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The association between liking, 
learning and creativity in music
Ioanna Zioga 1, Peter M. C. Harrison 2,3, Marcus Pearce 2, Joydeep Bhattacharya 4 & 
Caroline Di Bernardi Luft 5*

Aesthetic preference is intricately linked to learning and creativity. Previous studies have largely 
examined the perception of novelty in terms of pleasantness and the generation of novelty via 
creativity separately. The current study examines the connection between perception and generation 
of novelty in music; specifically, we investigated how pleasantness judgements and brain responses 
to musical notes of varying probability (estimated by a computational model of auditory expectation) 
are linked to learning and creativity. To facilitate learning de novo, 40 non-musicians were trained on 
an unfamiliar artificial music grammar. After learning, participants evaluated the pleasantness of the 
final notes of melodies, which varied in probability, while their EEG was recorded. They also composed 
their own musical pieces using the learned grammar which were subsequently assessed by experts. As 
expected, there was an inverted U-shaped relationship between liking and probability: participants 
were more likely to rate the notes with intermediate probabilities as pleasant. Further, intermediate 
probability notes elicited larger N100 and P200 at posterior and frontal sites, respectively, associated 
with prediction error processing. Crucially, individuals who produced less creative compositions 
preferred higher probability notes, whereas individuals who composed more creative pieces preferred 
notes with intermediate probability. Finally, evoked brain responses to note probability were 
relatively independent of learning and creativity, suggesting that these higher-level processes are not 
mediated by brain responses related to performance monitoring. Overall, our findings shed light on 
the relationship between perception and generation of novelty, offering new insights into aesthetic 
preference and its neural correlates.

Aesthetic preferences are complex, often balancing an inclination towards the familiar with novelty-seeking 
behaviour. On the one hand, individuals tend to prefer  familiarity1–4 and high levels of surprise can elicit nega-
tive emotional  responses5. Studies with non-human animals suggest that this preference for familiar stimuli, or 
conformity bias, is crucial for maintaining stable cultural  traditions6,7. However, too much repetition can lead 
to  boredom8, and humans often seek and enjoy  novelty9–12. This pursuit of novelty is vital for development, the 
acquisition of new skills, and the evolution of culture and knowledge. One plausible explanation for this seeming 
contradiction lies in the Wundt curve of hedonic  response13 according to which subjective preference or liking 
of an idea/product/piece shows an inverted U-shaped relationship with its novelty/complexity14–16. This means 
that preference and enjoyment tend to be higher for predictably intermediate stimuli: neither too familiar, which 
can be boring, nor too unpredictable, which might be perceived as unpleasant or incomprehensible. This inverted 
U-shaped pattern has been demonstrated in various domains, including  music8,17 and visual  aesthetics13,18–20. 
Nonetheless, the universality and extent of this pattern remain a topic of ongoing  debate21,22.

This preference towards intermediate levels of novelty may benefit  learning23,24. During learning, predic-
tion errors (i.e. the difference between expected and actual outcomes) serve as teaching signals which trigger 
dopaminergic  responses25–27. An intermediate degree of prediction error would, therefore, be an understandable 
teaching signal which in turn motivates learning via a manageable  challenge28. This is demonstrated in studies 
showing that learning experiences are more enjoyable when they require an intermediate degree of  challenge29,30. 
Hence, a preference for intermediate degrees of novelty could facilitate the learning of new information.

This link between prediction errors and learning is also evident in neuroimaging studies of music perception 
since the event-related-potential (ERP) components corresponding to prediction errors, such as N100 and P200, 
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are also observed for musical  stimuli31–33. Previous studies on music perception observed increased midfrontal 
negativities, like the N100, around 100 ms in response to unexpected  notes32–38. The P200 component, peaking 
between 200 to 300 ms post-stimulus onset, also responds to novelty in both music and learning  contexts33,38,39. 
In a previous  study33, we observed increased N100 responses to incorrect notes and increased P200 to correct 
notes. These studies showed some differences regarding the topographical location of these components, often 
along the midline, frontal and parietal areas, which are consistent with the activity of the performance monitor-
ing  system40–42, crucial for updating expectations for learning.

In this context, an important question arises: how do responses to novelty in perception relate to creative 
abilities? Previous studies showed an association between the personality trait of openness to experience and 
 creativity43–46. It could be argued that people who are more open to new experiences may enjoy higher levels 
of novelty since it was found that during the evaluation of creativity, individuals with higher openness placed a 
greater weight on  novelty47. Creativity here is defined as the ability to produce novel, appropriate and surpris-
ing  ideas48. Interestingly, in our previous  study33 we observed that the P200 amplitude in response to incorrect 
musical notes was inversely correlated with creativity: the higher the P200 to incorrect notes, the higher the 
creativity of the participants’ compositions. We also found that participants who learned the artificial music 
grammar better were more creative and their compositions contained more segments of intermediate probability, 
suggesting that more creative individuals may not just prefer higher levels of novelty, but are drawn to stimuli 
with intermediate levels of novelty, which potentially guides their creative outputs. Therefore, it is crucial to 
understand the relationship between perception and generation of novelty as it could elucidate the link between 
aesthetic enjoyment and creativity.

