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Editorial on the Research Topic

Sensing the World Through Predictions and Errors

One of the critical functions of the brain is to prepare for future states and events. Over the past 40
years, several new theories and mounting empirical evidence have emerged in support of predictive
information processing in the brain. Arguably, one the most popular theories is that the brain’s
computational goal is tominimize prediction errors—the difference between predictions and actual
sensory inputs. Thus, “errors” are inseparable from prediction itself. In fact, evidence for predictive
processing often comes frommeasuring prediction errors, which reflect sensory deviance detection
(with or without awareness). The current Research Topic pulls together theoretical, empirical, and
modeling studies on the role of prediction in perception, often tested by how deviation from what
is predictable is processed in the brain. As a teaser for potential readers of this Research Topic, we
shortly summarize each paper and their wealth of results, from measuring the response to simple
forms of sensory deviation, through testing features of the putative predictive coding framework, to
assessing how predictive processes of perception operate in different states of the organism, aging,
clinical groups, and in conjunction with behavior.

Prediction error signaling is most commonly studied in oddball paradigms, in which an
occasional presentation of an unexpected stimulus, deviating from a sequence of expected
standard stimuli, evokes a mismatch response. Such unexpected deviant stimuli can differ
from the standards based on multiple sensory features. In an electroencephalography (EEG)
based study, An et al. tested whether mismatch responses depend on the sensory features
constituting auditory deviants. The study manipulated four acoustic features and identified
robust mismatch responses which, in a univariate analysis, were indistinguishable across features.
However, the features could be decoded from response topography in a multivariate manner,
although at relatively late latencies. These results suggest that mismatch detection may occur
prior to deviant feature processing. In a magnetoencephalographic study, Xu et al. focused
on the somatosensory modality and manipulated deviant stimuli such that they could be
unpredictable (replacing a randomly selected standard) or predictable (presented directly after
the unpredictable stimuli). The study identified an early activity component that differentiated
between unpredictable and predictable deviants, implying its role in prediction error signaling.

5
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In contrast, a later activity component differentiated between
the deviants and standards, but not between unpredictable and
predictable rare stimuli, suggesting that it reflects rareness-
related signaling rather than prediction error signaling.
Using direct recordings from the cortical surface in rodents,
Shiramatsu et al. investigated the relationship between
mismatch responses and multisensory integration. Deviant
stimuli could be presented in either the auditory or visual
modality alone or accompanied by congruent/incongruent
stimulation in the other modality. A comparison of mismatch
responses across conditions revealed a non-linear relationship
between single-modal and cross-modal mismatch responses.
Furthermore, local blockage of N-methyl-D-aspartate receptors
in the visual cortex diminished mismatch responses to
single-modal visual deviants as well as to congruent cross-
modal deviants, suggesting cross-modal influences on
mismatch signaling.

Going beyond classical oddball paradigm, Kimura
investigated visual predictive processing in the context of
a phenomenon called representational momentum, which
corresponds to a predictive perceptual displacement of a
position or rotation of a visual stimulus along its recent
regular pattern. By quantifying the amplitude of EEG-
based visual event-related potentials (vERP) to a regularly
rotated visual bar, the study established an across-participant
correlation between the vERP amplitude and subsequent
behavioral representational momentum, stressing the role of
individual differences in the neural and behavioral correlates of
predictive processing.

A corollary of the predictive coding framework is that the
saliency of an improbable event increases with the precision of
the predictive model, which in turn depends on the variability
of the regular features of sound sequences. Increasing the
variability of the acoustic regularity reduces the predictive
strength of one’s internal generative models about the auditory
environment. This, in turn is expected to lead to lower
precision of predictions and thus a reduced prediction error,
indexed by smaller mismatch negativity (MMN) amplitude.
Three studies within the current Research Topic of articles tested
this hypothesis. SanMiguel et al. demonstrated this empirically
by varying regularity stability with ramping the probability
of the standard tone and assessing the ERP elicited by the
deviant tone. They showed that for the same deviant probability,
the MMN amplitude is greater when the probability of the
standard increases (i.e., regularity variability decreased). Brace
and Sussman found that when two auditory features carry
separate regularities, predictions are created for both, irrespective
of whether either or none are attended/task relevant. Bader
et al. increased the variability of the regularity by replacing
one tone within a six-tone pattern with either a white-noise
segment (less precise pattern) or a different pitch tone (even less
precise pattern). While MMN was similar across conditions, the
P3a ERP component was greater for violations of patterns with
less regularity variability (greater model precision). In addition,
using trial-by-trial modeling of electrocorticographic (ECoG)
data, Lecaignard et al. showed that MMN indeed reflects a
precision-weighted prediction error that is time-dependent at

electrodes located more posteriorly over the scalp than the main
MMN response.

How robust, and the same time how flexible, is prediction
error as an index of sensory function integrity? The answer
to this fundamental question has proven very difficult to
provide, as evidenced by Gilbert et al.s’ review on disrupted
predictions in Major Depression Disorder as far as both sensory
deviance detection and reward processing are concerned. To
begin casting that picture, Tivadar et al.s’ review the evidence
for changes in prediction error responses under altered states
of consciousness. While the absence of consciousness (e.g.,
anesthesia and coma) changes the morphology and reduces
the amplitude of responses, deviancy may still be registered by
sensory-specific neural circuits, e.g., the core auditory cortex.
This is confirmed by the study of Nourski et al., who used
intracranial electroencephalography (iEEG) to test patients under
wake, sedated, and unresponsive stages of anesthesia induction.
Using high gamma activity as a dependent measure, they found
that core sensory neural circuits (auditory cortex) reflect the
positive interaction of local deviant responses generated by short-
term stimulation, and global deviant responses generated when
stimulation lasts several seconds. Such interaction is reduced but
still measurable in sedated participants.

Another often-tacit assumption is that the magnitude of
prediction error response should explain a sizeable portion of
variance in a tested function, so that a decay in said function
would be indexed by a proportionate reduction in deviance
detection processes. Said assumption may be difficult to verify.
Neubert et al. studied healthy elderly individuals (60–75 years)
by correlating the amplitude of the pre-attentive MMN response
to violations of predictable sound sequences, with the ability
of participants to ignore the same sound sequences used as
a behavioral distractor. The absence of a correlation suggests
that predictability extraction does not drive the effect of age on
predictability-based sensory inhibition. Similarly, Csizmadia et
al. found a discontinuity between visual MMN amplitude and the
ability to automatically register age of photographed individuals:
only in older adults was the visual MMN sensitive to age changes,
suggesting the mediation of a familiarity factor. However, if
one widens the clinical applications from decay to resilience
and expands the dependent measures from ERPs to prediction
error-related movements, such as blinks, as was done by Tavano
and Kotz, then the relationship between deviancy and behavior
may become strong again and reveal novel ways to compose a
more complete picture of extensively studied syndromes such as
Parkinson’s disease.

In sensory attenuation self-generated sensory input is
perceived as less intense than the same stimuli generated
externally. In a review of this phenomenon in the auditory
modality, Kiepe et al. question the traditional explanations
based on motor-based forward models and discuss alternative
hypotheses regarding the mechanisms underlying sensory
attenuation, such as those based on the predictive coding
framework. The review also addresses the challenge of isolating
Sensory attenuation from other predictive mechanisms.

Predictive coding appeared to have put to bed the
longstanding debate around the role of neuronal adaptation

Frontiers in Human Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 8995296

https://doi.org/10.3389/fnhum.2021.721476
https://doi.org/10.3389/fnhum.2021.730962
https://doi.org/10.3389/fnhum.2021.734200
https://doi.org/10.3389/fnhum.2021.747769
https://doi.org/10.3389/fnhum.2021.682820
https://doi.org/10.3389/fnhum.2021.794654
https://doi.org/10.3389/fnhum.2022.787495
https://doi.org/10.3389/fnhum.2021.702520
https://doi.org/10.3389/fnhum.2021.737230
https://doi.org/10.3389/fnhum.2021.734231
https://doi.org/10.3389/fnhum.2021.707702
https://doi.org/10.3389/fnhum.2022.758138
https://doi.org/10.3389/fnhum.2021.704668
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Auksztulewicz et al. Editorial: Sensing Through Prediction Errors

in MMN generation, modeled simply as the result of release
from repetition suppression. However, in this Research Topic,
an updated adaptation model revives the controversy (May)
by showing that recurrent interactions via feedforward and
feedback short-range connections within the auditory cortex
can beautifully simulate MMN to omissions and surprising
repetitions, which were critical in ruling out previous hypotheses
of adaptation as a plausible mechanism of MMN generation.
Hence, physiologically-informed modeling forces the reader
to rethink the very implementation of prediction error in
the brain.

The wide variety of topics emerging in this article Research
Topic demonstrates how deeply the notion of predictive
processing permeates current scientific thinking of perception.
While even some of the basic assumptions for the role of
prediction in perception require further testing, significant
advances have been made on mapping out a neural system
based on predictive principles. Understanding how these
predictive principles are implemented in the brain will have
critical implication for our fundamental understanding of
altered states of consciousness, as well as neurological and
psychiatric conditions.
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Do Auditory Mismatch Responses
Differ Between Acoustic Features?

