changes in blood–brain barrier permeability during 

microbubble-enhanced focused ultrasound treatment [106, 107]. 

Microbubble preparations with custom or narrow size distributions are generally obtained 

in one of four ways: microfluidics [108, 109], electrohydrodynamic atomization [110], filtering 

[111], or differential centrifugation [102]. In microfluidics and electrohydrodynamic 

atomization, microbubbles are produced with uniform diameters by precisely controlling the 
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flow rates of the encapsulating (usually lipid) phase that sheaths around the inner phase (usually 

high molecular weight gas). Microfluidics uses flow-focusing devices driven by pressure along 

with advantageous channel geometries to direct and control flow while electrohydrodynamic 

atomization utilizes electric fields to pull droplets from a fluid cone. In contrast to the previous 

two techniques, differential centrifugation and filtering do not create microbubbles at a given 

size but instead refine a polydisperse population into sorted samples. Both methods are generally 

of higher throughput than either microfluidic or electrohydrodynamic techniques. Some groups 

have utilized filtering to refine microbubble populations, although this method can be 

challenging due to the fact that most microbubbles are very susceptible to destruction at high 

shear rates or pressure changes [112], and soft-shelled microbubbles are deformable and thus 

may not be efficiently sorted by specific pore sizes. Centrifugal sorting is commonly used in 

microbubble size refinement as it can be performed on large batches of microbubbles using 

common laboratory equipment. 

3.3 Microbubble behaviour 

3.3.1 Acoustic response  

The gas core of a microbubble has a compressibility that is several orders of magnitude 

greater than an equivalent volume of blood. It is this combination of high compressibility 

coupled with the low density of the core that provides a substantial impedance mismatch 

between microbubbles and surrounding blood or tissue, and thus makes microbubbles excellent 

ultrasound contrast agents [113]. When exposed to an ultrasound pulse, microbubbles oscillate in 

response to the acoustic pressure waves (Figure 3.1) [84, 114]. 
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Figure 3.1:  High-speed optical photography of acoustically excited microbubbles illustrating 

microbubble fragmentation as well as stable oscillation. (A) Diameter versus time streak 

photography showing a 3-µm bubble in response to two cycle insonation at approximately 1.5 

MHz and 1200 kPa. The microbubble is observed to expand and contract substantially and then 

fragment (B). Standard two-dimensional framing photography acquired simultaneously to the 

diameter versus time image presented in (A); (C) 20-cycle insonation of a 3.5-µm bubble at 

approximately3.5 MHz and 200 kPa, showing stable, linear, low-amplitude oscillation. 

At low acoustic pressures, most microbubbles oscillate stably, scattering sound energy as 

they resonate. At high acoustic pressures, large cycles of expansion and contraction can result in 

instability that results in fragmentation of the shell and consequential microbubble destruction 

with diffusive loss of the gas core. Microbubble destruction can also result in the release of any 

incorporated payload, facilitating the use of microbubbles as a therapeutic agent [105, 115]. 

Microbubble behavior depends on many factors, including acoustic frequency and pressure, 

bubble size, and physical properties of the shell and core. Environmental conditions such as 
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hydrostatic pressure and dissolved gas saturation are also influencing factors. In general, low 

acoustic frequencies, high acoustic pressures, and smaller diameters increase the likelihood of 

microbubble destruction [105, 116]. 

The phenomenon of acoustic radiation force provides an additional method to increase 

theranostic utility of microbubbles. Primary radiation force displaces bubbles along the direction 

of acoustic wave propagation. This force can physically displace microbubbles from the center of 

flow of a vessel and concentrate them against the endothelium [117]. Secondary radiation force 

can cause groups of microbubbles to aggregate together and is most significant when 

microbubbles are in close proximity (several bubble diameters) of one another [118]. Radiation 

force has been shown to both enhance the in vivo retention of molecularly targeted contrast 

agents [79, 119, 120], as well as increase the local delivery of drug-carrying microbubble 

vehicles [121-123]. 

3.3.2 In vivo behaviour 

During a contrast imaging exam, a solution of microbubbles is injected through a 

peripheral vein. Typically, circulation half-life is fairly short, and microbubbles remain in 

circulation on the order of several minutes [124]. Gamma scintigraphy of commercially available 

Quantison, Quadrant Healthcare Ltd, Nottingham, UK suggests the liver and spleen as the final 

destination of most microbubble shell components [125]. These observations have been 

corroborated more recently by PET imaging with lipid-shelled microbubbles [126]. Inert gases 

from defunct microbubbles are rapidly cleared through exhalation from the lungs. 
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3.4 Diagnostic applications 

3.4.1 Contrast specific imaging methods 

There are two primary categories of methods for detecting microbubbles that enable 

contrast-specific imaging. First, the oscillation of microbubbles in an acoustic field results in 

scattered broadband acoustic energy with a frequency range much greater than that produced by 

tissues. This signal is separated from tissue response via high- or low-pass filtering of the 

backscattered signal. Techniques include subharmonic imaging [127-129], the detection of 

microbubble signal at frequencies half of the imaging frequency; harmonic imaging [130, 131], 

the detection of microbubble signal at twice the imaging frequency; and superharmonic imaging 

[132, 133], the detection of higher harmonic multiples of the imaging frequency. A high-

frequency contrast imaging technique called acoustic angiography is a subtype of superharmonic 

imaging which requires low-frequency excitation and high-frequency detection of the broadband 

response using specialty wide-bandwidth transducers [134-136]. The isolation of the 

microbubble-specific signal enables visualization of contrast agents without the high background 

signal from tissue which could otherwise contaminate the image. Acoustic angiography has an 

advantage of only needing a single pulse of ultrasound for each line of sight to create image data 

and therefore can operate at least twice the speed needed for multi-pulse imaging strategies. 

Multi-pulse imaging strategies detect nonlinear response from microbubble using consecutive 

acoustic pulses, as opposed to linear responses from tissue. In order to separate microbubbles 

from tissue echoes, these nonlinear imaging strategies excite microbubbles with two or more 

pulses of varying amplitude or phase and then combine the resulting response across multiple 

pulses [51, 137-139]. Nonlinear components of the received signal, such as those from the 
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echoes of microbubbles, will remain after the images are combined, while linear components 

such as echoes from most tissues, will ideally cancel each other out. 

3.4.2 Perfusion imaging 

Ultrasound contrast-enhanced imaging can be used to monitor tissue or organ perfusion 

rates by measuring the transit time of microbubbles into or out of tissue. This is accomplished 

through observation of a single contrast agent bolus, or by modulating contrast agent wash-in 

acoustically. The latter is achieved by sending a short, high intensity ultrasound pulse that 

fragments microbubbles in the field of view. After this clearance pulse, the returning 

microbubble signal wash-in rate is measured and can be correlated to microvascular flow. This 

method is typically performed under constant infusion of contrast agents, and imaging is 

performed using low intensity contrast-specific imaging in order to preserve the microbubble 

population during the measurement phase [140, 141]. This method, often referred to as 

‘destruction-reperfusion’, ‘flash-replenishment’, or ‘clearance-refill’ imaging, can detect changes 

in very small flow rates below the tissue motion noise level that limits conventional color 

Doppler velocity estimates [142]. Use of perfusion imaging has been demonstrated to be 

effective in assessing blood flow in the kidneys [143-145] and capillary beds of tumors [146-

150] among others. 

The ability of contrast ultrasound perfusion imaging to detect small changes in blood 

flow conditions, such as those found in capillary beds, suggests substantial potential for 

assessing response to therapeutic approaches that affect tissue blood flow (such as antiangiogenic 

therapies, Figure 3.2) [149, 151-156]. Antiangiogenic treatment of tumors attempts to decrease 

tumor viability by inhibiting vascular function and development in order to curb tumor growth 

and cause eventual ischemic and necrotic conditions within the tumor [157]. Initial studies 
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focusing on antiangiogenic therapy response in tumors using perfusion imaging have reported 

ease of use, low cost, and high spatial resolution [149]. Similarly, contrast ultrasound perfusion 

imaging has been utilized as an immediate means to assess clinical response to high intensity 

focused ultrasound ablation [158, 159]. 

 

Figure 3.2:  Example of contrast-enhanced destruction-reperfusion imaging in a rodent tumor 

xenograft model, (a) prior to and (b) 48 h post antiangiogenic administration, illustrating 

reduction in tumoral blood flow in response to therapy. Grayscale indicates anatomical 

orientation, the color map indicates blood flow, where red is slower flow and green is faster 

flow. 

3.4.3 Molecular imaging 

Molecular imaging enables contrast ultrasound to progress beyond anatomical imaging 

and provide information about changes in physiology on the molecular level [160-162]. 

Molecularly targeted contrast agents are formulated by incorporating targeting ligands, such as 

peptides, antibodies, or other adhesive molecules specific for disease biomarkers, into the 

contrast agent shell. Typical microbubble sizes are large enough to stay within the vascular 

lumen without extravasating to surrounding tissues, and thus are well equipped to target 

endothelial markers of disease. Upon injection, circulating targeted microbubbles adhere to 

endothelium presenting the appropriate receptor. After natural clearance of unbound circulating 
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microbubbles, retained molecularly targeted agents can be imaged using nondestructive 

microbubble imaging methods, providing information as to extent and degree of biomarker 

expression. Since ultrasound cannot directly assess molecular changes, the assumption that 

targeted microbubble retention on diseased endothelium is proportional to biomarker expression 

is a crucial tenet to this method. Commonly imaged biomarkers include the αvβ3 integrin, 

associated with angiogenesis, which can be targeted through cRGD peptides, as well as 

inflammatory markers such as ICAM-1 and VEGFR-2, often targeted directly with microbubbles 

bearing specific antibodies. Intriguing applications of ultrasound molecular imaging include but 

are not limited to assessment of atherosclerosis predisposition or progression [33], thrombus 

[163], ischemic damage [164, 165], inflammatory diseases [166], and tumor-related angiogenesis 

[167-169]. 

As any physical change in biological tissue is likely preceded by changes at the molecular 

level, the ability to assess molecular markers enables a method of predicting forthcoming 

biological response to treatment. Through the use of microbubbles targeted to angiogenesis 

markers, researchers have observed changes in biomarker expression in response to therapy 

(Figure 3.3) [170]. More recently, ultrasound molecular imaging has been shown to classify 

tumors as non-responder or responder earlier than standard tumor size measurement techniques 

[151, 171]. 
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Figure 3.3:  Ultrasound molecular imaging in a preclinical model. Data illustrate that molecular 

imaging indicates response to therapy prior to tumor size changes. (a) Ultrasound images of a 

representative treated and a representative untreated tumor, which were each acquired before and 

after treatment. The green color overlay illustrates contrast agent targeted to αvβ3, an angiogenic 

biomarker. The brightness of the green image overlay is assumed to be correlated with the degree 

of molecular marker expression. (b) Three-dimensional ultrasound rendering of a treated 

pancreatic adenocarcinoma tumor on day 0. The green overlay represents the contrast agent 

targeting to αvβ3. A section is removed to illustrate the spatial variability of contrast targeting to 

αvβ3 biomarker expression. (c) Percent increase or decrease in volumetric contrast targeting 

before and after therapy (untreated −N = 5, treated − N = 5). *p < 0.05 compared with untreated 

tumors on day 2. (d) Percent increase or decrease in volume as measured by regions of interest 

from brightness mode ultrasound images taken at known distances across the tumor (untreated − 

= 5, N treated − N= 5). 

3.4.4 Acoustic angiography 

When combined with an imaging mode that provides both high resolution and tissue 

signal rejection, microbubbles (inherently limited to the vascular space) can provide traces of 

detailed vascular structure (Figure 3.4). Several studies reported in the literature over the last 

decade have utilized contrast ultrasound as a means of assessing vascular architecture with the 

goal of either determining tumor presence or tumor malignancy. Contrast-enhanced acoustic 
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angiography has been demonstrated in multiple cancer types, including breast [172], liver [173, 

174], and thyroid [175]. More recently, high-frequency acoustic angiography has enabled 

analysis of vessel tortuosity in a preclinical model that uses vessel morphology to distinguish 

between healthy and tumor tissue [6]. While various segmentation approaches have been 

implemented to extract and categorize vascular features from image data, the diagnostic utility of 

acoustic angiography is encouraging. Contrast-enhanced acoustic angiography could be utilized 

to assess vascular changes in response to therapy, based on the current understanding that 

vascular abnormalities re-normalize in response to treatment [176-178]. 

 

Figure 3.4:  Comparison of B-mode and acoustic angiography. Two 3D images from the same 

sample volume acquired of a rat fibrosarcoma tumor model using traditional 30 MHz B-mode 

imaging (left) and contrast-enhanced acoustic angiography (right). Scale bars below the images 

indicate 1 cm. Cartoon in the center illustrates the approximate location of the tumor denoted by 

the red circle. 

3.5 Therapeutic applications 

The behavior of the oscillating bubble in an acoustic field lends itself not only to 

conventional imaging enhancement, but also to therapeutic applications which could be 

performed during the same sonography session. These applications range from slight physical 

modifications of the tissue itself—such as reversible changes in vascular or cellular 
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permeability—to more aggressive disruption, such as clot fragmentation. The mechanical action 

of oscillating microbubbles also enhances conversion from acoustic to thermal energy, resulting 

in tissue ablation at lower acoustic energy than that required for similar effect without 

microbubbles. Other applications involve secondary interactions such as the local delivery and/or 

release of a therapeutic compound mediated by acoustically driven microbubbles. Guidance can 

be provided by ultrasound imaging [179], MRI [180], or other modalities to help direct the 

treatment to the desired location, or to monitor the therapeutic effects of microbubble mediated 

therapies. 

3.5.1 Modulation of vascular and cellular permeability 

The mechanical oscillations of acoustically stimulated microbubbles have been shown to 

increase local vascular permeability [181, 182]. Effects range from mild transient changes in 

vascular permeability to gross vascular disruption and hemorrhage, depending on microbubble 

and acoustic parameters. Early in vivo studies demonstrated that insonified microbubbles were 

capable of small vessel rupture creating transcellular pathways for polymer microspheres (≤ 503 

nm) and red blood cells (∼7 µm) to extravasate [183]. Extensive studies have shown that with 

appropriately chosen acoustic parameters, changes in vascular permeability due to insonified 

microbubbles can be mild and transient [184, 185]. Thus, there is a great interest for using this 

approach to locally enhance extraluminal bioavailability of therapeutic materials to surrounding 

tissues. Studies have illustrated substantial potential for the application of acoustically excited 

microbubbles to locally enhance delivery to the brain [186, 187], tumors [188], and other tissues 

[93, 189]. This is of particular interest in the brain, where the blood-brain barrier makes 

extravascular drug delivery challenging. There are several mechanisms hypothesized to be 

responsible for this permeability modulation, including disruption of the endothelium due to 
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mechanical stresses on the vessel wall [190, 191], endothelial disruption due to liquid jetting that 

occurs with bubble collapse [192], and increased cellular transport (Figure 3.5) [190, 193]. 

 

Figure 3.5:  Illustration of MCA mediated enhanced cell permeability. (a) An ultrasound wave 

places a high pressure on the microbubble to compress it and is followed by low pressure that 

rapidly expands it creating several micro-hemorrhages due to mechanical stress. (b) An 

oscillating microbubble stimulates a cell to increase transcellular transport from the lumen of the 

vessel to the basal membrane. (c) A microbubble oscillates nonlinearly to the point of 

asymmetric collapse, producing a powerful micro-jet that breaches the endothelium. 

Similar to the effect on vascular permeability, acoustically activated microbubbles have 

also been shown to enhance the permeability of individual cell membranes. This phenomenon, 

termed ‘‘sonoporation’’, can result in the internalization of compounds into a cell which 

otherwise would not cross the cellular membrane. The mechanisms causing sonoporation are still 

being studied; however, common mechanistic hypotheses include mechanical stresses, the 

formation of pores due to liquid jetting [194], or microstreaming [195, 196], as well as active 
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transport processes [197]. Sonoporation can be transient or irreversible, the latter often 

associated with cell death, depending on the acoustic parameters [184, 198, 199]. 

The magnitudes of changes in both vascular and endothelial permeability are related to 

ultrasound frequency, pressure, and microbubble parameters. In general, lower acoustic 

frequencies and increased pressures result in greater permeability. Identifying and characterizing 

which parameters can be used to modify vessel or cellular permeability, the mechanisms 

involved, and to what extent permeability can be modulated is an active area of study in 

microbubble acoustics [200]. 

3.5.2 Drug delivery 

Many anti-cancer drugs suffer from a low therapeutic index, where the systemic dose 

becomes toxic at only slightly higher doses than may be effective in treating the disease. Thus, 

any means to significantly increase drug delivery at the disease site while reducing dose to 

healthy tissue is of great clinical interest. One approach is to spatially distribute the drug 

concentration unevenly such that the local dose to the disease site is elevated while the 

systematic dose remains low. Microbubbles can behave as a targeted delivery system by loading 

them with drugs and selectively lysing (fragmenting) them in regions where the drug delivery is 

desired [201-203]. 

Examples of drug loading techniques include the incorporation of therapeutic agents into 

the microbubble shell [204, 205], the formulation of multilayer vehicles containing drugs in a 

layer separate from the shell or gas core [206, 207], or conjugation of drug-loaded liposomes or 

nanoparticles directly to the microbubble surface (Figure 3.6) [122, 123]. Several drugs which 

have been evaluated for microbubble delivery to date include, but are not limited to, paclitaxel 

[208, 209], doxorubicin [206, 210], rapamycin [211], and 10-hydroxycamptothecin [212]. 
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Although there is a broad range of drug loading methods and capacities, several studies 

have shown that certain types of drug carrier vehicles retain the capability for substantial 

acoustic response, indicating that these vehicles could be fully capable of both acting as imaging 

agents as well as therapeutic carriers [213, 214]. 

 

Figure 3.6:  Schematic of commonly used drug attachment strategies in microbubble mediated 

drug delivery. (a) Drugs can be dissolved in a secondary oil layer using a multilayer microbubble 

construction. (b) Therapeutic agents can be seeded within the thin encapsulating shell. (c) 

Nanoparticles or other therapeutics can be attached to the outside of the shell, such as tethered to 

PEG chains. 

3.5.3 Gene delivery 

While the application of ultrasound alone has increased transfection rates compared to 

systemic delivery during gene therapy, the presence of acoustically-stimulated microbubbles 
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results in additional benefit. The results of several microbubble-mediated gene therapy studies 

indicate that gene transfection rates are highest when ultrasound, microbubbles, and genes are 

simultaneously delivered to the same target location [91, 189, 215, 216]. Although the 

mechanisms for enhanced transfection are still being assessed, permeability changes in cellular 

membranes due to the oscillating microbubbles (as described above) likely play a role [197]. 

Because of the strongly anionic backbone of plasmids and other gene transfection agents, 

cationic microbubbles can be used to electrostatically attach genetic material to microbubble 

shells in a similar manner first developed for liposomes [217]. Positively charged microbubbles 

bound with genetic material can use lower systemic concentration of plasmids because they have 

higher transfection efficiencies compared to neutral microbubbles [218]. Cationic binding of 

genetic materials likely increases transfection rates due to the increased proximity between 

genetic material and cell membranes which promotes intracellular flow of the genetic material 

[219]. Thicker-shelled microbubbles are an attractive option in targeted gene delivery since they 

are less likely to prematurely rupture, can load more genetic material, and can protect genetic 

material from nuclease activity if bound within the shell [220, 221]. 

3.5.4 Sonothrombolysis 

Sonothrombolysis is the acoustically-mediated disruption of blood clots. The addition of 

microbubbles further enhances the thrombolytic effect [222], both with and without the 

combination of thrombolytic agents. The rate of clot dissolution increases and clots degrade 

more fully when treated directly with ultrasound and microbubbles in comparison to 

administration of thrombolytic agents alone [223, 224]. This technique has been explored for 

stroke [225], venous thrombosis [226], and myocardial infarction [227]. Ultrasound-assisted 

thrombolysis is one of the truly combinational theranostic procedures since real-time ultrasound 
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measurements of clot occlusion and therapeutic recanalization have been performed 

simultaneously with microbubbles and ultrasound [227]. 

3.5.5 Tissue ablation enhancement 

Acoustic ablation involves focusing high intensity ultrasound to heat and destroy 

abnormal tissue. The conversion of acoustic energy into thermal energy causes a rapid rise in 

temperature at the target site resulting in localized tissue destruction and necrosis. One of the 

current challenges of high intensity focus ultrasound (HIFU) ablation is to heat only target tissue 

without damaging healthy tissues. HIFU ablation transmits wide beams of low acoustic energy 

through tissue which is then focused into a tighter beam of high acoustic energy to be delivered 

at depth to the target site. Microbubbles can be advantageous for HIFU ablation because they can 

enhance the conversion of acoustic energy to thermal energy, therefore making this approach 

more efficient and reducing the likelihood of thermal damage to healthy tissues [228-232]. Early 

in vivo studies examining the effect microbubbles have on ablation enhancement during HIFU 

was demonstrated in canines [233] and has been clinically evaluated in humans for uterine 

fibroid ablation [234]. 

3.6 Current challenges  

Microbubbles are a unique platform that can unite established diagnostic ultrasound with 

relatively nascent therapeutic ultrasound. The largest challenges faced by microbubble 

technologies are government approval and physician acceptance. Microbubbles are still used 

clinically only for imaging applications. Even then, as an imaging agent—microbubbles are 

under-utilized. Although microbubbles are used for several clinical imaging applications in 

Europe and Asia, FDA approved microbubble use in the United States is still limited only to 

enhancement of the left ventricle during echocardiography and recently liver perfusion. A third 
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major challenge involves industrial interest and support and production of ultrasound systems 

optimized for use with microbubbles, as well as in design and manufacture of the microbubbles 

themselves. Largely due to the lack of clinical use, industry interest in supporting microbubble 

imaging and therapeutic approaches on commercial systems has been a low priority. Similarly, 

there are only a handful of companies involved in the development and sales of microbubble 

products, likely due to the same reason. 

Nevertheless, an active push by both academia and industry is currently underway to 

extend the use of microbubbles for imaging outside the heart and liver as well as for therapeutic 

applications. Numerous studies, such as the ones discussed here, have demonstrated the potential 

uses of microbubbles beyond their current scope. Regulatory agency approval must be met both 

in the US and in other countries for both additional diagnostic applications, as well as any 

therapeutic applications of microbubbles, before their use will expand.  

3.7 Conclusions 

The microbubble platform is unique in that it presents a wide variety of strategies for 

ultrasound mediated diagnostics as well as therapeutics—thereby acting as a definitive 

theranostic agent. While there is extensive use of microbubbles in preclinical studies, clinical 

trials are still only in early stages for molecular imaging as well as for many therapeutic 

approaches. However, preclinical data are highly encouraging for the future use of microbubbles 

in theranostic medicine. 
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CHAPTER 4

DUAL-FREQUENCY TRANSDUCERS FOR CONTRAST ENHANCED ULTRASOUND 

  

The primary aim of this dissertation is to explain and determine the steps required to 

translate acoustic angiography into the intravascular environment. This chapter discusses the 

specialized, broad-band transducers that can both elicit and detect the higher order harmonic 

responses generated by microbubble contrast agents necessary for microvascular detection using 

acoustic angiography. The methods of performing contrast specific imaging in commercial 

applications will be reviewed in the first section of this chapter with special attention given to the 

fabrication considerations of conventional transducers. In the following section, dual-frequency 

transducers will be introduced as an ideal tool for use in superharmonic contrast imaging as other 

applications. 

4.1 Introduction 

 Fundamentally, ultrasound images are visual representations of the interaction between 

sound waves and the medium of wave propagation. However, at frequencies typically used in 

transthoracic and transabdominal ultrasound imaging, blood is a poor ultrasound scatterer which 

produces echoes approximately a factor of 300 times weaker than surrounding soft tissues [235], 
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making the detection of blood flow in small vessels challenging. For this reason, microbubbles 

are used as injectable contrast agents which serve as strong scattering sources and thereby 

improve imaging of blood flow [82]. While contrast ultrasound is used primarily in cardiology in 

the United States, it is used more widely in Europe and Asia, and there are substantial ongoing 

research efforts aimed at evaluating microbubbles as a platform for additional diagnostic and 

therapeutic applications [87, 236]. This chapter will focus on development of dual-frequency 

piezoelectric transducers for imaging nonlinear harmonics produced by microbubbles under 

ultrasound excitation for the intended application of acoustic angiography.  

4.1.1 Theory of operation 

Microbubble contrast agents are micron-sized shelled gas bubbles that are injected into 

the vascular space in order to visualize blood flow. When excited by an external acoustic field, 

microbubbles oscillate non-linearly, producing waves with harmonic content in addition to the 

fundamental frequency. The degree of harmonic content produced by a single interaction 

between a microbubble and an acoustic wave increases as the amplitude of the acoustic wave 

increases, and also increases at frequencies near the resonance frequency of the microbubble 

[237-240]. Microbubble resonance frequency depends primarily on bubble diameter, though 

many other physical factors also play a role in determining resonance [103, 104]. While 

microbubbles are strong scatterers which are visible on standard B-mode imaging at the 

fundamental imaging frequency, the energy arising from microbubbles cannot be separated from 

that arising from the surrounding tissue. However, by isolating the harmonic signals resulting 

from microbubble nonlinear behavior it is possible to image microbubbles alone with high 

specificity – a fundamental requirement for contrast specific imaging in ultrasound.  
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An effective approach for minimizing tissue echoes in microbubble-specific imaging is to 

use higher order harmonics. An acoustic wave traveling through tissue generates harmonics due 

to nonlinear propagation effects, however, most of the energy received at the transducer remains 

confined to the transmitted frequency (fc) and the second harmonic (2fc) [241, 242]. 

Alternatively, microbubble echoes contain higher order harmonics (superharmonics) at 

frequencies 3-10 times the transmitted frequency [243-246]. In the following section, we 

describe transducer technology designed to transmit at low frequencies near microbubble 

resonance and receive only microbubble superharmonics at much higher frequencies, thus 

spectrally separating microbubble-scattered signals from tissue. 

4.1.2 Summary of commercial contrast detection methods 

Currently, commercial ultrasound systems form images of microbubbles using frequency 

content within the bandwidth of a single transducer, which is used for both transmitting and 

receiving. These systems typically reduce tissue echoes by transmitting multiple versions of 

similar pulses having varying phases and/or amplitudes, then summing received signals from 

these pulses. Using this process, linear signals principally originating from tissue cancel while 

nonlinear microbubble signals sum constructively. In the simplest of these techniques, pulse 

inversion, a pair of pulses are transmitted which are inverted replicas of one another (i.e. 180° 

out of phase) [51]. Linear scatterers produce two sets of similarly inverted signals, thus when the 

received signals from each of the two pulses are added together, the net sum due to linear 

scattering is zero assuming no motion has occurred. Because shelled microbubbles vibrate 

nonlinearly, waves scattered from the contrast agents contain components which do not sum to 

zero, producing an image of microbubbles alone. Various multi-pulse schemes exist in which the 

phases and amplitudes of transmitted pulses are altered in order to improve separation of 
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microbubble and tissue signals or to isolate a specific range of harmonics [247-250]. These 

algorithms are found on commercial ultrasound scanners under names such as Cadence Contrast 

Pulse Sequencing (CPS) (Siemens) or Power Pulse Inversion (Philips) [138]. The ratio of 

microbubble to tissue amplitude in an image is known as CTR and is often expressed in dB as a 

quantitative metric of the effectiveness of a contrast imaging technique. Multi-pulse approaches 

achieve high CTR at the cost of reduced frame rate and increased susceptibility to motion 

artifacts. Alternatively, dual-frequency transducers alleviate these problems because their large 

effective bandwidths allow high CTR imaging using a single pulse. 