In the present study, we addressed this question by analysing how individual differences in perception of the 
pleasantness of musical notes with different probabilities (low, medium, and high) are linked to participants’ 
creativity in generating new melodies after learning an artificial music grammar. We addressed four specific 
research questions as follows: Q1: Is there an association between pleasantness judgements in music and the 
probability of notes, and does it follow an inverted-U shape? Q2: How do traditional ERP components, specifi-
cally N100 and P200, which are typically associated with prediction error processing, respond to notes of inter-
mediate probability; Q3: Do individual differences in these effects correlate with the learning of the grammar 
and creativity of music composed by participants? Q4: Are the associations between brain responses and note 
probability associated with learning and creativity? We expected that: H1: Notes of intermediate probability 
would be rated as more pleasant than low and high probability notes, following the Wundt’s inverted-U shape; 
H2: Notes with intermediate probability would also result in intermediate N100 and P200 amplitudes; H3: 
Individuals who are better learners would show a stronger U-shaped curve regarding pleasantness judgements 
(due to higher sensitivity to the probabilities of the music), whereas more creative individuals would show a 
stronger preference for notes of intermediate probability; and finally, H4: Better learners would show stronger 
N100 and P200 modulation by the probability of the stimulus (e.g. higher N100 and P200 in response to notes 
of low probability) and that more creative individuals would show a higher N100 and P200 in response to notes 
of intermediate probability.

Our study uniquely addressed these questions by analysing participants’ ratings of pleasantness for musi-
cal notes following training in an unfamiliar artificial music  grammar33. This approach enabled us to isolate 
probability assessments from influences like prior exposure to naturalistic music and musical training. We also 
evaluated creativity in musical composition using this same grammar after learning. This enabled us to test the 
link between learning, aesthetic judgments and creativity within the same domain; this eliminates confounding 
factors like verbal ability or creativity in other domains. Furthermore, by employing an artificial musical gram-
mar and controlling note sequences, we mitigated issues related to the context in realistic music which influences 
music  enjoyment8. By presenting learned melodies with the final note altered to vary in probability and ensuring 
these notes were new to the participants, we effectively isolated the effects of probability from repeated exposure.

Methods
Participants
The study involved 40 neurologically healthy adults (24 females) aged 20–32  years (mean ± s.d. age of 
22.42 ± 3.04 years). The inclusion criterion required participants to be non-musicians as self-reported. To con-
firm this, we administered the Goldsmiths Musical Sophistication Index (Gold-MSI)  questionnaire49, focusing on 
the “Musical Training” dimension to quantify participants’ level of musical training. Participants had an average 
musical training score of 12.09 (SD 4.60) on a scale ranging from 7 to 49 points. We removed two participants 
from the analysis for giving identical responses across all sessions. All participants had normal or corrected-to-
normal hearing and vision and received monetary compensation at a rate of £7 per hour. All participants provided 
written informed consent before the start of the experiment. All methods and procedures were conducted in 
accordance with the ethical standards stated in the 1964 Declaration of Helsinki. The study protocol was approved 
by the Ethics Board at Queen Mary University of London.

Materials
This study uses the dataset produced by an existing  experiment33. As explained in the subsequent Procedure 
section, the experiment comprised 4 days. The data analyzed here are exclusively from days 3 and 4, which was 
neither reported nor analysed in our earlier  study33.

Analysis of an artificial music grammar by a model of melodic expectation
The stimuli comprised musical note sequences generated using an Artificial Music Grammar (AMG) developed 
by Rohrmeier et al.50 (Fig. 1A). This grammar encompasses different pairs of Western-scale diatonic notes (C4, 
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D4, E4, F4, G4, A4, B4) to create melodic sequences. Based on the AMG, there are 18 melodic sequences ranging 
from 8 to 22 notes in length (with an average length of 14.56 ± 3.87 notes). Notes are defined as the 7 different 
pitches which are used by the AMG. It is important to note that throughout this paper, we use refer to the terms 
“melodic sequence” and “melody” interchangeably as each of to refer to the sequences of 8–22 notes generated 
using based on the rules of the artificial music grammar AMG. Twelve of those melodies, hereafter referred to 
as “old-grammatical”, were used during both the training and test sessions (pre-test and post-test). In contrast, 
six melodies, henceforth referred to as “new-grammatical”, were exclusively introduced in the final session of 
the experiment. This was done to evaluate participants’ judgements on melodies they had not previously heard 
(generalization session).

For the analysis of melodic sequences, we used the Information Dynamics of Music (IDyOM) model, an infor-
mation-theoretic model of auditory  expectation51,52. We employed a leave-one-out cross-validation approach, 
where predictions for each melody were generated by a model trained on all the other melodies in the corpus. 
This model uses different ‘viewpoints’ to capture the different cognitive representations listeners have for musi-
cal pitch. Following  Pearce51, we selected viewpoints that minimised cross-entropy (i.e. maximised predictive 
performance) on the melody set. Chromatic pitch and chromatic pitch interval together (yielding a cross-entropy 
of 0.99) outperformed the use of chromatic pitch alone (cross-entropy of 1.01), and the combination of chro-
matic pitch, chromatic interval, and contour (cross-entropy of 1.04). Following Pearce (2005), IDyOM’s predic-
tions were based on a blend of a long-term model, trained on all melodies except one and then incrementally 
trained on that single melody, and a short-term model, trained incrementally only on the single melody. This 
approach reflects the effects of both long-term learning across all stimuli and short-term learning within an 
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Figure 1.  (A) An illustration of the artificial music grammar (AMG) developed and presented by Rohrmeier, 
Rebuschat, and Cross (2011). Numbers 0–8 represent the musical pairs of notes. The nodes connect the elements 
of the grammar (i.e. the musical intervals) with each other. Grammatical sequences start from the leftmost node 
and move along the pathways indicated by the arrows until the rightmost node is reached. (B) An example of 
the melodic stimuli for the test sessions. Notes of the AMG melodies with extremely high (green) and extremely 
low (blue) information content (IC) were identified. High-probability (HP) notes correspond to low IC, whereas 
low-probability (LP) notes correspond to high IC.
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individual stimulus and has been shown to effectively simulate listeners’ melodic expectations in a wide range 
of  contexts53–57 including artificial grammar  learning58. As a result, IDyOM provided probability estimates for 
each note in each of the 18 melodies generated by the AMG. We quantified this by calculating the information 
content (IC), taking the negative logarithm (base 2) of the probability estimate. Low IC values corresponded to 
notes with high probability (predictable notes), whereas high IC values corresponded to notes with low prob-
ability (unpredictable notes).