HyunJung An 1, Shing Ho Kei 1, Ryszard Auksztulewicz 1,2*† and Jan W. H. Schnupp 1*†

1Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, 2Department of Neuroscience, Max

Planck Institute for Empirical Aesthetics, Frankfurt, Germany

Mismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained

by subtracting event-related potential (ERP) responses evoked by unexpected deviant

stimuli from responses evoked by expected standard stimuli. While the MMN is thought

to reflect an unexpected change in an ongoing, predictable stimulus, it is unknown

whether MMN responses evoked by changes in different stimulus features have different

magnitudes, latencies, and topographies. The present study aimed to investigate

whether MMN responses differ depending on whether sudden stimulus change occur

in pitch, duration, location or vowel identity, respectively. To calculate ERPs to standard

and deviant stimuli, EEG signals were recorded in normal-hearing participants (N = 20;

13 males, 7 females) who listened to roving oddball sequences of artificial syllables. In

the roving paradigm, any given stimulus is repeated several times to form a standard,

and then suddenly replaced with a deviant stimulus which differs from the standard.

Here, deviants differed from preceding standards along one of four features (pitch,

duration, vowel or interaural level difference). The feature levels were individually chosen

to match behavioral discrimination performance. We identified neural activity evoked by

unexpected violations along all four acoustic dimensions. Evoked responses to deviant

stimuli increased in amplitude relative to the responses to standard stimuli. A univariate

(channel-by-channel) analysis yielded no significant differences betweenMMN responses

following violations of different features. However, in a multivariate analysis (pooling

information from multiple EEG channels), acoustic features could be decoded from the

topography of mismatch responses, although at later latencies than those typical for

MMN. These results support the notion that deviant feature detection may be subserved

by a different process than general mismatch detection.

Keywords: electroencephalography, mismatch negativity, predictive coding, auditory processing, multivariate

decoding

INTRODUCTION

Neural activity is typically suppressed in response to expected stimuli and enhanced following novel
stimuli (Carbajal and Malmierca, 2018). This effect is often summarized as a mismatch response,
calculated by subtracting the neural response waveform to unexpected deviant stimuli from the
response to expected standard stimuli. Auditory deviance detection has been associated with a
human auditory-evoked potential, the mismatch negativity, occurring at about 150–250ms from
sound change onset (Naatanen, 2007; Garrido et al., 2008). The principal neural sources of the
MMN are thought to be superior temporal regions adjacent to the primary auditory cortex, as

8
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well as frontoparietal areas (Doeller et al., 2003; Chennu et al.,
2013). Initially, the MMN was interpreted as a correlate of pre-
attentive encoding of physical features between standard and
deviant sounds (Doeller et al., 2003). However, more recent
studies have led to substantial revisions of this hypothesis, and
currently, the most widely accepted explanation of the MMN is
that it reflects a prediction error response.

An important theoretical question remains whether mismatch
signaling has a domain-general or domain-specific (feature-
dependent) implementation in the auditory processing pathway.
A recent study using invasive recordings from the cortical
surface (Auksztulewicz et al., 2018) demonstrated that neural
mechanisms of predictions regarding stimulus contents (“what”)
and timing (“when”) can be dissociated in terms of their
topographies and latencies throughout the frontotemporal
network, and that activity in auditory regions is sensitive to
interactions between different kinds of predictions. Additionally,
biophysical modeling of the measured signals has shown
that predictions of contents and timing are best explained
either by short-term plasticity or by classical neuromodulation,
respectively, suggesting separable mechanisms for signaling
different kinds of predictions. However, these dissociationsmight
be specific to predictions of contents vs. timing, which may have
fundamentally different roles in processing stimulus sequences
(Friston and Buzsaki, 2016).

Interestingly, an earlier magnetoencephalography (MEG)
study (Phillips et al., 2015) provided evidence for a hierarchical
model, whereby violations of sensory predictions regarding
different stimulus contents were associated with similar response
magnitudes in auditory cortex, but different connectivity patterns
at hierarchically higher levels of the frontotemporal network.
This result is consistent with the classical predictive coding
hypothesis in which reciprocal feedforward and feedback
connections at the lower levels of the hierarchy are thought to
signal prediction errors and predictions regarding simple sensory
features, but hierarchically higher levels are thought to signal
more complex predictions and prediction errors, integrating over
multiple features (Kiebel et al., 2008). Several studies, however,
reported independent processing of prediction violations along
different acoustic features or sound dimensions. An earlier
study (Giard et al., 1995) investigated the neural correlates
of mismatch processing across three different acoustic features
(frequency, intensity, and duration). Mismatch responses to
each feature were source-localized by fitting equivalent current
dipoles to EEG signals, and the results indicated that violations
of different features can be linked to dissociable sources,
suggesting the involvement different underlying populations.
Similar conclusions have been reached in another set of studies
(Schroger, 1995; Paavilainen et al., 2001), which quantified the
additivity of MMN to changes along different acoustic features,
either in isolation or by combining two or more features. In
these studies, the MMN response to violating two features
could largely be reproduced by adding the MMN responses
to violating two single features, suggesting that the latter are
mutually independent. A more recent study has combined these
two approaches (source localization and additivity analyses),
demonstrating partial independence of three different timbre

dimensions (Caclin et al., 2006). The notion that mismatch
responses to violations of different features are mediated by
independent mechanisms is also supported by studies showing
that MMN (as well as the later P3a component) typically
decreases following two identical deviants presented in direct
succession, but remains stable following two deviants which vary
from the standard along different features (for a review, see
Rosburg et al., 2018).

However, in most previous studies (Giard et al., 1995;
Schroger, 1995; Paavilainen et al., 2001; Phillips et al., 2015;
Rosburg et al., 2018), physical differences between deviants
and standards were not behaviorally matched across different
features or participants, raising the possibility that differences
in mismatch-evoked activity might to some extent be explained
by differences in stimulus salience (Shiramatsu and Takahashi,
2018). This was also the case in the more recent studies on
MMN responses to multiple acoustic features (Phillips et al.,
2015) or in previous roving paradigms (Garrido et al., 2008).
Interestingly, a recent study investigating the MMN to acoustic
violations along multiple independent features in the auditory
cortex of anesthetized rats (An et al., 2020) revealed that the
topography of MMN signals was highly diverse across not only
acoustic features but also individual animals, even though several
sources of inter-subject variability (e.g., electrode placement)
were better controlled than in typical non-invasive studies,
suggesting that the spatial resolution of non-invasive methods
such as EEG or MEG might not be sufficient for mapping more
subtle differences between mismatch responses to violations of
different features. The few EEG studies that did use behaviourally
matched deviant sounds across different features either used
very small sample sizes (N = 8; Deouell and Bentin, 1998) or
were limited to relatively specialized perceptual characteristics
(e.g., different timbre features; Caclin et al., 2006). In contrast,
our study used a larger sample size (N = 20) and manipulated
relatively general sound dimensions (location, pitch, duration,
and syllable identity). Our primary goal was to test whether
mismatch responses to violations of different features differ in
magnitude or latency, in an attempt to replicate previous studies
(Deouell and Bentin, 1998). However, in addition to testing the
effects of acoustic feature on the MMN time-course in a mass-
univariate analysis (i.e., on an electrode-by-electrode basis), we
also aimed at decoding acoustic features from differences in
MMN topography in a multivariate analysis (i.e., pooling signals
from multiple electrodes).

MATERIALS AND METHODS

Participants
Twenty volunteers (13 males and 7 females; mean age 23.9
years old) enrolled in the study upon written informed consent.
All participants self-reported as having normal hearing and
no history of neurological disorders, and all but two were
right-handed. All participants but one were native Hong Kong
residents, and their mother tongue was Cantonese. A musical
training questionnaire indicated that 16 participants had no
musical training, and the remaining participants had <4 years’
experience in playing a musical instrument. Participants were
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FIGURE 1 | (A) Schematic representation of the stimulation sequences. The first stimulus in each train (solid circles) represents a deviant sound, while the last

(hatched circles) represents a standard sound. (B) The range of each acoustic feature used to construct stimuli in the EEG experiment. Red line indicates the median

value of each feature (across participants), blue bars and black whiskers represent mean and SD of upper and lower ranges across participants.

seated in a sound-attenuated and electrically shielded room in
front of a computer screen. They were instructed to fixate on
a fixation cross displayed on the screen during the acoustic
stimulation. All experimental procedures were approved by the
Human Subjects Ethics Sub-Committee of the City University
of Hong Kong.

Stimuli
The present study employed a roving oddball paradigm in
which auditory deviants could differ from preceding standards
along one of four independent acoustic features. Specifically,
we manipulated two consonant-vowel (CV) syllable stimuli, /ta/
and /ti/ (Retsa et al., 2018), along the following independent
acoustic features: duration, pitch, interaural level difference (ILD)
or vowel (An et al., 2020). Prior to the EEG recording, per
participant, we estimated the feature interval yielding ∼80%
behavioral performance by employing a 1-up-3-down staircase
procedure. In each staircase trial, two out of three stimuli,
chosen at random, were presented at a mean level of a given
feature (e.g., a 50/50 vowel mixture or a 0 dB ILD) while the
third stimulus was higher or lower than the mean level by
a certain interval. Participants had to indicate which stimulus
was the “odd one out.” Following three consecutive hits, the
interval decreased by 15%; following a mistake, the interval
increased by 15%. Each participant performed 30 staircase trials
for each feature (Figure 1B). For the roving oddball stimulus

sequences, the stimulus duration was set to 120ms and the inter-
stimulus intervals (ISIs) were fixed at 500ms. Stimuli formed
a roving oddball sequence: after 4–35 repetitions of a given
stimulus (forming a standard), it was replaced with another
(deviant) stimulus, randomly drawn from the set of 5 possible
levels (Figure 1A). Roving oddball sequences corresponding to
different features were administered in separate blocks, in a
randomized order across participants. The total number of
stimuli in each block was ∼2,000, including 200 deviant stimuli
and 200 corresponding (immediately preceding) standards.