4.1.3 Design and fabrication of piezoelectric transducers in diagnostic ultrasound  

4.1.3.1 Piezoceramic dimensions 

While design theory of piezoelectric transducers is well-covered elsewhere [251, 252], 

basic principles will be reviewed briefly to elucidate challenges relating to dual-frequency 

transducer fabrication. Transducers used in medical ultrasound consist of a thickness mode 

resonator. Wave propagation velocity in PZT is approximately 4350 m/s [253], resulting in a 

nominal thickness (λ/2) of 435 µm at 5 MHz, for example, though other factors also affect 

transducer resonance [254]. In array transducers, grating lobes are avoided by maintaining inter-

element separation less than or equal to λ/2. Element width-to-thickness ratio must also be 

considered, as element aspect ratios determine the acoustic resonance modes [255, 256]. 

Fabrication challenges tend to intensify as feature sizes decrease in all dimensions with 

increasing frequency. Tradeoffs between desired resonance frequency and element dimensions 

represent a primary challenge in array design 
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4.1.3.2 Element Boundary Condition Considerations 

Matching and backing layers designed with desired acoustic properties are attached in 

series to the front and back faces of the piezoelectric material, respectively. By reducing the 

mismatch in acoustic impedance between the piezoelectric material (ZPZT≈34 MRayl) and tissue 

(Zwater=1.5 MRayl), matching layers increase acoustic transmission into and from the tissue and 

act as quarter wave transformers. Backing layers improve bandwidth by damping acoustic 

vibrations at the rear boundary of the piezoelectric material. The loading provided by matching 

and backing layers also modulates the resonant frequency of the transducer [254]. The primary 

challenge in design of matching and backing layers is the tradeoff between high sensitivity and 

broad bandwidth. 

4.1.3.3 Fabrication, Dicing, and Composites 

For piezoelectric transducers operating in thickness mode, a “dice-and-fill” approach is 

commonly used in array fabrication. A wafer-dicing saw cuts and isolates sensing elements, and 

kerfs resulting from saw cuts are then backfilled to minimize acoustic crosstalk.  

 

Figure 4.1:  Example geometry resulting from a dice and fill method to create a composite 

material. The gaps are left open to illustrate the areas needing to be filled with polymer. 
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A dice-and-fill approach is also used to create low frequency composite materials [257-

259] from plates of either piezoelectric ceramics [260] or an electrostrictive PMN-PT single 

crystals [261] by dicing the material and filling the gaps with a polymer [262], then further 

dicing into individual elements for fabrication of an array(Figure 4.1). Composite materials can 

produce better harmonic images than conventional materials because they yield transducers with 

broader fractional bandwidths (> 75%) and improved acoustic matching [263]. Fabrication 

challenges associated with physical dicing limit acoustic impedance matching in composites. 

For harmonic imaging, it may be possible to design a transducer so that both transmission 

and receiving frequencies are within the bandwidth of a single composite transducer. These 

composites can be made with 1-3 connectivity, mechanically decoupling the thickness-mode 

vibration resonance from other undesirable resonances (lateral or elevational modes) [255]. 

Lateral modes are λ/2 resonances determined by the dimension of the transducer in the lateral 

direction, or the dimension of image formation. Designing with respect to lateral modes takes on 

added importance in environments such as IVUS in which strict limitations on device size 

imposed by lumen diameter can create severe aspect ratios (width-to-thickness) that are normally 

avoided to preserve forward looking directional sensitivity. As an alternative to dice-and-fill 

methods at higher frequencies, Jiang et al. have demonstrated fabrication of a 40 MHz, 1-3 

composite transducer using a plasma etching-based micromachining technique [264]. A 60 MHz 

IVUS transducer using 1-3 composite has been fabricated and tested on a porcine animal model 

[263]. These high frequency broadband transducer materials are promising for imaging 

microbubble harmonics. The development of high frequency arrays was greatly facilitated by the 

introduction of laser micro-machining by Foster et al., a process which has become a standard 
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for commercially-available high frequency imaging systems [265]. Providing individual 

electrical interconnects also poses a significant fabrication challenge in high frequency arrays. 

While developments in materials and fabrication have led to diagnostic transducers 

having increased sensitivity and bandwidth, the use of two independent frequency bands having 

large separation (at least 3× to 5×) can maximize sensitivity while requiring lower transmit 

pressures for contrast specific imaging applications. In the following sections, we describe recent 

developments in dual-frequency transducer technology. 

4.2 Dual-frequency transducers 

The goal of dual-frequency imaging is to form images of only microbubble harmonics by 

transmitting acoustic waves at lower frequencies near microbubble resonance (approximately 1-6 

MHz) and receiving only higher order harmonic vibrations produced by microbubbles 

(approximately 10-30 MHz). Researchers have recently demonstrated electrostatic transducers 

which are capable of encompassing both frequency ranges within a single, extremely broad 

bandwidth [266, 267]. Details of the operation and fabrication of these transducers, commonly 

referred to as capacitive micromachined ultrasound transducers (CMUTs) are discussed 

elsewhere [268-270]. CMUTs exhibit inherent nonlinear behavior which limits their ability to 

accurately distinguish nonlinear microbubble response, though ongoing investigations attempt to 

account for these nonlinearities so they may be used for contrast detection reliably [271]. 

Although CMUTs may eventually demonstrate superior performance to piezoceramics for 

contrast imaging, they have not yet been demonstrated for this use in vivo. While researchers 

continue to investigate ultra-wideband electrostatic transducers as well as approaches for 

increasing the bandwidth of piezoelectric transducers [263, 264, 272, 273], this chapter will 
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primarily focus on devices which use separate transducers for transmission and reception and 

thus allow for independent design of the two transducers to achieve desired characteristics. 

 

Figure 4.2:  Schematic of the first design incorporating dual frequency transducers for the 

purpose of contrast detection (top). Odd numbered elements had a center frequency of 2.8 MHz 

with a fractional bandwidth of 80% while the even elements had a center frequency of 0.9 MHz 

with a fractional bandwidth of 50%. Odd numbered elements were used for imaging 

superharmonics generated by nonlinear vibrations of microbubbles excited with a low frequency 

pulse provided by the even elements. A photograph of the actual transducer is shown after the 

elevational lens has been added (bottom). Figure reprinted from [132] (Copyright © 2002 

Elsevier) 

4.2.1 Imaging microbubble contrast agents 

Bouakaz et al. first reported imaging of third and fourth harmonics of microbubbles in 

2002 in experiments which used a 96-element array with interleaved 0.9 MHz transmission 

elements (50% BWf) and 2.8 MHz receiving elements (80% BWf) [132, 274, 275]. Using this 

probe with a commercial imaging system, the authors demonstrated the ability to image 
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microbubbles while rejecting tissue signals in vivo [274] (Figure 4.2). While interleaving low 

and high frequency elements yields dual-frequency transducer arrays with smaller form factors 

relative to arrays stacked in the elevation direction, grating lobes were introduced due to an 

increase in inter-element separation, and signal-to-noise ratio (SNR) was diminished due to 

reduction in receiving area contributing to the beamformed signal.  

In 2005, Kruse and Ferrara demonstrated the use of two piston transducers with a wide 

bandwidth separation for imaging microbubbles using a transmission frequency of 2.25 MHz 

(70% BWf) and a receiving frequency of 15 MHz (66% BWf) [134]. Wide separation between 

the two frequencies ensured high CTR due to the low amplitude of higher order tissue 

harmonics, while a high receiving frequency produced high resolution images. In more recent 

studies, Ferrara’s group has designed transmit low/receive high (TLRH) arrays with two outer 

rows of 64 elements transmitting at 1.48 MHz, and a central row of 128 elements receiving at 

5.24 MHz [276]. In addition to harmonic imaging of microbubbles, the high frequency row of 

this three-row array was used to deliver a long (100 cycle), low-amplitude (200 kPa peak 

negative pressure) “pushing” pulse for radiation-force enhanced adhesion of targeted 

microbubbles for molecular imaging [277, 278]. This work has recently been extended to 3D 

molecular imaging [279]. Subsequent generations of this array featured low frequency rows 

capable of delivering either broadband, high peak pressure waveforms for cavitation-mediated 

therapy or narrower band, high time-average power waveforms for thermal therapy [280, 281]. A 

similar three-row array with a central row of 128 elements operating at 1 MHz (90% BWf) and 

elevationally-aligned outer rows of 128 elements operating at 10 MHz (90% BWf) was 

constructed by Vermon (Tours, France) [282]. 
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In 2010, van Neer et al. compared designs for interleaved and multi-row arrays [283, 

284]. Designs with interleaved elements having high ratios of receive to transmit elements (i.e. at 

least three receive elements per transmit element) were capable of producing beams with reduced 

distortion artifacts and tighter -6 dB beam widths relative to two- or three-row arrays. By greatly 

increasing the number of receiving elements, grating lobes of interleaved designs were limited to 

-40 dB and high SNR was ensured. However, it should be noted that arrays with interleaved 

elements of different frequencies cannot be manufactured using standard dice-and-fill 

approaches from a single piezoelectric plate without significant alteration to manufacturing 

processes (see Section 4.1.3). 

In spite of the promise shown by several of these dual-frequency arrays, transition 

towards transducers with higher receiving frequencies has been accompanied by several 

fabrication challenges. Because standard array production techniques faces difficulties scaling to 

higher frequencies [285], high frequency transducers can utilize mechanical steering of a single 

focused element in lieu of an array. Many of these focused single-element transducers have been 

possible due to the use of flexible piezoelectric composites rather than inflexible piezoelectric 

ceramics [286, 287]. An important advancement for high frequency arrays has been the 

development of composites with large triangular pillars to suppress lateral modes while 

maintaining high sensitivity [288, 289]. 
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Figure 4.3:  The mechanically steered dual-frequency transducer is composed of a central high 

frequency (25 MHz) spherically focused piston transducer inserted into an annular, confocally 

aligned low frequency transducer (4 MHz). (A, End-on view) Harmonic imaging is performed by 

mechanically sweeping the arm while transmitting on the outer element and receiving on the 

inner element. (B, Side view) 

Using this technology, Foster’s group working with Dayton has constructed several 

mechanically-steered transducers consisting of concentric low- (2.5-4 MHz) and high-frequency 

(25-30 MHz) elements [136, 290]. These probes have been integrated with a commercial small 

animal imaging system (VisualSonics, Toronto, ON, Canada) (Figure 4.3). Imaging with these 

dual-frequency transducers has provided a high-resolution (~200 µm), high CTR (~25 dB) 

imaging technique which the authors call “acoustic angiography” due to the resemblance 

between the vascular images acquired and those in x-ray or magnetic resonance angiography 

[291]. This approach has demonstrated sensitivity to vessels containing contrast agents at 

frequencies higher than previously published (as high as 10 times the transmission frequency) 

(Figure 4.4) [6]. As a result, acquired images can be segmented by computational algorithms to 

analyze vessel morphology based on quantitative metrics such as vessel density and tortuosity [6, 

292, 293]. 

Several similar transducers have recently been reported. A mechanically-scanned 

transducer with two concentric elements operating at 4 MHz and 14 MHz was demonstrated by 
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Guiroy et al. [294]. Li et al. have alternatively demonstrated a micromachined PMN-PT 1-3 

composite based dual-frequency (17.5/35 MHz) transducer (Figure 4.5) for harmonic imaging 

[295]. In this design, two active layers were mechanically bonded in series and poled in opposite 

directions. Composite piezoelectrics and electrostrictive materials such as PMN-PT have been 

increasingly utilized over traditional ceramics like PZT, which have limitations for use at higher 

frequencies due to manufacturing challenges and grain dimensions which become increasingly 

close to one wavelength as frequency increases [296].  

 

Figure 4.4:  Acoustic angiography amplitude spectrum and example images. Wideband 

separation between tissue response and microbubble response produces images that are 

drastically different from conventional B-mode images and illustrate blood flow in the 

microvasculature with high resolution and high contrast to tissue ratio. Acoustic angiography 

images displayed using maximum intensity projections of volumetric scan volumes. Bounding 

boxes are approximately 0.75 x 1.25 x 1.5 cm (axial, lateral, and elevational). Figure adapted 

from [292] (Copyright © 2013 Hindawi Publishing Corp. under CCL). 
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Figure 4.5:  Schematic view of a dual layer, dual frequency transducer (left) and its operation for 

transmitting and receiving (right). When transmitting, both active layers are electrically 

connected in parallel and are excited by the same signal, effectively behaving as a single, active 

element at fc. When receiving, the front layer records the majority of the signal with a resonance 

at twice the transmission frequency (2fc) because the thickness of the active layer has effectively 

been halved. Figure reprinted with permission from [295]. (Copyright © 2013 IEEE) 

Dual-frequency transducers may be used for intravascular ultrasound, in which a small 

catheter-based transducer is introduced into the body to perform minimally invasive imaging of 

occlusive plaques within the coronary arteries [297]. In particular, the detection of vasa vasorum 

(70 – 180 µm in diameter [298]) in plaques has been linked with decreased plaque stability and 

increased risk of future complications (see Chapter 2). Because superharmonic imaging of 

microbubbles could enable direct visualization of vasa vasorum, several researchers have 

pursued dual-frequency transducer designs for this application. In 2005, Vos et al. developed 

single element transducers for second harmonic imaging designed with dual resonance peaks at 

20 and 40 MHz and a 1 mm outer diameter [54, 299]. This group has also used commercial 

IVUS catheters to demonstrate the benefits of pulse inversion detection methods for this 

application [56, 300]. It will be demonstrated in the remaining chapters of this dissertation how a 

dual-frequency IVUS transducer can be developed for imaging microvessels using 

superharmonic contrast detection strategies. 
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4.2.2 Other applications 

Researchers have developed dual-frequency ultrasound arrays for applications other than 

contrast agent imaging which could provide useful insights into design or fabrication strategies. 

The earliest reported dual-frequency transducer was that of von Ramm and Smith in 1978, in 

which a phased array with adjacent rows of 1.5 and 2.5 MHz elements was designed to reduce 

off-axis contributions to the two-way point spread function by misaligning grating lobes from 

transmitting and receiving arrays [301]. In 1988, Bui et al. showed 1-3 composites can be 

designed to exhibit multiple frequency sensitivities by tailoring the dimensions for separate 

resonance modes [302]. De Fraguier et al. reported separate transducers for B-mode (4.6 MHz) 

and color Doppler mode (2.3 MHz) in order to improve Doppler sensitivity by reducing 

transmitted frequency and increasing pulse length [303]. Similarly, Saitoh et al. presented a 

transducer capable of operating at either 3.75 MHz or 7.5 MHz using two layers of PZT poled in 

opposite directions for increasing Doppler sensitivity [304]. 

In 2000, Hossack et al. reported a dual-frequency transducer to improve sensitivity for 

tissue harmonic imaging (THI) [305]. This transducer—based on earlier work by Hossack and 

Auld for increasing bandwidth [306]—used two piezoelectric layers having independent 

electrical contacts. The two layers were operated either in phase when transmitting at fc, or 180° 

out of phase when receiving at 2fc. Several other authors developed similar transducers having 

two resonances at the fundamental and twice the fundamental [307, 308]. Dual-frequency 

transducer design in THI has been studied extensively in the past and has aided in the 

development of recent transducer design in contrast specific imaging. For example, confocal 

annular elements operating at large frequency separations (20 and 40 MHz) produced by Kirk 
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Shung’s group were used in THI of excised porcine eyes before similar form factor transducers 

were used in acoustic angiography [309]. 

In addition, many other authors have demonstrated dual-frequency arrays for combined 

imaging and therapy applications. Recent imaging devices include a three-row array with 128 

elements per row for use in prostate cancer imaging and treatment [310], a small-form factor 32-

element system for guidance of high-intensity focused ultrasound (HIFU) [311], and a three-row 

array for thermal strain imaging performing heating at 1.5 MHz and imaging at 5.5 MHz [312]. 

While a comprehensive review of image guidance in therapeutic ultrasound is beyond the scope 

of this review, the interested reader is referred to recent reviews on image-guided therapy [313], 

HIFU [314, 315] and thermal strain imaging [316].  

Several recent design developments within other applications are of particular interest for 

imaging microbubble harmonics. Azuma et al. have described the design and fabrication of a 

0.5/2.0 MHz dual-frequency array for sonothrombolysis and transcranial ultrasound imaging 

[317]. This paper presented the first dual-frequency array to use a unique design in which the 

low frequency array is positioned directly below the high frequency array within the transducer 

housing. Low and high frequency arrays were isolated by a frequency selective isolation layer 

(FSIL), an important design achievement. Dual-frequency transducers could also provide distinct 

advantages over single frequency transducers in acoustic radiation force impulse (ARFI) imaging 

which visualizes mechanical properties of tissue using a low frequency pushing pulse and high 

frequency tracking pulses [318]. Finally, Yen et al. have described several dual-layer 2D array 

transducers capable of performing 3D rectilinear imaging at 5 and 7.5 MHz at a reduced cost 

relative to conventional 2D arrays with high channel counts [319, 320]. Linear and 2D bilaminar 

arrays with frequency-selective layers could enable imaging of microbubble harmonics over a 
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large field of view with greater image uniformity than that currently afforded by fixed-focus 

transducers. 

4.3 Conclusions 

This chapter has discussed how specialized, dual-frequency transducers can be used to 

preferentially image contrast and microvessels because of the larger bandwidth afforded by 

designing two separate, non-overlapping frequency elements within a single transducer. 

Additionally, we have explained how commercial systems rely on multi-pulse contrast specific 

imaging strategies which are prone to motion-invoked image artifacts and how a dual-frequency 

superharmonic approach can correct for these errors. Finally, we described a series of research 

efforts that target both diagnostic and therapeutic advantages that can be employed when using 

dual-frequency transducers compared to conventional transducers with a single, narrowband 

frequency response. In the following chapter, we will describe how a prototype IVUS transducer 

was designed along with the feasibility of performing acoustic angiography with such a 

transducer. 
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CHAPTER 5

PROTOTYPE TRANSDUCER AND PRELIMINARY EVALUATION 

 

In this chapter, we outline the design, fabrication, and characterization of a small 

aperture, dual-frequency, IVUS transducer which provides sufficient bandwidth separation for 

high CTR, high-resolution contrast enhanced IVUS imaging through superharmonic imaging. 

This prototype is evaluated in vitro to describe and determine if acoustic angiography can be 

performed on a platform that is deployable to intravascular sites of interest such as the coronary 

and femoral arteries.  

5.1 Introduction 

 The vasa vasorum is a network of microvessels which supports larger vessels such as the 

aorta, and increased density of the vasa vasorum has been associated with a plaque advancing 

from a stable state to a rupture prone state [4, 68]. Additionally, intraplaque hemorrhage 

occurring from thin-walled, immature microvessels has been present in plaques in many cases of 

sudden coronary death [321]. Evidence suggests that vasa vasorum proliferation and associated 

angiogenesis and inflammation is associated with plaque instability and rupture [321-324]. As 

our ability to predict the instability of atherosclerotic lesions remains a substantial challenge, 
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there is an unmet need for new imaging methods to identify, detect, and differentiate these 

pathologies [325].  

Acoustic angiography takes advantage of exciting microbubbles near resonance and 

detecting their high-frequency, broadband harmonics with sufficient bandwidth separation to 

achieve both high resolution and high contrast to noise ratio (CNR) [292]. Previous research has 

indicated that acoustic angiography enables detailed visualization and analysis of microvascular 

structure [6, 292], and will likely be applicable to vasa vasorum imaging. Thus in this chapter, 

we hypothesize that there is a role for acoustic angiography in detecting vulnerable 

atherosclerotic lesions in regions not accessible with transcutaneous contrast enhanced 

ultrasound.  

Feinstein has illustrated the potential of contrast enhanced transcutaneous ultrasound 

imaging on the carotid artery [35], if the target is the deeper coronary arteries transcutaneous 

ultrasound would not be a viable option. This may present an opportunity for IVUS, although 

commercial IVUS systems lack contrast enhanced imaging capability. This absence of 

technology may be due to the fact that nonlinear detection strategies for contrast imaging are 

most effective near the resonant frequency of microbubble contrast agents, which is typically 

between 1-10 MHz [326]. Thus, conventional contrast imaging strategies are not very effective 

with high frequency ultrasound (35-50 MHz) that is typically used with IVUS. To overcome this 

challenge, Goertz and collaborators have been evaluating both subharmonic and harmonic 

contrast IVUS imaging, with the goal of vasa vasorum imaging [55, 300]. Their research showed 

a CTR of 28 dB in subharmonic imaging with a fundamental frequency of 30 MHz [55] and 25 

dB in second harmonic imaging with a fundamental frequency of 20 MHz [300].  
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Despite the promising CTR and vessel imaging capability of this imaging approach, there 

is a substantial challenge for “ultra broadband” contrast enhanced intravascular ultrasound (CE-

IVUS), which is likely why it is yet relatively undeveloped. The primary limitation is the large 

frequency span, which is outside of the current bandwidth of commercially available single 

frequency transducers. Such difficulty could be surmounted by using multiple confocal 

transducers as described by Gessner [136], however dual-frequency transducers of the necessary 

frequency range do not yet exist in a form factor required for IVUS. 

5.2 Materials and methods 

5.2.1 Transducer design and fabrication 

The dual-frequency transducer was designed as a dual layer transduction structure, 

composed of a low frequency transmitting layer and a high frequency receiving layer (Figure 

5.1) [327]. The transmission layer was placed behind the receiving layer (with respect to a 

forward traveling sound wave) since low frequency transmitted acoustic waves could propagate 

through the smaller, high frequency element. The placement of the receiving layer has little 

interference on the transmission because of its small thickness (65 µm) compared with the 

transmitting wavelength (616 µm). The selection of 6.5 MHz as the transmitting layer’s center 

frequency was chosen since it was both close to the contrast agents’ resonant frequency and 

since the piezoelectric material for this element was readily available. The high frequency 

receiving layer was positioned in the front of the transducer to minimize the interference from 

the transmitting layer. A frequency selective isolation layer with a quarter wavelength of 30 

MHz [317] was placed between the two piezoelectric layers to allow the low frequency 

transmitting wave to pass through, but the high frequency receiving wave to be reflected at the 

isolation interface. Transducer dimensions were optimized using a KLM model [328] to validate 
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the thickness of layers, length, and width of each component for ideal thickness mode excitation. 

Material properties and final optimized parameters for modeling and fabrication are summarized 

in Table 5.1. The aperture of the high frequency receiving layer was designed to be similar to 

that of commercial IVUS transducers [60], and thus significantly smaller than that of the 

transmission layer. The relatively large aperture of the low frequency component was designed 

to obtain reasonably low electrical impedance at low frequencies for higher acoustic pressure 

transmission. The modeling of the 30 MHz element considered the existence of the 6.5 MHz 

element at Side B (back side) as backing according to the structure of the design in Figure 5.1. 

The design of the transducer used lead magnesium niobate-lead titanate (PMN-PT) 

instead of polyvinylidene fluoride (PVDF) for the receiving layer since the sensitivity could be 

higher due to the following [296]: (1) Compared to PVDF, PMN-PT has a much higher 

piezoelectric and electromechanical coupling coefficient and (2) the dielectric constant of PMN-

PT is 400 ~ 600 times higher than that of PVDF, making it easier to match the electrical 

impedance to the receiving system. 

 

Figure 5.1:  Design of the dual-frequency IVUS transducer. 
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Table 5.1:  Fabrication parameters of the dual-frequency transducer. 
Parameters 6.5 MHz layer 30 MHz layer 

Active material PMN-PT PMN-PT 

Thickness (µm) 300 65 

Width (mm) 0.6 0.6 

Length (mm) 3 0.5 

Sound speed (m/s) 4004 4004 

Impedance (MRayl) 32 32 

Matching material Al2O3/epoxy Parylene 

Thickness (µm) 80 15 

Sound speed (m/s) 1600 2770 

Impedance (MRayl) 4.32 3.16 

Attenuation (dB/cm/MHz) 5.3 0.1 

Backing material Ag/epoxy Ag/epoxy (isolation) 

Thickness (µm) 200 15 

Sound speed (m/s) 1900 1900 

Impedance (MRayl) 5.15 5.15 

Attenuation (dB/cm/MHz) 8 8 

 

In the fabrication of the dual-frequency transducer, a 5 x 5 mm piezoelectric acoustic 

stack was first assembled and then diced into 0.6 mm wide slices as individual transducers. The 

assembly process started with a 5 x 5 mm PMN-PT plate which was lapped to 300 µm (f = 6.5 

MHz) in thickness and then coated with Ti/Au (Ti: 10 nm and Au: 100 nm, E-Beam, Jefferson 

Hills, PA, USA) on both surfaces (Figure 5.2-1). A second piece of PMN-PT (0.5 x 5 x 0.3 mm) 

was then bonded on the first PMN-PT layer using conductive silver epoxy to form the high 

frequency receiving element and frequency selective isolation layer. Polystyrene microspheres 

(Polysciences Inc., Warrington, PA, USA) having a nominal diameter of 10 µm was added 

(about 1% in volume) to the silver epoxy so that the thickness of bonding layer was controlled to 

be 13 – 15 µm in order to function as a frequency selective isolation layer previously mentioned 

(Figure 5.2-2). After the silver epoxy cured, a composite layer of Al2O3 powder (1 µm grain size, 

Logitech Limited, Glasgow, UK) and Epo-tek 301 (Epoxy Technology Inc., Billerica, MA, 

USA) was mixed 1:1 by weight and centrifuged at 10000 RPM (5590 g) for 10 minutes 

(Microfuge Lite, Beckman Coulter Inc., Brea, CA, USA). The prepared composite was then cast 
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onto the front of the 5 x 5 mm PMN-PT layer beside the 0.5 mm width slice. A small margin (0.5 

mm) at one edge was left as an electrical connection site for later wiring. After the Al2O3/epoxy 

composite cured, it was then lapped until the bonded composite layer was 80 µm thick, making 

the thickness of the top PMN-PT layer 65 µm (fc = 30 MHz) on top of the 15 µm isolation layer 

(Figure 5.2-3). Another Ti/Au layer (Ti: 10 nm and Au: 100 nm) was then deposited onto the top 

surface to form the top electrodes. The final stack was then diced into 0.6 mm wide slices to 

form individual dual-frequency transducers (Figure 5.2-4). Each slice was bonded to the tip of a 

20 gauge hypodermic needle (Fisher Scientific International Inc., Hampton, New Hampshire, 

USA) and then coated with a layer of parylene film (15 µm). The parylene film served two 

purposes: (1) to act as a matching layer of the 30 MHz element and (2) to provide electrical 

isolation in the form of a passivation layer for the entire transducer. Finally, the transducer was 

poled with a DC electrical field of 10 kV/cm for 15 minutes in silicone oil at room temperature.  

