175 research outputs found

    Neuro-oscillatory tracking of low- and high-level musico-acoustic features during naturalistic music listening: insights from an intracranial electroencephalography study

    Get PDF
    Studies investigating the neural processing of musico-acoustic features have tended to do so using highly controlled musical stimuli. However, it is increasingly argued that failing to use naturalistic stimuli limits the extent to which findings from lab studies can be extrapolated to rich and varied real-world experiences. Here, we recorded electrical brain activity from 8 epileptic patients, implanted for pre-surgical evaluation with Stereo-encephalography (SEEG), while they listened to pieces from the western tonal music repertoire. We estimated the sound intensity and key and pulse clarity of the stimuli using a toolbox for automatic extraction of musico-acoustic features. We then used partial-correlation analyses to examine the patterns of neuro-oscillatory activity associated with the processing of these features. Our results showed clear tracking of sound intensity in high-gamma and alpha frequency bands in posterior superior temporal gyrus, reflecting neural firing and the transfer of auditory information from the thalamus to auditory cortices, respectively. Patterns of partial correlations, in line with our hypotheses, also suggested limbic and inferior frontal cortical tracking of tonal and rhythmic uncertainty, albeit without the robustness shown for sound intensity tracking in auditory areas. The study provides an important contribution to the existing literature in its adherence to the call for a greater use of ecologically valid stimuli in neuroscientific investigations of music listening. Our results, specifically, have implications for research on the neural processing of musical uncertainty and for future studies seeking to use intracranial EEG to examine naturalistic music processing

    Sensing the world through predictions and errors

    Get PDF

    Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non-musicians

    Get PDF
    Abstract Auditory prediction error responses elicited by surprising sounds can be reliably recorded with musical stimuli that are more complex and realistic than those typically employed in EEG or MEG oddball paradigms. However, these responses are reduced as the predictive uncertainty of the stimuli increases. In this study, we investigate whether this effect is modulated by musical expertise. Magnetic mismatch negativity (MMNm) responses were recorded from 26 musicians and 24 non-musicians while they listened to low-and high-uncertainty melodic sequences in a musical multi-feature paradigm that included pitch, slide, intensity, and timbre deviants. When compared to non-musicians, musically trained participants had significantly larger pitch and slide MMNm responses. However, both groups showed comparable reductions of pitch and slide MMNm amplitudes in the high-uncertainty condition compared to the low-uncertainty condition. In a separate, behavioral deviance detection experiment, musicians were more accurate and confident about their responses than non-musicians, but deviance detection in both groups was similarly affected by the uncertainty of the melodies. In both experiments, the interaction between uncertainty and expertise was not significant, suggesting that the effect is comparable in both groups. Consequently, our results replicate the modulatory effect of predictive uncertainty on prediction error; show that it is present across different types of listeners; and suggest that expertise-related and stimulus-driven modulations of predictive precision are dissociable and independent

    The hearing hippocampus

    Get PDF
    The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information – whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia

    Pupil responses to pitch deviants reflect predictability of melodic sequences

    Get PDF
    Humans automatically detect events that, in deviating from their expectations, may signal prediction failure and a need to reorient behaviour. The pupil dilation response (PDR) to violations has been associated with subcortical signals of arousal and prediction resetting. However, it is unclear how the context in which a deviant occurs affects the size of the PDR. Using ecological musical stimuli that we characterised using a computational model, we showed that the PDR to pitch deviants is sensitive to contextual uncertainty (quantified as entropy), whereby the PDR was greater in low than high entropy contexts. The PDR was also positively correlated with unexpectedness of notes. No effects of music expertise were found, suggesting a ceiling effect due to enculturation. These results show that the same sudden environmental change can lead to differing arousal levels depending on contextual factors, providing evidence for a sensitivity of the PDR to long-term context