Melodic stimuli
During the experiment, participants listened to melodic sequences that were interrupted at certain notes, referred 
to as “target notes” (Fig. 1B). In the pre-test and post-test session, participants were asked to judge whether 
each target note was correct or incorrect and whether it was surprising or not (according to the AMG they had 
learned). In both pre-test and post-test sessions, a total of 280 melodies were presented, each concluding with a 
target note of varying probability: 70 ended on high-probability (HP) notes, 70 ended on low-probability (LP) 
notes, and 70 on incorrect (INC) notes. Additionally, 70 melodies were created by shuffling the order of all notes 
(random melodies). At the end of the last day, participants completed a generalization session during which they 
needed to indicate if a target note was correct or incorrect (according to the AMG they learned) and whether it 
was pleasant or not (according to their taste). This session included 105 melodies: 35 melodies each for the HP, 
LP, and INC categories.

To create melodic sequences ending on HP and LP notes, we selected notes from the AMG melodies falling 
within the lowest 30% of information content (IC) (mean ± SD of 0.90 ± 0.03) for HP notes and within the highest 
30% IC (mean ± SD of 0.21 ± 0.10) for LP notes. In total, this resulted in 79 notes with HP or LP, 55 belonging 
to the old-grammatical melodic sequences (36 notes were HP and 19 notes were LP) and 24 belonging to the 
new-grammatical melodic sequences (16 notes were HP and 8 notes were LP). Melodies were repeated an appro-
priate number of times to achieve 70 HP and 70 LP trials for the test sessions, and 35 HP and 35 LP trials for 
the generalization session. Specifically, we repeated 34 (random selection) of the 36 HP melodies once, whereas 
each of the 19 LP melodies was repeated three times (giving 57 melodies), and then 13 (randomly selected from 
the middle 40% of the distribution) were added. This resulted in 70 melodies for HP and 70 for LP conditions. 
The same procedure was followed for the new-grammatical sequences. The 16 HP melodies were repeated once 
and 3 (random selection from the middle 40% of the distribution) were added, while the 8 LP melodies were 
repeated four times and 3 (random selection from the middle 40% of the distribution) were added. This resulted 
in 35 melodies for HP and 35 for LP conditions.

To create melodic sequences ending on INC notes, we modified the final notes of the HP and LP melodies 
by replacing them with a random note—one that never appeared in that particular context in the AMG. The 
test sessions (pre, post) had 70 incorrect melodies each, while the generalization session included 35 incorrect 
melodies. The sessions included different sets of INC melodies.

The melodic stimuli were presented through speakers positioned to the left and right sides of the participants. 
Each note had a duration of 330 ms without intervals between notes. The notes had a piano timbre, and their 
fade-out duration was 100 ms. We used  Psychtoolbox59 for the presentation of stimuli. Melodies were presented 
in a randomized order for each participant.

Procedure
Participants visited the lab on four separate days with no more than a two-day interval between the sessions (as 
illustrated in Fig. 2A). The musical compositions on Day 3 and the generalization sessions on Day 4 comprise 
the focus of the current paper.

Training
This session is not analyzed in the current work. During the first three days (sessions 1–3), participants under-
went training on the AMG. This training involved passive listening to the melodies and reproducing them on a 
computer keyboard. The keys A, D, G, J, L, ‘, and ENTER were marked with coloured stickers (red, orange, yel-
low, green, blue, pink, brown) to represent different notes. Initially, participants listened to a melodic sequence 
and were presented with the first two notes, which they attempted to reproduce on the keyboard. Training 
progressed incrementally, with each new attempt adding an extra note to be played. If a mistake was made, the 
melodic segment was repeated to allow for further attempts. Each training session lasted approximately 25 min. 
To increase their familiarity with the AMG, on the second and third days, participants listened passively to the 
AMG sequences, played three times in a randomised order, while being instructed to listen attentively. Following 
each listening session, they were presented with melodies ending on HP or LP notes and were asked to judge 
whether the target note was surprising or not. Those sessions lasted around 15 min in total.