 

Figure 5.2:  Fabrication process diagram of the dual-frequency transducer. 

After the transducers were poled, electrical characteristics such as capacitance, loss, and 

input electrical impedance were characterized using an Agilent 4294A Precision Impedance 

Analyzer (Agilent Technologies, Inc., Santa Clara, CA, USA). Capacitance and loss were 
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measured at 1 kHz and the input electrical impedance was measured near the resonant frequency 

of each element, individually. 

5.2.2 Acoustic characterization 

The main design consideration for the low frequency (6.5 MHz) transmission element 

was to deliver adequate peak negative pressure (e.g. >1 MPa) in order to produce detectable 

nonlinear oscillations of microbubble contrast agents. The peak negative pressure of the small 

aperture transducer was measured using a calibrated needle hydrophone (HNA-0400, Onda Co., 

Sunnyvale, CA, USA) positioned axially at 3 mm away from the transducer. This distance was 

kept constant between pressure measurements and subsequent microbubble tests in order to 

estimate pressure levels applied to the contrast agents. The excitation pulse used was a sinusoidal 

burst (1-5 cycles) at 6.5 MHz generated by an arbitrary function generator (AFG3101, Tektronix 

Inc., Beaverton, OR, USA) and amplified by 55 dB with a radio frequency amplifier (Model 

3200L, Electronic Navigation Industries Inc., Rochester, NY, USA). The amplitude of the 

transmission signal was adjusted from 50 to 350 mVpp prior to amplification. Pressure output of 

the transducer was recorded using an in-house LabVIEW (National Instruments Co., Austin, TX, 

USA) data acquisition system.  

While the main design criteria for transmission was pressure output, the receive element 

design optimized both reception sensitivity and bandwidth which is critical to detect the 

broadband, nonlinear microbubble signal. Pulse-echo tests were performed to measure the 

bandwidth of the transducer. A steel block with flat surface was positioned 3 mm in front of the 

transducer as the target. A pulser/receiver (5900PR, Panametrics Inc., Waltham, MA, USA) was 

used to interrogate the target in pulse echo mode with minimal energy. The reflected signal was 

high-pass filtered (fcorner = 3 MHz) by the pulser/receiver and then recorded using a digital 
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oscilloscope (DSO7104B, Agilent Technologies Inc., Santa Clara, CA, USA). Loop sensitivity 

was measured with a similar setup, but the excitation signal was replaced by a 10-cycle 

sinusoidal burst. 

5.2.3 Contrast detection by the transducer  

To validate the contrast response of the transducer, microbubbles were excited by the low 

frequency element and the nonlinear responses from microbubbles were detected using the high 

frequency element. Relative positions of the transducer and the tube were carefully adjusted in a 

water bath using a 3-axis precision rectilinear stage. In the alignment process, an acoustically 

transparent 200 µm diameter micro-tube was filled with air to provide a strong echo to indicate 

alignment in the lateral dimension of the 30 MHz element. Time of arrival of the echo was used 

to calculate the distance between the transducer and the tube in order to position it axially 3 mm 

away from the transducer. Polydisperse lipid shelled microbubbles (Figure 5.3) were formulated 

as described previously [97] and pumped through the aligned micro-tube at a concentration of 

4.8x108 MBs/mL at a velocity between 1.8-4.4 cm/s to maximize the signal response. The tube 

was slightly angled (~10°) with respect to the front surface of the transducer to reduce specular 

reflections from the wall of the tube. 

 

Figure 5.3:  Microbubble number weighted size distribution measured between 0.5-10 µm. 
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Once the transducer was aligned and positioned for the contrast imaging, the excitation 

pulse sequence was adjusted for optimal imaging quality. A sinusoidal burst was used to excite 

the transmitting element with pulse lengths between 1 to 5 cycles and voltage variations from 50 

to 350 mVpp in 50 mVpp increments. For each combination of testing parameters, 100 A-lines of 

microbubble echoes were received and recorded by the high frequency element for offline 

analysis. The contrast imaging data was evaluated using both time domain amplitude analysis 

and short-time Fourier transform. 

5.2.4 Imaging with the transducer 

Fundamental imaging at 30 MHz and dual-frequency super-harmonic contrast imaging 

were tested with the transducer in tissue-mimicking phantoms immersed in water (Figure 5.4). 

Typical phantoms had a speed-of-sound similar to tissue (1496 m/s), relatively high attenuation 

(0.9 dB/cm at 3 MHz), and had fully developed speckle. A hole was drilled through the phantom 

by a thin wall steel tube (5.5 mm OD, 0.4 mm wall thickness) to simulate a vessel. After drilling, 

the dual-frequency probe was placed in the center of the lumen and rotated to make an IVUS 

image. The rotation was controlled using a microcontroller that stepped the transducer at 0.9° 

angular increments for one revolution and provided a trigger for the excitation pulse. An 

acoustically transparent tube with 200 µm diameter was placed through the phantom, running 

parallel to the channel. Diluted microbubbles were pumped through the tube (4.4 cm/s) while 

imaging. A 0.6 mm diameter steel rod was placed in the phantom opposite of the microbubble 

tube to provide a strong reflection target for comparison. Both the microbubble tube and the steel 

rod were embedded at ~ 4 mm radially in the phantom to test if the system could detect contrast 

in a scattering and attenuating medium, which is typical of tissue. 
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Figure 5.4:  Experimental setup for imaging. 

For fundamental imaging, both acoustic excitation and signal reception were performed 

using the 30 MHz element. A pulser/receiver supplied the transducer with a 1 µJ excitation pulse 

at every step and the reflected signal was recorded by the LabVIEW data acquisition system 

described previously. For super-harmonic imaging, a 2-cycle sinusoidal burst was amplified by 

the 3200L RF amplifier to excite the 6.5 MHz transducer while the 30 MHz element was used 

for receiving. The data was digitally band pass filtered with a frequency window of 25 MHz to 

35 MHz corresponding to the receive element’s bandwidth. The acquired A-lines were then 

envelope detected and scan converted to an IVUS image where the contrast to tissue ratio was 

measured by using regions of interest to calculate the mean signal strength. 

5.3 Results and discussion 

The dual-frequency transducer prototype was housed on the tip of a 20 gauge hypodermic 

needle (Figure 5.5). The back surface (Side B in Figure 5.1) of the transducer was bonded to the 

needle with conductive epoxy, allowing the needle to function as an electrical lead to the back 

side of the 6.5 MHz transducer. Co-axial wires (25 gauge) were attached to the top electrode and 

common electrode between the two PMN-PT layers and then threaded through the needle. 
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Figure 5.5:  Prototype transducer housed on the tip of a 20 gauge hypodermic needle. 

5.3.1 Electrical characterization  

The capacitance and loss at 1 kHz (measured with an Agilent 4294A Precision 

Impedance Analyzer) showed good agreement to predicted values. Capacitance values of the 

transducers were 344 pF for the 6.5 MHz transmission element and 131 pF (including a 2 pF 

parasitic capacitance from Al2O3/epoxy layer) for the 30 MHz receiving element. This data was 

in agreement with theoretical calculations using a relative dielectric constant of 4000 (HC 

Materials, Inc.). Loss of the transducer was 1.1% for transmission and 2.7% for reception, 

similar to the properties of PMN-32%PT.  

The measured input electrical impedance at the resonant frequency (Figure 5.6b, d) 

matched well with the results of the KLM modeling (Figure 5.6a, c). In order to obtain a strong 

resonance for high pressure output in the transmission element, the backing layer of the 

transmission element was designed with reasonable absorption for compromise of achieving 
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sufficient pressure output while minimizing ringing. In both the modeling and measured results, 

a strong resonance occurred at 6.5 MHz (Figure 5.6a, b). The center frequency of the receiving 

element was designed to be 30 MHz (Figure 5.6c, d) and the measured results agreed well with 

simulations. 

 

Figure 5.6:  Electrical impedance measurements of prototype transducer. a), b) 6.5 MHz element 

and c), d) 30 MHz from a), c) KLM modeling and b), d) measurement from impedance analyzer. 

5.3.2 Acoustic characterization 

The peak negative pressure of the 6.5 MHz element was recorded with different 

excitation voltages. Measurements were recorded at the contrast imaging area in order to verify 

that this would be the pressure applied in the region of the microbubbles. As shown in Figure 

5.7, the response of the low frequency transducer was nearly linear at excitation voltages lower 
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than 70 V, having an average transmitting sensitivity of 14.5 kPa/V. Nonlinearities showed up 

when the input was higher than 70 V. At about 100 V, more than 1.2 MPa rarefractional pressure 

(MI: 0.48) was generated, which was sufficient to produce a high-frequency, broadband response 

from microbubbles imaged in tissue in prior studies [6, 292].  

 

Figure 5.7:  Peak rarefractional pressure by the transmission element. Pressure at the contrast 

imaging area, 3 mm away from the center of the transducer, using a 5-cycle burst excitation on 

the low frequency (6.5 MHz) element at varied voltages. 

Pulse-echo experiments illustrated the broad bandwidth of the receiving element (Figure 

5.8b). The pulse length of the echo signal was about 80 ns (at -20 dB), corresponding to an axial 

resolution of 60 µm in tissue, which means that the high frequency transducer can be used in 

pulse-echo mode for high resolution fundamental imaging. The -6 dB fractional bandwidth of the 

receiving element was measured to be 58.6%, covering a frequency span of 20 – 38 MHz, 
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providing good reception of the high-frequency, broadband microbubble response. Because of 

the frequency selective isolation layer, the high frequency element behaves as if there was little 

backing for it. As such, the bandwidth predicted by the modeling result was broad (Figure 5.8a) 

and is seen in the measured bandwidth (Figure 5.8b). Burst excitation showed that the loop 

sensitivity of the receiving element relative to the transmitting element was -38.3 dB. 

 

Figure 5.8:  Pulse-echo response and its FFT spectrum of 30 MHz element in a) modeling and b) 

measurement. 
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The transmit frequency spectrum was measured by hydrophone using a 2-cycle burst 

excitation, and the receive bandwidth was measured from the pulse-echo experiment driven with 

a 1 µJ impulse. The -20 dB frequency response of the transmit element was 4.0 – 8.9 MHz. The 

frequency response of the transmitting and receiving elements were well separated (>5 MHz at -

20 dB) (Figure 5.9), which is ideal for detecting microbubble broadband frequency content and 

achieving high contrast to tissue ratios.  

 

Figure 5.9:  Transmission (2-cycle burst) and receiving (pulse-echo) bandwidth separation. 

5.3.3 Contrast detection by the transducer  

Microbubble response was clearly detected with the dual-frequency transducer. In the 

time domain amplitude analysis, a root-mean-square (RMS) value through the 100 lines of data 

was taken as the amplitude of the microbubble response. The received data was first high pass 

filtered at 10 MHz to thoroughly remove residual tissue/phantom responses at the fundamental or 

low harmonic frequencies. Residual stationary signals from the tube wall were filtered using a 
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clutter filter, leaving only the transient high frequency signal from microbubbles. RMS values of 

the microbubble response with different excitations were shown in Figure 5.10. As shown in the 

figure, the background noise was about 0.5 mV, the source of which primarily comes from the 

noise of the amplifier. With 1-cycle burst excitation, the peak negative pressure was low (PNP < 

0.65 MPa) at all voltage inputs (14 V – 98 V), resulting in low (6 dB) SNR (Figure 5.10a). With 

2 or more cycles in each burst, microbubble response could be more than 1.5 mV at 70 V 

excitation (PNP ≥ 0.8 MPa), and the SNR was larger than 10 dB (Figure 5.10b and c). Because 

of the small Q-factor of the receiving element, each negative peak of the transmission wave was 

clearly discernible temporally (Figure 5.10c). At 2 or more cycles in each burst, 42 V input 

excitation was high enough to excite the nonlinear microbubble response (however, at a low 

SNR of 4 dB), corresponding to a rarefractional pressure of 0.65 MPa. The microbubble 

response was just slightly higher at 98 V input compared to 70 V input, and we hypothesize that 

increasing the pressure too high may decrease the CTR due to increased nonlinear response in 

tissue. No signal was detected at low level voltage excitation (14 V) and the response was always 

within the noise. In summary, the SNR increased rapidly with increasing driving voltage and 

then leveled off (e.g. < 70 V). If the input voltage was higher than 70 V, the signal increase of 

the microbubble response was less significant. Gessner et al. also observed a similar plateau for 

nonlinear microbubble response as a function of pressure when excited at 2 MHz [136]. The 

excitation voltage may be further optimized for in vivo conditions. 
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Figure 5.10:  Amplitude of nonlinear microbubble response with sinusoidal bursts of a) 1-cycle, 

b) 2-cycle and c) 5-cycles at different voltage excitations. 

The spectra of the received signals were analyzed to investigate the microbubble response 

in frequency space. Spectra of all the 100 measurements were calculated using the short-time 

Fourier transform and the spectrum for a given test condition was analyzed. As shown in Figure 
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5.11, frequencies lower than 20 MHz were intrinsically suppressed by the transducer’s receiving 

sensitivity so low frequency harmonics of the fundamental do not greatly contribute to the image 

formation in dual-frequency imaging. Input voltage was kept at 70 V while number of cycles in 

the burst varied (Figure 5.11). Fewer number of cycles produced higher axial resolution, 

however, a 1-cycle burst suffered from low SNR because the peak negative pressure was too low 

to induce sufficient microbubble harmonics. With a 2-cycle burst at 70 V input, microbubble 

response was detected while minimizing loss of axial resolution (about 200 µm). The frequency 

content of the noise was less than -12 dB relative to the peak frequency content of the 

microbubble signal (Figure 5.11b).  

 

Figure 5.11:  Spectrogram of microbubble responses at 70 V with a burst of a) 1-cycle, b) 2-

cycles, c) 3-cycles, d) 4-cycles, e) 5-cycles. The spectrum of a water filled tube at 70 V with a 

burst of f) 5-cycles shown for comparison. 
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The presence of the microbubble signal was verified by rinsing the tube with pure water. 

The high frequency response observed when imaging microbubbles vanished when the 

microbubbles were cleared (Figure 5.11f). 

5.3.4 Imaging with the transducer 

5.3.4.1 Fundamental imaging at 30 MHz 

Fundamental imaging mode was performed using the 30 MHz element in pulse-echo 

mode. An impulse with 1 µJ energy was used to produce acoustic waves and the reflected signal 

was recorded by a LabVIEW data acquisition system at 100 MHz sampling rate. The wave 

package was detected and the magnitude was scan converted to polar system as shown in Figure 

5.12. In fundamental imaging mode, the reflection from the 0.6 mm steel rod was nearly 20 dB 

stronger than that from the 200 micron tube containing microbubbles. 

 

Figure 5.12:  Fundamental imaging at 30 MHz. 
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5.3.4.2 Super-harmonic imaging 

In the dual-frequency imaging mode, microbubbles were excited using the low frequency 

element and backscatter was received using the 30 MHz element. The transmission input was a 

6.5 MHz 2-cycle sinusoidal burst at 84 V. The received signal was high pass filtered at 10 MHz 

before being digitized. 

The data was filtered digitally and reconstructed to create an image offline in MATLAB. 

First, each line in the scan was band pass filtered with a 60th order finite impulse response filter 

with corner frequencies of 25 and 35 MHz, which is also the sensitivity range of the transducer. 

The frequency content in this bandwidth covers the majority of the 4th and 5th harmonics of the 

transmission frequency. After filtering, the wave package was detected from the signal and the 

magnitude was scan converted to polar coordinate as shown in Figure 5.13. 

 

Figure 5.13:  Super-harmonic imaging of the microbubble tube and a steel rod.  
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The microbubble filled tube was clearly detected and had a CTR of 12 dB. There was 

some nonlinear response on the rod signified by its presence in the image even after filtering, but 

the signal magnitude was strongly decreased in comparison to the fundamental mode image. In 

dual-frequency imaging, the microbubble response was almost the same magnitude as the 

reflection from the steel rod. Both axial and lateral resolutions were high enough to clearly 

resolve the 200 µm microbubble tube. The diameter of the steel rod can also be clearly visualized 

to be 0.6 mm in lateral direction but not easily seen in the axial direction. Because the sound 

speed in steel is about 4 times of that in water, the reflection from the back surface of the steel 

rod seems very close to the reflection from the front surface, introducing a high distortion in the 

axial resolution on the rod. 

5.4 Conclusion 

In this chapter, a dual-frequency IVUS transducer was designed, fabricated and 

characterized, and its contrast imaging and fundamental imaging capability were evaluated. The 

measured transducer performance matched the modeling results very well for both transmission 

and receiving components.  

In the transducer design, two key features were proposed. First, the aperture of the 

receiving element was significantly smaller than the transmission element, enabling matched 

electrical impedance of both elements and matched acoustic impedance on transmit for increased 

acoustic deposition in the imaging field of view. Second, the isolation layer placed 

intermediately between the two active layers enabled the low frequency transmit wave to pass 

through the isolation interface, but the high frequency receive wave to be reflected which aided 

in decoupling signal content. Thickness control of the isolation layer was controlled by mixing a 

1% microsphere (10 µm diameter) solution into the silver epoxy. The addition of the 
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microspheres had little effect on the acoustic or electrical properties of the silver epoxy. Finally, 

a layer of parylene coating acted both as shielding and as the matching layer of the high 

frequency receiver. Such design and fabrication processes were demonstrated successful in 

prototyping dual-frequency transducers for both fundamental mode imaging and CSI. 

The feasibility of ultra-broadband contrast enhanced intravascular ultrasound imaging 

was evaluated in vitro, using a unique prototype dual-frequency small aperture transducer 

(T6.5/R30). Peak negative pressures higher than 1.2 MPa were generated at 3 mm away axially 

from the low frequency element (0.6 x 3 mm) of the transducer, which proved sufficient for 

contrast imaging. Sensitivity of the receiving element (0.6 x 0.5 mm) provided the capability to 

detect and record the broadband high-frequency response of microbubbles. Initial imaging of a 

200 µm tube filled with microbubbles showed reasonably high SNR (> 12 dB). The small 

aperture dual-frequency transducer design presented demonstrates the first of its kind for contrast 

enhanced high-frequency ultra-broadband intravascular imaging.  

Both fundamental mode and dual-frequency super-harmonic imaging were tested in vitro 

using a tissue mimicking gelatin based phantom. The 30 MHz pulse-echo fundamental imaging 

showed a very high SNR (>25 dB) with reasonable resolution (200 µm). While microbubble 

backscatter was very weak in the fundamental mode, dual-frequency super-harmonic imaging 

generated high CTR (12 dB) and good resolution (200 µm) in resolving the microbubble tube 

and the steel rod. The steel rod used in the experiments was an extremely exaggerated target with 

a reflection coefficient of 0.94 in water, thus the strength of the echo was large enough that weak 

high frequency components of transmission were detectable. Due to the viscoelastic behavior of 

tissue, we could not detect tissue harmonics in the high-frequency bandwidth at the transmission 

acoustic pressure levels (MI < 0.48 at 6.5 MHz) used in these experiments. Visualizing contrast 
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agents with high specificity is necessary for microbubble imaging strategies involved with both 

molecular imaging and vasa vasorum localization. Small aperture transducers with high CTR 

and high resolution capable of detecting contrast agents would promote the transition of advance 

contrast imaging methods to intravascular ultrasound applications. 

While these results are promising, there are still improvements to be made in the near 

future. The noise level in the measurements was high (0.5 mV), resulting in a SNR lower than 20 

dB in super-harmonic imaging. This noise may have come from several different sources such as 

the transducer, cabling, or the amplifier. It is anticipated that further isolating the power 

amplifier used in the transmission circuitry when receiving will likely decrease the noise level 

and improve the CTR and SNR. Digital signal processing methods, such as wavelet denoising, 

could also be employed to remove the broadband white noise from the amplifier efficiently. 

Additionally, it is believed that further improvement can be made by exploring other 

piezoelectric composites (PMN-PT 1-3) that have been considered previously for intravascular 

applications [329]. Due to its low acoustic impedance and high electromechanical coupling 

coefficient, PMN-PT 1-3 transducers generally have a broader frequency bandwidth and a higher 

receive sensitivity.  

In conclusion, the small aperture dual-frequency IVUS transducer presented in this 

chapter can perform acoustic angiography in an IVUS form factor to detect microvascular flow 

in a phantom. Our next chapter will focus on hardware that may improve the noise characteristics 

of this system to improve the SNR from the higher order harmonics.  
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CHAPTER 6

APPLICATIONS AND EMBEDDED SYSTEM DESIGN 

 

Intravascular ultrasound transducers use higher frequencies (20+ MHz) in commercial 

applications than transcutaneous transducers. Higher frequencies are desirable in IVUS because 

smaller wavelengths increase the image resolution and the ability to resolve fine features 

valuable to clinicians, such as the intima-media thickness. As a consequence to using higher 

frequencies, the hardware comprising the electrical connectivity, filtering, transmission, and 

acquisition circuits must adhere to a stricter tolerance in order to prevent noise from 

accumulating in the images. Furthermore, acoustic angiography requires a specialized transducer 

to detect superharmonics and these transducers should be operated using specialized hardware. 

High frequency ultrasound is sensitive to noise and requires the application of transmission line 

theory (impedance matching, shielding, and properly grounding your equipment among other 

requirements) in order to prevent noise from contaminating the imaging equipment.  

 As a result of our preliminary evaluation of our dual-frequency prototype IVUS 

transducer in Chapter 5, we were able to identify that the SNR could be improved further by 
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reducing system noise. Designing and fabricating the appropriate electrical driving and receiving 

equipment using a printed circuit board would not only reduce the noise, but would also facilitate 

the use of the device and reduce the amount of physical space needed to operate it. This chapter 

will present the results of using an embedded system design that is specifically tailored for use 

with wide-bandwidth, dual-frequency IVUS transducers and how this affects the image quality 

of the system. 

6.1 Introduction 

Contrast-enhanced ultrasound is a method of visualizing weakly scattering structures 

such as blood by perfusing the space with micron-sized contrast agents such as lipid 

encapsulated microbubbles [236]. By rejecting frequency bands occupied by tissue reflection, the 

backscatter from tissue can be largely suppressed while retaining the higher-order nonlinear 

superharmonics from MCAs (> 3rd order). Acoustic angiography using only superharmonics (> 

3rd order) to form images has been studied using specialized transducers having widely separated 

center frequencies. It has been characterized with high sensitivity to contrast agents as well as 

great resolution of vasculature in vivo, and shows promise for vasa vasorum and other 

microvascular structure detection [292, 293]. 

Higher-order superharmonic CSI (for simplicity: referred to as superharmonic imaging) is 

only feasible with transducers designed to cover large bandwidths. Dual-element, dual-frequency 

transducers are uniquely qualified to satisfy this requirement and are used in this imaging 

approach, because of the difficulty in making a single transducer having a fractional bandwidth 

to accommodate 4th or higher-order harmonics (ƒBW-6dB = 120%) [330]. Previous IVUS 

transducers used a low-frequency (6 MHz) element for transmission and a high frequency (35 

MHz) element for reception. In order to produce detectable nonlinear signals from MCAs, 
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adequate peak negative pressure needs to be delivered at the focus of the receiving element. 

Since the transmission efficiency between transducers will likely vary, a robust imaging system 

should be equipped with a transmit pulser capable of transmitting pulses with varying pulse 

length and voltage amplitude. In addition to supporting CSI, the proposed hardware should be 

able to collect traditional B-mode images using the high frequency element in order to provide 

anatomical reference. Previous experiments collected images using an external power amplifier 

and function generator for producing the excitatory signal, which adds to the cost and complexity 

of the approach [330]. Currently, there are no imaging systems capable of accommodating the 

unique design requirements imposed by this method of superharmonic imaging. 

In order to facilitate translation of superharmonic imaging to pre-clinical and clinical 

applications, an integrated imaging system capable of operating these dual-frequency transducers 

would be greatly beneficial. A few research imaging systems have been developed for high 

frequency IVUS or dual-channel application [331-333], however, none of the lab-made or 

commercial imaging systems were designed to cater to superharmonic imaging and lack some 

system level design components that would greatly benefit this imaging approach. The 

development of a dual-channel transmit/receive system for superharmonic imaging is reported in 

this chapter. The system employs a field-programmable gate array (FPGA) as the central 

processing unit, making it reprogrammable in order to configure for multiple functions. The 

system is capable of doing user-defined pulse/burst generation, data acquisition, signal 

processing and PCIe signal communication. The layout of the imaging system is small and fits 

on a single 16 x 20 cm PCB, making it portable and convenient for pre-clinical studies. 
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6.2 Methodology 

6.2.1 Design considerations 

To obtain superharmonic and B-mode imaging, two identical and interchangeable 

transmit/receive channels were included for use with dual-frequency IVUS transducers. For 

superharmonic imaging, a low frequency element was used to transmit the excitation pulse while 

a high frequency element was used to receive the echoes. For B-mode imaging, only the high 

frequency channel was used for both transmit and receive.  

On the receiving side, low distortion, low noise amplifiers were used to improve the 

dynamic range and suppress baseline noise with a target SNR of 50 dB. Variable gain was 

implemented since the amplitude of superharmonic signals can vary depending upon receive 

element sensitivity. The designed bandwidth of the receiving channel was from 1 to 60 MHz, 

which covered the fundamental (6 MHz) to the 10th harmonic. The electrical impedance of the 

receiving channel was matched to 50 Ω at the transducer connection in order to efficiently 

operate the high frequency element of dual-frequency transducers based on their measured 

impedance spectra (Figure 5.6).  

When operating in pulse-echo mode for B-mode imaging, the transmitter was designed to 

provide a broadband pulse with an adjustable center frequency (e.g. 35 MHz). However, when 

operating in superharmonic mode, the transmit pulser should also be able to generate a 1-2 cycle 

burst at a much lower center frequency in order properly excite the transmitting element for 

acoustic angiography [291]. Considering there will be variance among transducer transmission 

efficiencies, the pulser was designed to output high voltages that may be adjusted to control 

output acoustic pressures necessary to optimize superharmonic imaging. 
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The block diagram of the integrated dual-frequency dual-channel imaging system is 

shown in Figure 6.1A. The system was controlled by a FPGA. Bipolar pulses or single frequency 

bursts (aka, pulse trains) could be generated by the FPGA, which then could be passed to the 

pulser. A digital transmit/receive switch controlled the system to work in either DF-mode or B-

mode for either acoustic angiography or anatomical imaging, respectively. After being amplified 

and filtered by the analog receiving circuit, the returned echo was digitized by a 12-bit 210 MHz 

ADC. Separate AC/DC power supplies were used to provide the analog and digital working 

voltages (1 V, 2.5 V, 3.3 V and 5 V), as well as the pulse generator voltage (up to 200 Vpp). 

General purpose I/O pins were include to provide timing control in order for external triggers to 

control synchronous activities such as firing at precise motor positions. The system 

communicated to the PC through a PCIe digital I/O card. A summary of the important device 

parameters are listed in Table 6.1.  