    Predictive cognition in dementia: the case of music

    Get PDF
    The clinical complexity and pathological diversity of neurodegenerative diseases impose immense challenges for diagnosis and the design of rational interventions. To address these challenges, there is a need to identify new paradigms and biomarkers that capture shared pathophysiological processes and can be applied across a range of diseases. One core paradigm of brain function is predictive coding: the processes by which the brain establishes predictions and uses them to minimise prediction errors represented as the difference between predictions and actual sensory inputs. The processes involved in processing unexpected events and responding appropriately are vulnerable in common dementias but difficult to characterise. In my PhD work, I have exploited key properties of music – its universality, ecological relevance and structural regularity – to model and assess predictive cognition in patients representing major syndromes of frontotemporal dementia – non-fluent variant PPA (nfvPPA), semantic-variant PPA (svPPA) and behavioural-variant FTD (bvFTD) - and Alzheimer’s disease relative to healthy older individuals. In my first experiment, I presented patients with well-known melodies containing no deviants or one of three types of deviant - acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). I assessed accuracy detecting melodic deviants and simultaneously-recorded pupillary responses to these deviants. I used voxel-based morphometry to define neuroanatomical substrates for the behavioural and autonomic processing of these different types of deviants, and identified a posterior temporo-parietal network for detection of basic acoustic deviants and a more anterior fronto-temporo-striatal network for detection of syntactic pitch deviants. In my second chapter, I investigated the ability of patients to track the statistical structure of the same musical stimuli, using a computational model of the information dynamics of music to calculate the information-content of deviants (unexpectedness) and entropy of melodies (uncertainty). I related these information-theoretic metrics to performance for detection of deviants and to ‘evoked’ and ‘integrative’ pupil reactivity to deviants and melodies respectively and found neuroanatomical correlates in bilateral dorsal and ventral striatum, hippocampus, superior temporal gyri, right temporal pole and left inferior frontal gyrus. Together, chapters 3 and 4 revealed new hypotheses about the way FTD and AD pathologies disrupt the integration of predictive errors with predictions: a retained ability of AD patients to detect deviants at all levels of the hierarchy with a preserved autonomic sensitivity to information-theoretic properties of musical stimuli; a generalized impairment of surprise detection and statistical tracking of musical information at both a cognitive and autonomic levels for svPPA patients underlying a diminished precision of predictions; the exact mirror profile of svPPA patients in nfvPPA patients with an abnormally high rate of false-alarms with up-regulated pupillary reactivity to deviants, interpreted as over-precise or inflexible predictions accompanied with normal cognitive and autonomic probabilistic tracking of information; an impaired behavioural and autonomic reactivity to unexpected events with a retained reactivity to environmental uncertainty in bvFTD patients. Chapters 5 and 6 assessed the status of reward prediction error processing and updating via actions in bvFTD. I created pleasant and aversive musical stimuli by manipulating chord progressions and used a classic reinforcement-learning paradigm which asked participants to choose the visual cue with the highest probability of obtaining a musical ‘reward’. bvFTD patients showed reduced sensitivity to the consequence of an action and lower learning rate in response to aversive stimuli compared to reward. These results correlated with neuroanatomical substrates in ventral and dorsal attention networks, dorsal striatum, parahippocampal gyrus and temporo-parietal junction. Deficits were governed by the level of environmental uncertainty with normal learning dynamics in a structured and binarized environment but exacerbated deficits in noisier environments. Impaired choice accuracy in noisy environments correlated with measures of ritualistic and compulsive behavioural changes and abnormally reduced learning dynamics correlated with behavioural changes related to empathy and theory-of-mind. Together, these experiments represent the most comprehensive attempt to date to define the way neurodegenerative pathologies disrupts the perceptual, behavioural and physiological encoding of unexpected events in predictive coding terms

    Unraveling the Temporal Dynamics of Reward Signals in Music-Induced Pleasure with TMS