Pre‑test and post‑test
In the current paper, we analyzed only data from the post-test. The participants’ learning levels were assessed 
before and after the training on days 1 (pre-test) and 4 (post-test), while their electroencephalogram (EEG) was 
recorded (Fig. 2C). Participants were instructed to listen attentively to melodies generated by the music grammar 
shown in Fig. 1A. It was made clear that they would be asked to make judgements about certain target notes, 
regarding their correctness (correct or incorrect) and surprisal (surprising or not surprising). Specifically, partici-
pants were given the following verbal instructions: “Now you will listen to some melodies, and at certain points 
you will be prompted to make the aforementioned judgements about some notes. Please respond as fast and as 
accurately as possible”. In the pre-test, they were also told the following: “The melodies might sound odd, as they 
do not belong in any familiar musical genre, instead they are generated using an unfamiliar, artificial musical 
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Figure 2.  (A) A schematic illustration of the full experimental procedure. Opaque panels and text represent the 
parts used in the current paper, while transparency represents parts not used. (Β) The parts used in the current 
paper, including the respective analysis metric extracted from each of those parts. (C) Top: An illustration of the 
trial structure of the test and generalization sessions. Participants heard a melodic sequence and were asked to 
make judgements on target notes by pressing 1 or 2 on a computer keyboard. Bottom: An illustration of the trial 
structure of the three training sessions. Participants listened to a melody and needed to reproduce the notes of 
the melody on a sound keyboard, starting from the first two notes and adding an extra note incrementally.
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scale. Thus, you might feel uncertain about your judgement at the beginning, but follow your gut instinct. As the 
session goes by, you might start feeling more confident”. Instead, in the post-test, they were told the following 
instructions: “Note that you should make your judgements based on the artificial music grammar that you learned 
throughout the experiment, rather than based on familiar Western music”. The presentation order of the trials 
was randomised across participants. Each test session consisted of 280 trials and lasted approximately 40 min.

Generalization
Data from this session is the main focus of our paper. On day 4, during the EEG recording, participants com-
pleted a generalization session where they were presented with previously unheard sequences. They were asked 
to evaluate the surprisal (surprising or not surprising) and pleasantness (pleasant or not pleasant) of the notes. 
Participants were instructed to respond based on the rules of the artificial music grammar they were trained on. 
This session included a total of 105 trials and lasted 20 min.

Compositions
Participants’ musical composition after the last training session was used for the analysis. At the end of each 
training session, participants were asked to create one musical composition. They were advised to compose 
something based on what they learned and were prompted to be as creative as possible. They were given 3 min 
to prepare their composition while playing on the keyboard and using pen and paper. They were then given 
20 s to perform their composition on the keyboard. The performances were recorded through  MATLAB®. The 
creativity of those compositions was subsequently evaluated by expert musicians.

EEG recording and preprocessing
EEG signals were recorded using 64 Ag–AgCl electrodes attached to the EGI geodesic sensor net system (Hydro-
Cel GSN 64 1.0; EGI System 200; Electrical Geodesic Inc., OR, USA; https:// www. egi. com/). The data were 
amplified by an EGI Amp 300 and sampled at 500 Hz. We used the MATLAB Toolbox  EEGLAB60 for data pre-
processing and  FieldTrip61 for data analysis. Signals were recorded with an online reference at the right mastoid 
and re-referenced to the average of the left and right mastoids. Continuous data were high-pass filtered at 0.5 Hz 
and then epoched from − 100 to 500 ms around the onset of target notes. Channels with poor signal quality, as 
assessed by visual inspection and by studying the topographical maps of their power spectra, were interpolated 
using neighbouring electrodes. Epochs containing artifacts such as movement, muscle activity and saccades were 
removed after visual inspection. Epochs with eye-blink artefacts were corrected using independent component 
analysis. Finally, epochs were low-pass filtered at 15 Hz and baseline corrected from − 100 to 0 ms before the 
target note onset. Participants with fewer than 10 useable trials in any of these three conditions were excluded, 
resulting in a final sample of 32 participants.

Creativity evaluation of participants’ compositions
After the end of the data collection, four expert classically-trained musicians were recruited to evaluate the 
creativity of the musical compositions. All musicians had a minimum of 10 years of formal musical training in 
a conservatory. Before the evaluations, they received training on the AMG to familiarize themselves with the 
music. Judges were given a verbal description of the creativity concept, i.e. that creativity is defined as the com-
bination of both novel and correct (based on the AMG) elements, and were instructed to follow the definition 
as well as their gut instinct for completing the evaluation. Importantly, judges were instructed to provide ratings 
considering the constraints of the AMG. They used a scale ranging from 1 (not at all creative) to 5 (extremely 
creative) for their evaluations. There was a reasonable agreement between the four raters, as indicated by the 
interclass correlation coefficient, ICC = 0.56 (confidence interval [0.47–0.65]). Z-scores were calculated sepa-
rately for each judge individually and then averaged across all four judges, this was done to ensure they were 
normalized across their base rates.

Data analysis
To address Q1 (Is there an association between pleasantness judgements in music and the probability of notes, 
and does it follow an inverted-U shape?) we split the notes according to their probability using two different 
methods (to ensure our results were not an artefact of our binning method): (1) The notes were divided into 9 
bins according to their probability, using a sliding window of 20% for each decile (0–20%, 10–30%, 20–40%, 
etc.). We then calculated the proportion of notes identified as pleasant (i.e. the number of pleasant instances in 
the i-th bin divided by the number of trials in the i-th bin) and entered them in a one-way repeated-measures 
ANOVA, with note probability as the independent variable with 9 levels (bins). (2) For the second method, we 
split the notes into three different probability levels (low: 0 to 0.33, medium: 0.33 to 0.66, high: 0.66 to 1). We then 
calculated the percentage of notes rated as pleasant and entered this into a one-way repeated-measures ANOVA 
with three levels of probability (low, medium, and high). We looked at both linear and quadratic effects since we 
expected the association to follow Wundt’s inverted-U shape.