Table 6.1:  Devices used in the proposed system. 
Function 

Block 
Device Parameters 

Manufacture 

Specification 

Pulse 

Generator 

TC6320 MOSFET 

Pair 

Max Voltage 200 Vpp 

Rise/Falling Time 15 ns 

Amplifier 
AD8331 Low-noise 

Amplifier 

Gain -4.5 to 55 dB 

-6dB Bandwidth 100 MHz 

ADC  AD9230-210 

Sampling 210 MHz 

Resolution 12 bits 

Input Range 1.25 V 

FPGA Virtex-6 XC6VLX75T 

Number of I/Os 240 

Number of Logic 

Slices 
11640 

Data Transfer 
PCIe Digital I/O Card 

PXIe6537B 

Sampling Rate 50 MSPS 

Bus Width 40 bits/Sample 

DC-DC 

Converter 
LT3083, LT3633 Total Power 3 W,12 V 
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The system was fabricated on a small-form-factor 6-layer printed circuit board (16 x 20 

cm, 400 g), depicted in Figure 6.1B. SMA connectors were used for transducer connectivity. 

 

Figure 6.1:  Embedded system flow chart and photograph. (A) Block diagram of the integrated 

dual-frequency superharmonic imaging system. Different color shows different power domain: 

blue: digital supply; green: high voltage for pulser; red, analog supply; purple, low-noise analog 

DC supply for ADCs. (B) Photograph of the system  

6.2.2 Specific design consideration 

6.2.2.1 FPGA logic 

A Virtex-6 FPGA served as the central controller of the proposed system, working at 200 

MHz clock rate. It received commands from the PC, controlled the pulse generator waveform 

and transmitted the data to the PC for display and further processing. The PC communicated to 

the FPGA through a PCIe 40-channel digital I/O card, with 50 MHz clock rate, which could be 

programmed using Labview software (National Instrument, Austin, TX).  

The digital logic diagram of the FPGA is shown in Figure 6.2A. To collect one frame of 

data, an Acq_Start signal was sent to the FPGA from the PC through the digital I/O. Major user-

defined control signals are summarized in Table 6.2.  

Figure 6.2B shows the timing diagram of image acquisition. At the rising edge of signal 

Pulse_Trigger, digital pulse/pulse-train were sent out through one pair of differential signal pins 
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on the FPGA, which were then amplified by the pulse generator to get enough excitation voltage. 

We used single pulse excitation for B-mode imaging and multi-cycle burst for superharmonic 

imaging, which were generated inside FPGA in the form of a differential digital wave. The 

digital pulse was then given to the transmit pulser. After echo signal was received, optional 

processing such as finite impulse response filtering, envelope detection was implemented on-

board. Raw/processed data was stored into a first-in-first-out (FIFO) buffer. Once full, a FULL 

bit was generated, acknowledged the digital I/O card for data transferring of a line of data. A 

Labview graphical user interface (GUI) was developed for control and data acquisition.  

 

Figure 6.2:  Programming block diagrams and timing charts. (A) FPGA logic block diagrams. 

The dashed lines show the clock signal. (B) Logic timing of one frame data acquisition. Pulse 

numbers 1 and 3 are bipolar pulses for B-mode imaging; Pulse numbers 2 and 4 are multi-cycle 

pulse-trains for superharmonics imaging.  

6.2.2.2 Analog receiver design 

The signal from each element was passed into an individual analog receiving channel. To 

protect the receiver circuit, the signal first went through a custom passive limiter, which shunted 

high amplitude transmit pulses to ground in order to prevent overvoltage [334]. To provide 

enough gain for the low-amplitude superharmonic signal, the received signals were then 

amplified by a low-noise variable-gain amplifier (AD8331), with overall adjustable gain of -4.5 
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dB to 54 dB. The -3 dB bandwidth of the amplifier spanned from 1 to 100 MHz when connected 

to a 50 Ω input impedance. The amplifier also converted the single-ended input to a differential 

output, which eliminated DC biasing. Signals were then LP filtered by a 3rd order Butterworth 

filter with -6 dB cut-off frequency at 60 MHz. The signal was digitized by a 12-bit ADC 

AD9230 at a sampling rate of 200 MHz. After conversion, the differential digital signals were 

routed to the FPGA.  

Table 6.2:  Major user defined parameters of the proposed system. 
Parameter Selection Control Signal 

Imaging Depth 
2048/4096/8192 sample 

points/line 
Pre-loaded in FPGA 

Number of Lines in a Frame N:1-10000 #of_Lines[0-7] 

Repetition in Each Line 1-2000 #of_Pulses[0-6] 

Transmit Pulse Polarity 0° or 180° Control [0] 

Transmit Pulse Frequency 
Any Integer Division of the 

Clock Frequency 
Control [1-7] 

Stimulation Mode Pulse Echo /Dual-frequency Mode 

Receiving Channel Chan1/Chan2 Channel 

Transfer Clock Speed ≤50 MHz Pre-loaded in FPGA 

 

6.2.2.3 Pulse generator  

For superharmonic imaging, a Gaussian-weighted sinusoid driving signal would be the 

ideal choice, since this waveform has low spectral leakage in the frequency domain that could 

potentially contaminate the superharmonic signal derived from MCAs. An adjustable high 

voltage output was also necessary, considering the previously mentioned variation in transducer 

sensitivity. However, a high-frequency (30-40 MHz), high-voltage power amplifier and a high-

speed D/A converter would have to be implemented in order for proper excitations with arbitrary 

waveforms such as the aforementioned Gaussian-weighted sinusoid. Additionally an impedance 

matching circuit would be required to get rid of the shape distortion at variable driving 

frequencies – both of which would increase the complexity and size of the circuit extensively.  
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Instead a bipolar high-voltage square wave generator provided by TC6320 (Supertex 

Inc.) was used which is considerably more affordable while still being acceptable as a driving 

circuit. A pair of high-speed MOSFETs controlled the output of the positive and negative voltage 

rails of the excitatory signal. The chip was able to provide a square wave between 40-50 MHz up 

to a maximum voltage of 200 Vpp. Two MOSFET drivers (ISL55110, Intersil Corp., Milpitas, 

CA) were used to amplify the digital pulses generated by the FPGA to 20 Vpp before entering the 

pulse generator. The transmitted waveforms were passed through two stages of expanders using 

PMDB7000 high-speed, high-breakdown voltage diode (NXP Semiconductors, Eindhoven, 

Netherlands) before being sent to the transducer.  

The transmit pulse generator was able to produce high voltage, bipolar pulses for B-mode 

imaging, and burst (square wave trains) for superharmonic imaging. The center frequency of the 

pulses was controlled by the FPGA. Voltage output was adjusted by controlling the DC supply 

voltage to the MOSFET. 

6.2.3 Transducer design 

A photograph of the transducer is shown in Figure 6.3A. The transducer was designed as 

multiple layers with the high frequency layer in front of the low frequency layer, Figure 6.3B. 

The low frequency excitation wave was generated by the low frequency element and the wave 

could pass through the high frequency element to propagate into surrounding tissue. A summary 

of the fabrication information of this prototype transducer is the same as that shown in Table 5.1 

except the center frequency of the receiving element was increased from 30 MHz to 35 MHz. 

Additionally, an acoustic filter layer was added and interleaved between the two piezoelectric 

layers. The acoustic filter layer functions as a matching layer for the low frequency wave and an 

anti-matching layer for the high frequency wave in order to prevent aliasing echoes from 
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accumulating in imaging data [335, 336]. The whole transducer (4 mm x 0.6 mm x 0.5 mm) was 

mounted on a 20 gauge hypodermic needle. A detailed fabrication procedure is given in Chapter 

5. 

 

Figure 6.3:  Embedded system experimental design and MCA population. (A) Photograph of the 

transducer. The inset shows the front look of the acoustic stack. (B) Acoustic stack of the dual-

layer transducer. (C) Experiment setup for vasa vasorum phantom imaging. (D) Microbubble 

size distribution. 

6.2.4 Imaging experimental setup 

Ex vivo IVUS imaging of heathy rabbit aorta and in vitro phantom imaging was 

conducted to evaluate the imaging performance of the hardware and device. The artery samples 

were donated by Dr. Tzung Hsiai from the University of California, Los Angeles, after the rabbit 

was sacrificed for an unrelated study. A 15 mm long sample was removed from the animal. The 

first 5 mm of the sample was buried in a gelatin substrate for stabilization and the rest of sample 

was submerged in formalin. During the imaging experiment, the formalin was replaced by water 
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and the transducer was inserted into the vessel longitudinally and rotated using a stepper motor. 

The system was operated in B-mode using the 35 MHz element. The pulse generator provided a 

single cycle, bipolar pulse at 60 Vpp and 33 MHz center frequency. The experiment was repeated 

using two different dual-frequency transducers  

For superharmonic in vitro imaging, both the high-frequency element and the low-

frequency element were connected to the system. The transducer was attached to a motor and 

placed in a 4 mm diameter channel cut through a tissue mimicking phantom. The phantom was 

prepared using a 0.075 g/mL concentration of 275 bloom gelatin with a 0.032 g/mL 

concentration of graphite scatters. The speed-of-sound was measured to be 1532 m/s using a 

pulse transmission approach. The acoustic attenuation coefficient was expressed by the following 

equation: 

  𝛼 = 𝛼0𝑓𝑛 6.1 

with units of dB/cm for α0 and MHz for 𝑓. In 4.5-7.5 MHz range, the phantom attenuation was 

α0 = 1.399, n = 0.9439 (R2 = 0.952); in 15-30 MHz range, α0 = 0.1228 and n = 1.4172 (R2 = 

0.982). To mimic vasa vasorum, an acoustically transparent tube with a 200 µm inner diameter 

was inserted through the phantom. The tube was placed transversely to the imaging plane, as 

shown in Figure 6.3C. Additional details about the phantom formulation have been reported 

previously [337].  

Polydisperse lipid-shelled microbubbles were formulated as described previously [103]. 

Lipid solutions were formulated using 1,2-distearoyl-sn-glycero-3-phosophocholine (DSPC-

Powder, Avanti Polar Lipids, Alabster, AL) and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-methoxy (polyethylene-glycol)-2000 (DSPE-PEG-2000) in a 9 to 1 

molar solution of propylene glycol, glycerol, and phosphate buffered saline (15%, 5%, and 80%, 
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respectively). Lipids were agitated in the presence of decafluorobutane in 3 mL sealed glass vials 

using a commercial agitator (VialMix Shaker, Bristol-Myers-Squibb, New York, NY). 

Concentrations and sizes of microbubbles were measured optically using an Accusizer 780A 

(Particle Sizing Systems, Santa Barbara, CA) to measure microbubbles within a range from 0.5 

to 6.0 µm. Microbubbles were diluted to a concentration of 8x107 MBs/mL and then were 

pumped through the tube at a mean velocity of 4.4 cm/s while imaging. The microbubble 

population had a mean volume-weighted diameter of 1.24 µm. For comparison with other 

relevant studies, the size distribution of this microbubble population would approximate that of 

DefinityTM (Bristol-Myers Squibb Medical Imaging, North Billericia, MA) that has been 

decanted for 1 hour prior to use [338]. A microbubble population having a smaller mean 

diameter (<2 µm) has been reported to provide increased nonlinear response at frequencies 

relevant to this study (>10 MHz) [55, 339]. The microbubble size distribution is shown in Figure 

6.3D. Raw RF data was acquired and data was post-processed in MATLAB (Mathworks, Natick, 

MA) using a 25-40 MHz 6th-order band-pass Butterworth digital filter. Envelop detection was 

applied for image displaying using the Hilbert transform.  

6.3 System calibration and imaging results 

6.3.1 Analog receiver characterization 

The impulse response of the system was measured using the following methods. A pulse 

generated by Panametrics 5900PR (Olympus Corporation, Tokyo, Japan) was delivered through 

the transducer SMA connection port after being attenuated by 40 dB. The pulse waveform and 

the received signal collected by the proposed system are shown in Figure 6.4.  
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Figure 6.4:  Impulse response of the receiver. (A) Input pulse voltage collected by the 2 GHz 

digital oscilloscope (dashed black) and the received signal (scaled to 1, blue) collected by the 

system. (B) The spectrum of the input pulse (dashed black), of the received signal (blue) and of 

analog filter simulation (red). 

From the time domain waveform, it was evident that the baseline noise measured was 

removed by the analog receiving circuit. The frequency spectrum showed the analog receiver had 

a -6 dB cut-off frequency at 52 MHz, which was lower than the designed frequency of 60 MHz. 

The reason for the mismatch between the design and actual frequency was that a few passive 

components were not inserted at the input stage of the preamplifier in order to match the actual 

transducer impedance which changed the load seen by the filter versus the designed one.  

The ADC SNR was 55.9 dB, calculated according to Equation 6.2: 

 

𝑆𝑁𝑅 = 20𝑑𝐵 𝑙𝑜𝑔10 (
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
) 6.2 
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where Asignal was the dynamic range of the ADC (1.25 V) and Anoise was measured by powering 

the system without providing a signal input (open circuit) and recording. The noise level of the 

amplifier was tested by measuring the minimum detectable signal using a sine wave sent to the 

receiving channel of the system. At 35 MHz, the minimum detectable signal was 65 µV. The 

gain at 35 MHz was 42.9 dB. 

6.3.2 Pulser characterization 

The output of the transmit pulse generator was measured by a digital oscilloscope (TDS 

5052, Tektronix, OR). Figure 6.5A and Figure 6.5C show the time and frequency domain of a 

pulse centered at 30 MHz  along with the pulse-echo response of  the 35 MHz element using the 

designed hardware. The pulser could generate a burst signal (square wave) for superharmonic 

imaging. As shown in Figure 6.5B, the spectrum of a 3-cycle square wave burst had strong odd 

harmonics, which were 10 dB weaker every 2 octaves. The acoustic output of the 6 MHz element 

driven by the burst was also measured, using a needle hydrophone (HNA-0400, Onda Corp., 

Sunnyvale, CA) placed axially 3 mm away from the transducer. Shown in Figure 6.5D, the odd 

harmonics present in the transmit pulse was suppressed by the convolution with the transducer 

impulse response, but there was still a 22 MHz frequency component in addition to the 6 MHz 

baseband. It was important that the excitation acoustic wave should have weak high frequency 

leakage, because tissue scattering of the high frequency would impair the distinction between 

signal originating from contrast versus tissue. To suppress the 22 MHz component, a HP filter 

(fcorner = 25 MHz) was applied during image post-processing.  
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Figure 6.5:  System excitatory pulse and corresponding transducer response. (A) Broad-band 

pulse and spectrum measured by oscilloscope. (B) 6 MHz pulse train and spectrum measured by 

oscilloscope. (C) Pulse echo signal of the 35 MHz element collected by the proposed system. (D) 

Acoustic pressure output of the 6 MHz element measured by the hydrophone, shown in 

hydrophone voltage 

Figure 6.6 shows the relationship between the supply voltage and low-frequency element 

acoustic output. The slope was 19 kPa/V when using 2-cycles and 14 kPa/V for a single cycle 

pulse. Above 140 Vpp, both 1-cycle and 2-cycles could produce peak negative pressures over 1 

MPa, which was sufficient to produce broadband transient responses from MCAs for acoustic 
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angiography [292]. In practice, we limit the driving voltage under 150 Vpp to extend the life of 

the transducer and prevent fatigue-based depoling. 

 

Figure 6.6:  Acoustic pressure collected using a calibrated hydrophone. The transmitting element 

was excited using a 6 MHz 1-cycle or 2-cycle pulse  

6.3.3 Imaging results 

Figure 6.7 shows the B-mode image of the rabbit aorta collected using the high frequency 

(35 MHz) element of the IVUS transducer with the proposed system. A dynamic range of 45 dB 

was observed with the front and back layers of the artery remaining visible. The image was 

formed by acquiring 2000 lines for a single revolution. In addition to fast-time filtering, a clutter 

filter was applied to the dataset to reduce stationary echoes. 
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Figure 6.7:  B-mode image of the rabbit aorta obtained by 35 MHz transducer element 

Acoustic angiography acquisitions were performed in the tissue mimicking phantom. For 

B-mode, water or MCAs were injected continuously into the 200 µm diameter tube to simulate 

blood flow in a microvessel in a manner similar to vasa vasorum. The results of B-mode to 

acoustic angiography are compared in Figure 6.8. As intended, B-mode imaging methods cannot 

reliable locate microvascular contrast flow when surrounded by tissue. B-mode imaging with 

water injected was very similar to Figure 6.8A, (results not shown). Superharmonic images were 

acquired by transmitting a 3-cycle burst at 120 Vpp using the dedicated system. As shown in 

Figure 6.8B, the MCAs inside the tube were visualized, while the fundamental frequency 

containing mostly tissue mimicking phantom backscatter was successfully suppressed. A 

dynamic range of 30 dB was observed in phantom images, which was a 10 dB improvement over 

previously reported results (see Chapter 5). Stronger ring-down from the transmit wave can be 
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seen near the center of the image. The image was formed by acquiring 400 lines for a single 

revolution. 

 

Figure 6.8:  Phantom superharmonic imaging result. (A) B-mode image, when MCAs were 

injected into the micro tube. The approximated location of tube is circled with red. (B) 

Superharmonic image obtained when MCAs were injected continuously into the microtube 

located at the 8 o’clock position which is the only enhancement seen in the field outside of the 

ringdown effect. 

Figure 6.9A shows a zoomed in view of MCAs inside the tube, re-drawn from Figure 

6.8B. A scale bar (red) is drawn in the axial direction and has a length corresponding to 200 µm. 

The size of the tube in the image was approximately 300 µm from -6 dB measurements.  
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Figure 6.9:  Expanded view of superharmonic image. (A) is redraw from Figure 6.8B. (B) is 

collected when water was injected into the vessel mimicking tube. (C) and (D) were collected 

using a different transducer with a narrower bandwidth. (D) was collected where the micro-tube 

ran parallel to the imaging plane. 200 µm along the axial direction is indicated by the red bars. 

Figure 6.9B shows the superharmonic image when water instead of MCAs were injected 

into the vessel mimicking tube. The 200 µm lumen of the tube can be seen along with the front 

and back reflections from the tube wall.  

Additional superharmonic images were collected using another dual-frequency 

transducer, whose 6 MHz element had a 20% BWf (28% narrower than the one used for Figure 

6.8). Figure 6.9C shows the cross-section view collected of the vasa vasorum mimicking tube, 
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where the front and back surface of the tube cannot be seen. In Figure 6.9D, another imaging 

plane was chosen, where the tube ran nearly parallel to the imaging plane, so the longitudinal 

cross section of the tube could be imaged. The sizes of micro-tube in these images were about 

500 µm indicating that transmission fractional bandwidth can affect image resolution on a 

considerable level when performing acoustic angiography from an IVUS platform. 

6.4 Discussion 

The capability of the system for superharmonic contrast-enhanced imaging has been 

demonstrated. In the phantom vasa vasorum study, a dynamic range of 30 dB was achieved with 

10 dB improvement of SNR. High frequency B-mode imaging was also acquired by the system. 

As shown in Figure 6.9, the size of the vasa vasorum mimicking tube in the image is larger than 

its actual size when the transmit transducer with narrower bandwidth was used, which might be 

explained by ringing in the excitation waveform. This implied that the superharmonic imaging 

resolution was related to both transmit and receive element resolutions. 

Although imaging resolution can be improved by reducing the number of cycles in the 

transmit pulses, a threshold peak negative pressure has to be reached in order to produce 

detectable superharmonics. Under the current imaging conditions, we could not detect 

superharmonic responses using a 1-cyle 200 Vpp (maximum voltage) pulse. This can be 

explained by the damping introduced by the transducer when converting changes in electrical 

field to vibratory motion. As shown in Figure 6.5D, when driven by a multi-cycle pulse, the peak 

negative pressure ramped up after the first cycle. If the time constant of the transducer could be 

reduced, presumably a shorter pulse can be used to reach the transmit pressure threshold and thus 

resolution can be improved. However, this implies increasing the transducer bandwidth which 

normally presents a lower electromechanical coupling.  
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Other studies have reported that increasing the transmitted pressure used to excite 

microbubbles improves superharmonic signal returned until a threshold pressure is reached 

where it was likely that microbubble fragmentation occurs and limits further increases in SNR at 

higher pressures [136]. The loss of echogenicity from microbubbles fundamentally limits the 

maximum SNR obtainable at a given noise level. 

6.5 Conclusion 

An integrated, compact, dual-channel imaging system designed for performing acoustic 

angiography was developed. The system supported acquisition of high-frequency B-mode 

imaging, as well as superharmonic CSI. The images obtained using this system improved 10 dB 

in terms of SNR compared to previous setups. When connected to a dual-frequency (6 MHz, 35 

MHz) intravascular transducer, the system was able to achieve 45 dB of dynamic range for ex 

vivo aorta B-mode imaging. A vasa vasorum mimicking vessel embedded in a gel phantom could 

be detected when operating in DF-mode but could not be seen in B-mode. This chapter has 

shown how hardware considerations can reduce noise levels and improve image quality in dual-

frequency IVUS transducers in vitro conditions. Having demonstrated both in vitro detection of 

contrast-filled microvasculature, the next step in evaluating this device will be conducting 

experiments in both ex vivo and in vivo and to quantify image metrics in these scenarios.  
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CHAPTER 7

DF IVUS FOR 3D VISUALIZATION OF MICROVESSELS: EX VIVO AND IN VIVO 

IMAGE METRIC VARIATIONS WITH DEPTH 

 

In Chapter 5, fabrication and initial analysis of the prototype transducer was described. It 

was shown that the transducer could produce both sufficient pressure to generate superharmonics 

from contrast agents and was sensitive enough to detect these superharmonics. In Chapter 6, 

improvements were made to the hardware that operates the dual-frequency IVUS probe which 

reduced noise and improved image quality in both B-mode and DF-mode operation. 

Additionally, an in vitro setup consisting of gelatin phantom was used to compare anatomical B-

mode images to contrast specific DF-mode images. It was shown that using the appropriate 

hardware can aid the detection of microvascular flow when using a dual-frequency IVUS 

transducer. In this chapter, we seek to quantify and describe the depth dependency of SNR, CTR, 

and tissue suppression while operating in either B-mode or DF-mode. Quantification of image 

metrics will be performed in order of increasing difficulty using a gelatin phantom, an excised 

porcine artery, and finally in vivo using chicken embryos. Volumetric acquisitions will also be 
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presented in this chapter for direct 3D vessel visualization of vessel patterns and qualitatively 

compared to optical measurements of the same field of view.  

7.1 Introduction 

In healthy arterial walls, the outer layers are diffusion-limited and are supplied with 

nutrients and oxygen by a network of vessels known as the vasa vasorum arising in the 

adventitial layer. As atherosclerotic plaques develop, vasa vasorum extend through the media 

and intimal layers into the plaques themselves [340]. Prior to observable symptoms, plaque 

rupture and ensuing cardiac events occur infrequently and seemingly asymptomatically, further 

obscuring disease progression [341]. While IVUS is routinely used to image plaques, previous 

studies indicate that a diagnosis based solely on plaque morphology may lack the ability to 

discern between asymptomatic fibroatheroma and those prone to rupture [1, 342]. Additionally, 

histological data has confirmed that vulnerable plaques exhibit enhanced vasa vasorum 

proliferation, intraplaque neovascularizations, or intraplaque hemorrhages [7, 343, 344], 

potentially providing an alternative means for assessing plaque vulnerability through the 

detection of intraplaque blood flow. 

Contrast agents have been imaged selectively using IVUS transducers by exploiting their 

nonlinear behavior through a variety of methods including, but not limited to, pulse inversion 

[57, 345], subharmonic imaging [55], chirp reversal [346, 347], and radial modulation [58]. 

While some techniques utilize the second harmonic signal, it has been noted that contrast 

imaging using the second harmonic can be nonspecific to MCAs since tissues also generate 

second harmonics through nonlinear wave propagation [52, 348, 349]. As a result, second 

harmonic imaging of MCAs can result in loss of specificity in contrast images if measures are 

not taken to suppress tissue-derived harmonics. 
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Alternatively, higher order superharmonic imaging of MCAs provides high resolution 

and high contrast signal to noise in acquired images. In this chapter, we present contrast specific 

in vivo superharmonic imaging using custom DF-IVUS transducers. The described experiments 

evaluate and measure the spatial resolution, sensitivity, and specificity of this intravascular 

approach for imaging microvessels, in order to establish the feasibility of DF-IVUS 

superharmonic imaging of intraplaque vasa vasorum. 

7.2 Methods 

7.2.1 The dual-frequency probe and imaging system 

Contrast imaging at higher harmonics requires transducers with even broader bandwidths. 

For example, performing 5th harmonic imaging using single element transducers would require a 

-6 dB fractional bandwidth of at least 133% which is difficult to achieve with piezoelectric 

materials. However, using multiple elements with separate frequencies allows the transducer to 

cover a broad range of frequencies to make higher order superharmonic imaging feasible [350]. 

The dual-frequency IVUS prototypes used in this study had both elements composed of PMN-PT 

single crystal with different aperture dimensions oriented in a stacked configuration such that the 

low frequency element is placed behind the high frequency element. 

The unfocused low frequency element (fc = 5.5 MHz, BWf = 50.0%, 0.6 mm laterally by 

3 mm elevationally) would emit the excitatory pulses for generating nonlinear echoes from 

MCAs while the high frequency element (fc = 37.2 MHz, BWf = 28.5%, 0.6 mm laterally by 0.5 

mm elevationally) would detect only the superharmonics produced by microbubbles. Thus, 

images formed by operating the transducer in DF-mode will preferentially image nonlinear 

targets that produce superharmonics such as MCAs. The two elements are acoustically isolated 

to prevent undesirable coupling using a frequency selective isolation layer [317, 335]. 
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Conventional B-mode IVUS imaging was performed for comparison by using the high frequency 

element in pulse-echo operation.  

Signals were acquired from the dual-frequency probe using a custom imaging system 

capable of volumetric acquisitions (Figure 7.1). A programmable microcontroller was used to 

mechanically rotate the probe using a stepper motor having 400 discrete angular positions per 

revolution (angular step size, Δθ = 0.9°) and images were acquired at a pulse repetition rate of 

100 Hz. The motor and transducer assembly were mounted to a three-axis computer controlled 

motion stage (Newport XPS, Irvine, CA, USA) which controlled transducer pullback in order to 

collect images of the entire volume for 3D rendering. The transducer was operated in either DF-

mode for contrast detection or B-mode for conventional pulse-echo IVUS imaging.  

 

Figure 7.1:  Data and control signal flow for acquiring superharmonic signals using the dual-

frequency transducer. 

In DF-mode, the low frequency element was excited using a 5.5 MHz, 50% bandwidth 

Gaussian enveloped pulse from an arbitrary function generator (AFG3101, Tektronix, Inc., 
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Beaverton, OR, USA). The pulse was amplified to 275 Vpp using a 60 dB radiofrequency 

amplifier (A-500, Electronic Navigation Industries, Rochester, NY, USA) in order to generate 

1.2 MPa of peak rarefractional pressure at a depth of 2 mm in water, which was measured using 

a needle hydrophone (HNA-0400, Onda Corp., Sunnyvale, CA, USA) (Figure 7.2). The 

transmission pressure was selected in order to produce detectable nonlinear responses above the 

4th harmonic using the high frequency element, similar to reported observations in earlier 

prototypes (see Chapter 5). A beam map of the peak rarefractional pressure from the transmit 

element was performed by scanning the hydrophone in a water bath using an automated script 

(Labview, National Instruments, Austin, TX, USA).  