Experimental Procedure
We recorded signals from 64 EEG channels in a 10–20 system
using an ANT Neuro EEG Sports amplifier. EEG channels were
grounded at the nasion and referenced to the Cpz electrode.
Participants were seated in a quiet room and fitted with
Brainwavz B100 earphones, which delivered the audio stimuli via
a MOTU Ultralite MK3 USB soundcard at 44.1 kHz. EEG signals
were pre-processed using the SPM12 Toolbox for MATLAB.
The continuous signals were first notch-filtered between 48 and
52Hz and band-pass filtered between 0.1 and 90Hz (both filters:
5th order zero-phase Butterworth), and then downsampled
to 300Hz. Eye blinks were automatically detected using the
Fp1 channel, and the corresponding artifacts were removed
by subtracting the two principal spatiotemporal components
associated with each eye blink from all EEG channels (Ille
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et al., 2002). Then, data were re-referenced to the average of
all channels, segmented into epochs ranging from −100ms
before to 400ms after each stimulus onset, baseline-corrected
to the average pre-stimulus voltage, and averaged across trials
to obtain ERPs for deviants and standards for each of the four
acoustic features.

Data Analyses
First, to establish the presence of the MMN response, we
converted the EEG time-series into 3D images (2D spatial
topography × 1D time-course) and entered them into a
general linear model (GLM) with two factors (random effect
of mismatch: deviant vs. standard; fixed effect of participant),
corresponding to a paired t-test. Statistical parametric maps
were thresholded at an uncorrected p < 0.005, and the resulting
spatiotemporal clusters of main effects were tested for statistical
significance at the family-wise error corrected threshold pFWE
< 0.05, taking into account the spatiotemporal correlations and
multiple comparisons across channels and time points.

In an additional control analysis, we have tested whether
the mismatch responses observed in this study were modulated
by adaptation effects, which have been shown to be especially
prominent in the N1 range (Baldeweg et al., 2004). To
this end, per standard stimulus (i.e., the last stimulus in a
sequence of identical stimuli), we have calculated the number
of stimuli separating it from the preceding deviant (i.e., the
first stimulus in a sequence of identical stimuli). If our
results were indeed confounded by adaptation, the difference
between responses evoked by deviants vs. standards should be
modulated by the number of stimuli preceding each deviant.
To test this hypothesis, we have regressed out the number of
preceding stimuli from single-trial standard-evoked responses
(using two regressors: a linear regressor, coding for the actual
number of preceding stimuli, and a log-transformed regressor,
approximating empirically observed adaptation effects; (e.g.,
Baldeweg et al., 2004), and subjected the residuals to the
remaining univariate analysis steps (i.e., averaging the single-trial
responses to obtain ERPs, and performing statistical inference
while correcting for multiple comparisons across channels and
time points).

Then, to test whether MMN amplitudes differed between
stimulus features, ERP data were entered into a flexible-factorial
GLM with one random factor (participant) and two fixed
factors (mismatch: deviant vs. standard; feature: pitch, duration,
ILD, and vowel), corresponding to a repeated-measures 2 × 4
ANOVA. Statistical significance thresholds were set as above.

Finally, to test whether mismatch responses can be used to
decode the violated acoustic features, we subjected the data
to a multivariate analysis. Prior to decoding, we calculated
single-trial mismatch response signals by subtracting the EEG
signal evoked by each standard from the signal evoked by the
subsequent deviant. Data dimensionality was reduced using PCA
(principal component analysis), resulting in spatial principal
components (describing channel topographies) and temporal
principal components (describing voltage time-series), sorted
by the ratio of explained variance. Only those top components
which, taken together, explained 95% of the original variance,

were retained for further analysis. In decoding acoustic features,
we adopted a sliding window approach, integrating over the
relative voltage changes within a 100ms window around each
time-point (Wolff et al., 2020). To this end, per channel and
trial, the time segments within 100ms of each analyzed time-
point were down-sampled by binning the data over 10ms bins,
resulting in a vector of 10 average voltage values per component.
Next, the data were de-meaned by removing the component-
specific average voltage over the entire 100ms time window
from each component and time bin. These steps ensured that
the multivariate analysis approach was optimized for decoding
transient activation patterns (voltage fluctuations around a zero
mean) at the expense of more stationary neural processes (overall
differences in mean voltage) (Wolff et al., 2020).

The binned single-trial mismatch fluctuations were then
concatenated across components for subsequent leave-one-
out cross-validation decoding. Per trial and time point, we
calculated the Mahalanobis distance (De Maesschalck et al.,
2000) (scaled by the noise covariance matrix of all components)
between the vector of concatenated component fluctuations
of this trial (test trial) and four other vectors, obtained from
the remaining trials, and corresponding to the concatenated
component fluctuations averaged across trials, separately for each
of the four features. The resulting Mahalanobis distance values
were averaged across trials, separately for each acoustic feature,
resulting in 4× 4 distancematrices. These distancematrices were
summarized per time point and participant as a single decoding
estimate, by subtracting the mean off-diagonal from diagonal
terms (Figure 3A).

In a final analysis, since we have observed univariate
mismatch responses as well as multivariate mismatch-based
feature decoding at similar latencies (see Results), we have
tested whether these two effects are related. To this end, we
performed a correlation analysis between single-trial decoding
estimates (i.e., the relative Mahalanobis distance values between
EEG topography corresponding tomismatch responses following
violations of the same vs. different features), and single-trial
MMN amplitudes.We calculated Pearson correlation coefficients
across single trials, per channel, time point, and participants.
The resulting correlation coefficients were subject to statistical
inference using statistical parametric mapping (one-sample t-
test; significance thresholds as in the other univariate analysis,
corrected for multiple comparisons across time points and
channels using family-wise error).

RESULTS

Taken together, in this study, we tested whether auditory
mismatch responses are modulated by violations of independent
acoustic features. First, consistent with previous literature
(Doeller et al., 2003; Garrido et al., 2008), we observed
overall differences between the ERPs evoked by deviant stimuli
vs. standard stimuli, in a range typical for MMN responses
as well as at longer latencies (Figure 2A). Specifically, the
univariate ERP analysis confirmed that EEG amplitudes differed
significantly between deviants and standards when pooling over
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FIGURE 2 | (A) The topography (left) and time-course (right) of the mismatch response. The highlighted topography cluster represents the significant difference

between deviants and standards. Based on this cluster, the average waveform of the evoked response is plotted separately for auditory standards (blue) and deviants

(red). The horizontal bars (black) indicate time points with a significant difference between deviants and standards. Shaded areas denote SEM (standard error of the

mean) across participants. (B) The average response to acoustic standards (blue) and deviants (red) for different feature conditions, extracted from the same cluster

as in (A). No interaction effects were significant after correcting for multiple comparisons across channels and time points.

all the acoustic features tested. This effect was observed over
two clusters: the central EEG channels showed a significant
mismatch response between 115 and 182ms (cluster-level pFWE
< 0.001, Tmax = 3.94), while posterior channels showed a
significant mismatch response between 274 and 389ms (cluster-
level pFWE < 0.001, Tmax = 5.46), within the range of a
P3b component. A control analysis, in which we controlled for
single-trial adaptation effect to the standard tones, yielded a
virtually identical pattern of results as the original analysis (two
significant clusters of differences between responses to deviants
vs. standards: an earlier cluster between 130 and 143ms over
central channels, cluster-level pFWE< 0.001, Tmax= 15.48, and
a later cluster between 317 and 327ms over posterior channels,
cluster-level pFWE < 0.001, Tmax= 17.48).

Although the ERP time-courses differed between deviant
and standard stimuli when pooling over violations of different
acoustic features, a univariate (channel-by-channel) analysis
revealed no significant differences in the amplitudes or time-
courses of mismatch responses between independent stimulus
features (Figure 2B). These results are consistent with a previous
study (Phillips et al., 2015) which found that multiple deviant
stimulus features (frequency, intensity, location, duration, and
silent gap) were not associated with differences in activity in the

auditory regions, but instead were reflected in more distributed
activity patterns (frontotemporal connectivity estimates).

The resulting decoding time-courses of each participant
were entered into a GLM and subject to one-sample t-tests,
thresholded at an uncorrected p < 0.05 and correcting for
multiple comparisons across time points at a cluster-level
pFWE < 0.05. In this analysis, significant acoustic feature
decoding was observed between 247 and 350ms relative to tone
onset (cluster-level pFWE = 0.000, Tmax = 2.77) (Figure 3B).
Thus, when pooling information from multiple EEG channels,
acoustic features could be decoded from the topography of
mismatch responses, although at later latencies than typical
for MMN.

Since we have observed both univariate mismatch responses
and multivariate mismatch-based feature decoding at late
latencies (univariate: 274–389ms; multivariate: 247–350ms),
we have performed an additional single-trial correlation
analysis to test whether these two effects are related. This
analysis (Figure 3C) has yielded no significant clusters
of correlation coefficients between single-trial mismatch
amplitudes and decoding estimates, while correcting for
multiple comparisons across channels and time points
(Tmax= 3.74, all pFWE > 0.005).
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FIGURE 3 | (A) Decoding methods. Left panel: for each trial, we calculated the Mahalanobis distance, based on multiple EEG components (here shown schematically

for two components), between the mismatch response in a given (test) trial (empty circle) and the average mismatch responses based on the remaining trials (black

circle: same feature as test trial; gray circles: different features). Right panel: after averaging the distance values across all trials, we obtained 4 by 4 similarity matrices

between all features, such that high average Mahalanobis distance corresponded to low similarity between features. Based on these matrices, we summarized feature

decoding as the difference between the diagonal and off-diagonal terms. (B) Multivariate analysis. The average time course of the decoding of acoustic features

based on single-trial mismatch response. The gray-shaded area denotes the SEM across participants, and the horizontal bar (black) shows the significant time

window. (C) Decoding vs. MMN correlation analysis. Plot shows the time-series of mean correlation coefficients between single-trial decoding estimates and

single-trial MMN amplitudes, calculated for Cz/Cpz channels and averaged across participants (shaded areas: SEM across participants). No significant correlations

were observed when correcting for multiple comparisons across channels and time points.