To address Q2 (How do traditional ERP components, specifically N100 and P200, which are typically associ-
ated with prediction error processing, respond to notes of intermediate probability?), we calculated the peak 
amplitudes of two main ERP components: N100 (peak negative amplitude between 50 and 150 ms after the 
note onset) and P200 (peak positive amplitude between 100 and 250 ms after the note onset) over two different 
regions (fronto-central—FCz and centro-posterior—PCz). We focused on the N100 and P200 at midline elec-
trodes since these components are sensitive to prediction  errors41,62 and have been observed in studies of music 
 perception31,33,36,38. We chose FCz and PCz specifically because they are distant enough from each other to be 
differentially sensitive to frontal and mid-parietal influences without being too affected by prefrontal and occipital 
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sources, respectively. The time windows used to identify the peaks and the regions were defined by visually 
inspecting the average ERP waveforms observed in these two regions (Fig. 4A). We entered the peak amplitude 
into a repeated-measures ANOVA with note probability (low, medium, high) as the independent variable. Sepa-
rate analyses were carried out for the N100 and P200 peak amplitudes at each electrode region (FCz and PCz).

To address Q3 (Do individual differences in these effects correlate with the learning of the grammar and 
creativity of music composed by participants?), we split the learning groups into two (lower vs. higher learners) 
based on a median split of their accuracy in the post-test. Learning was assessed by calculating the accuracy of 
a participant’s judgments of whether a note was correct or incorrect following learning of the artificial musical 
grammar. Creativity was measured as the average creativity rating of their compositions given by four musical 
experts in Day 3 relative to the musical grammar learned (see “Methods”). We split the participants into two 
creativity groups based on a median split of their creativity, resulting in two equal groups (lower vs. higher 
creativity). To investigate the individual differences at the behavioural level, we entered the average ratings of 
the pleasantness of the unseen notes (at post-test) in a 2 (learning: lower vs. higher) × 2 (creativity: lower vs. 
higher) × 3 (note probability: low, medium, high) mixed design ANCOVA. We entered the pleasantness rat-
ings (liking) for these compositions as a control variable to avoid confounding creativity with how pleasant the 
compositions sounded to the raters since these two variables (pleasantness and creativity of their compositions) 
were highly correlated (r = 0.907, p < 0.001). We looked at linear and quadratic effects due to our hypothesis 
regarding the Wundt inverted-U shape association. To investigate the individual differences at the behavioural 
level, we conducted the same ANCOVA but using the N100 and P200 as dependent variables (one analysis per 
dependent variable).

To address Q4 (Are the associations between brain responses and note probability associated with learning 
and creativity?), we applied the same statistical test as in Q3 but with the ERP components of interest. Therefore, 
we entered the centro-posterior N100 and the fronto-central P200 as dependent variables in a 2 (learning: lower 
vs. higher) × 2 (creativity: lower vs. higher) × 3 (note probability: low, medium, high) mixed design ANCOVA, 
with pleasantness as a covariate.

Results
Liking notes of different probability
Figure 3A shows the relationship between the proportion of pleasant notes and note probability, suggesting that 
participants tend to rate more probable notes as more pleasant but also an inverted-U shaped effect such that 
pleasure falls for very high probabilities. We conducted a one-way repeated-measures ANOVA on the propor-
tion of pleasant notes, with note probability as the independent variable with 9 levels (bins). The results show a 
significant effect of probability on pleasantness ratings (F(8,312) = 6.527, p < 0.001, partial η2 = 0.143). The within-
subject contrasts revealed a strong quadratic effect (F(1,39) = 21.967, p < 0.001, partial η2 = 0.360), which was more 
pronounced than the significant linear contrast (F(1,39) = 6.660, p = 0.014, partial η2 = 0.146). Pairwise contrasts 
between each probability bin revealed that the highest pleasantness ratings were for notes with intermediate 
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probabilities, particularly in the range of 0.4 and 0.6 (p < 0.05). As shown in Fig. 3A, notes with the lowest prob-
abilities (0–0.2) were rated as the least pleasant, while the most pleasant notes fell within the 0.4–0.6 probability 
range.

To verify that the observed effect was not simply due to our binning method, we conducted a similar analysis 
(Fig. 3B) using the three broad probability ranges (low: 0–0.33, medium: 0.33–0.66, high: 0.66–1). The percentage 
of notes rated as pleasant was entered into a one-way repeated-measures ANOVA with three levels of probability 
(low, medium, and high). The results show a significant main effect of probability (F(2,78) = 18.749, p < 0.001, par‑
tial η2 = 0.325). The within-subjects contrasts showed that the quadratic effect (F(1,39) = 24.394, p < 0.001, partial 
η2 = 0.385) was stronger than the linear effect (F(1,39) = 10.892, p = 0.002, partial η2 = 0.218). Follow-up pairwise 
contrasts revealed that notes with intermediate probability (0.33–0.66) were considered significantly more pleas-
ant than both the less probable notes (t(39) = 5.395, p < 0.001, Cohen’s d = 0.853) and the more probable notes 
(t(39) = 3.319, p = 0.002, Cohen’s d = 0.525). Finally, the most probable notes (greater than 0.66 probability) were 
rated as significantly more pleasant than the least probable ones (t(39) = 3.30, p = 0.002, Cohen’s d = 0.512).