 

Figure 7.2:  Transmission and reception characteristics of the dual-frequency IVUS probe. (a) 

The time-varying pressure produced by the 5.5 MHz element that was used when the transducer 

was operated in DF-mode. The pressure response was recorded using a calibrated hydrophone in 

water at a depth of 2 mm. (b) The normalized power spectra of the transmitted pulse and the 

receiving element impulse response. There is little overlap between transmission and reception 

spectra, indicating that received signals will primarily consist of nonlinear harmonics. 

The received high frequency signal was amplified by 12 dB using a low noise amplifier 

(BR-640A, Ritec, Warwick, RI, USA) before being digitized at a sampling rate of 100 MHz 
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(PDA14, Signatec, Lockport, IL, USA) for offline post-processing. B-mode imaging was 

performed using a commercial pulser-receiver (5900PR, Panametrics Inc., Waltham, MA, USA) 

operating in pulse-echo mode on the high frequency element in order to provide a comparison of 

imaging modes. Raw signals were first filtered using a zero-phase 8th order Butterworth 

bandpass filter (33-41 MHz) before being envelope-detected and scan-converted to polar 

coordinates for display. After image processing each individual slice in the volume (Matlab, The 

Mathworks, Natick, MA, USA), three-dimensional filtering with a Gaussian kernel (0.59 mm 

isotropic variance) was applied to smooth the dataset. Finally, the entire volume was then 

exported to ImageJ (National Institute of Health, Bethesda, MD, USA) where maximum 

intensity projections were performed to visualize the 3D volume. Statistical significance between 

computed image metrics were determined with two-sided t-tests at a significance level of p < 

0.05.  

7.2.2 Microbubble formulation and preparation 

Phospholipid shelled microbubble suspensions were formulated as previously described 

(Section 6.2.4) and aliquoted into 3 mL glass vials sealed with a butyl rubber stopper. A needle 

was inserted into the headspace of the vial and the gas was exchanged with an inert 

perfluorocarbon (decafluorobutane, Fluoromed, Round Rock, TX, USA) to form the gaseous 

core of the MCA. Mechanical agitation using a commercial vial agitator (VialMix, Lantheus 

Medical Imaging, North Billerica, MA, USA) was performed for 45 s to encapsulate the 

perfluorocarbon, producing a polydisperse microbubble population. The microbubble population 

concentration and diameters were measured using a light obscuration and scattering method 

(AccuSizer 780, Particle Sizing Systems, Santa Barbara, CA, USA). Prepared microbubble 

populations had a number-weighted mean diameter of 1.08 µm measured between 0.5 to 20 µm 
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with 95% of the measured population having a diameter below 1.97 µm. In vitro and ex vivo 

contrast experiments were conducted after diluting the stock concentration of microbubbles with 

distilled water to 108 MCA/mL, while in vivo experiments used undiluted concentrations of 1010 

MCA/mL.  

7.2.3 Vasa vasorum phantom 

In vitro phantom experiments were conducted in order to quantify differences between 

conventional B-mode and contrast specific dual-frequency images of MCAs as a function of 

depth in an attenuating medium. A gelatin tissue-mimicking phantom using graphite scatterers 

was made to simulate arterial tissue. The phantom formulation was adapted from a previously 

described method reported elsewhere (Section 6.2.4). Amorphous graphite sized between 0.75-5 

µm (Superior Graphite, Chicago, IL, USA) was used to simulate backscattering from tissue and 

was added at a concentration of 32 mg/mL for attenuation control. Attenuation of the phantom 

material at applicable frequencies was measured by comparing pressure reduction after inserting 

phantom material between a piston transducer and a hydrophone. Cellulose tubes with an inner 

diameter of 200 µm were fixed in the phantom material to simulate larger vessels of the vasa 

vasorum. The vasa vasorum of human carotid plaques range from 1.6-199.7 µm, with a mean 

diameter of ~40 µm , while the diameter reported for porcine coronary vasa vasorum ranges 

between 70-160 µm [298, 351]. In order to determine the image metrics as a function of depth, 

the microcellulose tube was angled relative to the central axis of the vessel lumen so that the 

amount of phantom material between the contrast-filled vessel and the transducer varied during a 

volumetric scan (Figure 7.3).  Additional phantoms containing tube networks were fabricated in 

order to evaluate 3D imaging performance in a more complex environment similar to that 

encountered in vivo. Diluted MCAs were injected into the phantom at a mean velocity of 17.7 
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mm/s using a calibrated syringe pump (PHD2000, Harvard Apparatus, Holliston, MA, USA). At 

this rate, the volumetric flow approximates human in vivo conditions of an arterial vessel of 

approximately the same diameter [352]. The central lumen containing the transducer was 4.5 mm 

in diameter and filled with distilled water during imaging. This simulates clinical procedures in 

which a bolus of saline is injected to clear the lumen during the time of imaging to avoid 

shadowing from microbubble attenuation within the parent artery. The approach is analogous to 

that described for optical coherence tomography where saline boluses are used during 

percutaneous interventions to clear red blood cells so that the vessel endothelium may be imaged 

[353-355].  

 

Figure 7.3:  Overview of the in vitro methods. (a) Schematic of the microvascular phantom used 

to simulate vasa vasorum embedded in tissue. A 200 µm diameter cellulose tube was used to 

simulate a microvascular channel of the vasa vasorum within the tissue. (b) Frequency-

dependent attenuation of the graphite phantom. The speed-of-sound measured to be 1548 ± 44 

m/s at 22°C. 
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7.2.4 Ex vivo porcine vessel imaging 

While phantoms provide a useful tool for quantifying DF imaging performance under 

highly controlled conditions, imaging using an ex vivo model can be used to test the feasibility of 

the approach when imaging through actual arterial tissue. Mesenteric arteries from Rapacz 

familial hypercholesterolemic pigs (RFH) were used as a surrogate for human arteries, and were 

donated by the Francis Owens Blood Research Lab (FOBRL, Chapel Hill, NC, USA). RFH pigs 

are genetically predisposed to develop atheromata at a younger age and these atherosclerotic 

lesions closely mimic the pathology found in humans. The mutation that results in familial 

hypercholesterolemia is a missense mutation (C253  T253) resulting in a transcription 

substitution (R94  C94) of a region of the low density lipoprotein receptor that is analogous to 

exon 4 in the human ligand binding domain [356-358]. RFH pigs have been used previously to 

evaluate contrast enhancement methods for detecting vasa vasorum during the progression of 

atherosclerosis [344]. All arteries were collected within 1 hour after euthanasia and stored 

immediately in phosphate buffered saline (PBS) solutions at -20°C until the time of the 

experiment. Previous work involving human coronary arteries have noted that fixing tissue in 

formalin significantly alters the acoustic properties of specimens, but freezing and thawing have 

not produced significant changes in acoustic properties [359, 360]. Specimens were thawed, 

sutured, and attached to a custom fixture to allow the vessel to be stretched to approximately 1.5 

times the resected length to approximate in vivo conditions (Figure 7.4) [361].  
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Figure 7.4:  Illustration of the ex vivo imaging setup. The porcine artery is sutured and attached to 

a custom fixture on either side that immobilizes the tissue during the imaging process. A 200 µm 

diameter microcellulose tube is placed outside of the artery to simulate a deep vasa vasorum 

vessel and contrast agents are flowed through the vessel at a fixed concentration. The transducer 

is placed within the lumen of the vessel and images are acquired in 21 different planes (dashed 

lines) separated by 200 µm under automated pullback. At each imaging plane, the transducer is 

rotated for one revolution to acquire an image before advancement to the next imaging plane. 

A 200 µm diameter tube was placed outside the artery to simulate a deep vasa vasorum 

vessel and contrast agents were pumped through the vessel at the same rate used in the phantom 

study using the same equipment. The artery was submerged in a tank filled with PBS, and both 

B-mode and DF-mode pullbacks were acquired. Arteries collected from 3 different animals were 

used in this study. All pigs were handled in strict accordance with the USDA regulations and the 

standards described in the 2011 Guide for the Care and Use of Laboratory Animals [362]. All 

procedures and protocols were in accordance with institutional guidelines and approved by the 

University of North Carolina Institutional Animal Care and Use Committee (IACUC). 

7.2.5 Chorioallantoic membrane in vivo model 

In vivo validations of the approach to selectively image MCAs were performed in 

developing chicken embryos as a surrogate for vasa vasorum. The chorioallantoic membrane 
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(CAM) of developing chicken embryos is composed of a dense capillary network cradled in a 

sheet of connective tissue and is the primary site for cellular exchange of respiratory gases and 

metabolic wastes. Due to the low optical scattering of the albumen and the direct visualization of 

the exposed vasculature, the embryo’s developing circulatory system can be imaged and studied 

optically after removal of the shell. Vessels diameters within the CAM are similar to sizes of 

human vasa vasorum lumens reported previously (43.4 ± 47.4 µm diameters, mean ± s.d.), 

making it a good model for evaluating the sensitivity of the imaging system to detect small 

vasculature [351]. 

Fertilized chicken eggs (broiler line, Ross 708) were collected from a local poultry farm 

(North Carolina State Chicken Educational Unit, Raleigh, NC, USA) and refrigerated at 6°C 

upon arrival for 3-7 days until incubation. Eggs were first incubated in ovo at 37.5°C with 70% 

relative humidity for 3 days, turning every 4 hours using an automated egg rocker (Model 

4200/3200, Farm Innovators, Plymouth, IN, USA). Eggs were then cracked and explanted into 

disposable holders as described by Schomann, et al. [363], and incubated for 14 days in a 

humidified incubator at 37.5°C, 70% humidity, and 2.0% CO2 (NAPCO 8000 Series, Thermo 

Scientific, Waltham, MA, USA). Chicken embryo morphology was classified at the time of 

imaging according to the Hamburger and Hamilton criteria, with the majority of embryos being 

classified as HH39-40. The vitelline vein was cannulated to allow the injection of MCAs at a 

concentration of 1010 MCA/mL at a flow rate of 1.0 mL/hr using a syringe pump. A continuous 

infusion of contrast agents was administered during the entire imaging session. The CAM was 

prepared for imaging by coupling the transducer to the structure with 37°C phosphate buffered 

saline. 
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Figure 7.5:  Photograph of CAM illustrating the position used to acquire images during the in 

vivo experiments. 

The intravascular ultrasound probe was positioned adjacent to the CAM and a volumetric 

acquisition was performed 2 minutes after starting the flow of contrast (Figure 7.5). Image slices 

orthogonal to the direction of transducer pullback were acquired at 200 µm intervals while 

operating in DF-mode for contrast specific imaging. Conventional B-mode and DF-mode 

volumetric scans were acquired both before and after administration of MCAs for comparison. 

Additionally, contrast infusion was monitored by acquiring volume scans in DF-mode at 2 

minute intervals for a total 12 minutes. Photographs of the CAM corresponding to the region that 

was scanned were taken to provide an optical reference to measure vessel diameters. Eleven 

embryos were imaged. Photographs were analyzed in ImageJ to measure the width of the vessels 

within the imaging region.  
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7.3 Results 

7.3.1 Field profile during transmission and received spectra from MCA 

The transmission profile of the low frequency element was recorded using a needle 

hydrophone positioned in a water bath in order to determine spatial variation of the excitatory 

signal for the custom IVUS transducer. The 5.5 MHz element was capable of producing 1.2 MPa 

on-axis at a range of 2 mm from the surface of the transducer (Figure 7.6). Hydrophone 

measurements indicate that the beam remained collimated at a depth of 7.4 mm where the 

pressure dropped -6 dB relative to the peak (600 kPa). Field II [364, 365] was used to simulate 

the pressure field produced by the low frequency element to compare the measured field to ideal 

results (Figure 7.6b). While simulated and measured results show good agreement, some off-axis 

energy deposition occurs that was not predicted by the simulation. However, these off-axis 

energy levels are located at angles where the receive element is highly insensitive making 

undesirable effects, such as clutter, less of an issue when operating in DF-mode. For reference, a 

contour is drawn in Figure 7.6 to approximate the region of highest microbubble destruction and 

loss of echogenicity where the transmitted waveform exceeds a mechanical index (MI) of 0.20. 

This MI corresponds to the microbubble fragmentation threshold for the type of microbubbles 

used in this study [366]. 
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Figure 7.6:  Measure vs simulation of transmission field profile. (a) The measured pressure field 

distribution obtained by exciting the low frequency element with a Gaussian enveloped pulse and 

recording with a needle hydrophone. A dashed contour is overlaid on the field to identify the 

region having a mechanical index of 0.20 or higher which is the region containing the most 

nonlinear activity. (b) The simulated transmit pressure field using the impulse response from the 

low frequency element. 
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Figure 7.7:  Image summary of DF-mode IVUS transducer. (a) Cross sectional images of dual-

frequency mode (left pane) and B-mode (right pane) show the presence of contrast agent 

(arrows) in a tissue mimicking phantom. The phantom lumen is outlined in both imaging modes 

for reference. (b) Cartoon illustrating the relative orientation of the contrast filled tubes 

embedded in the graphite phantom. (c) Three-dimensional rendering of DF contrast specific 

imaging highlight the location of contrast filled tubes embedded within the phantom. Scale bars 

correspond to 1 mm in all figures while DF images are displayed with a 10 dB dynamic range 

and 40 dB for B-mode. 

7.3.2 Three dimensional renderings of microvascular phantoms 

Three dimensional imaging was performed on several phantoms in order to compare B-

mode with DF-mode contrast imaging (Figure 7.7). Conventional B-mode images were unable to 

differentiate contrast-enhanced microvessels from surrounding phantom tissue. In comparison, 

DF images were highly selective to detecting signal only from regions containing contrast 
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agents. In light of these results, quantitative image analysis was performed as a function of depth 

into tissue for both B-mode and DF-mode operation of this transducer.  

IVUS pullbacks were performed using a 200 µm diameter tube embedded in a graphite 

phantom at varying depths. Prior to contrast administration, baseline scans of both imaging 

modes were performed to provide a reference point for imaging improvement after MCAs were 

added. CNR, CTR, and tissue-to-noise ratios (TNR) were calculated from images by segmenting 

regions of interest (ROI) corresponding to MCAs for contrast measurements, water for noise 

measurements, or phantom material for tissue measurements [55]. Power estimates from these 

regions were calculated from the square of the RF lines. Because of the radial symmetry of our 

phantoms, ROIs were rotated about the transducer to ensure the compared locations were 

calculated at the same depths using the same number of pixels to calculate the average (Figure 

7.8). Centroids of the ROIs were calculated and used to determine the radial distance from the 

aperture of the transducer. Results of the analysis were grouped according to distance with bin 

sizes of 1.5 mm ranging from 2.5 to 10 mm. Student’s t-tests (α = 0.05) show that CNR was non-

zero for both imaging modes at depths below 7.0 mm. Paired testing between the imaging modes 

indicate that B-mode images had a statistically higher CNR (7.36 vs 2.35 dB at 3.25 mm), 

however, CTR and TNR calculations suggest that this enhancement is not specific to MCAs 

alone. At all tested depths, B-mode CTR was statistically zero while DF images had non-zero 

CTRs of 1.00 dB at 6.25 mm and up to 1.75 dB at 4.75 mm. CTR values using DF images were 

fundamentally limited by low CNR of the imaging system in that received contrast signal was 

very close to the noise floor, diminishing the potential for higher values of CTR. Lower values of 

CTR are accompanied by higher specificity to contrast signal in images which can be observed 

when evaluating the differences in TNR. The TNR of B-mode images at depths below 7.0 mm 
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were non-zero and statistically higher than DF images which averaged 0.47 dB through depth. 

As a result, DF images using higher order superharmonics produce images with excellent tissue 

suppression within physiologically relevant depths for IVUS imaging. The axial and lateral size 

of the 200 µm diameter tube was measured from processed DF-mode images after administration 

of contrast agents. Tube measurements were calculated as the full-width half maximum of the 

tube region relative to the background noise level in a phantom. Using this method, the axial 

measurement of the tube was 704.0 ± 24.6 µm (mean ± s.e) while the lateral measurement was 

510.5 ± 19.4 µm at an average depth of 4 mm in tissue. 
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Figure 7.8:  In vitro comparison of image metrics as a function of depth for both B-mode and 

dual-frequency mode contrast imaging. (a) Contrast-to-noise ratios using B-mode exceed those 

provided by DF-mode, and at depths beyond 7 mm, the signal quality of both imaging modes fall 

below the noise floor giving CNR equal to zero. (b) Contrast-to-tissue ratios provide a measure 

of specificity of preferentially enhancing regions of contrast agents relative to surrounding tissue. 

DF-mode images were non-zero and statistically higher than corresponding B-mode images. (c) 

The TNR of DF images were much lower than those found in B-mode, indicating that DF-mode 

images are largely devoid of tissue backscatter. Asterisks (*) indicate that the mean is non-zero 

while daggers (†) show the means between groups are statistically different. 

7.3.3 Ex vivo contrast detection in arteries from RFH pigs 

Preliminary results indicate that imaging through the arterial wall can be accomplished in 

mesenteric arteries. Coregistered B-mode and DF-mode contrast specific images of an example 

specimen are given in Figure 7.9 along with CTR. Contrast to tissue ratios were calculated using 

the ROI approach described previously with tissue ROIs enclosing the B-mode vessel structure 
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through all slices in the volumetric set. Prior to injection of contrast agents, a B-mode scan was 

gathered and used to locate the front and back boundaries of the cellulose tube to accurately 

define contrast signal ROIs for subsequent scans (Figure 7.9a). In DF-mode, the microcellulose 

tube could be clearly located with excellent tissue suppression (Figure 7.9b). 

 

Figure 7.9:  Ex vivo imaging experiments through a porcine vessel using B-mode and dual-

frequency contrast imaging show significant tissue reduction when operating in dual-frequency 

mode.  (a) The B-mode image is acquired by placing the transducer within a suspended porcine 

coronary artery. The mean diameter of the lumen was measured to be 8.1 mm with a wall 

thickness of 1.42 mm. The dotted white circle indicates the location of the microcellulose tube 

placed external to the vessel. (b) A DF-mode contrast image. Backscatter from tissue is largely 

suppressed while microbubble signal is still retained (dashed circle). (c) Orthotropic view and (d) 

side views of a 3D volume rendering of the vessel. Contrast signal (depicted in red) was detected 

through the vessel and has been overlaid on traditional B-mode images (gray), showing the 

capability of the system to clearly identify the location of the 200 micron artificial microvessel. 

Acoustic backscattering intensity from tissue was higher than that from microbubbles at 

the fundamental frequency (37 MHz), resulting in negative ex vivo B-mode CTR while DF-mode 

CTR remained positive. Combining the DF and B-mode images provides both morphology of the 
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vessel typically found in IVUS with contrast detection of microvascular flow (Figure 7.9c-d). 

These ex vivo studies demonstrate that higher order superharmonic signals from contrast agents 

can be generated using a low frequency element and detected using a high frequency receiving 

element through excised porcine arteries, suggesting that penetration through similar tissues 

should also be feasible in vivo.  

7.3.4 In vivo contrast detection of microvascular flow 

Translation of this technique into the in vivo environment was performed after 

establishing feasibility from in vitro experiments. Photographs were taken of the chicken embryo 

to provide optical verification of vascular structures after embryos were cannulated for vascular 

perfusion of contrast agents (Figure 7.10a). Three-dimensional renderings of vessel networks 

were visualized by performing maximum intensity projections on volumetric datasets (Figure 

7.10b). Contrast flow was monitored over time as a continuous infusion of contrast agents was 

administered while acquiring DF volumetric pullbacks. Contrast enhancement (CE), defined as 

the signal increase from pre-injection values, was calculated and used as a surrogate for CTR 

while CNR was computed as described previously. Since tissue devoid of contrast agents was 

not realizable in this animal model, the method of calculating the TNR in vivo was estimated by 

taking the ratio of CNR to CE. This method of calculation relies on the assumption that CE 

behaves similarly to CTR since TNR can be computed from the ratio of CNR to CTR. Image 

metrics were calculated and plotted over time for comparison (Figure 7.10c-d).  
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Figure 7.10:  Example in vivo images and image metrics. (a) Photograph taken of the 

chorioallantoic membrane at 14 days showing microvasculature. The IVUS transducer was 

positioned relative to the vessels of interest (arrows) where a 4 mm pullback was performed 

(cylindrical outline). (b) Three dimensional contrast specific rendering of the same region 

photographed using the dual-frequency IVUS transducer. Fiduciary marks (arrows) are used to 

aid the reader in coregistration of the optical and ultrasound images. Scale bars correspond to 1 

mm distance. (c) Contrast-to-noise ratios improved for either imaging mode after injection of 

MCAs, with B-mode images having larger CNRs compared to DF-modes. (d) Contrast 

enhancement after 14 minutes of infusion was not statistically different between the imaging 

modes (p = 0.07). (e) Tissue-to-noise ratios at all time points were statistically zero for DF 

images, indicating this imaging mode is capable of suppressing tissue harmonics effectively. B-

mode images had a mean tissue to noise ratio of 6.67 dB after contrast injection. 

As seen in the phantom case, B-mode images had a non-zero CNR prior to contrast 

administration (6.42 dB) resulting from tissue backscatter from vessel walls. Dual-frequency 

mode images started with a statistically zero CNR (p = 0.28) but improved to a maximum value 

of 3.49 dB after 6 minutes of infusion. The slightly negative slope over time observed in DF-

mode CNR is likely to be a result of decreased cardiac function of the embryo. Contrast 
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enhancement for B-mode was greater than DF-mode (4.34 vs 2.30 dB) at the end time point, 

however, the difference was not statistically significant (p = 0.071). Tissue-to-noise ratio was 

computed to determine the ability of the imaging mode to be specific to contrast agents. The 

TNR for DF images was statistically zero for all time points recorded while B-mode images had 

a mean TNR of 6.66 dB.  

Axial and lateral resolution was computed in optical and DF contrast images of the CAM 

vasculature. Optical measurements of vessels were taken such that they would correspond to 

lateral measurements in DF images and it was assumed that the diameter of the vessel in this 

plane would also be the diameter in the axial direction. The smallest vessel detected in vivo was 

measured to have a diameter of 140 ± 8.1 µm (mean ± s.e.) optically while the DF image 

measured 626.5 ± 16.9 µm axially and 603.2 ± 22.6 µm laterally.  

7.4 Discussion  

Our study has demonstrated that imaging using an IVUS transducer with an exceptionally 

large bandwidth achieved through multiple elements of different frequency ranges produces 

images with sensitivity to contrast in the microvasculature and tissue suppression not possible 

with standard single frequency IVUS probes. Superharmonic contrast images have reduced tissue 

contamination because the amplitude of the signal emitted by MCAs is much higher than that 

produced by tissue at frequencies 3 to 5 times higher than the transmitted frequency [367]. While 

increasing tissue suppression in contrast images is beneficial, the contrast signal-to-noise ratio 

using higher order harmonics is reduced compared to using lower harmonics such as the 2nd or 

3rd harmonics and provides a significant challenge to this approach using single element 

transducers. The peak CTR from the phantom study (1.75 dB) was approximately the same as 

the measured CNR, implying that contrast images were specific to MCAs alone. However, other 
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studies of contrast-enhanced IVUS have reported higher values for CNR (approximately 30 dB, 

20 dB, and 20 dB for sub-, ultra-, and superharmonic, respectively) than those presented here, 

though it is difficult to draw a direct comparison since imaging depths, vessel diameter, and type 

of contrast agents used are not the same [55, 57, 345]. This imaging approach would likely 

benefit from translation to circular arrays where post-processing approaches such as 

beamforming on either transmit or receive would help improve the CNR over what can be 

obtained using only a single element. 

The moderate mechanical indices used for causing broadband excitation of contrast 

agents disrupts the shell of the microbubbles and can lower the echogenicity of contrast agents 

upon further insonation [116, 366]. Replenishment of the contrast agents with blood flow allows 

echogenicity to recover over time making this issue less prevalent in larger diameter vessels 

which have higher volumetric flow rates, but may impact how well smaller vessels are resolved. 

In vivo measurements have indicated that vessels of 140 µm in diameter may be the limit of 

detection with the current imaging system, but it is unclear whether this limit is imposed by 

reduced cross-sectional backscatter or by contrast destruction and replenishment rates.  

While off-axis energy deposition is normally avoided in ultrasound imaging to reduce 

clutter [368], an added consequence when imaging contrast agents is to prevent the destruction 

of contrast agents. In Figure 7.6, the measured transmit pressure field of our transducer exhibited 

some off-axis energy deposition in the near field, which could potentially destroy contrast agents 

before being imaged by the receiving element, thus reducing CNR. However, this effect was not 

significant enough to prevent full 3D reconstructions of vascular phantoms. A 200 µm diameter 

vessel could be resolved in a tissue mimicking phantom at depths up to 7 mm deep without the 

aid of signal averaging or use of multiple pulses.  
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Traditional B-mode IVUS images typically have greater axial resolution rather than 

lateral resolution since they use higher frequencies with small aperture transducers on both 

transmission and reception. However, axial resolution in contrast specific images using the 

described dual-frequency transducer was on average lower than the lateral resolution even 

though B-mode images using the high frequency element were able to resolve structures smaller 

than 200 µm axially. These observations provide growing support that axial resolution is 

degraded in DF operation primarily due to the increased pulse length used on transmission as 

observed previously(Chapters 5 and 6), while lateral resolution was primarily dependent upon 

wave diffraction of the receiving element, but further analysis would be required to determine 

the validity of this hypothesis.  

The ex vivo studies demonstrated that DF contrast specific imaging could detect the 

presence of a 200 µm diameter tube located outside of an excised porcine artery. Detection of 

microvascular flow external to the adventitial layer of the vessel is important since most vasa 

vasorum are externally derived and this location would be more difficult to detect due increased 

depth and attenuation. DF-mode CTR increases at shallower depths suggesting that if vascular 

flow external to the vessel can be detected, the neovascularizations occurring in fatty plaques at 

reduced depths would likely be detectable as well. The low number of animals used in this study 

prevents statistical analysis. 

At frequencies relevant for IVUS imaging, blood scattering effects become significant 

and attenuation becomes more severe [359]. Additionally, the presence of MCAs in the lumen of 

the vessel where the IVUS catheter is placed results in attenuation and nonlinear propagation 

effects, which can produce pseudoenhancement artifacts, or contrast signal where no MCAs are 

present [369, 370]. This artifact may mask the presence of true contrast in IVUS if vessels 
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supplying the lesion lie close to the lumen of the parent artery. The experiments presented in this 

work represent a scenario in which the majority of microbubbles have been cleared by either 

temporary balloon occlusion or a saline flush to clear blood flow in the main artery while 

collecting an image [355]. The studies presented reflect the saline flush case; it should be noted 

that the results would be subject to more severe attenuation if red blood cells and MCAs fill the 

vessel lumen during imaging. 