DISCUSSION

In this study, since a univariate analysis of interactions between
mismatch signals and acoustic features might not be sensitive
enough to reveal subtle and distributed amplitude differences
between conditions, we adopted a multivariate analysis aiming at
decoding the violated acoustic feature from single-trial mismatch
response topographies. This demonstrated that acoustic features
could be decoded from the topography of mismatch responses,
although at later latencies than typical for MMN (Figure 3B).
An earlier oddball study (Leung et al., 2012) examined ERP
differences to violations of four features (frequency, duration,
intensity, and interaural difference). The study found that
frequency deviants were associated with a significant amplitude
change in the middle latency range. This result indicated that
deviant feature detection may be subserved by a different process
than general mismatch detection. Consistent with this notion,

another study has used magnetoencephalography to identify
mid-latency effects of local prediction violations of simple
stimulus features, and contrasted them with later effects of global
prediction violations of stimulus patterns (Recasens et al., 2014).
Taken together, these studies would suggest that, in paradigms
where multiple acoustic features vary independently (such as
here), a plausible pattern of results would be that independent
feature predictions should be mismatched at relatively early
latencies, since an integrated representation is not required. Here,
however, we found feature-specificity in the late latency range,
rather than in the mid-latency range. The discrepancy between
our results and the previous studies might be explained by
different stimulus types. While the previous studies used simple
acoustic stimuli, here we used complex syllable stimuli, possibly
tapping into the later latencies of language-related mismatch
responses, as compared to MMN following violations of non-
speech sounds.
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Speech sounds have been hypothesized to be processed
in separate streams which independently derive semantic
information (“what” processing) and sound location (“where”
processing) (Kaas and Hackett, 2000; Tian et al., 2001; Schubotz
et al., 2003; Camalier et al., 2012; Kusmierek and Rauschecker,
2014). In most animal studies, the hierarchical organization of
the auditory cortex has been linked to a functional distribution
of stimulus processing, such that core (hierarchically lower)
regions respond preferentially to simple stimuli, whereas belt
and other downstream (hierarchically higher) regions respond
to more complex stimuli such as band-passed noise and speech
(Rauschecker et al., 1995; Recanzone et al., 2000; Rauschecker
and Tian, 2004; Kusmierek and Rauschecker, 2009; Rauschecker
and Scott, 2009). This is supported by evidence functional
magnetic resonance imaging (fMRI) studies in humans (Binder
et al., 2000) showing that earlier auditory regions (Heschl’s gyrus
and surrounding fields) respond preferentially to unstructured
noise stimuli, while progressively more complex stimuli such
as frequency-modulated tones show more lateral response
activation patterns. In that study, speech sounds showed
most pronounced activations spreading ventrolaterally into the
superior temporal sulcus. This result supports a hierarchical
model of auditory speech processing in the human auditory
cortex based on complexity and integration of temporal and
spectral features. Based on this notion, the relatively long latency
of neural responses compared to previous studies using pure
tones might be partially explained by the fact that we used
spectrally and temporally complex speech stimuli.

However, our results can also be explained in terms of
a hierarchical deviance detection system based on predictive
coding (Kiebel et al., 2008). On this account, neural responses
supporting the lower and higher hierarchical stages communicate
continuously through reciprocal pathways. When exposed to
repetitive stimuli, the bottom-up (ascending) sensory inputs
can be “explained away” by top-down (descending) connections
mediating prediction signaling, resulting in weaker prediction
error signaling back to the hierarchically higher regions.
Substituting the predicted standard with unpredicted deviant
results in a failure of top-down suppression by prior predictions.
This leads to an increased prediction error signaling back to
higher regions, providing an update for subsequent predictions.
As a result, the later and more distributed activity patterns
might reflect higher-order prediction errors, signaled to regions
integrating multiple stimulus features and representing the entire
range of stimuli likely to appear in a particular context.

In conclusion, the present study identified functional
dissociations between deviance detection and deviance feature
detection. First, while mismatch responses were observed at
latencies typical for the MMN as well as at longer latencies,
channel-by-channel analyses revealed no robust differences
between mismatch responses following violations of different
acoustic features. However, we demonstrate that acoustic features
could be decoded at longer latencies based on fine-grained
spatiotemporal patterns of mismatch responses. This finding
suggests that deviance feature detection might be mediated
by later and more distributed neural responses than deviance
detection itself.
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Mismatch brain responses to unpredicted rare stimuli are suggested to be a neural
indicator of prediction error, but this has rarely been studied in the somatosensory
modality. Here, we investigated how the brain responds to unpredictable and predictable
rare events. Magnetoencephalography responses were measured in adults frequently
presented with somatosensory stimuli (FRE) that were occasionally replaced by two
consecutively presented rare stimuli [unpredictable rare stimulus (UR) and predictable
rare stimulus (PR); p = 0.1 for each]. The FRE and PR were electrical stimulations
administered to either the little finger or the forefinger in a counterbalanced manner
between the two conditions. The UR was a simultaneous electrical stimulation to
both the forefinger and the little finger (for a smaller subgroup, the UR and FRE were
counterbalanced for the stimulus properties). The grand-averaged responses were
characterized by two main components: one at 30–100 ms (M55) and the other at
130–230 ms (M150) latency. Source-level analysis was conducted for the primary
somatosensory cortex (SI) and the secondary somatosensory cortex (SII). The M55
responses were larger for the UR and PR than for the FRE in both the SI and the SII
areas and were larger for the UR than for the PR. For M150, both investigated areas
showed increased activity for the UR and the PR compared to the FRE. Interestingly,
although the UR was larger in stimulus energy (stimulation of two fingers at the same
time) and had a larger prediction error potential than the PR, the M150 responses to
these two rare stimuli did not differ in source strength in either the SI or the SII area.
The results suggest that M55, but not M150, can possibly be associated with prediction
error signals. These findings highlight the need for disentangling prediction error and
rareness-related effects in future studies investigating prediction error signals.
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INTRODUCTION

The ability to detect changes in the stimulus environment
is crucial to an organism’s survival. Equally important is the
capacity to learn contingencies between stimuli and to anticipate
future events based on learned patterns in stimuli. Accurate
predictions of future events can advance cognitive functioning
related to perception and action in a fundamentally important
manner (Bar, 2007).

According to the predictive coding theory (Friston, 2005),
neural networks constantly learn the statistical regularities of
the surrounding stimulus environment and make predictions
of future events. When the input information does not match
with the prediction, the lower sensory areas send a prediction
error signal into the higher cortical areas (recent findings also
extend this hierarchical pattern of predictive coding framework
to subcortical structures, see Parras et al., 2017; Carbajal and
Malmierca, 2018) and modify the prediction (Friston, 2005;
Garrido et al., 2009; Stefanics et al., 2014). This new prediction is
then sent backward to the lower areas, where it is again compared
with the new sensory input signals.

In experimental research, an oddball stimulus condition,
wherein a standard stimulus is rarely and randomly replaced by a
deviant stimulus, is a feasible tool for studying predictive coding.
An event-related potential, called mismatch negativity [MMN
or MMNm when investigating with magnetoencephalography
(MEG)] (Näätänen et al., 1978, 2010), is elicited by the deviant
stimulus and is suggested to reflect prediction error (Friston,
2005; Garrido et al., 2009; Wacongne et al., 2012; Stefanics et al.,
2014; Carbajal and Malmierca, 2018). MMN was originally found
in the auditory modality (Näätänen et al., 1978) but was later
reported as well for deviant stimuli in the visual (e.g., Stefanics
et al., 2012; Astikainen et al., 2013; Xu et al., 2018; for reviews,
see Czigler, 2007; Kimura et al., 2011; Stefanics et al., 2014;
Kremláček et al., 2016), olfactory (e.g., Krauel et al., 1999; for
a review, see Pause and Krauel, 2000), and somatosensory (e.g.,
Shinozaki et al., 1998; Spackman et al., 2007; Strömmer et al.,
2014, 2017; for a review, see Näätänen, 2009) modalities.

Here, we focus on the somatosensory mismatch response
[sMMR, instead of MMN due to its positive polarity in some
previous electroencephalography (EEG) measurements], which
is less studied than its auditory and visual counterparts. The
sMMR has been observed for changes in stimulus location
(Shinozaki et al., 1998; Huang et al., 2005; Restuccia et al.,
2009; Strömmer et al., 2014, 2017; Yamashiro et al., 2014; Shen
et al., 2018; Hautasaari et al., 2019; for animal models, see:
Astikainen et al., 2001; Musall et al., 2017), duration (Akatsuka
et al., 2005; Spackman et al., 2007, 2010; Zhao et al., 2014),
intensity (Mima et al., 1998; Ostwald et al., 2012), frequency
(Kekoni et al., 1997; Spackman et al., 2007), and omissions
of the stimuli (Tesche and Karhu, 2000; Naeije et al., 2018).
However, one critical confounder should be considered in the
context of all the previously mentioned studies, namely, that
the probability of the rare stimulus in the traditional oddball
paradigm is always smaller than the probability of the standard
stimulus and that probability, as such, affects the brain responses
(Hari et al., 1990). One possible neural mechanism underlying

probability effects is neural adaptation (May et al., 1999; May and
Tiitinen, 2010), in which the neural populations responding to
frequently presented standard stimuli can be more adapted than
those responding to the rare deviant stimuli. Therefore, larger
responses can be elicited for deviant stimuli than for standard
stimuli (May and Tiitinen, 2010).