The incorrect notes were excluded from the previous analyses because they not only have a much lower prob-
ability (mean ± S.D. probability = 0.022 ± 0.002) compared to the low probability correct notes (0.161 ± 0.009) 
but they are also ungrammatical; the latter issue could bias the results and spuriously exaggerate the effects. To 
address this, we conducted another one-way repeated measures ANOVA with four levels of probability (very 
low and incorrect, low, medium, high, all correct) to compare preferences between incorrect and varying levels 
of correct note probabilities. As expected, we observed a significant main effect of probability (F(3,117) = 36.241, 
p < 0.001, partial η2 = 0.482). With the inclusion of incorrect notes as the lowest probability level, the linearity of 
the effect increased (F(1,39) = 50.386, p < 0.001, partial η2 = 0.564) in the within-subjects contrasts, while the quad-
ratic effect remained strong (F(1,39) = 34.696, p < 0.001, partial η2 = 0.471). Participants found the incorrect notes 
less pleasant than those of medium probability (t(39) = 7.660, p < 0.001, Cohen’s d = 1.21), as well as compared to the 
high (t(39) = 6.419, p < 0.001, Cohen’s d = 1.01) and low probability notes (t(39) = 4.943, p < 0.001, Cohen’s d = 0.995).
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ERPs in response to low, medium, and high probability notes
We investigated the differences in brain response to each note according to probability, specifically looking at 
whether variations between low, medium, and high probability notes would manifest in event-related poten-
tials (ERPs). First, we investigated the main differences in the P200 and N100 components at the fronto-central 
midline (FCz) and centro-posterior midline (PCz) between notes with medium (0.33–0.66), high (> 0.66), and 
low (< 0.33) probability.

For the N100 component at the frontal midline region (Fig. 4B, left-hand side), we observed no significant 
main effect of note probability on peak amplitude (F(2,62) = 0.597, p = 0.553, partial η2 = 0.019), neither a linear 
nor quadratic effect (p > 0.2). However, at the centro-posterior midline region, we found a significant main effect 
of probability (F(2,62) = 3.540, p = 0.035, partial η2 = 0.103). The quadratic effect of probability was significant 
(F(1,31) = 5.182, p = 0.030, partial η2 = 0.143), but the linear effect was not (F(1,31) = 0.510, p = 0.480, partial 
η2 = 0.016). Pairwise contrasts showed that the N100 amplitude was significantly higher for notes with medium 
compared to those with high probability (t(31) = 2.360, p = 0.025, Cohen’s D = 0.417). A marginal difference was 
observed between medium and low probability notes (t(31) = 1.827, p = 0.077, Cohen’s D = 0.323), but no signifi-
cant difference was found between low and high probability notes (t(31) = 0.714, p = 0.480, Cohen’s D = 0.126).

For the P200 component at the fronto-central midlines, we observed a significant main effect of prob-
ability (F(2,62) = 4.391, p = 0.016, partial η2 = 0.124). As with the behavioural data, within-subjects contrasts 
showed a significant quadratic effect (F(1,31) = 4.813, p = 0.036, partial η2 = 0.134), whilst the linear effect was 
non-significant (F(1,31) = 3.720, p = 0.063, partial η2 = 0.107). Follow-up pairwise contrasts showed a signifi-
cant difference in the P200 peak amplitude for medium versus low probability notes (t(31) = 2.791, p = 0.009, 
Cohen’s D = 0.493). However, no significant difference was found between medium and high probability notes 
(t(31) = 1.195, p = 0.241, Cohen’s D = 0.211) and only a marginal difference between low and high probability 
notes (t(31) = 1.941, p = 0.061, Cohen’s D = 0.343). At the centro-parietal midline region, we observed no effect 
of probability on the P200 (F(2,62) = 0.098, p = 0.908, partial η2 = 0.003), with both quadratic and linear effects 
being non-significant (p > 0.5 for both).

Association between learning, creativity, and preference for novelty
Finally, we aimed to understand how learning and creativity are associated with preference for different levels 
of novelty. The results confirmed a strong effect of probability on liking (F(2,66) = 24.597, p < 0.001, partial 
η2 = 0.427), and a significant interaction between note probability and creativity (F(2,66) = 6.587, p = 0.002, par‑
tial η2 = 0.166). This interaction showed a strong quadratic effect (F(1,33) = 9.754, p = 0.004, partial η2 = 0.228). 
This interaction seems to be due to the more creative group showing a stronger liking for notes of intermediate 
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probability compared to the notes with lower and higher probability (Fig. 5A). There was no interaction between 
note probability and learning (F(2,66) = 0.598, p = 0.553, partial η2 = 0.018), nor a three-way interaction 
(F(2,66) = 2.584, p = 0.083, partial η2 = 0.073). However, the within-subjects effects showed a significant quadratic 
three-way interaction (F(1,33) = 4.663, p = 0.038, partial η2 = 0.124), which might be attributed to a slightly lower 
quadratic effect of probability within participants with lower creativity who were also weak learners (Fig. 5B).

We then tested whether the centro-posterior N100 and fronto-central P200, which were found to be associ-
ated with the probability of the notes, were associated with learning and creativity by entering these measures 
(separately) as dependent variables in a 2 (learning: lower vs. higher) × 2 (creativity: lower vs. higher) × 3 (note 
probability: low, medium, high) mixed design ANCOVA, with pleasantness as a covariate. As expected for the 
N100, we observed a significant effect of probability (F(2,50) = 3.414, p = 0.041, partial η2 = 0.120), with a sig-
nificant quadratic effect (F(1,25) = 4.929, p = 0.036, partial η2 = 0.165), but note probability did not interact with 
creativity (F(2,50) = 0.191, p = 0.826, partial η2 = 0.008) nor learning (F(2,50) = 0.616, p = 0.544, partial η2 = 0.024). 
We observed the same effects for the P200 (fronto-central) with only a significant main effect of note probability 
(F(2,50) = 3.475, p = 0.038, partial η2 = 0.118), but no interaction with creativity (F(2,50) = 1.140, p = 0.328, partial 
η2 = 0.042) or learning (F(2,50) = 2.186, p = 0.123, partial η2 = 0.078).