Microvascular networks of the galline chorioallantoic membrane were imaged and 

rendered. Dual-frequency contrast images were highly selective to imaging only contrast signal 

and had a TNR of zero for all time points. Contrast signal-to-noise ratios were higher in B-mode 

images compared to DF images in both in vitro and in vivo trials, but B-mode images had a CNR 

that was non-zero even though contrast agents had not yet been injected (Figure 7.10c) indicating 

that this signal was not from contrast agents but rather vascular tissue within the region of 

interest. Fundamentally, the CNR of the imaging system limits the CTR that can be acquired, 

producing CTR values that were nearly equivalent to CNR when operating in DF-mode.  

7.5 Conclusions  

A new intravascular ultrasound method for visualizing microbubble contrast agents using 

higher order superharmonics has been described and demonstrated to detect microvascular blood 

vessels in vivo. Dual-frequency images effectively suppress tissue signal, but have lower signal-

to-noise ratios than other contrast specific imaging methods. However, contrast images obtained 

using this method reject tissue well, making it suitable for producing 3D renderings of vessels. 

This technique has demonstrated its ability to detect contrast in 200 µm vessels ex vivo using 

porcine arteries and vessels smaller than 200 µm in diameter in vivo without using multiple 
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pulses. Additionally, phantom studies have demonstrated the feasibility of a dual-frequency 

approach to detect vasa vasorum-sized vessels at depths up to 7 mm. 
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CHAPTER 8

 SIGNAL PROCESSING TO IMPROVE VASCULAR IMAGES 

 

 Previous analyses on the use of a dual-frequency transducer for the superharmonic 

detection of microbubble contrast signal has shown trends of growing selection to imaging only 

the contrast agents at the cost of reducing the signal content nearing the noise floor. It has also 

been shown in other works that the concept of diminishing returns applies in this imaging 

method, namely that increasing pressure during transmission cannot indefinitely increase the 

SNR using this approach [136, 371]. A requirement to practically use acoustic angiography for 

microvascular imaging is post-processing the signal effectively since the SNR is natively lower 

than other forms of imaging in medical ultrasound. While the data presented previously has 

included various forms of signal processing in order to construct the images displayed in 

preceding chapters, the signal processing is basic and limited to causal filtering, enveloping, log 

compressing and scan conversion – all processes that are integral but not noteworthy. In this 

chapter, we present some advanced signal processing for acoustically detected medical imaging 

and provide quantification of improvement in terms of image quality metrics and resolution. In 

Chapter 8.1, we compare unsummed images to delay and sum beamforming, adaptive 

windowing, and phase coherence approaches on DF-mode IVUS datasets to show how additional 

post processing can improve resolution and CTR at the cost of computational time. Chapter 8.2 

shows the derivation and application of an autofocusing algorithm that operates on 2D or 3D 

datasets to correct for speed of sound errors that manifest in acoustic beamforming of 
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heterogeneous tissue. Accurate beamforming approaches are an invaluable tool that can be 

modified and tailored to acoustic angiography to improve image quality on low SNR signals seen 

when using a small aperture, prototype dual-frequency IVUS transducer.   

8.1 Beamforming methods applied to vascular images 

 In this chapter, we describe signal processing approaches based on minimum variance 

(MV) beamforming and the phase coherence factor (PCF) for improving the spatial resolution 

and CTR in IVUS imaging. These approaches are examined through phantom studies, ex vivo 

studies in porcine arteries, and in vivo studies in chicken embryos. In phantom studies, PCF 

processing improved CTR by a mean of 4.2 dB, while combined MV and PCF processing 

improved spatial resolution by 41.7%. Improvements of 2.2 dB in CTR and 37.2% in resolution 

were observed in vivo. Applying these processing strategies can enhance image quality in 

conventional B-mode IVUS or in contrast-enhanced IVUS, where SNR is relatively low and 

resolution is at a premium. 

8.1.1 Introduction 

Conventional grayscale (B-mode) IVUS imaging is useful for determining plaque extent 

and morphology [372], for guiding percutaneous coronary interventions (PCI), and for 

assessment of stent placement in follow-up imaging [373].  However, grayscale IVUS cannot 

reliably identify vulnerable plaques which are likely to rupture and produce ensuing ischemic 

cardiac events such as myocardial infarction [374, 375]. 

 
  

Chapter 8.1: Copyright © 2016 Elsevier.  Portions reprinted, with permission, from B. D. Lindsey, K. H. Martin, X. 

Jiang, and P. A. Dayton, “Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.,” 

Ultrasonics, vol. 70, pp. 123–135, Apr. 2016. 

 

BDL authored the above work and was edited by coauthors. Comparisons of signal processing approaches were 

written and conducted by BDL. KHM conducted all imaging acquisitions while JM provided the transducers. 
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Despite the demonstrated promise of contrast-enhanced IVUS, there are several technical 

challenges which have prevented this imaging approach from realizing its full clinical potential. 

First, the resonance frequencies of commercial microbubble contrast agents are typically <10 

MHz [376], while transducers used in coronary IVUS typically operate at frequencies >20 MHz, 

making them poor excitation sources for microbubbles. Bandwidth limitations in commercial 

IVUS transducers generally result in reductions in either transmit pressure, receive sensitivity, or 

both. In small vessels containing relatively few microbubbles, sensitivity is also at a premium, 

accentuating losses due to operating off-resonance when transmitting or receiving. 

Beamforming approaches in ultrasound offer an attractive solution to increasing the SNR 

of images which would be ideal for situations in which the signal amplitude is weak compared to 

the noise. The basic principle of beamforming is to form an image by aligning acquired RF 

signals in phase and then summing these signals together. Portions of the RF signal that derive 

from reflections and scattered sources will sum together coherently while those pertaining to 

noise will sum destructively. This method of beamforming is often referred to as delay and sum 

since phase alignment is performed by delaying RF signals by assuming a constant speed of 

sound and calculating the time of arrive based on the depth of the image being formed.  

In recent years, the application of Capon (minimum variance) beamforming to ultrasound 

imaging has received great attention due to its ability to offer improved resolution by adaptively 

steering toward on-axis scatterers [377-379].  More recently, several groups have reported 

improvements to classical minimum variance beamforming when applied to ultrasound imaging 

by reducing computational complexity or improving robustness [380, 381], applying coherence 

factor weightings [382], or implementing in the frequency domain [383].  In general, these 
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authors report increased spatial resolution, increased contrast, and decreased CNR in B-mode 

ultrasound images as a result of applying minimum variance beamforming techniques [377-383].  

An alternative adaptive approach for the improvement of spatial resolution and image 

contrast is the application of the PCF, which is computed using channel data but applied after 

beamforming. Camacho et al. first presented the phase coherence factor as an approach for 

decreasing sidelobe contributions in ultrasound images, with concomitant improvements in 

lateral resolution and beamsummed SNR [384].  More recently, Hasegawa and Kanai 

demonstrated the application of the phase coherence factor to increase resolution in 

echocardiography while using sub-aperture beamforming to reduce suppression of echoes from 

diffuse, speckle-producing targets, such as those in the cardiac wall which are essential for 

diagnosis [385].   

Adaptive beamforming and adaptive imaging remain unexplored in the context of 

contrast-enhanced ultrasound imaging, despite the fact that microbubbles represent an ideal 

target for a beamformer having high point target resolution. Additionally, when a dual-frequency 

contrast imaging approach is used, echoes originating from tissue scatterers will be minimized 

due to the low energy generated by tissue relative to microbubbles at high frequencies [291]. 

This may mitigate the reduced performance of minimum variance ultrasound imaging that occurs 

when there is a high degree of correlation between signals acquired on neighboring elements.  

In this work, we investigate approaches for improving the CTR and spatial resolution in 

contrast-enhanced intravascular ultrasound imaging using both MV beamforming and the PCF. 

These techniques are applied to prototype dual-frequency IVUS ultrasound transducers [330], 

which provide high-contrast, high-resolution images in an 8 French form factor. It should be 

noted that the experiments presented in this work represent a scenario in which the majority of 
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microbubbles in the main artery have been cleared by saline flush in order to image 

microbubbles in the vasa vasorum, an approach which is analogous to that described for 

intravascular optical coherence tomography where saline boluses are commonly used during 

percutaneous interventions to clear red blood cells for imaging vessel endothelium [354]. To our 

knowledge, this is the first application of adaptive beamforming to either contrast-enhanced 

ultrasound or intravascular ultrasound imaging. 

8.1.2 Background 

8.1.2.1 Imaging system 

The transducer used in this work has previously been described (Chapter 5); its 

characteristics are given in Table 8.1. This transducer was mounted on the end of a hypodermic 

needle and the needle hub was attached to the drive shaft of a stepper motor. Motor rotation and 

data acquisition were controlled through LabVIEW (National Instruments, Austin, TX) via a 

microcontroller (Arduino UNO, Torino, Italy) running a custom program. The stepper motor and 

its electronics were mounted on a computer-controlled three-axis motion stage (Newport, Irvine, 

CA) to allow automated pullback for acquisition of 3D imaging data. At each step along the 

pullback direction, the transducer was rotated through 360° for a total of 400 acquisitions (0.9° 

step size). For this prototype system, approximately 2 seconds were required to acquire each 

image slice (a full 360° rotation). 

Table 8.1:  Characteristics of the prototype transducer used in this work. 
Parameter Transmit element Receive element 

Center frequency (MHz) 6.5 30 

-6 dB bandwidth 20% 59% 

Thickness (µm) 300 65 

Width (mm) 0.6 0.6 

Length (mm) 3 0.5 
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8.1.2.2 Minimum variance beamforming 

Ultrasound beamforming consists of applying complex weights to an acoustic wave field 

which has been spatially sampled in the lateral direction by a discrete number of transducer 

elements and in the axial direction by a discrete number of samples. In conventional (delay-and-

sum) beamforming, spatiotemporal filtering is achieved by applying a data-independent 

amplitude weighting or apodization (for example, a rectangular or Gaussian window) to acquired 

data in the lateral direction, with delays providing focusing to individual points in the field. 

Alternatively, amplitude weightings may be computed which depend on the acquired sampled 

data, thus adaptively forming a beamsum. 

While adaptive processing techniques are typically utilized for array configurations, 

transmitting and receiving from the same element at successive locations produces received 

signals containing the same information when a small step size is maintained and focusing delays 

are applied. For the parameters used in this study, from one step to the next, the percent overlap 

is 97% for the low frequency beam and 62% for the high frequency beam for a step size of 0.9° 

at a depth of 0.5 mm using one-way beams simulated in Field II. While this overlap is relatively 

high for B-mode IVUS imaging, due to microbubble motion, differences in microbubble size, 

and because superharmonic imaging of microbubble contrast agents is at least partially 

destructive in nature, populations of microbubbles are likely to produce different signals from 

one pulse to the next, which would be expected to yield significantly reduced correlation in dual-

frequency IVUS relative to B-mode IVUS. However, previous studies indicate that 1) lower 

amplitude superharmonic signals may be produced without microbubble destruction [366], and 

2) superharmonic signals produced by microbubbles exhibit partial correlation across short 

spatial distances [291]. Thus while the performance of the signal processing techniques 
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presented here would be expected to exhibit less improvement and greater variation for 

superharmonic imaging of microbubbles than for B-mode IVUS, some improvement can still be 

expected due to this microbubble partial coherence, which has also been reported by others 

[386]. 

 In the case of mechanically-rotated IVUS, the received data matrix X is an [m × n] 

matrix containing n axial samples at each of m acquisition angles. In minimum variance 

beamforming, the [m × 1] weight vector w is defined as: 

 

𝒘 =  𝑎𝑟𝑔 𝑚𝑖𝑛 𝒘𝑇𝑹𝒘
 𝒘                    

 
8.1 

 

subject to 𝒘𝑇𝒂 = 1 8.2 

 

where a is the steering vector, in this case an m × 1 vector of ones because the data has already 

been delayed. Receive beamforming delays are computed according to the equation: 

 

𝜏𝑚(𝑟𝑝) =
‖𝑟𝑇𝑥 − 𝑟𝑝‖ + ‖𝑟𝑅𝑥 − 𝑟𝑝‖ 

𝑐
 

8.3 

where rp is the point in the field (xp, zp), rTx and rRx are the coordinates of the transmit and 

receiving elements, and c is the speed-of-sound. In this work, sampling frequency fs = 100 MHz, 

yielding a delay resolution of 10 ns. The turning radius is 0.45 mm. 

The solution to the constrained optimization problem posed by Equations 8.1 and 8.2 is 

[387]: 
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𝒘 =
𝑹−1𝒂

𝒂𝑇𝑹−1𝒂
 

8.4 

where R is the [m × m] sample covariance matrix: 

 
𝑹 = 𝑿𝑿𝑇 8.5 

and a is the steering vector.  In this work, delays were applied prior to computation and 

application of the weight vector w, as is customary in ultrasound adaptive beamforming [377-

383]. Delays were updated every 60 samples (0.46 mm) and for every angular step (0.9°). 

In the approach implemented in this work, w is computed only for sub-apertures of size m 

= 7 with an angular spacing of 0.9° and a rectangular sliding window. The total acquired depth 

was subdivided into non-overlapping axial segments of n = 60 samples (0.46 mm) to compute 

adaptive weightings that vary through depth. After computation of R from acquired data, the 

windowed sum for a given sub-aperture and axial segment can be computed directly using 

 
𝒀[𝑛] = 𝑿𝑇𝑤 8.6 

Because power minimization techniques are heavily dependent on SNR, diagonal loading 

is often performed by adding a constant to the diagonal of the covariance matrix (i.e. 

uncorrelated noise), in order to improve robustness to noise:   

 
𝑹 = 𝑿𝑿𝑇 + 𝜏𝑰 8.7 

where I is an [m × m] identity matrix and τ is the degree of diagonal loading.  Synnevåg et al. 

reported diagonal loading with τ proportional to the trace of R [379], while Vignon and Burcher 

selected τ based on the eigenvalues of R [378].  Adjusting the degree of diagonal loading allows 

tuning between robustness to electronic noise and rejection of off-axis energy. That is, for heavy 
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diagonal loading, w defaults to conventional beamforming, while for low-level diagonal loading, 

Equation 8.4 is more susceptible to electronic noise. In this work, we selected 𝜏 = 0.01 ×

𝑡𝑟{𝐗𝐗𝑇}, where 𝑡𝑟{. } is the trace operator, as preliminary simulations indicated that this value of 

τ ensured robustness while maintaining approximately the same resolution as lighter levels of 

loading. 

8.1.2.3 Phase coherence factor processing 

In order to increase the CTR in mechanically-steered contrast-enhanced IVUS imaging, 

signals arising from subsequent acquisitions over several closely-spaced angular positions can be 

treated as a sub-aperture. This sub-aperture beamsum is Y[n] as defined in Equation 8.6.  While 

minimum variance and related beamformers have demonstrated improved resolution, they also 

require increased computation and produce images with increased speckle variance relative to 

the conventional delay-and-sum beamformer [377-383].  An alternative approach to adaptive 

imaging for the improvement of spatial resolution and contrast is the application of the PCF, 

which operates on beamformed data Y rather than on channel data X. 

The PCF was computed using the phase of delayed RF data as previously described [384, 

385].  Delays were applied identically to the other processing cases according to Equation 8.3. 

Briefly, for every ith depth sample in the axial direction, the phase ϕi was obtained via the 

analytical signal as described by Camacho et al. [384], as well as the auxiliary phase ϕi
A , in 

which π was added to ϕi if ϕi < 0 and -π was added to ϕi if ϕi > 0 to avoid phase discontinuities at  

± π [385].  The standard deviation of the phase across all received lines in a sub-aperture (in this 

work, m = 7 angular positions) were computed for both ϕi and ϕi
A, where the standard deviation 

of ϕi is denoted as σi and that of ϕi
A, is denoted as σi

A.  The minimum of σi and σi
A, denoted σmin, 

was used in the computation of the phase coherence factor as follows: 
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𝑃𝐶𝐹[𝑛] = 1 −
𝜎𝑚𝑖𝑛

𝜎0
 8.8 

where 𝜎0 = 𝜋 √3⁄ , the nominal standard deviation for a uniform distribution of phases between -

π and +π.  In order to allow for tuning of the phase coherence factor, the modified version of 

PCF was used [384]: 

 

𝑃𝐶𝐹𝛾[𝑛] = 1 − 𝛾
𝜎𝑚𝑖𝑛

𝜎0
 8.9 

where γ = 1 yields increased sidelobe suppression and γ = 0 is the non-adaptive case (no PCF 

weighting). 

The phase coherence factor is then applied by using the value of the PCFγ to weight the 

output of the sub-aperture beamsummed data at each depth: 

 
𝒀𝑃𝐶𝐹[𝑛] = 𝑃𝐶𝐹𝛾[𝑛] ∙ 𝒀[𝑛] 8.10 

8.1.3 Methods 

8.1.3.1 Phantom imaging 

Imaging performance was assessed using a custom tissue-mimicking phantom having an 

attenuation of 0.44 dB/cm/MHz [337].  This phantom was characterized up to 25 MHz after 

fabrication to measure attenuation and verify the presence of fully-developed speckle at the 

transmit frequency. The phantom had three straight channels comprised of 200 µm-inner 

diameter cellulose tubing at depths of 4.0 mm, 4.5 mm, and 7.1 mm. A depiction of the phantom 

is given in Figure 8.1 and the schematics are given in Appendix B.1. 
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Figure 8.1:  Illustration of the 3-channel microvascular phantom used for this experiment. 

For phantom experiments, lipid-shelled microbubble contrast agents (108 MCAs/mL) were 

infused through the flow channels at a mean velocity of 17.7 mm/s using a calibrated syringe 

pump (PHD2000, Harvard Apparatus, Holliston, MA, USA). Radiofrequency data was acquired 

as the IVUS transducer was pulled through the center of the phantom along a distance of 15.0 

mm with step size of 200 μm.  Acquired RF data were digitized at 100 MHz (Signatec PDA14, 

Corona, CA) and filtered using a 7th-order Butterworth bandpass filter (-6 dB pass band 24.75-

30.25 MHz) in Matlab (The Mathworks, Natick, MA). The processing cases examined were: no 

summation, rectangular windowing, minimum variance windowing, rectangular windowing with 

application of the phase coherence factor after beam summation, and minimum variance 

windowing with application of the phase coherence factor after beam summation. The PCF 

tuning parameter was γ = 0.25 and the diagonal loading parameter was 𝜏 = 0.01 × 𝑡𝑟{𝐑} and 

were applied to PCF and MV weightings, respectively, on phantom data. Final images were 

displayed in Matlab with 30 dB dynamic range to assess tube diameter. 
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Manual target identification was required for phantom data. Manual regions of interest 

(ROIs) were drawn in each slice using ImageJ (NIH, Bethesda, MD) to assess CTR for each type 

of processing. In order to measure tube diameter, the image was loaded into ImageJ and the tube 

diameter was determined by drawing a straight line across the target in the lateral 

(circumferential) direction while displaying only the brightest 6 dB in an image. The observer 

was not blinded to the data. CTR was computed for each experimentally acquired image using 

the following equation: 

 

𝐶𝑇𝑅 = 20 𝑙𝑜𝑔10 (
𝐶

𝑇
) 

8.11 

where C and T are the mean pressure signals from regions microbubble contrast agent and tissue, 

respectively, at equivalent depths and after envelope detection. Improvements in lateral 

resolution due to applying adaptive windows were evaluated using paired t-tests. 

8.1.3.2 Ex vivo and in vivo imaging 

In order to assess the performance of these techniques for imaging vasa vasorum, both ex 

vivo and in vivo models were utilized. The same RFH data collected in Chapter 7 was re-

processed with beamforming applications. The chorioallantoic membrane (CAM) of the chicken 

embryos imaged in this previous study were also used to describe beamforming effects on in vivo 

data. In vivo and ex vivo data were acquired and processed in the same manner as in the phantom 

imaging study. Final images were displayed in ImageJ with 30 dB dynamic range. 

8.1.4 Results 

8.1.4.1 Phantom imaging 

Illustrative slices through the phantom volume containing the three tubes with 

microbubble contrast agent are shown in Figure 8.2.  The full view of the acquired IVUS image 
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(with conventional processing, no summation) is displayed in Figure 8.2A, while magnified 

views of the central tube for each processing type are displayed in Figure 8.2B-F.  

 

Figure 8.2:  Image summary of phantom processing reuslts. Illustrative slices through the center 

of the tissue-mimicking phantom (A) with three parallel tubes filled with microbubble contrast 

agent at distances of (1) 7.1 mm, (2) 4.5 mm, and (3) 4.1 mm. (B) Full image view (no 

summation) indicating the region of interest, and magnified views of the center tube with (C) no 

summation, (D) summation with a rectangular window, (E) MV window, (F) rectangular 

window with PCF, and (G) MV window with PCF. 

CTR and measured tube diameter for every slice in the 15 mm pullback in are 

summarized Figure 8.3.  While summation with a rectangular window was expected to produce 

inferior lateral resolution to the no summation case, we found similar resolutions at the -6 dB 

level for these two processing types in phantom testing. This may be due to the reduced contrast 

in the “no summation” images, as noisy pixels in final “no summation” images may have been 

included when measuring the target lateral extent. Minimum variance weighting improved 

resolution by 41.7% at the cost of only a slight decrease in CTR (0.34 dB relative to the 
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rectangular window case). Applying the phase coherence factor alone yields an increase in CTR 

of 4.2 dB but only a slight improvement in resolution (21.8% relative to the no summation case). 

Applying both MV and PCF produces improvements in both CTR (4.1 dB) and resolution 

(41.7%). All improvements in resolution due to application of MV, PCF, or MV and PCF 

weighting are statistically significant relative to the rectangular window case (p < 0.01, all 

cases). 

 

Figure 8.3:  Summary of phantom imaging metrics. (A) Mean vessel diameter in a tissue 

mimicking phantom (Figure 8.2) as a function of processing type across all slices in the acquired 

3D phantom pullback. Improvements in resolution due to application of MV, PCF, and MV + 

PCF weighting are statistically significant relative to the rectangular window case (p < 0.01 in all 

cases). (B) Contrast-to-tissue ratio as a function of processing type across all slices in the 

acquired 3D phantom pullback. 

8.1.4.2 In vivo imaging 

Single slice IVUS images acquired in a 15-day-old chicken embryo are shown for the 

various types of processing in Figure 8.4. Vessel diameter and CTR are reported in Table 8.2 for 

the two embryos. CTR was computed by measuring the mean pixel brightness in the central 

vessel (Figure 8.4 and Figure 8.5) and also in a region outside the vessel at the same depth. 

Vessel diameter was measured manually in the same central vessel in ImageJ at the -6 dB level 

as described in Section 8.1.3.1. Both CTR and vessel diameter were measured for every slice 
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which contained the vessel. Measurements were averaged across these slices for each animal.  

The characteristics observed in simulation and phantom studies persist: any form of summation 

improves CTR by increasing SNR, while MV windowing improves spatial resolution over non-

adaptive windowing at the expense of CTR. 

 

Figure 8.4:  Chorioallantoic membrane images with adaptive processing methods. In vivo slices 

through vessels of the chorioallantoic membrane in a 15-day-old chicken embryo with (A) no 

summation, (B) rectangular window, (C) minimum variance window, (D) rectangular window 

and phase coherence factor, and (E) minimum variance window and phase coherence factor.  

Total scan depth is 1 cm. 

Summation with a rectangular window yields a mean increase in CTR of 3.20 dB relative 

to no summation, while summation with a rectangular window and PCF produces a nearly 
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identical improvement in CTR of 3.19 dB. While CTR is relatively similar for summation with a 

rectangular window, rectangular window with PCF, or MV window with PCF, measured vessel 

diameter decreases with the adaptive processing as the PSF decreases in width. MV windowing, 

PCF with rectangular windowing, and MV windowing with PCF yielded mean decreases in 

vessel diameter (i.e. improvement in resolution) of 28.0%, 30.7%, and 37.2%, respectively 

(Table 8.2). 

Table 8.2:  CTR and vessel diameter measured across all relevant slices in two 15-day old 

chicken embryos. 
 CTR [dB] Vessel Diameter [μm] 
 

Embryo 1 Embryo 2 
Mean 

change 
Embryo 1 Embryo 2 

Mean 

change 

No summation 10.84 ± 2.35 11.99 ± 1.51 - 430.90 ± 102.24 484.88 ± 62.24 - 

Rect window 13.91 ± 2.78 15.32 ± 1.03 +3.20 dB 394.54 ± 104.10 353.75 ± 55.56 -17.74% 

MV window 10.98 ± 2.79 12.48 ± 1.12 +0.32 dB 363.86 ± 71.58 288.57 ± 77.17 -28.03% 

PCF 13.48 ± 2.74 15.72 ± 0.76 +3.19 dB 372.62 ± 109.13 253.20 ± 32.98 -30.65% 

MV and PCF 11.65 ± 2.74 15.53 ± 0.75 +2.18 dB 323.58± 115.21 244.58 ± 32.53 -37.23% 

 

8.1.4.3 Ex vivo imaging 

The results of 3D pullback imaging in the porcine artery are shown in cross sections in 

Figure 8.5 and in volume renderings in Figure 8.6. This image provides a view of the type of 

data that might be provided by utilizing this imaging approach clinically: B-mode (grayscale) 

IVUS imaging data providing vessel anatomy (transmit and receive at 30 MHz) is combined with 

dual-frequency imaging data (transmit 6.5 MHz, receive 30 MHz, shown in red) providing 

visualization of the microtube simulating the vasa vasorum along the larger excised porcine 

vessel. The described processing techniques were applied to both the B-mode and dual-

frequency data. Summation across m = 7 elements visibly enhances the ability to visualize the 

contrast agent in the 200 µm tube. Images similar to these could prove diagnostically valuable 

for assessing plaque vulnerability, planning interventional procedures, or for post-procedural 

monitoring. 
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Figure 8.5:  Adaptive beamforming methods applied to ex vivo porcine vessels. Cross-section 

views of ex vivo porcine arteries (grayscale) and an adjacent tube filled with microbubble 

contrast agent (red) positioned outside of the vessel to mimic vasa vasorum. Scale bar indicates 

1mm. 

 

Figure 8.6:  3D renderings acquired via motorized pullback in a porcine artery with a tube filled 

with microbubble contrast agent positioned outside of the vessel to mimic vasa vasorum. 
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8.1.5 Discussion 

8.1.5.1 Phantom and in vivo imaging experiments 

In phantom studies, application of MV weights and the PCF both produced 

improvements in resolution (Figure 8.3A), with all summed cases exhibiting similar CTR (Figure 

8.3B). This behavior was also observed in vivo in the vessels of the chorioallantoic membrane of 

the two chicken embryos (Table 8.2), with a 37% improvement in resolution and 2.2 dB 

improvement in CTR when both MV weighting and PCF were applied. Given the relatively low 

SNR in vivo in [330] the no summation case (14 dB) , it is possible that diameter estimation in 

this case is limited by the SNR, leading to underestimation. 