    Full text link
    Music's ability to induce feelings of pleasure has been the subject of intense neuroscientific research lately. Prior neuroimaging studies have shown that music-induced pleasure engages cortico-striatal circuits related to the anticipation and receipt of biologically relevant rewards/incentives, but these reports are necessarily correlational. Here, we studied both the causal role of this circuitry and its temporal dynamics by applying transcranial magnetic stimulation (TMS) over the left dorsolateral PFC combined with fMRI in 17 male and female participants. Behaviorally, we found that, in accord with previous findings, excitation of fronto-striatal pathways enhanced subjective reports of music-induced pleasure and motivation, whereas inhibition of the same circuitry led to the reduction of both. fMRI activity patterns indicated that these behavioral changes were driven by bidirectional TMS-induced alteration of fronto-striatal function. Specifically, changes in activity in the NAcc predicted modulation of both hedonic and motivational responses, with a dissociation between pre-experiential versus experiential components of musical reward. In addition, TMS-induced changes in the fMRI functional connectivity between the NAcc and frontal and auditory cortices predicted the degree of modulation of hedonic responses. These results indicate that the engagement of cortico-striatal pathways and the NAcc, in particular, is indispensable to experience rewarding feelings from music.SIGNIFICANCE STATEMENT Neuroimaging studies have shown that music-induced pleasure engages cortico-striatal circuits involved in the processing of biologically relevant rewards. Yet, these reports are necessarily correlational. Here, we studied both the causal role of this circuitry and its temporal dynamics by combining brain stimulation over the frontal cortex with functional imaging. Behaviorally, we found that excitation and inhibition of fronto-striatal pathways enhanced and disrupted, respectively, subjective reports of music-induced pleasure and motivation. These changes were associated with changes in NAcc activity and NAcc coupling with frontal and auditory cortices, dissociating between pre-experimental versus experiential components of musical reward. These results indicate that the engagement of cortico-striatal pathways, and the NAcc in particular, is indispensable to experience rewarding feelings from music

    Cingulate and cerebellar beta oscillations are engaged in the acquisition of auditory‐motor sequences

    Get PDF
    Singing, music performance, and speech rely on the retrieval of complex sounds, which are generated by the corresponding actions and are organized into sequences. It is crucial in these forms of behavior that the serial organization (i.e., order) of both the actions and associated sounds be monitored and learned. To investigate the neural processes involved in the monitoring of serial order during the initial learning of sensorimotor sequences, we performed magnetoencephalographic recordings while participants explicitly learned short piano sequences under the effect of occasional alterations of auditory feedback (AAF). The main result was a prominent and selective modulation of beta (13–30 Hz) oscillations in cingulate and cerebellar regions during the processing of AAF that simulated serial order errors. Furthermore, the AAF-induced modulation of beta oscillations was associated with higher error rates, reflecting compensatory changes in sequence planning. This suggests that cingulate and cerebellar beta oscillations play a role in tracking serial order during initial sensorimotor learning and in updating the mapping of the sensorimotor representations. The findings support the notion that the modulation of beta oscillations is a candidate mechanism for the integration of sequential motor and auditory information during an early stage of skill acquisition in music performance. This has potential implications for singing and speech

    The association between liking, learning and creativity in music

    Get PDF
    Aesthetic preference is intricately linked to learning and creativity. Previous studies have largely examined the perception of novelty in terms of pleasantness and the generation of novelty via creativity separately. The current study examines the connection between perception and generation of novelty in music; specifically, we investigated how pleasantness judgements and brain responses to musical notes of varying probability (estimated by a computational model of auditory expectation) are linked to learning and creativity. To facilitate learning de novo, 40 non-musicians were trained on an unfamiliar artificial music grammar. After learning, participants evaluated the pleasantness of the final notes of melodies, which varied in probability, while their EEG was recorded. They also composed their own musical pieces using the learned grammar which were subsequently assessed by experts. As expected, there was an inverted U-shaped relationship between liking and probability: participants were more likely to rate the notes with intermediate probabilities as pleasant. Further, intermediate probability notes elicited larger N100 and P200 at posterior and frontal sites, respectively, associated with prediction error processing. Crucially, individuals who produced less creative compositions preferred higher probability notes, whereas individuals who composed more creative pieces preferred notes with intermediate probability. Finally, evoked brain responses to note probability were relatively independent of learning and creativity, suggesting that these higher-level processes are not mediated by brain responses related to performance monitoring. Overall, our findings shed light on the relationship between perception and generation of novelty, offering new insights into aesthetic preference and its neural correlates
    • …
    corecore