To ensure that our results were not due to potential motor preparation differences between conditions (as 
the participants were asked to respond as fast as possible after the tone), we analysed the participants response 
times to notes of low, medium, and high probability. If motor contamination is a confound, we expected to find a 
difference in response times between the conditions. On average, participants took approximately 1 s to respond 
(mean = 0.99 s, SD = 0.59). We then entered the response times in a repeated measures ANOVA with three levels: 
low, medium, and high probability using the response times as the dependent variable. We observed no significant 
difference between the conditions (F(2,78) = 0.717, p = 0.493, partial η2 = 0.018).

Discussion
In this study, we investigated the relationship between aesthetic enjoyment and creativity focusing on novelty 
perception and generation. After receiving training on melodies generated by an artificial music grammar, par-
ticipants evaluated the pleasantness of short melodic excerpts ending with notes of varying probability while 
their EEG responses were recorded. They also composed their own musical compositions, whose creativity was 
later assessed by experts. Our key findings include: (1) in response to our research question 1 (RQ1), we found 
an inverted U-shaped relationship between note-pleasantness and note-probability; (2) in response to RQ2, we 
observed that intermediate probability notes were associated with brain responses traditionally linked to predic-
tion error, namely higher N100 and P200 at midline posterior and frontal sites, respectively; (3) regarding RQ3, 
more creative individuals preferred notes with intermediate levels of probability, whereas less creative individu-
als preferred higher probability notes; (4) and finally in response to RQ4, we observed no interaction between 
note-probability, creativity or learning on the N100 and P200, suggesting that those event related responses are 
not the main brain mechanisms behind this association.

As hypothesized, participants found notes of intermediate probability as the most pleasant, while low- and 
high-probability notes were judged as less pleasant. This inverted U-shaped relationship is in line with previous 
research on liking and complexity, where stimuli with intermediate complexity were liked  more8,63. This rela-
tionship was proposed in the 1960s by Daniel Berlyne (Berlyne, 1960), who argued that aesthetic preference is 
influenced by the balance between familiarity/novelty and complexity (collative variables) as people tend to show 
a preference for intermediate levels of these quantities. The inverted U-shaped relationship between pleasantness 
and complexity is further explained by the predictive coding account of learning, proposing that the brain uses 
Bayesian inference to constantly generate and update predictions about both external input and internal states, 
based on generative internal  models65: prediction errors reflect mismatches between prediction and actual input, 
thus forcing refinements to these internal models. These prediction errors are then used as guiding signals for 
learning where intermediate degrees of complexity offer the greatest opportunities for  learning66.

Regarding aesthetic preference and pleasantness in music, prominent theories emphasize the significance of 
prediction violation and  confirmation67–72. In music, the predictive processes are thought to generate  reward8,73,74 
through actively generating and updating  predictions75. Recently, Kathios et al.76 found evidence for the predic-
tive coding account showing an inverted U-shaped relationship between liking and exposure (number of pres-
entations), as well as a higher liking for melodies with fewer prediction errors. Similar to our study, the authors 
used an unfamiliar music scale, the Bohlen-Pierce scale, which is different from any established musical culture. 
Importantly, they also demonstrated these effects in both American and Chinese participants, underlining the 
potential cultural independence of these findings.

In the present experiment, training non-musicians on an artificial music grammar allowed us to study the 
effects of learning and music expectation on preference, avoiding biases accumulated from prior musical expo-
sure. Music prediction errors have been associated with increased brain activity in auditory and reward-related 
areas, including amygdala, hippocampus, and ventral  striatum8,63. Further, increased functional connectivity 
between auditory and reward networks has been linked to repeated exposure and  liking76. Therefore, the reported 
inverted U-shaped relationship between pleasantness and note probability might reflect a preference for inter-
mediate arousal, evoked by notes that are neither completely unexpected nor entirely predictable. According 
to the predictive coding framework, predictive processes generate reward through learning which motivates 
updating the internal model for improved future prediction. Whereas high probability notes are not informative, 
simply confirming an existing prediction, low probability notes are informative but also might signal an incorrect 
underlying predictive model of the sensory environment. Notes with intermediate probability are informative 
enough to drive learning without being so surprising as to question the underlying predictive model.
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Interestingly, intermediate probability notes were associated with brain responses traditionally linked to 
prediction errors: in particular, the N100 and P200 amplitudes at posterior and frontal sites, respectively, were 
more pronounced for these notes. The fronto-central N100, in particular, has been associated with violations of 
melodic  expectation33,36,38,77–79. Unexpected notes have also been found to elicit electrophysiological indicators 
of surprise processing, such as the mismatch  negativity80,81, the P300  component81,82, the P200 component at 
frontotemporal  sites78, and a late negativity around 400  ms83,84. Furthermore, neural activity over frontotempo-
ral sensors has been found to track melodic surprise around 200 ms and 300–500 ms after note  onset85. These 
responses have been observed for various kinds of auditory regularity violation, including out-of-key notes 
embedded in  chords86, unexpected  chords87, and unexpected  notes78,83. These findings support the theory of 
expectation suppression, where expected stimuli elicit weaker neural responses than unexpected stimuli through 
by top-down predictive  processes88,89.