For auditory and, to some extent, for visual experiments as
well, several different control conditions have been developed
to control for possible adaptation effects for MMN elicitation.
The many-standards condition (also called the equal-probability
condition) is currently the most frequently used (Schröger and
Wolff, 1996; Jacobsen and Schröger, 2001). In human auditory
oddball studies, the results from the many-standards control
condition suggest that the differential responses found in the
oddball paradigm (MMN) may not be explained by adaptation
alone (Jacobsen and Schröger, 2001; Jacobsen et al., 2003; Maess
et al., 2007; Lohvansuu et al., 2013), but this has been less well
resolved in animal studies (for supportive evidence in animal
models, see, e.g., Astikainen et al., 2011; Nakamura et al., 2011;
Parras et al., 2017; Kurkela et al., 2018; Polterovich et al.,
2018; for no support or partial support, see, e.g., Fishman and
Steinschneider, 2012; Lipponen et al., 2019; Yang et al., 2019).
In the many-standards control condition, in addition to the
original deviant and standard stimuli, other stimuli with different
stimulus features than those in the standard and deviant stimuli
are randomly presented but without consecutive repetitions.
Each stimulus’s probability is the same as the probability of the
deviant stimulus in the oddball paradigm. The many-standards
condition is more difficult to design for the somatosensory than
for the auditory and visual modality. For instance, with a deviant
probability of 10%, this condition would require 10 different
stimulation locations for a location-change paradigm in the
somatosensory modality, and different skin locations have also
different sensitivities. However, to our knowledge, no previous
studies have applied this type of experiment in the somatosensory
domain in human participants, and only one study in animals is
reported (whisker stimulation in rats: Musall et al., 2017).

Here, we introduce a novel modified oddball paradigm that
approaches the topic from a different angle. Because it is more
difficult in the somatosensory than in the auditory studies to
produce several feature levels (such as different frequencies
of tones) for application in the many-standards condition,
we developed a stimulus condition in which somatosensory
responses to equally rare unpredictable and predictable stimuli
can be investigated. In this stimulus paradigm, the frequently
presented standard stimulus (the frequent stimulus, FRE) is
rarely and randomly replaced by a deviant stimulus (the
unpredictable rare stimulus, UR), as in the classical oddball
paradigm. However, another deviant stimulus (the predictable
rare stimulus, PR) immediately follows each UR. Therefore, these
two rare somatosensory events are different in their prediction
error value, but similar in rareness (probability). The UR should
thus show increased responses in comparison to the FRE and PR
due to its larger prediction error potential.

In this study, the stimulation is presented as electrical
stimulations of fingers, and the three stimulus types differ in
location of the stimulation. Consistent with previous studies
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investigating the location deviance detection and where the
fingers or hands have been stimulated in an ignore condition
(Shinozaki et al., 1998; Akatsuka et al., 2005, 2007a,b; Restuccia
et al., 2007; Strömmer et al., 2014, 2017; Hautasaari et al., 2019),
we expect that the stimulation will elicit activity in two main
time windows at approximately 30–70 and 100–200 ms after the
stimulus onset. We also expect both the early and later responses
to show a larger amplitude to rare stimuli in comparison to
standard stimuli (Mima et al., 1998; Akatsuka et al., 2005,
2007a,b; Strömmer et al., 2017; Hautasaari et al., 2019). Since
previous studies have not controlled for stimulus rarity (for
example, by using the many-standards control condition), we
cannot predict whether increased responses in comparison to the
FRE will be elicited by the UR alone or by both the UR and
the PR. However, larger responses specific to the UR will reflect
prediction error, while larger responses to both the UR and the
PR would reflect stimulus rarity in comparison to the FRE.

MATERIALS AND METHODS

Participants
Fifteen healthy participants (12 females and 3 males, aged 21–
43 years old) were recruited via email lists and notice boards
within the University of Jyväskylä and by an announcement
in a local newspaper. Inclusion criteria were an age of 18–
45 years, right-handedness, and self-reported normal senses
(vision corrected with eyeglasses was allowed). Hearing ability
for 1,000 and 500 Hz sounds was measured in the laboratory
with an audiometer to ensure proper hearing because we also
collected another dataset in the auditory sensory modality, not
reported here. Exclusion criteria were pregnancy, breastfeeding,
current or previous neurological or psychiatric diseases, brain
damage, alcohol abuse or use of illegal drugs, and current
depressive symptoms. A Finnish-language version of the Beck
Depression Inventory II (BDI-II) questionnaire (Beck et al., 1996)
was filled in by participants, and a maximum score of 10 in
the BDI-II was allowed for included participants. In addition,
participants with contraindications for MEG measurement such
as a pacemaker, hearing aid, or dental implant were excluded.
Before the experiment, a phone interview was conducted to
confirm the inclusion and exclusion criteria. Each participant
received one movie ticket as compensation for their participation.
The experiment complied with the Declaration of Helsinki
and was approved by the ethics committee of the University
of Jyväskylä. Written informed consent was signed by each
participant upon their arrival to the laboratory.

Stimulus and Task Procedure
Stimuli were electrical pulses (Stimulator: DeMeTec SCG30,
DeMeTec GmbH, Langgöns, Germany) of 200 µs in duration,
delivered via flexible, non-magnetic metal ring electrodes
(Technomed Europe Ltd., Maastricht, Netherlands) to the left
forefinger and little finger and stimulating the cathode above
the proximal phalanx and the anode above the distal phalanx.
All the ring electrodes were moistened with conductive jelly
(Technomed Europe Ltd., Maastricht, Netherlands) to reduce

impedance. A piece of gauze was tied to the stimulated finger
between the two electrodes to prevent conduction between the
two electrodes on the same finger. The stimulation intensity was
adjusted separately according to the threshold of each finger for
each subject. The threshold was determined by the participants’
oral reports when they sensed an electrical pulse. The stimulation
started from very low intensity and gradually continued to a
higher intensity in increments of 0.1 mA until the participant
reported feeling the stimulation. This process was repeated three
times and applied to the two stimulated fingers. The intensity
applied in the experiment was 1.5 times the subjective sensory
threshold intensity.

The stimulus procedure was a modified oddball paradigm.
A frequently presented stimulus was occasionally replaced by
two different rare stimuli: the first one, which was unpredictable,
was always followed by another one that was predictable. The
experiment had two main stimulus conditions (condition A and
condition B, Figure 1), which had counterbalanced stimulus
features for the FRE and the PR. In condition A, the FRE was
stimulation to the little finger, and the PR was stimulation to the
forefinger. In condition B, the stimulus assignment was reversed
for the FRE and PR. The unpredictable rare stimulus (UR) was a
double stimulation (forefinger and little finger, simultaneously).
The double stimulation was selected because we did not want to
stimulate an additional finger, which would have been necessarily
adjacent to either little finger or forefinger. This is because it
is not known whether stimulation of adjacent fingers elicits
differential responses, but we know from our previous studies
that stimulation of the little finger and forefinger can elicit
a differential response between the deviant and the standard
stimuli (Strömmer et al., 2014, 2017). In addition, not stimulating
additional fingers can also avoid the potential boundary effect.
This is because previous studies have shown a significantly larger
sMMR contrast between the middle finger and the thumb than
between the middle finger and the little finger (Shen et al., 2018).
Therefore, applying stimulation to additional fingers could also
introduce other possible stimulus features variance.

In order to counterbalance the physical features of the stimuli
for sMMR assessment, an additional experiment with condition
C was conducted for four participants after the presentation of
conditions A and B. In condition C, the FRE was a stimulation
of the forefinger and little finger, simultaneously, whereas the
UR and PR were stimulations to the forefinger and little finger,
respectively (see Supplementary Material 1 for the experimental
setting and results). Therefore, when averaging the responses of
conditions B and C, the stimulus features were counterbalanced
for the FRE and the UR.

Each condition consisted of 1,000 trials presented in two runs
for each participant. The probability of an FRE was 80%, and the
probability of a UR or PR was 10%. The presentation order of the
runs was counterbalanced between the participants, and a short
break was provided after each run. The interstimulus interval
(ISI, offset-to-onset) was 500 ms under all conditions. The
stimulus presentation was controlled by Presentation R© software
(Neurobehavioral Systems, Inc., Berkeley, CA, United States).
Participants were instructed to ignore the somatosensory stimuli
and focus on a silent movie. The movie was projected onto
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FIGURE 1 | Illustration of the stimulus presentation for conditions A and B. Under condition A, stimulation to the little finger (blue ball symbol) served as the FRE,
stimulation to the forefinger (green ball symbol) as the PR, and simultaneous pulses to the forefinger and the little finger as the UR. Under condition B, the opposite
assignment between the FRE and the PR was applied. In the analysis, conditions A and B were averaged; therefore, the physical features of the FRE and the PR are
controlled. FRE, frequent stimulus; UR, unpredictable rare stimulus; PR, predictable rare stimulus.

the center of the screen at a distance of about 1 m from
the participant (video projector: Barco FL35 projector; native
resolution 1,920 × 1,080 pixels).

Data Acquisition
The somatosensory evoked related magnetic fields were recorded
with a 306-channel whole-head system (Elekta Neuromag
TRIUXTM system, Elekta AB, Stockholm, Sweden) in a
magnetically shielded, dimly lit room at the MEG Laboratory,
University of Jyväskylä.