High variances in measurements of CTR in phantom and in vivo experiments when either 

MV or PCF were applied are indicative of the dependence of these processing techniques on 

SNR, which is consistent previous work investigating adaptive beamforming techniques [377-

383].  However, the PCF, which was applied only at low levels in this work (γ = 0.25), appears 

to be more robust than adaptive beamforming such as MV in a low-SNR environment. The 

unique nature of this data, in which echoes originate only from microbubbles with very low-

amplitude tissue echoes, must also be considered, as it is quite different from B-mode ultrasound 

data to which MV and PCF have previously been applied. Specifically, the fully-developed 

speckle present in B-mode ultrasound images is not expected to be present in these dual-

frequency contrast-specific images, though this has not been examined in detail. Acquired in vivo 

images of the fine vasculature in the CAM demonstrate an additional challenge in that some 

echoes arise from microbubbles in sub-resolution vessels, making these regions appear noisy 

when they are actually filled with microbubbles in vessels that are still too small to resolve in 

spite of the described improvements. 
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In quantifying observed improvements in the phantom images presented in this article, 

(Figure 8.3), we are able to measure vessel diameters closer to 200 µm when using adaptive 

processing techniques (i.e. 282 µm for 200 µm tubes, Figure 8.3B). We have also observed 

modest improvements to both CTR and the ability to measure vessel diameters in vivo in a 

chicken embryo model (Figure 8.4, Table 8.2), which is encouraging for high resolution IVUS 

imaging in an in vivo environment such as for vasa vasorum imaging. 

8.1.5.2 Considerations for implementation and implications for vasa vasorum imaging 

In this chapter, we have demonstrated the potential benefits to both image contrast and 

spatial resolution due to applying two adaptive processing techniques to contrast-enhanced IVUS 

imaging. These benefits occur with the same hardware and acquisition parameters that we have 

previously used with this prototype system. However, as all processing presented in this work 

was performed offline, a potential challenge exists in implementing these techniques in real-time. 

In the initial paper describing the application of the phase coherence factor in ultrasound, 

Camacho et al. discuss in detail the efficient implementation of this technique [384], suggesting 

that PCF may be able to be implemented in a commercial IVUS system. Implementing adaptive 

beamforming may be more difficult and costly, though several near-real time implementations of 

adaptive beamformers with large array-based systems have recently been demonstrated [388-

391]. Another consideration for this particular technique, which utilizes superharmonic echoes 

from partial destruction of microbubbles [366], is the frame rate, which needs to be kept 

sufficiently low to allow microbubble reperfusion. While IVUS imaging in general strives to 

maintain higher rotation rates to allow for averaging and high frame rates, decreased rotation 

rates which are necessary to allow for microbubble reperfusion also provide increased 

computation time. For reduced rotation rate IVUS such as for superharmonic microbubble 
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imaging, sub-aperture beamforming could provide an alternative means of improving SNR and 

contrast given that averaging across multiple revolutions may be impractical due to the influence 

of motion artifacts at these lower rates. For IVUS in general, the techniques presented in this 

chapter could be applied by saving RF data (i.e. during a single pullback) and reconstructing 

afterwards to yield a higher resolution image. For B-mode IVUS, averaging signals acquired 

from the same angular positions could be used to improve SNR while maintaining constant 

resolution. 

In this chapter, we have described signal processing approaches which allow formation of 

images in which a 200 µm tube measures 282 µm using a prototype dual-frequency IVUS 

transducer. We have also demonstrated the ability to image 200-300 µm vessels in an animal 

model, with the proposed processing yielding a mean decrease in vessel diameter of 37.2%. 

Further improvements in resolution may be realized by the development of new transducer 

prototypes. The reported improvements in resolution may also be helpful in other applications of 

intravascular ultrasound such as peripheral vascular disease or in endoscopic ultrasound. 

8.1.6 Conclusion 

In conclusion, we have applied sub-aperture beamforming to data acquired using a 

prototype mechanically-steered IVUS transducer at adjacent angular locations. Specifically, 

conventional and minimum variance beamforming were applied to sub-apertures of seven 

elements, and the phase coherence factor was applied after summation. These approaches were 

demonstrated in tissue-mimicking phantoms, an ex vivo porcine artery, and in vivo using a 

chicken embryo model. In phantom studies, PCF processing improved CTR by a mean of 4.2 dB, 

while combining PCF and MV processing decreased spatial resolution by 41.7%. Combining 

both techniques demonstrated preservation of both benefits, with mean improvements of 2.2 dB 
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in contrast and 37.2% in resolution observed in vivo. Additional gains may potentially be 

realized in the future by optimizing selection of tuning parameters for these adaptive techniques 

to better match the SNR. Applying these processing strategies can enhance image quality in 

IVUS, a low-SNR imaging technique where resolution is at a premium. 

8.2 Automated, multi-dimensional speed-of-sound estimators for vascular enhancement 

Vascular images can be obtained in a variety of acoustic methods. Until this point, the 

discussion has been limited to those obtained using superharmonic detection of nonlinear 

microbubble responses in IVUS. However, other acoustic methods of obtaining vascular images 

can benefit from the equivalent post processing approaches to enhance image quality. 

Photoacoustics is a method of obtaining images from endogenous contrast in tissue as a product 

of light-induced thermal expansions and passive acoustic array detection. Images volumes can be 

reconstructed using an acoustic array and beamforming algorithms. Images from this acoustic 

modality have a common assumption shared with those produced in superharmonic contrast 

imaging or even B-mode imaging. In the process of creating or reconstructing these images, one 

assumes a wave speed-of-sound based on the medium that the acoustic signal is expected to  

travel through and this assumption is frequently violated in vivo. In the remainder of this 

chapter, we discuss an automated algorithm for determining and correcting for these sound speed 

errors as well as demonstrate the effect on image quality when these errors are not taken into 

account. This approach is based on the use of focusing metrics to spatially determine the correct 
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speed used to reconstruct individual voxels within a vascular image dataset obtained using 

photoacoustics, however, it is fully extendable to any image that makes a speed-of-sound 

assumption, such as superharmonic IVUS imaging.  

 

8.2.1 Introduction 

Photoacoustic tomography (PAT) relies on accurately knowing the speed at which sound 

propagates through the medium in order to reach the transducer. Most often, a single speed-of-

sound (SOS) is assumed to apply to the whole volume of the reconstruction in order to make an 

image [392]. However, propagation speed in tissue can vary widely depending on its 

composition, ranging from 1.450 mm/µs in fat to 1.615 mm/µs in skin (10.7% change) [393]. 

When the SOS used for reconstruction is different from the actual SOS, the signals are not 

properly aligned prior to summation in conventional beamforming or back-projection, reducing 

the resolution and the SNR of the resulting image.  When reconstructing locations at increasing 

distance from the transducer array, SOS errors as small as 0.3% can double the resolution size 

and drastically lower the SNR (Figure 8.7).  Common practice for precision acoustic imaging 

systems, which are sensitive to SOS variations, includes manually adjusting the reconstruction 

SOS through trial and error until a “best” image is achieved for a region of interest. The SOS 

optimally focusing in one location is oftentimes not appropriate for a different part of the image 

as tissue sound speed is heterogeneous. 

Compensating for variations in SOS in PAT has been studied previously using a variety 

of methods. Iterative reconstruction approaches using ultrasound transmission tomography have 

been shown to produce SOS distributions by utilizing wavefront propagation models [394, 395]. 

Operating the receiving array in transmission mode has aided other photoacoustic based 
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techniques, but ultrasound transmission cannot be applied to all photoacoustic setups and often 

requires additional hardware [396], or may rely on exogenous absorbers for generating an 

ultrasound pulse using optical excitation [397, 398]. Time reversal reconstructions can provide 

speed-of-sound information within conditionally stable scenarios, although it is computationally 

expensive [399].  Additionally, three dimensional reconstructions using finite element 

approaches have been demonstrated to provide not only volumetric images but also 3D SOS 

variations through simulation [400]. Seemingly disjoint SOS variations found at tissue interfaces, 

such as bone and tissue or air and tissue, can be detected immediately and corrected for using 

statistical analysis in an automated approach [401].  

 

Figure 8.7:  A single point target is simulated and then reconstructed with varying SOS. The 

distance of the point from the array is adjusted to be 11.7 cm (near), 12.7 cm (middle), or 13.7 

cm (far) from the reception array. a) The full-width, half-maximum (FWHM) of the target 

increases rapidly when small errors in SOS are present. b) The signal to noise ratio (SNR) of the 

same target is reduced as a consequence of performing reconstructions with SOS errors.  

When the object being imaged has highly delineated edges, such as when imaging 

vasculature, sharpness metrics have been used to determine when images are maximally focused 

with respect to varying SOS. Treeby et al. showed that focusing metrics in photoacoustic 
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imaging of murine vasculature can determine the optimal SOS applied to a whole image using a 

variety of sharpness metrics [402]. The approach presented in this paper extrapolates from 

Treeby by extending it to 2D and 3D, creating spatially varying SOS maps (referred to as 

CMAPs) by comparing image focus on a voxel by voxel basis. The methods to produce spatially 

adaptive SOS reconstructions are outlined and the results are compared to conventional, single 

SOS images. 

8.2.2 Materials and methods 

8.2.2.1 Imaging system description 

The spatially adaptive speed-of-sound selection algorithm was designed and tested using 

a dedicated photoacoustic imaging system for breast mammography that has been described 

previously [403]. Briefly, the photoacoustic mammography (PAM) system consists of an 

Alexandrite tunable laser combined with a hemispherical passive array of 512 transducer 

elements coupled with water to the imaging space. The radius of the hemispherical array was 127 

mm. The transducers were composed of a 1-3 composite piezoelectric material with an aperture 

of 3 mm in diameter. The transducers operate at a center frequency of 2 MHz with a -6 dB BWf 

of 70%. Optical exposures were performed at 756 nm for 75 ns (~300 mJ/pulse) after passing the 

laser beam through a diverging lens to conically spread the beam to approximately 60 mm in 

diameter at the breast skin surface. Peak light fluence was measured to be well below maximum 

permissible exposure (MPE) limits sanctioned by the American National Standards Institute 

[404]. Images of phantoms and patients were acquired by firing the laser at a pulse repetition 

frequency of 10 or 20 Hz while synchronous motors were used to scan both the laser source and 

acoustic detecting array from beneath the imaging space. Transducer signals were pre-amplified, 

then digitized in parallel at a sampling rate of 20 MHz, and saved for offline reconstruction.  
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Image volumes were reconstructed using a modified approach to previously described 

filtered back-projection algorithms [403, 405, 406]. The reconstruction algorithms were modified 

to accept SOS distributions that vary as a function of voxel position. Deconvolution of the 

transducer impulse response and application of a ramp filter was performed digitally before 

back-projecting the data to iso-surfaces determined from times of flight using the pre-computed 

CMAP which contained the SOS value per voxel. Reconstruction time was dependent on the 

number of positions collected during acquisition as well as the number of voxels chosen to 

represent the image space. Reconstruction was performed using a single NVIDIA Tesla C1050 

GPU (CUDA compute capability of 1.3) at a rate of approximately 6.25e6 (vx*positions)/s.  

Single SOS reconstructions were performed by supplying a repeating scalar as an input to the 

modified reconstruction algorithm for direct comparison of image volumes.  

8.2.2.2  Automated speed-of-sound selection 

Autofocusing methods in photoacoustics using quality metrics such as image sharpness 

have been explored previously for selecting an optimal speed-of-sound for an entire 

reconstruction volume [402]. Treeby et al. reported comparisons of three different focus 

functions applied to PAT, and evaluated them on either 2D maximum intensity projections (MIP) 

of image volumes or upon the 3D image volumes themselves. Of the focusing metrics tested, the 

Brenner gradient performed the best as indicated by having a narrow, unimodal focus function 

that was maximum when at the correct SOS. Internal review with preliminary data confirmed 

these observations and thus was selected as the focus metric for this study. The Brenner gradient 

was modified to allow local variations in image sharpness, yielding Eq. 8.12. 
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𝐹𝑁 = ∑(𝒓[𝑥𝑖 + 2] − 𝒓[𝑥𝑖])2

𝑁

𝑖=1

 8.12 

where N represents the dimensionality of the discrete imaging space, r is the image intensity 

across dimensions x1,x2,…,xN, and 𝐹𝑁 is the N-dimensional modified Brenner gradient. 

Application of a kernel over the Brenner gradient then can provide a metric to identify regions 

that are in focus by summing components of local sharpness to evaluate the relative focus at the 

voxel where the kernel is centered. Multiple kernel types were internally reviewed, but for the 

purpose of reporting this approach, only the results from a Hamming window kernel are given. 

The size of the kernel (the width of the Hamming window) was varied from 0.25 mm to 10 mm 

at non-uniform increments (0.25, 0.5, 1, 5, 10 mm) to understand the behavior of this approach 

with respect to kernel size. 

Multiple single SOS reconstructions were initially solved to produce a reference library 

to quantify image focus, using either 2D or 3D variants of the modified Brenner gradient. Unless 

specified otherwise, single SOS reconstructions were performed within the range of 1400 – 1550 

m/s at a step size of 2.5 m/s. The selected range corresponds to limits of reconstruction that are 

typically seen in physiological data acquired using this system, and this range can be changed as 

required for other PAT systems. After the reference reconstructions using constant SOS were 

solved, the local sharpness was quantified using the N-dimensional Brenner gradient for every 

image. An N-dimensional summing kernel of varying size would then be convolved with the 

sharpness metric to identify regions of high focus, S(kN) (Eq. 8.13). 
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𝑆(𝑘1, 𝑘2, … , 𝑘𝑁)

=  ∑ ∑ … ∑ 𝐹𝑁(𝑚1, 𝑚2, … , 𝑚𝑁) 

𝑏𝑁

𝑚𝑁=𝑎𝑁

𝑏2

𝑚2=𝑎2

𝑏1

𝑚1=𝑎1

× 𝑤(𝑘1 − 𝑚1, 𝑘2 − 𝑚2, … , 𝑘𝑁 − 𝑚𝑁) 

8.13 

where N represents the dimensionality of the discrete imaging space, w is the N-dimensional 

summing window of length LN, FN is the Brenner gradient with length MN,  aN = ⌈
𝐿𝑁−1

2
⌉ + 1, and 

bN = aN + MN – 1. 

After applying a kernel to the Brenner gradient, image sharpness was compared on a 

voxel-by-voxel basis by iterating through each constant SOS reconstruction to create an N-

dimensional lookup table storing the SOS that produced the maximum sharpness for each voxel. 

While the entire image volume was used for the 3D Brenner gradient, the 2D Brenner gradient 

was applied to the MIP of the image volume. The orientation of the projection vector in which 

the MIP was processed was varied, and it was found from initial testing that SOS estimates were 

more accurate when the vector was selected to be parallel to the direction of laser illumination.  

In the case of the 2D Brenner gradient, 3D CMAPs were generated by generating a 2D 

SOS lookup table and then repeating that matrix in the direction originally used to generate the 

MIPs. The 3D CMAPs are then used as an input to the reconstructor to form the final, adaptive 

image volume. A graphical depiction of the approach is summarized in Figure 8.8.  
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Figure 8.8:  Processing chart describing the steps used to create spatially varying speed-of-sound 

maps using automated selection in either a) 3D or b) 2D. Portions of this figure were created 

using 3D slicer (www.slicer.org) [407]. 

8.2.2.3 Numerical phantoms 

We evaluated this approach with numerical studies, a breast phantom, and on clinical trial 

patient data. To accurately determine the behavior of the algorithm, we performed numerical 

studies by simulating acquired data in phantoms with a known SOS. The numerical phantoms 

modeled a pattern of point targets embedded in a non-dispersive, non-attenuating medium, with 

each point target having a known SOS that would optimally reconstruct it. For this study, two 

numerical phantoms were developed to test algorithm performance in conditions where the 

photoacoustic signal sources would be distributed either sparsely or closely packed. In either 

case, radiofrequency data was simulated per transducer channel by calculating the transit time 

between the target and the transducer array using a single SOS for each target provided by the 

user. It is important to note that the numerical phantoms do not attempt to simulate the physics of 

sound wave travel through anisotropic mediums with varying speeds, but instead seek to provide 

http://www.slicer.org/
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a unique distribution of point targets that would be reconstructed optimally with a known speed-

of-sound to test the effectiveness of the algorithm. 

The first phantom was designed to model the condition where signals arising from targets 

are sparsely distributed, a case that may arise in PAM where detectible blood vessels may be 

absent from a portion of the breast. The point targets of this numerical phantom were arranged in 

a uniform grid pattern with an inter-point spacing of 40 mm. The grid was located in a direction 

normal to optical illumination with a distance to the laser source modulated by a Gaussian 

function (σ = 15 mm) within ±40 mm of the hemispherical bowl’s focus. The SOS for these 

points ranged from 1.400–1.550 mm/µs and were distributed according to another Gaussian 

function (σ = 15 mm). The outer dimensions of the grid were 240 x 240 x 80 mm which 

represents a full volume scan of this system, similar to the size used when imaging a breast. The 

positions of the point targets of the grid phantom as well as the distribution of SOS for each point 

are depicted in Figure 8.9a. Images were reconstructed using 256 x 256 x 100 voxels with a 

voxel spacing of 1 mm/vx. Reconstructing a single image took approximately 8 seconds using 

our previously mentioned hardware. 
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Figure 8.9:  An illustration of the numerical phantoms. a) The grid phantom is designed for 

evaluating performance when using a large field of view with large voxel sizes. The SOS is 

listed in isocontours on the grid pattern overlay. b) A wheel phantom consisting of several rays 

of point targets spaced regularly. Each ray should be reconstructed with a single speed-of-sound 

depicted by the number located outside the ray. The point in the center of the phantom has a SOS 

of 1.490 mm/µs. All reported distances are in mm.  

The second numerical phantom consisted of a closely packed set of point targets arranged 

in a spoke and wheel arrangement – this simulates different SOS tissues in close proximity. Each 

spoke of the wheel phantom contained a set of points radially placed between 1 and 9 mm with 2 

mm spacing (Figure 8.9b). All points within a spoke had a single speed-of-sound that increased 

from 1.0 to 1.6 mm/µs tangentially. The wheel pattern of points were repeated at differing 

imaging planes normal to the laser source and occupied a region within ±10 mm from the focus 
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of the spherical array. Images were reconstructed using 256 x 256 x 256 voxels with a spacing of 

0.125 mm/vx and it took approximately 80 seconds to reconstruct a single image volume.  

The number of positions acquired using the system affects image quality as well as the 

time it takes to collect data and reconstruct the image. Generally, using more positions improves 

the image quality (higher SNR and possibly smaller FWHM) but takes more time to process and 

thus is important to consider when making a phantom used to quantify performance. The 

positioning of the scanner bed in the numerical phantoms was arranged as a planar grid of 

uniformly spaced points matching the outer dimensions of the phantom when observing the 

phantom in the top-down direction seen in the SOS variations of Figure 8.9. The spacing 

between positions was 40 mm for the grid phantom and 4 mm for the wheel phantom. The 

number of positions used was 49 and 36 for the grid and wheel phantoms, respectively. Both 

phantoms were evaluated with 2D and 3D versions of the automated sound speed selection 

algorithm and the image metrics were summarized.  

8.2.2.4 Graphite phantom 

The behavior of the autofocusing algorithm using acquired data in a controlled 

environment was evaluated in a graphite fiber phantom to simulate fine vasculature within a 

breast. The graphite fibers had a diameter of 6 µm and were embedded in an agar mold and 

placed in the breast cup for imaging as described previously [403]. A MIP of the graphite 

phantom is shown in Figure 8.10 using a single speed-of-sound at 1.4925 mm/µs to illustrate 

how the phantom appears in photoacoustic images. Imaging the phantom took approximately 50 

seconds to scan 480 locations arranged in a spiral pattern with an outer radius of 48 mm. Image 

volumes were reconstructed using 256 x 256 x 256 voxels with each voxel representing 0.125 

mm to give a field of view of 32 mm in each direction, and this took approximately 60 seconds 
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to reconstruct. The adaptive images were compared against single SOS images in order to 

compare the effects of accounting for SOS heterogeneities.  

 

Figure 8.10:  Reconstruction using a single speed-of-sound of the graphite fiber phantom. Scale 

bar in the lower right corresponds to 5 mm.  

8.2.2.5 Photoacoustic mammography data 

Automated SOS selection was performed on breast mammography collected previously 

from a volunteer. The patient was instructed to lay prone on the imaging table, with her breast 

placed into the scanning region of the hemispherical array. Clean water was used to couple the 

breast to the imaging array and the patient was instructed to breath normally during the scan. A 

trained research technologist positioned the patient with her opposite arm above her head of the 

breast being scanned. The scan was completed using 2048 positions along a 96 mm spiral which 

took less than 3.5 minutes to complete. Patient data was de-identified and offloaded from the 

system for later analysis. Image volumes were reconstructed using 800 x 800 x 256 voxels with a 

spacing of 0.25 mm/vx, requiring approximately 70 minutes to reconstruct a 3D image.  Patient 

protocols were approved by the Institutional Review Board of North Carolina University. 
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Constant SOS reconstructions were performed on an interval of 1.4650 – 1.5300 mm/µs at 

0.0025 mm/µs spacing.  

8.2.3 Results 

8.2.3.1 Numerical phantoms 

Image quality of numerical phantoms were quantified using SNR and by measuring the 

FWHM of point targets using an automated method. The local SNR was measured by cropping a 

cube of the total image volume (side lengths of 35 mm for the grid phantom, and 1 mm for the 

wheel phantom) centered on the point target. Signal regions were considered lying within a fixed 

radius of 2 mm (grid) or 0.5 mm (wheel) from the center of the cropped image sub-volumes 

while noise regions were considered lying outside of this radius. SNR was computed by 

subtracting the maximum voxel value of the signal region from the noise region and dividing the 

result by the standard deviation of the noise. The FWHM of the point targets was measured using 

two orthogonal directions from MIPs of each target. Profiles having a single pixel width were 

pulled from image volumes at coordinates where point targets would reside when perfectly 

reconstructed. The two orthogonal profiles were up-sampled by a factor of 8 using cubic 

interpolation in MATLAB (The Mathworks, Natick, MA, USA) before measuring and averaging 

the two FWHM of each point. The number of point targets that were reconstructed for each trial 

was also monitored. Point targets having a negative SNR or lacking a single peak in both 

directions were classified as being improperly reconstructed. Image metrics of the targets 

considered improperly reconstructed are excluded from the summary of data seen in Figure 8.11, 

but the number of point targets that failed to be reconstructed were tracked and summarized 

separately to the image metrics provided.  



 

165 

 

Figure 8.11:  Summary of image metrics for both numerical phantoms. The grid phantom (left 

column) and wheel phantom (right column) metrics are computed on adaptive images. Point 

targets at different SOS were considered both separately according to the SOS listed in the 

legend as well as combined (pooled). Either 2D (solid line) or 3D (dashed line) summing kernels 

were used to generate CMAPs as the kernel size was varied. Shading about the line represents 

the standard error of the mean (sem). 

The frequency content of the RF signals used to simulate the point targets was created 

using a single, representative impulse response of the transducer array. While the frequency 

content was maintained across all points, the SOS used to reconstruct the point targets was 

changed. This caused the wavelengths of the simulated targets to vary directly with their SOS 
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and introduces variability in terms of the image metrics.  Point targets having a higher SOS have 

a longer wavelength and correspondingly larger FWHM. To monitor the effectiveness of this 

algorithm on point targets with varying sound speeds, image metrics were either pooled across 

all SOS or by binning them into a small range (Figure 8.11a, c, e). The lower SOS bin selected 

for the grid phantom was 1.400 – 1.425 mm/µs (labeled 1.40) while the upper SOS bin was 

1.525 – 1.550 mm/µs (labeled 1.55). Binning was performed on the grid phantom since the SOS 

distribution was a sampled continuous function, but binning did not have to be performed on the 

wheel phantom since only 8 discrete SOS were assigned within the whole phantom.  

The point targets having the highest speed-of-sound for each phantom had larger FWHM 

(Figure 8.11e-f) and were reconstructed with higher success rates (Figure 8.11a-b) than their 

slower counterparts, but generally with lower SNR (Figure 8.11c-d). This trade-off may have 

been impacted by the way the numerical phantoms were simulated, as the same amount of 

energy was used to simulate a larger target (a target with a larger wavelength) as it was to 

simulate a smaller target (a target with a smaller wavelength). The signal magnitude would likely 

vary between these two since the volume in which the energy is deposited is largely influenced 

by simulated wavelength. Image metric results between the two phantoms illustrate the behavior 

of the phantom based on the proximity of point targets. In the grid phantom, the targets sparsely 

populate the field of view, so the image quality becomes better (higher SNR and lower FWHM) 

when using larger kernel sizes. Likewise, the reverse is true for the wheel phantom, which has 

multiple targets located within a small region. The reconstruction percentage, SNR, and FWHM 

of the wheel phantom were worse when using a larger kernel size. These results suggest that the 

kernel size should be selected based upon the imaging environment in order for the approach to 

work optimally.  
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Figure 8.12 shows a comparison of reconstructing the numerical phantoms using a single 

SOS applied to the image space versus when using either a 2D or 3D version of the adaptive 

reconstruction with spatially varying SOS. Performing a single SOS reconstruction for either of 

these phantoms is not appropriate as the large majority of the targets have a considerably 

different SOS, causing many point targets not to appear in the image (Figure 8.12, a-d). 

Conversely, both the 2D and 3D adaptive SOS images (Figure 8.12, e-h) display nearly all the 

point targets. The performance of the 2D adaptive approach for estimating the SOS generally 

produced images of better quality than the 3D version of the algorithm. This observation has 

been cited previously when using autofocusing metrics to select for SOS [402], where it was 

suggested that the MIP operation used when performing the 2D approach reduces the overall 

noise to aid in accurate SOS estimation.  



 

168 

 

Figure 8.12:  MIPs of image volumes of the numerical phantoms using either single SOS 

reconstructions or a spatially adaptive approach. When using an adaptive approach, SOS errors 

are minimized across the entire field of view making more point targets visible. The presented 

adaptive approaches have a Hamming window width of 10 mm for the grid phantom and 0.5 mm 

for the wheel phantom.  

The SOS error of the algorithm was quantified by comparing the calculated CMAP 

output to the input SOS variations used to construct the numerical phantoms. The percent error 

was averaged in sub-volumes by cropping around point targets in a similar manner already 

reported for the SNR calculation. The means of the volume-average percent error across all 

points are provided (Figure 8.13a-b). The volume-weighted percent error reported is higher than 

what has been observed to cause drastic image degradation (0.2-0.3% error), however image 

metrics do not reflect poor performance of the adaptive algorithm. It should be noted that the 

volume-weighted percent error includes values of point targets not successfully reconstructed, so 

the mean across points of the volume-weighted percent error includes several outliers that shift 

the mean substantially. In addition to reporting the mean across points, the median of the 

volume-weighted percent error is also reported (Figure 8.13c-d), showing that a large portion of 
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the population has little or no error, a finding that agrees with the image metric summary 

reported in Figure 8.11. 