We postulate that the observed enhancement of N100 and P200 amplitudes for intermediate probability notes 
could reflect the efficiency of predictive processes. These components responded more strongly to intermediate 
probability notes compared to high probability notes. This heightened neural responses to intermediate prob-
ability notes may be due to their role in refining the internal model and optimizing predictions, in contrast to 
highly expected or unexpected notes. However, since the spatial location of the N100 response we observed 
at the centro-posterior sites differs from prior studies reporting it at more frontal sites, future research will be 
needed to elucidate the distinct functional relevance of the N100 component based on its spatial distribution. 
Importantly, visual inspection of our topographical maps show that the right frontal area seem to scale linearly 
with the prediction error (high > medium > low), so it could be that whilst some brain areas have a role refining 
and optimizing predictions, others might be more sensitive to the degree of prediction error. It would also be 
important to independently replicate this finding since we took a more exploratory approach by testing the effects 
on both fronto-central and centro-posterior locations.

Our study also revealed that more creative individuals preferred notes with intermediate levels of probabil-
ity, whereas less creative individuals preferred higher probability notes. This is partially in line with previous 
research demonstrating a greater tolerance for unexpected or incorrect stimuli in musicians compared to non-
musicians33,90. In our earlier  study33, we found an enhanced P200 to incorrect notes compared to correct ones. 
It was also  demonstrated90 that jazz improvisers indicate a higher preference for unexpected chord progressions 
compared to classical musicians and non-musicians, who preferred expected chords. This supports the idea that 
experts prefer more complex structures than those with less domain-specific knowledge although that has not 
been always  replicated91. This may be because individuals with higher creativity have a higher tolerance or even 
preference for surprising events, whereas less creative individuals react strongly to incorrect notes. As creativity 
involves thinking outside the box and rule-breaking, a higher tolerance for the unexpected might facilitate crea-
tive thinking by enabling access to alternative, uncommon possibilities. Nonetheless, in our study, we observed 
that more creative individuals preferred intermediate levels of probability rather than higher levels of novelty, 
which is aligned with Berlyne’s64 inverted-U curve of aesthetic preference. Perhaps rather than breaking rules, 
creative thinking in music could require an ability to introduce sufficient novelty to avoid boredom, generate 
interest, and maximise pleasure, but not so much as to overload a listener’s predictive model.

Finally, evoked brain responses to note probability seemed relatively independent of individual differences in 
creativity and learning of the new musical grammar. This is surprising, considering a previous  study90 demon-
strating that jazz musicians showed stronger evoked responses to unexpected chord progression (higher ERAN 
and P3b) which correlated with creativity in validated creativity tasks. We suggest several potential explanations 
for this. One possibility is that the absence of effects of learning and creativity on the evoked brain responses to 
probability might be due to the brain measures used. The N100 and P200 are evoked responses to the note played, 
which we found to be related to liking/preference. However, higher-level cognitive processes such as creativity 
and learning might not be captured by evoked responses that are time- and phase-locked to stimuli. Higher-level 
cognitive processes associated with manipulating learned probabilities might be more relevant for explaining 
learning and creativity. For instance, musical improvisation has been linked to the deactivation of a distributed 
brain network of prefrontal  regions92, while music composition involves increased connectivity between the 
anterior cingulate cortex and the default mode  network93. Another possibility is that learning and creativity affect 
brain responses to properties of music other than probability. Alternatively, the processes involved in perceiving 
probability may not be directly linked to generating novelty; the brain responses involved in encoding novelty 
could be relatively independent of those involved in generating it. A third explanation is that our non-musician 
sample was not equally proficient in perceiving vs. generating novelty, given their limited knowledge of the artifi-
cial music grammar, which would not be the case with expert musicians. Future research with carefully designed 
experiments involving expert musicians will be needed to isolate the most likely explanation.

Our study is not without limitations. First, the melodic sequences were generated from an artificial music 
grammar, which helped eliminate the effect of pre-existing biases (ensuring zero stylistic familiarity) and focused 
solely on melody. However, it is important to note that other musical dimensions like rhythm, dynamics, and 
instrumentation, which we did not include, also play a crucial role in influencing musical  pleasure8,94. Second, 
future studies are needed to investigate individual differences in the experience of musical reward, particularly 
in the context of using music for emotional evocation or mood regulation, and examine their effects on brain 
responses to music expectations. Third, the binary nature of the reported pleasantness judgment (pleasant or 
not pleasant) was somewhat restrictive; a more nuanced, graded scale might have yielded richer insights. Lastly, 
although we have speculated about a predictive coding account for the perception of pleasantness of music, 
future studies are needed to validate this hypothesis across different modalities and with more complex stimuli.
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Conclusion
Overall, our study offers novel contributions to the understanding of musical pleasure and its neural correlates by 
employing an artificial music scale to eliminate pre-existing biases. We showed an inverted U-shaped relationship 
between the perceived pleasantness of a note and its probability, alongside insights into the neural mechanisms 
associated with these processes. Assuming a link between pleasantness and reward, our results support a pre-
dictive coding framework where the reward is derived from the active generation and updating of predictions 
linked to note probabilities. Furthermore, we found that the N100 and P200 components were associated with 
intermediate note probabilities, thereby suggesting that aspects of musical pleasure emerge even at the early 
stages of sensory processing. Finally, our study indicates that more creative participants showed a preference for 
notes with intermediate probability, partially in line with previous evidence for an expanded palette of options 
and possibilities in individuals with higher creativity, but offering support to an inverted U-curve for aesthetics 
enjoyment in more creative individuals. Ultimately, our findings support the idea that individual preference for 
intermediate probabilities might be also important for producing creative outputs.

Data availability
The data underpinning this publication is available at https:// osf. io/ 568jy/.
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