During the MEG recording, the participant was seated on
the chair with their head inside the helmet-shaped device at
a 68◦ upright position. The head position with respect to the

sensors in the helmet was determined at the beginning of the
task according to the magnetic fields produced by currents fed
into five indicator coils at predetermined locations on the scalp.
Two HPI coils were placed on both sides behind each ear;
another three were placed on the forehead. The locations of
these coils in relation to the anatomical location of preauricular
points and nasion were determined with an Isotrak 3D digitizer
(PolhemusTM, United States) before the experiment started.
More than 100 additional points were digitized over the scalp to
provide an accurate representation of the individual head shape
and for co-registration with a magnetic resonance imaging (MRI)
template. The continuous MEG signal was recorded with an
online bandpass filter of 0.1–330 Hz and a sampling frequency
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of 1,000 Hz. The electrooculogram (EOG) and electrocardiogram
(ECG) signals were recorded by detecting eye movements and
heartbeat artifacts, respectively. The vertical EOG was recorded
by two electrodes attached above and below the right eye; the
horizontal EOG was recorded by two electrodes placed on the
outer canthi of both eyes. One ECG electrode was placed below
the collar bone on the right side, and the other was placed in the
middle of the two collar bones. A ground wristband was wrapped
around the participant’s left-hand carpal bone.

Data Analysis
The Maxfilter 3.0 (Elekta AB) was first applied to reduce the
artifacts and transform the mean head positions across different
recording sessions. Bad channels were marked manually. The
spatiotemporal signal space separation (tSSS) method (Taulu
et al., 2004), with a buffer of 30 s and a subspace correlation
limit of 0.98, was used to remove external interference from
the data. The head position was estimated for head movement
compensation with the default setting (HPI amp window: 200 ms;
HPI amp step: 10 ms).

The MEG data were then preprocessed and analyzed using
the Brainstorm software (Tadel et al., 2011). First, a notch filter
of 50 Hz (3 dB notch bandwidth: 2 Hz) and a low-bandpass
filter of 60 Hz were applied, as described previously (Hautasaari
et al., 2019). Cardiac and eye blink artifacts were attenuated with
signal space projection (SSP) in Brainstorm by visually inspecting
and removing the corresponding SSP components separately for
gradiometers and magnetometers. Additionally, data with EOG
amplitudes exceeding 200 µV were marked as bad. The data were
then made into epochs according to the stimulus events from a
100 ms pre-stimulus baseline to 500 ms from the stimuli onset.
A DC offset baseline correction of -100 to 0 ms was calculated
and removed for each epoch. Epochs that included a segment in
which the EOG amplitudes exceeded 200 µV were rejected.

The responses were then averaged for each stimulus type over
condition A and condition B (weighted average with the number
of trials in each condition). Only FRE responses immediately
preceding the UR were applied in the analysis because this
allowed an equal number of trials for each stimulus type.
Conditions A and B were then combined to counterbalance the
physical properties of the FRE and the PR. More specifically, a
weighted average based on the number of trials was calculated
for the rare (both UR and PR) and the FRE responses across
conditions A and B for each participant.

For sensor-level comparisons, planar gradiometer channel
pairs were combined using root mean squares (RMSs) at each
sensor location. For source-level analysis, because individual MRI
data were not available, the FSAverage_2016 anatomy template
from Brainstorm was used for the MRI co-registration and
further source analysis. To make the template better match
each participant’s head shape, we warped the anatomy templates
to match the shape defined by the digitized points. The noise
covariance matrix was estimated from an empty room recording
made on the same day or on neighboring days. For the MEG
forward model, the sensor-weighted overlapping sphere model
(one per sensor, in a total of 306 local spheres) (Huang et al.,
1999) was used for the representation of the cortical surface with

45,000 dipoles (3 orientations × 15,000 vertices). The inverse
solution was performed using the unconstrained depth-weighted
minimum-norm estimates (wMNE) implemented in Brainstorm.
The unconstrained wMNE were used to avoid the possible noisy
and discontinuous current maps since we used the anatomy
template instead of individual MRI data for the source estimate.
The source localization results were then normalized with a
Z-score based on the baseline from -100 to 0 ms relative to
the stimulus onset. The norm of the three orientations for the
unconstrained source was used in the subsequent analysis.

Statistical Analysis
Sensor-level analyses were carried out in Brainstorm by calling
the spatiotemporal cluster-based permutation test functions from
the Fieldtrip toolbox (Maris and Oostenveld, 2007). Since the
results were similar to the source-level results, the detailed
statistical analysis and main results of the sensor-level data are
reported in Supplementary Material 2. Previous MEG studies in
the ignore condition have suggested that sMMR is mainly elicited
in the primary somatosensory cortex (SI) and the secondary
somatosensory cortex (SII) (e.g., Akatsuka et al., 2007a,b; Naeije
et al., 2016, 2018; Hautasaari et al., 2019). Thus, based on these
prior findings and verified in our grand-averaged source maps of
the UR and PR (Figure 2), we defined two regions of interest
(ROIs), namely, SI (G_postcentral: postcentral gyrus) and SII
(Lat_Fis-post: posterior ramus of the lateral fissure), based on
the Destrieux atlas (Destrieux et al., 2010). Moreover, only the
regions on the right hemisphere, which mean the contralateral
SI (cSI) and the contralateral SII (cSII), were used since little or
no activation occurs in the corresponding brain regions on the
left hemisphere (Figure 2) (for previous studies in which only
the contralateral side was activated, see, e.g., Strömmer et al.,
2014, 2017; Naeije et al., 2016, 2018). The norms of the three
orientations for an unconstrained source within the same time
windows (30–100 and 130–230 ms after stimulus onset) used in
the sensor-level analysis were exported from Brainstorm into the
SPSS program for further analysis. For each identified ROI and
time window, a separate one-way repeated-measures analysis of
variance (ANOVA), with stimulus type (FRE, UR, and PR) as the
within-subjects factor, was conducted. The Greenhouse–Geisser
correction [p-value after Greenhouse–Geisser correction (pcorr)]
was applied when the assumption of sphericity was not met. For
significant ANOVA results, post hoc analyses were conducted
by using a two-tailed paired t-test with different stimulus type
pairs. Partial eta squared (η2

p) measures were used for effect
size estimates in ANOVA. Bonferroni correction was used for
both ANOVA and post hoc analysis to control for the multiple
comparison problem [p-value after Bonferroni correction (pcorr)].
Cohen’s (1988) d was computed with pooled standard deviations
for the effect size estimate in the t-test.

RESULTS

Descriptive Results
Figure 2 illustrates the grand-averaged sensor-level responses
and the source estimates for the FRE, UR, and PR. Figures 3A,B
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FIGURE 2 | The grand-averaged responses for (A) FRE, (B) UR, and (C) PR. The upper panel shows a butterfly view of the grand-averaged response for each
stimulus type from all 306 sensors. For visualization purposes, gradiometer values are multiplied by 0.04 due to the differing units for magnetometers (T) and
gradiometers (T/m). The middle and lower panels show the topographies of the sensor-level activity based on magnetometers and source activation, respectively, at
a time point of 55 and 150 ms for each stimulus type. In the lower panel, only the sources that have a value > 40% of the color bar maximum are displayed. FRE,
frequent stimulus; UR, unpredictable rare stimulus; PR, predictable rare stimulus.

illustrate the source activity waveform on both ROIs for each
stimulus type (UR, PR, and FRE) and differential responses (UR–
FRE and PR–FRE), respectively. As shown in Figures 2, 3A, the
response waveforms are characterized by two main components:
one at approximately 30–100 ms latency (M55) and the other at
approximately 130–230 ms latency (M150). The corresponding
topography and source activation for each component are also
presented in Figure 2. The sensor-level results are reported in
Supplementary Material 2.

Source Activations
M55
For the results of the mean source activation value in 30–
100 ms latency, one-way repeated-measures ANOVA showed
main effects of stimulus type in both the cSI and cSII: in the
cSI, F(2,28) = 32.049, pcorr < 0.001, η2

p = 0.696); in the cSII,
F(2,28) = 18.126, pcorr < 0.001, η2

p = 0.564. Post hoc paired
t-tests with Bonferroni-corrected p-values are reported in Table 1
and Figure 3C. Post hoc tests revealed that both the PR and
UR showed increased activation compared to the FRE in both
the cSI and the cSII areas. In addition, both ROIs showed an
increased source strength for the UR compared to the PR. The
line graph of individuals’ source strength to the three stimulus
types are illustrated in Figure 3D. The grand-averaged source
activations for different stimuli from the right-side view are
illustrated in Figure 4.

M150
For M150, significant main effects for the stimulus type were
found in both ROIs; cSI: F(2,28) = 11.355, p< 0.001, η2

p = 0.448);
cSII: F(2,28) = 14.798, p < 0.001, η2

p = 0.514. Post hoc t-tests

are reported in Table 2 and Figure 3C. The results showed that
in both ROIs, both the PR and the UR induced larger activity
compared to the FRE. However, no difference was found between
the UR and the PR in either the cSI or the cSII areas. The
line graph of individuals’ source strength to the three stimulus
types are illustrated in Figure 3D. The grand-averaged source
activations for the different stimuli from the right-side view are
illustrated in Figure 4.

DISCUSSION

In the present study, we introduced a new oddball stimulus
protocol for investigating brain responses to unpredictable and
predictable rare somatosensory events. Use of this stimulus
protocol allowed us to control for the rarity (probability)
of the unpredictable and predictable stimuli. We found two
main components, M55 and M150, for each stimulus type: the
frequent stimulus (FRE), unpredictable rare stimulus (UR), and
predictable rare stimulus (PR). The sources of both components
were located on the contralateral somatosensory cortices. The
sensor-level (see Supplementary Material 2 for a detailed report)
and the source-level results showed a similar pattern: both
components elicited a larger activity for the UR and PR than for
the FRE. A larger response was observed for the UR than for the
PR only for M55, whereas no difference was found in response
amplitudes between the UR and the PR for M150. This pattern
of results suggests that M55, but not M150, possibly signals the
prediction error.