 

Figure 8.13:  Cumulative SOS percent error calculated by comparing the CMAPs produced using 

the spatially adaptive approach to the input SOS variation of the numerical phantoms. The mean 

across all points of the volume-weighted percent error is given for a) the grid and b) the wheel 

phantoms. Since the mean of the volume-weighted percent error is sensitive to outliers, the 

median of the volume-weighted percent error is also reported in c) and d) for the grid and wheel 

phantoms, respectively. 

8.2.3.2 Graphite phantom 

In a similar manner to the numerical phantoms, the image quality of the graphite phantom 

was assessed by measuring SNR and FWHM of targets throughout the field of view. However, 

since the SOS is not known a priori, image metrics were compared to individual single SOS 

images to evaluate the performance of the spatially adaptive approach. The FWHM was 

measured by loading a good quality single SOS reconstruction (1.4925 mm/µs), performing a 

MIP on the volume, and then drawing ROIs in an interactive graphical user interface. A total of 



 

170 

30 line profiles were hand drawn across single fibers throughout the entire image and the 

coordinates of these profiles were stored and applied to all images for comparing the FWHM 

between different reconstructions. Similarly, the SNR was measured locally by drawing 50 

elliptical ROIs to sample regions of the entire image. The mean pixel value of a good quality 

single SOS MIP (1.4925 mm/µs) was used as a threshold to generate a mask that was used to 

distinguish signal regions from noise regions for SNR calculations. In addition to SNR and 

FWHM, the reconstruction percentage was tracked. The reconstruction percentage is the 

percentage of targets that had both a positive SNR and a single peak when measuring the FWHM 

across the graphite fibers. A summary of these results are reported in Figure 8.14.  

The 2D adaptive SOS approach performed better than the 3D version for a given kernel 

size. When the 2D kernel size was increased to the maximum tested value of 10 mm, the SNR 

across the image was increased to 19.6 ± 1.8 (sem) which was better than the best single SOS 

reconstruction which was 16.7 ± 1.5 at 1.4925 mm/µs. Additionally, the mean FWHM of the line 

targets was reduced when using the 2D adaptive approach, indicating reduced blurring and better 

image resolution when compared to using a single SOS. The lowest mean FWHM when using a 

constant SOS distribution was 0.539 ± 0.016 mm at 1.4925 mm/µs, while the lowest 2D adaptive 

approach had a mean FWHM of 0.536 ± 0.015 mm at a kernel size of 10 mm, although a two-

sample t-test shows no significant difference between means (p = 0.92). The 3D spatially 

adaptive approach in terms of both SNR and FWHM did not outperform the best single SOS 

reconstruction. The best metrics were achieved at the largest tested kernel size and were 10.5 ± 

1.1 for SNR and 0.605 ± 0.025 mm for FWHM (Figure 8.14b).  
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Figure 8.14:  Comparison of image metrics obtained from the graphite phantom for both the 

single SOS reconstructions (a and c) and spatially varying CMAP reconstructions (b and d). a) 

and b) plot the SNR (black) and the FWHM (red) of image reconstructions while c) and d) plot 

the reconstruction percentages. The 2D algorithm results are plotted in solid lines and the 3D 

results are plotted using dashed line (b and d). The shading about the lines corresponds to the 

standard error of the mean (a and b). 

When nearing the speed-of-sound that produced the best image in the graphite phantom, 

the reconstruction percentage of all the targets reached 100% (Figure 8.14c). While the single 

SOS reconstruction at 1.500 mm/µs reports 100% reconstruction success, it is important to note 

that at this speed the FWHM was 1.00 ± 0.056 mm and the SNR was 1.80 ± 0.35, which is 

considerably worse than the best SOS despite only being 0.5% different in terms of SOS. 

Regardless of the size of the kernels tested, the 2D spatially adaptive approach had 100% 

reconstruction success. The 3D approach was less robust and showed a drop in reconstruction 
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percentage at larger kernel sizes, dropping to a minimum of 87% at a kernel size of 5 mm 

(Figure 8.14d).   

8.2.3.3 Photoacoustic mammography  

Images created using the adaptive SOS approach followed similar trends that have 

already been presented for other data sets. A set of select regions of the breast vasculature are 

given for comparison in Figure 8.15, highlighting some areas of improvement when using a 

spatially adaptive approach to account for SOS differences encountered in breast tissue. The 3D 

adaptive approach did not produce images of similar or better quality compared to using an ideal 

single SOS for the entire image; however, the same cannot be said regarding the 2D approach.  

As evident in Figure 8.15, the 2D spatially adaptive approach could identify vasculature 

that was not visible when using the single best SOS throughout the entire image. Image metrics 

were quantified using the same principle as described for the graphite phantom and CMAP 

images were compared to single SOS images. One key difference in this data set compared to the 

graphite dataset was using 243 profiles to report metrics of FWHM. The additional profiles were 

required to provide a similar sampling density as the graphite phantom, as the field of view for 

the patient data was substantially larger. SNR was calculated using 50 regions, however, the area 

of these regions were increased rather than increasing the number of regions to account for the 

larger image area. A summary of these metrics are provided in Figure 8.16. 
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Figure 8.15:  A maximum intensity projection viewing the vasculature of a whole breast using 2D 

adaptive SOS selection (left panel). The lettered boxes correspond to regions of interest for 

qualitative comparison of reconstruction techniques. The right panel is populated with enhanced 

regions reconstructed with either the best single SOS (left column, 1.505 mm/µs) or with a 

spatially varying SOS estimated from a 2D (middle column) or 3D (right column) autofocusing 

approach.. The black scale bar in the left image corresponds to 10 mm while the right panels 

correspond to 5 mm. The size of the Hamming summing kernel used to estimate the SOS was 5 

mm for 2D and 0.5 mm for 3D. 

The image metrics of the PAM dataset showed similar trends to what was seen in the 

graphite fiber phantom (Figure 8.16a-b). The best 2D CMAP images had the highest SNR (39.8 

± 2.1 at a kernel size of 5 mm) and the smallest FWHM (0.789 ± 0.017 mm at a kernel size of 10 

mm), which exceeded the best single SOS reconstruction SNR (28.3 ± 2.1 at 1.5050 mm/µs, p < 

0.01) and FWHM (0.855 ± 0.024 mm at 1.5050 mm/µs, p = 0.027). The 3D CMAP approach did 

not perform as well at the tested kernel sizes, producing a maximum SNR of 8.0 ± 0.6 at a kernel 

size of 0.5 mm and a minimum FWHM of 1.406 ± 0.0714 mm at a kernel size of 0.5 mm. The 

FWHM minima for the 3D approach appearing at the smaller kernel sizes was primarily due to 

incomplete reconstruction of single vessels throughout the image due to incorrect SOS estimates, 
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causing half of the vessel to be severely defocused and making it seem like a smaller vessel. The 

FWHM at the larger kernel size of 10 mm for the 3D approach did not have partial vessel 

reconstruction and the mean FWHM is likely a better indicator of the algorithm performance 

without the presence of partial reconstruction bias.  

 

Figure 8.16:  Comparison of image metrics when applied to data obtained from a patient’s breast. 

SNR and FWHM are summarized in a) and b) for constant SOS and spatially varying CMAP 

reconstructions, respectively. Figures c) and d) plot the reconstruction success across the entire 

image for either varying SOS or kernel size. The shading about the lines corresponds to the 

standard error of the mean. 

8.2.4 Discussion 

The outlined procedure for estimating the SOS distribution within beamformed 

photoacoustic data leverages the previous success of autofocusing metrics to determine the 

optimal SOS for a whole imaging space. This approach was first extended into 2D to allow for 
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spatial variations corresponding to the dimensions of a MIP and then further extended into 3D to 

create a full volume estimate of the SOS useful for reconstructing a focused image. Our results 

showed that, in most cases, the 2D spatially adaptive approach performed better than the 3D 

approach. As previously explained by Treeby et al. and further observed in our studies, utilizing 

a MIP operation on a volume dataset has the effect of silencing large portions of the imaging 

space which contain little or no signal contributing to the SOS estimate, while only retaining 

portions of the image volume that contain strong photoacoustic signal sources [402].  

While previous works used iterative search algorithms to predict the optimal SOS, this 

approach built a set of reference images to iteratively compare post hoc to make the SOS 

estimate in 2D and 3D. Algorithms that function by comparing a set of results rather than 

predicting future behavior require more computational time to come to a solution and this is an 

area that can be improved in this approach. In this work, approximately 60 reference 

reconstructions were completed prior to determining SOS distributions. These 60 reconstructions 

covered a broad range of SOS with a fine interval between tested SOS images. The interval size 

was selected based upon how sensitive this photoacoustic system is to SOS errors. For other 

systems, it is likely that the SOS interval size will be different depending upon the equipment 

and arrangement of the system collecting the image. A system less sensitive to SOS errors could 

use larger intervals or could consider a smaller range of SOS to reduce the size of the reference 

library built at the beginning of the algorithm to save computational time. While beyond the 

scope of this analysis, an iterative search algorithm applied in 2D or 3D could further increase 

the computational efficiency of this approach. Additionally, the reconstructions were performed 

on a single GPU with a CUDA compute capability of 1.3, which is considerably slower than 

newer GPU alternatives. The computational time for reconstruction has been reduced by 
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approximately a third by using multiple, higher-quality GPUs in parallel to process data collected 

by this same PAM system [403]. 

In this study, the photoacoustic mammography transducer array had a high degree of 

overall aperture symmetry since the array was arranged in a hemispherical bowl. It is believed 

that this symmetry aided in the success of the 2D adaptive approach to produce higher quality 

images by the nature in which the blurring occurred. It was observed that point targets that where 

reconstructed with an incorrect SOS would appear relative to the transducer array as either a 

bowl located closer to the array than the point if the SOS was too high, or an inverted bowl 

further away from the actual point if the SOS was too low. In addition to blurring, the point 

would appear to travel along the axis where optical illumination was provided (coordinate Z), 

which was the only axis that lacked symmetry in regards to acoustic detecting array. However, 

the center of the point did not travel in the directions that did have symmetry (coordinates X and 

Y) as the SOS was adjusted. Thus by taking the MIP in the Z-direction, the centroid of the point 

would not appear to travel (provided the point did not travel across the boundary of the imaging 

volume along the Z-direction) without the need for any volumetric warping to compensate for 

signal travel and re-align local focus metrics for comparison between different SOS.  

The 2D and 3D adaptive SOS approaches produce speed-of-sound maps (CMAPs) that 

were used for inputs for a beamforming algorithm to reconstruct the image volume for a better 

image. Since the approach is based on determining which SOS produces the most focused image 

(as determined by the Brenner gradient), it should be clarified that the CMAPs do not represent 

the actual SOS within the scanned environment. While it is likely one may determine the 

estimates of the actual sound speed within the scanned environment using the CMAP, it would 

require further processing to obtain this information. The intended purpose of the CMAP is to 
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provide image quality enhancement rather than report diagnostic information by quantifying 

tissue SOS heterogeneities, but it is likely that this approach could be used to determine this 

information from the CMAP. 

The behavior of the adaptive SOS approach on the two numerical phantoms provides 

insight into the inherent trade-off a spatially varying autofocusing approach. In the grid phantom, 

automated SOS selection provided better image metrics with increasing kernel size while the 

reverse was true for the wheel phantom. The autofocusing approach inherently assumes that 

there is a detectible feature within the field of view at the time of its application, however this 

depends upon the distribution of signal sources within the imaged region. If no source of 

photoacoustic signal is within the region of the summing kernel, the autofocusing approach 

produces an estimate of SOS based on noise. Likewise if multiple signal sources exist within the 

kernel during summing, then the SOS estimate for that region will likely be erroneous if the two 

signal sources do not have the same SOS. For this reason, the performance of the algorithm 

depends upon not only the SOS itself, but also its distribution within the imaging field. Selection 

of an appropriately sized kernel (large kernel in sparse signal regions, small kernels in densely 

packed signal regions) is necessary to obtain optimal performance of this approach. For this 

reason, it is suggested that spatially varying automatic SOS selection approaches like this one 

could be improved by applying scale space filtering approaches [408] to combine SOS estimates 

across multiple kernel sizes. 

8.2.5 Conclusions 

This section introduced and described an automated method of estimating the SOS 

distribution in acoustic images relying on assuming a SOS for image reconstruction using a 

modified autofocusing approach. The method does not require simulation to provide its answer, 
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and its performance depends mainly upon choosing an appropriate kernel size. Both 2D and 3D 

versions of this algorithm were evaluated and compared in numerical phantoms, graphite fiber 

phantoms, and in photoacoustic mammography of a whole breast. The 2D version of this 

algorithm produced higher SNR and targets with smaller FWHM than images produced using a 

constant SOS or the 3D version of this approach. The size of the kernel greatly affected the 

outcome of the SOS estimation and the performance of this algorithm. Ideally, the kernel size 

would match the spatial distributions of the photoacoustic signal sources so that the summing 

kernel used for local variation in SOS estimate could be evaluated without overlapping estimates 

from signals with different sound speeds. Local SOS estimation using an autofocusing approach 

is feasible and can be a good alternative for determining and correcting for SOS variations that 

would otherwise severely reduce image quality through blurring. 
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CHAPTER 9

DISCUSSION AND CONCLUSIONS 

 

The work presented in this dissertation outlines the effort of translating superharmonic 

contrast imaging into intravascular ultrasound applications for the detection of microvascular 

flow. Acoustic angiography is an imaging methods that is characterized by having high CTR and 

increased resolution of vessels by detecting the higher-order nonlinear harmonics generated by 

microbubble contrast agents. While research is still being performed to better understand this 

new contrast imaging method, the work presented herein has shown that it can be translated into 

intravascular ultrasound to detect microvascular flow which would be valuable in determining 

plaque vulnerability in atherosclerotic lesions.  

In Chapter 5, we developed a prototype dual-frequency IVUS transducer capable of 

acoustic angiography. We showed that this transducer was capable of producing pressures in 

excess of 1 MPa at a low frequency while simultaneously capable of detecting the weak, 

superharmonic response scattered by microbubbles.  

The combined effects of reducing the aperture while creating images from low energy 

superharmonics reduced the SNR compared to acoustic angiography seen in previous work. The 

loss of SNR was partially mitigated by designing and fabricating appropriate transducer 

hardware in Chapter 6. Challenges of translating the technique to IVUS were several, but the 

most noticeable issue pertained to the low SNR seen in early studies. The SNR was improved 10 
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dB by reducing the noise of the excitation and acquisition system by designing a printed circuit 

board for use with dual-frequency transducers.   

In Chapter 7 the prototype transducer was evaluated in terms of the images it could make 

in several imaging environments. Tissue mimicking phantoms were used to quantify the CTR, 

TNR, and SNR of IVUS images to determine the maximum range (7 mm) that it could detect 

microvascular flow in an attenuating medium. We showed how the high degree of tissue 

suppression can be advantageous for producing 3D renderings of vessel patterns in complex 

geometries in tissue-mimicking materials. Excised porcine arteries were used as a human 

surrogate to show that DF-IVUS can be used to detect the presence of a microvessel of similar 

size to primary human vasa vasorum in a histologically similar environment that would be seen 

in vivo. Volumetric pullbacks using the prototype DF-IVUS system were used to demonstrate the 

ability of the system to register 3D volumes of vessel segments in both B-mode and acoustic 

angiography. Finally, experiments in the chorioallantoic membrane showed that DF-IVUS can 

detect microvascular flow in vivo in vessels optically measured to be less than 150 µm in 

diameter.  

Chapter 8 concludes the dissertation by describing post-processing methods that are 

advantageous to vascular medical imaging derived from acoustic detectors. In this chapter, a 

multi-dimensional autofocusing algorithm is developed to determine the appropriate speed of 

sound and correct for phase errors associated in beamforming. It was shown that the algorithm 

performance was dependent upon the spatial distribution of the signal sources located in the 

imaging field and that 2D focusing metrics perform better than assuming a single speed of sound 

as is done in conventional beamforming. Another study in this chapter introduced beamforming 

applications in DF-IVUS that can address the low SNR of acoustic angiography when 
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implemented with IVUS catheters. Adaptive beamforming methods include minimum variance 

and phase coherence were applied to phantom, ex vivo, and in vivo DF-IVUS images of vessels. 

We found that adaptive beamforming methods work well for our application in terms of 

improving resolution and reducing off-axis noise contributions due to the greater degree of tissue 

suppression seen in our data. 

The results of these studies indicate the acoustic angiography can be translated into the 

intravascular ultrasound environment to detect microvascular flow in arteries and may provide 

prognostic value in future studies determining to assess atherosclerotic plaque vulnerability. This 

technology was enabled by using a novel dual-frequency design prototype IVUS transducer and 

the collaboration efforts of a team of researchers.   

9.1 Future directions 

 Future directions of acoustic angiography include reducing the form factor to an even 

smaller dimension while curtailing some of the spurious inhomogeneities when fabricating a 

device required for prototyping. Ultimately, the DF-IVUS will only work as well as the 

transducer will allow so increased transducer performance is a must to increase signal quality, 

and thus image quality. This will likely happen if this research is given the opportunity to have 

commercial collaboration as the fabrication of the transducers used in this study were conducted 

by graduate students without specialty equipment that would normally be used in an industrial 

setting. This would allow for tighter tolerances, more uniform performance between transducers, 

and would reduce the number of possible reasons why one design factor worked better than 

another, which current designs can frequently attribute to slight variations between fabrications. 

Instances of this variation are exemplified by times where all transducers were made according 
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to the same specification in a single batch, but cutting individual elements from a single block of 

piezo-material would yield 4-6 transducers with highly different bandwidths and sensitivities.  

Typically in IVUS, single element transducer are required to rotate and acquire scans of 

the artery at rates exceeding 1000 rpm. Images are formed with a large amount of scan lines for a 

high degree of spatial sampling that tends to make images appear better. The rotational rate and 

number of angular samples used in this work could be increased to match commercial 

equivalents in B-mode. A lower framerate was used in these studies to aid in signal detection of 

superharmonics. Early studies showed that the pressures used to generate the nonlinear signal 

from MCAs would also cause some degree of microbubble destruction which would lower the 

signal upon repeated insonations. However, by decreasing the effective framerate, contrast 

agents had enough time to reperfuse the areas where destruction occurred. Future work with DF-

IVUS single element transducers may experience an impasse if higher framerates are desired. 

The fabrication of DF-IVUS arrays was already initiated by the time this manuscript was 

drafted. Intravascular arrays are already used in the clinic and have some advantages over the 

single element prototype used in this work. While it is possible to use single element transducers 

with beamforming, beamforming was originally designed to optimize array-based detection from 

a single transmission event rather than the beamforming methods applied in Chapter 8, which 

used a multitude of transmission events through time. Arrays can also perform focusing in both 

transmission and reception. Focusing on transmission would allow for higher pressures to be 

delivered to individual regions within the image which would be useful for increasing the SNR 

without having to physically adjust the placement of the device relative to the object being 

imaged. Focusing on receive can tighten the beam width to improve the lateral resolution and can 

reduce off-axis scattering. While dynamic receive focusing can be performed on single element 
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devices already, some advance receive beamforming techniques such as synthetic aperture 

requires an actual array in order to work properly. A DF-IVUS array does present some added 

challenges in terms of fabrication, but it also loses some. Single element components requires 

rotational translation to place the aperture in a new location for acoustic interrogation. It must 

use a drive cable and time firing rate with a given location mechanically. Additionally, single 

element IVUS devices have to have rotary transformer or a slip ring in order to allow the device 

to indefinitely rotate while still maintaining electrical connectivity between the transducer and 

the scanner. Arrays have a larger data bus and must carry more electrical connections, but there 

are no rotational requirements which heavily simplify the design of such a transducer.   

9.2 Other applications for dual-frequency transducers  

Dual-frequency IVUS can be used in other applications that extend beyond 

superharmonic imaging of microbubble contrast agents. The symbiotic roles of research and 

industry gives commercialization opportunities through designing, developing, and 

demonstrating in the former and optimizing, controlling, expanding in the latter. In the following 

sections, the authors have proposed various ways that a dual-frequency transducer designed for 

intravascular applications may be used for additional applications relevant to needs already 

encountered in today’s clinic. 

9.2.1 Blood effusion detection 

Intravascular ultrasound is already used clinically to verify the location of a stent after 

deployment and advocated to be used prior to stent placement. Interventional procedures can 

benefit by including IVUS into their routine and can perform better than radiographic approaches 

in complex lesions [409]. IVUS is a powerful tool in assessing vascular health both before [410] 

and after a stent placement [411]. Many complications are associated with endovascular stent 
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grafts; blood flowing around stents used in fusiform aneurysm repair (such as abdominal aortic 

aneurysms) presents a deadly problem both in the immediate and long term and requires accurate 

detection. Abdominal aortic aneurysms (AAA) are lethal and have a high mortality rate in 

general populations (0.042% male, 0.022% female) [412].  

Endoleaks, defined as the flow of blood between the graft and the vessel wall [413], are 

normally detected by angiographical flow of contrast, even though IVUS may be available 

during the stent placement in AAA repair. Endoleaks incidence has been reported to be as high 

as 22.7% of repairs and complications from endoleaks include aneurysm growth and rupture 

[414]. Currently, IVUS cannot visualize the flow of blood external to the stent since the high 

frequencies used by IVUS limit depth of penetration. Additionally, grafted aneurysm repairs are 

supported using a metal stent which greatly reflects sound waves making the region behind the 

stent difficult to image when using IVUS. Furthermore, it has been shown that IVUS is poor at 

locating endoleaks in comparison to other techniques such as transesophageal ultrasound or 

angiography [415]. However, when ultrasound imaging is combined with contrast agents, it 

becomes comparable to or better than other imaging modalities at detecting endoleaks [414, 416, 

417].  

A dual-frequency IVUS transducer designed to image contrast agents using 

superharmonics could have a considerable impact on detecting vascular flow in undesired 

locations. IVUS transducers utilizing harmonic approaches can severely reduce near-field 

artifacts that arise from specular reflections of metal stents to increase the field of view [418]. 

The size of most of our prototypes currently can be housed in an 8F catheter which can easily be 

used in the abdominal aortic to detect small or slow blood flow after repair. In coronary vessels, 

the detection of perivascular blood effusion caused by perforation or guidewire exiting can be 
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identified accurately with radiographic approaches. With a dual-frequency probe, it is likely that 

this detection can be enhanced using ultrasound for low flow or small leaks that may be difficult 

to detect using other modalities. The dual-frequency transducer proposed may be useful in other 

environments, but not in smaller vessels since the incorporation of the design uses a low 

frequency element which must have a minimum material thickness in order to operate, making it 

unlikely to further reduce the size below 3F. Additionally, the use of IVUS in tortuous vessels 

can be difficult since adding bends into the catheter increases frictional losses and retards 

transducer rotation which may limit its use in the circle of Willis or other similarly tortuous or 

small vessels networks. Translating the technique into an array would reduce the rotation 

requirement and may make it more manageable to maneuver in smaller vessels.  

9.2.2 Localized therapy 

Microbubbles are both diagnostic and therapeutic agents. The general structure of a 

microbubble includes a perfluorocarbon gas core encapsulated by a shell material such as a 

phospholipid layer. While the gas core generally has low solubility for most drugs, drugs can be 

conjugated to the shell material externally through bonding or dissolved into the phospholipid 

layer [87]. While the shell can only carry a small amount of drug, microbubble formulation 

strategies such as the inclusion of a drug loaded oil layer can increase dosing if necessary [419]. 

Local drug delivery as opposed to systemic delivery is advantageous when therapies include 

chemotherapeutic drugs such as paclitaxel. Microbubbles loaded with agents can be pushed to 

the vessel endothelium and then burst using ultrasound for localized drug delivery [205, 208] or 

gene transfection [420] at lower doses than would be administered systemically for the same 

outcome.  
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The pushing of microbubbles with acoustic radiation force (ARF) has been shown to 

increase drug delivery efficacy some researchers have explored doing this in IVUS [421]. One of 

the major challenges in local drug delivery in IVUS is that ARF used to push microbubbles 

needs to have high pulse repetition frequency, low frequency, and low pressures which cannot be 

performed in commercial systems [236]. Additionally, maximum bubble displacement occurs 

when exciting with a frequency that is close to the microbubble’s natural resonance [118]. The 

dual-frequency transducer we have designed has a low frequency element that is capable of 

delivering ARF near the microbubble resonance frequency of commercially available Definity® 

microbubbles, [338] which we expect to be ideal for drug delivery enhancement. Reduction of 

neointimal formation in rat carotid arteries following balloon angioplasty has been reported to 

use a tenth of the required dose to achieve equal therapeutic response, using the combination of 

ultrasound and rapamycin loaded microbubbles [205]. In this study, ARF and bubble bursting 

had to be performed transcutaneously using two separate transducers. A dual-frequency 

transducer could be used to do both therapy and monitoring in coronary arties as well as carotid 

arteries given the previously discussed dimensions of the transducer. Since IVUS catheters are 

invasive, this approach would likely be limited to situations where guidewires were necessary or 

when IVUS imaging would be indicated such as plaque visualization or stent monitoring.  
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APPENDIX A

IEEE MAY 2014 COVER IMAGE 

 

A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for 

Contrast-Enhanced Acoustic Angiography and Molecular Imaging 

Caption: The cover shows a dual-frequency intravascular ultrasound (IVUS) transducer 

designed for superharmonic contrast imaging and acoustic angiography. (A) A graphical 

explanation of the theoretical mode of operation for the dual-frequency transducer. Transmission 

of acoustic signals uses the lower frequency (6.5 MHz) element to excite microbubble contrast 

agents while high-frequency backscattered energy is received with the higher frequency (30 

MHz) element. (B) A photo of the fabricated transducer mounted in a commercial housing 

(Boston Scientific, Natick, MA) demonstrates the required form factor for integration. The 

smallest increment on the ruler is 0.5 mm. (C) The bandwidths of the transmit and receive 

elements are separated for reduced tissue signal background. (D) Microbubble contrast agents 

imaged while flowing through a cellulose tube embedded in a phantom with fully developed 

speckle. The contrast signal has a high signal-to-noise ratio compared with the phantom 

background because of the dual-frequency imaging approach. For further reading, please see the 

accompanying article on page 870 of this issue. Images courtesy of Jianguo Ma, K. Heath 

Martin, Paul A. Dayton, and Xiaoning Jiang.   

 
  

Copyright © 2014 IEEE. Reprinted, with permission, from J. Ma, K. H. Martin, P. A. Dayton, and X. Jiang, "IEEE 

Transactions on Ultrasonics, Ferroelectrics and Frequency Control – Cover," in IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, vol. 61, no. 5, pp. c1-c2, May 2014. 
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APPENDIX B

SCHEMATICS FOR FABRICATED COMPONENTS 

 

Drawing schematics are provided for some of the equipment fabricated in order to 

conduct the studies presented in this dissertation. The schematics were produced using an 

Academic license of SolidWorks.  

B.1 Three channel phantom mold for in vitro studies 
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B.2 Intravascular array transducer wrapping tool 
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B.3 Intravascular array transducer prototype fixture for 3-axis motion stage 
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B.4 Head-piece for AP002 seen in Chapter B.3 
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B.5 Phantom mold for depth study. Shallow depth range 
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B.6 Phantom mold for depth study. Deep depth range 
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