The latencies of the components, one at 30–100 ms latency
(M55) and the other at 130–230 ms latency (M150), were
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FIGURE 3 | The summary of the results from the source-level analysis. (A) The cortical time series for all three conditions (UR, PR, and FRE) in the cSI (left panel) and
cSII (right panel). (B) The cortical time series for the differential responses (UR–FRE and PR–FRE) in the cSI (left panel) and cSII (right panel). (C) The bar graph of the
source strength comparison of the FRE, UR, and PR in the cSI (left panel) and cSI (right panel). Error bars represent the standard error of the mean, and the dots
represent the values of the individual participants. (D) Line graphs of the individual participant’s source strengths to the three stimulus types in the cSI (left panel) and
cSII (right panel). FRE, frequent stimulus; UR, unpredictable rare stimulus; PR, predictable rare stimulus; ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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well in line with the previous MEG studies that have found
an early component approximately at 30–70 ms latency and a
later component at approximately 100–200 ms after stimulus
onset (Mima et al., 1998; Akatsuka et al., 2007a,b; Hautasaari
et al., 2019). Some EEG studies that applied the somatosensory
oddball paradigm have also found two components with similar
latencies as M55 and M150 here (Shinozaki et al., 1998; Akatsuka
et al., 2005; Restuccia et al., 2007; Strömmer et al., 2014,
2017). Consistent with previous MEG oddball studies that
applied source localization (Mima et al., 1998; Akatsuka et al.,
2007a,b; Naeije et al., 2016, 2018; Hautasaari et al., 2019), both
components were elicited on the sensory cortices (SI and/or SII).

Our results resemble those of the previous somatosensory
studies that applied a traditional oddball paradigm to elicit
the sMMR; however, our data raise questions regarding the
interpretation of the previous studies that the responses to rare
unpredictable stimuli (here UR) at 100–200 ms latency reflect
a prediction error (e.g., Mima et al., 1998; Shinozaki et al.,
1998; Akatsuka et al., 2005, 2007a; Strömmer et al., 2014, 2017;
Hautasaari et al., 2019). Namely, when we used equally rare
stimuli with different types of predictability (UR and PR), the
responses to these two stimuli did not show any amplitude
difference for M150, but they did for M55. Although several
studies have found larger responses to deviant than to standard
stimuli at early latency (within the 100 ms post-stimulus latency,
Mima et al., 1998; Shinozaki et al., 1998; Akatsuka et al., 2005,
2007a,b; Strömmer et al., 2014, 2017; Yamashiro et al., 2014;
Hautasaari et al., 2019), these studies have usually considered only
the later response (between 100 and 200 ms post stimulus), but

TABLE 1 | Post hoc paired-samples t-tests investigating the main effect of the
stimulus type found in the repeated-measures ANOVA for M55.

Conditions cSI cSII

t pcorr d t pcorr d

PR vs. FRE 4.121 0.003 0.376 3.199 0.019 0.576

UR vs. FRE 6.612 <0.001 1.014 6.175 <0.001 1.086

UR vs. PR 4.816 <0.001 0.685 2.977 0.030 0.677

PR, predictable rare stimulus; FRE, frequent stimulus; UR, unpredictable rare
stimulus; cSI, contralateral primary somatosensory cortex; cSII, contralateral
secondary somatosensory cortex; pcorr , p-value after Bonferroni correction; d,
Cohen’s d. The degrees of freedom for all comparisons are 14.

TABLE 2 | Post hoc paired-samples t-tests investigating the main effect of
stimulus type found in the repeated-measures of ANOVA for M150.

Conditions cSI cSII

t pcorr d t pcorr d

PR vs. FRE 3.528 0.010 0.921 4.357 0.002 1.381

UR vs. FRE 3.768 0.006 0.962 5.161 <0.001 1.315

UR vs. PR 1.905 0.232 0.294 0.434 1.000 0.095

PR, predictable rare stimulus; FRE, frequent stimulus; UR, unpredictable rare
stimulus; cSI, contralateral primary somatosensory cortex; cSII, contralateral
secondary somatosensory cortex; pcorr , p-value after Bonferroni correction; d,
Cohen’s d. The degrees of freedom for all comparisons are 14.

not the earlier one (before 100 ms) as being analogous to sMMR
(e.g., Mima et al., 1998; Shinozaki et al., 1998; Akatsuka et al.,
2005, 2007a; Strömmer et al., 2014, 2017; Hautasaari et al., 2019).
However, they did not provide any empirical evidence for the
assumption of the specificity of the later response to a prediction
error, nor did they rule out the effect of stimulus rareness (for
example, by applying the many-standards control condition).
Therefore, the previous findings of differential responses to
deviant stimuli at 100–200 ms post-stimulus latency may possibly
have reflected merely the rareness of the deviant stimulus.
Conversely, the differential responses at the earlier latency (before
100 ms) reported in the previous studies (Mima et al., 1998;
Shinozaki et al., 1998; Akatsuka et al., 2005, 2007a,b; Strömmer
et al., 2014, 2017; Yamashiro et al., 2014; Hautasaari et al., 2019)
could reflect a prediction error. Notably, the results from a
previous MEG study indicated that two components, one at 30–
70 ms and the other at 150–250 ms latency, showed increased
amplitudes to deviant stimuli presented at 10%, but not at 30
or 50% probability (Akatsuka et al., 2007b). The results of this
previous study, together with those of our study in which the
predictability of the rare stimulus was manipulated, suggest that
the earlier MEG component (here M55) could be specific to the
prediction error and that the later responses (here M150) might
reflect merely the stimulus rareness. Furthermore, studies that
used a global/local paradigm to verify the hierarchical processing
network of the sMMR at different levels found that a response
peaking at 70–100 ms over the posterior bank of the postcentral
sulcus reflected the prediction error (Naeije et al., 2016, 2018).
In rabbits, similar and even earlier latencies (i.e., 20–40 and 80–
100 ms) for somatosensory deviance detection have been found
in recordings of local-field potentials from the somatosensory
cortex (deviant-alone control condition, Astikainen et al., 2001).

Not only some of the previous studies in the somatosensory
modality but also those in the auditory modality have reported
deviance detection at early latencies. For example, the auditory
middle latency responses (MLRs), elicited within 50 ms latency
after the stimulus onset, have been studied in the context
of predictive coding (e.g., Althen et al., 2011; Grimm et al.,
2011; Recasens et al., 2014). These responses have their source
generator possibly in the sensory cortex (Recasens et al., 2014),
and a recently suggested view (Grimm et al., 2016) is that the
MLRs could be correlates of stimulus-specific adaptation (SSA,
Ulanovsky et al., 2003), which also occurs in a similar latency
range. SSA (i.e., adaptation to repeated sounds that do not
generalize to other sounds) is widely studied in animals with
single-cell recordings. Although the name of the phenomenon
refers to adaptation, release from SSA can also support genuine
deviance detection (e.g., Parras et al., 2017; for a review, see
Carbajal and Malmierca, 2018). Interestingly, a rat study that
contrasted the auditory cortical responses to patterns of periodic
(predictable) and random (unpredictable) changes in sounds
found larger intracellular and extracellular responses to random
than to periodic changes (Yaron et al., 2012). Future studies
using both single-cell and neural network-level recordings are
needed to understand whether the early latency brain responses
(e.g., MLRs and the M55 reported here) in the auditory
and somatosensory modalities have functional similarities and
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FIGURE 4 | Grand-averaged source activation for the time window of 30–100 ms (M55) and 130–230 ms (M150) after stimulus onset for each stimulus type from
the right-side view (mean values of the time windows presented). For visualization purposes, only the sources with a value > 40% of the color bar maximum are
displayed here. FRE, frequent stimulus, UR, unpredictable rare stimulus; PR, predictable rare stimulus.

whether they share neural mechanisms for rareness and/or
deviance detection.

Here, the activity for both the UR and the PR was most
pronounced on the sensory cortices (i.e., the SI and SII).
Although some discrepancies exist regarding whether the activity
has been found from the SI, the SII, or both, previous studies
applying the somatosensory oddball condition have mainly
located deviance detection-related responses in the SI and/or
SII. Akatsuka et al. (2007a,b), who first applied the source
localization method for the sMMR, suggested that the early
component (30–70 ms) originates mainly from the SI. The later
component (150–250 ms) was located mainly in the SI, but the
data from some individuals showed the generators in the SII
(Akatsuka et al., 2007a,b). Later, areas 1 and 3b of the SI, as
well as the posterior parietal cortex (PPC), were linked to the
deviance detection at approximately 50–120 ms post-stimulus
latency. Deviance detection-related activity was also found on the
bilateral SII cortex in a few participants (Yamashiro et al., 2014).
Both the electrical and tactile stimuli also elicited SI activity for
the early component (40–58 ms), and SII activity for the later
component (110–185 ms) (Hautasaari et al., 2019). Some studies
have also found simultaneous SI and SII responses as early as 20–
30 ms (Karhu and Tesche, 1999) instead of a strict hierarchical
or serial manner, suggesting that the SI and SII could process
somatosensory stimuli in a parallel manner. Taken together with
our results, the available evidence indicates a likelihood that the
SI and SII could both contribute to the deviance detection and
could also possibly be linked to the prediction error.

Even if our study strongly suggests that the increased response
amplitude for M150 does not reflect a prediction error, the
current study is limited in its interpretation regarding M55.
The M55 was larger in amplitude for the UR than for the FRE
and PR; however, whether the increased response amplitude
reflects the prediction error or a larger stimulus energy for
the UR in comparison to the PR and FRE is unclear. This is
because the low-level stimulus features were not counterbalanced
for all the stimulus types, but only between the FRE and

PR. The stimulus energy for the UR (stimulation of two
fingers at the same time) was larger than for the PR and
FRE (stimulation of one finger) when the data combined from
conditions A and B were analyzed. Therefore, we conducted an
additional measurement (condition C) for a small subsample
of participants (n = 4). In this measurement, the physical
characteristics of the UR and FRE were reversed for condition
B (Supplementary Material 1). Thus, when the data were
combined from conditions B and C, the responses to the UR
and FRE were counterbalanced for their low-level features. Visual
observation of the data suggests that three of the four participants
showed numerically larger activity for the UR than for the
FRE in the M55 time range, and two of the four participants
showed the same for M150. This suggests that the difference
in low-level physical features was probably not the only reason
for the larger responses to the UR than to the FRE in the
larger sample, and this tentatively associates M55 with the
prediction error.

Our paradigm may also be applied to the other sensory
modalities. In the auditory modality, the many-standards control
condition has recently been the most commonly used protocol
to control for the effect of stimulus probability (e.g., Jacobsen
and Schröger, 2001, 2003). However, the results may be affected
by the cross-frequency adaptation (Taaseh et al., 2011) between
the oddball and control condition sounds. The cross-frequency
adaptation is usually observed as a reduced response amplitude to
consecutive sounds of nearby frequencies. Because more sounds
are present, and usually with smaller frequency differences in
the control than in the oddball condition, the responses can
be larger to the oddball deviant sounds than to the control
sounds merely for this reason (see discussion in Yang et al., 2019,
where the oddball and many-standards conditions have the same
frequency separation in rats). The novel paradigm introduced in
the present study can avoid this problem, because it does not
require many different stimuli, and the stimuli can also be clearly
distinct in frequency (or other changing feature). However, all
three stimulus conditions (here conditions A and B in Figure 1
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and condition C in Supplementary Material 1) are required to
fully counterbalance the physical features of the three stimuli.

In summary, our results suggest that the processing of a
stimulus site change in the electrical stimuli on the fingers
induces two main components: M55 and M150. M55 was larger
for the UR than for the FRE and PR over both the SI and
SII. Surprisingly, although the UR had a larger prediction error
potential and an even larger stimulus energy than the PR, it did
not show an increased M150 amplitude when compared to the
PR. Our data therefore tentatively link M55, but not M150, to
signaling of the prediction error. The results also highlight the
need for controlling the stimulus rareness or for disentangling
stimulus rareness and predictability in future studies.
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Maria Bader* , Erich Schröger and Sabine Grimm

Cognitive and Biological Psychology, Institute of Psychology—Wilhelm Wundt, Faculty of Life Sciences, Leipzig University,
Leipzig, Germany

The auditory system is able to recognize auditory objects and is thought to form
predictive models of them even though the acoustic information arriving at our ears is
often imperfect, intermixed, or distorted. We investigated implicit regularity extraction for
acoustically intact versus disrupted six-tone sound patterns via event-related potentials
(ERPs). In an exact-repetition condition, identical patterns were repeated; in two
distorted-repetition conditions, one randomly chosen segment in each sound pattern
was replaced either by white noise or by a wrong pitch. In a roving-standard paradigm,
sound patterns were repeated 1–12 times (standards) in a row before a new pattern
(deviant) occurred. The participants were not informed about the roving rule and had to
detect rarely occurring loudness changes. Behavioral detectability of pattern changes
was assessed in a subsequent behavioral task. Pattern changes (standard vs. deviant)
elicited mismatch negativity (MMN) and P3a, and were behaviorally detected above the
chance level in all conditions, suggesting that the auditory system extracts regularities
despite distortions in the acoustic input. However, MMN and P3a amplitude were
decreased by distortions. At the level of MMN, both types of distortions caused similar
impairments, suggesting that auditory regularity extraction is largely determined by the
stimulus statistics of matching information. At the level of P3a, wrong-pitch distortions
caused larger decreases than white-noise distortions. Wrong-pitch distortions likely
prevented the engagement of restoration mechanisms and the segregation of disrupted
from true pattern segments, causing stronger informational interference with the relevant
pattern information.

Keywords: auditory processing, P3a, complex sound patterns, event-related potentials, mismatch negativity

INTRODUCTION

Acoustic information, which arrives at ours ears and informs us about objects in the outer world,
is often imperfect. Parts of the relevant object information might be obscured by extraneous noise
from concurrent auditory sources, for instance, from some sudden, interfering background sounds
like a honking car or a barking dog. In other instances, parts of the relevant auditory objects can
be missing. Furthermore, particularly in the domains of speech and music, mistakes in production
might lead to imperfect recurrences of the same object, for instance, when a familiar melody is
played with a missing or a wrong note or a word is uttered with an incorrect phoneme. Such
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occurrences can intermix with or distort the acoustic input we are
currently paying attention to, and might impede its intelligibility.

Our ability to deal with such distortions and to interpret
the acoustic environment, even if it is degraded to a certain
degree, is a remarkable asset. One should note that, on the one
hand, our auditory system is able to detect even slight variations
in the acoustic input. Previous studies found that the auditory
system is sensitive to very subtle acoustic changes (e.g., in sound
frequency), particularly if the respective varying sound event
occurs after a row of invariant repetitions (Sams et al., 1985;
Winkler et al., 1990). On the other hand, our brain must be able
to tolerate variation to some extent. That is, we need to neglect
input variation that is irrelevant for the current task or we need
to compensate for missing or distorted information. Usually, we
are well able to maintain a stable representation of objects in
the environment, even if we encounter them occasionally in a
degraded form. In fact, mechanisms of perceptual prediction and
restoration help us to fill in and reconstruct occluded or obscured
information. This occurs not only in the visual world (e.g., in
the case of the blind spot; Walls, 1954; Ramachandran, 1992;
De Weerd, 2006; Spillmann et al., 2006) but also in the auditory
domain. Studies on the continuity illusion show that a tone or
a word containing a short gap may be perceived as continuous
if the gap is filled with noise. The listener then perceives the
missing information, suggesting that the auditory system predicts
and interpolates through the absent information (Warren et al.,
1997; Micheyl et al., 2003; Riecke et al., 2007; Shahin et al., 2009;
Bendixen et al., 2014).

Especially in speech and music research, perceptual
restoration and filling-in processes are attributed to top-
down influences (DeWitt and Samuel, 1990; Shinn-Cunningham
and Wang, 2008). When phonemes are replaced with white
noise, a word utterance can still seem intact, and, oftentimes,
listeners cannot say which part of the uttered sentence was
missing (Warren and Warren, 1970). Although this effect is
clearly influenced by knowledge and experience, part of the
phenomena might occur pre-attentively on lower levels of
processing (Micheyl et al., 2003; Riecke et al., 2007).

Electrophysiological markers like the mismatch negativity
(MMN) can serve as an index for such implicit and automatic
compensatory mechanisms of early processing stages (Micheyl
et al., 2003). The MMN is elicited by sounds violating a detected
regularity in a sequence of sounds, for example, when a tone
differing in pitch (deviant) is presented following a sequence of
tones with identical pitch (standards). MMN reflects the process
of deviance detection, and its presence indirectly implies that
the regularity inherent in the standard tones has been encoded
(Winkler, 2007). Although early accounts interpreted the MMN
as the outcome of a retrospective comparison process between
regularity representations and the incoming deviant sound,
newer accounts emphasize that regularity representations are
part of an internal model, prospectively generating predictions
about future input (Wacongne et al., 2012; Bendixen et al., 2014;
Winkler and Schröger, 2015). Previous studies showed that
predictions and regularity representations of standards build up
even in the absence of exact repetitions of a stimulus, for instance,
when using abstract regularities (Tervaniemi et al., 2000;

Brattico et al., 2006; Bendixen and Schröger, 2008; Bader et al.,
2017) or in the presence of noise that degrades the physical
information (Muller-Gass et al., 2001; Micheyl et al., 2003;
Kozou et al., 2005). All these studies demonstrate the tolerance
of the MMN systems to a considerable amount of variability in
the sequence of standard sounds, including cases of imperfect
repetitions of standard sounds.

These findings also align with studies on auditory object
segregation. For example, McDermott et al. (2011) showed that
the auditory system quickly recognizes invariant patterns, even
when they are embedded in a changing acoustic background
of competing sounds. The authors suggest a mechanism of
cross-correlating dynamic spectrotemporal input patterns, which
filters for invariances between different occurrences of the same
auditory event (despite its being mixed with background noise).
Nevertheless, pattern recognition is impaired for sound patterns
that are not identically repeated within the mixtures of changing
backgrounds. In event-related potentials (ERP) studies, deviant
sounds elicit an MMN of decreased amplitude and increased
latency in cases where regularity formation is impeded by abstract
variations or noise masking (Muller-Gass et al., 2001; Niemitalo-
Haapola et al., 2015; Bader et al., 2017).

The MMN component can be followed by a P3a component
distributed over fronto-central scalp regions. Typically, P3a is
interpreted as signaling an involuntary attentional switch from
a primary task to the deviant stimulus (Squires et al., 1975;
Escera et al., 2000; Friedman et al., 2001; Wetzel and Schröger,
2007). P3a is sometimes also discussed to reflect a higher level
but automatic evaluation of novelty rather than the switch
of attention itself (Horvath et al., 2008; Wetzel et al., 2013;
Winkler and Schröger, 2015). The P3a amplitude is modulated
by cognitive and working memory demands of the task (Berti
et al., 2004). P3a amplitude and latency can be modulated by
experimental manipulations affecting salience, such as in the
presence of abstract variations (Bader et al., 2017) and quality
degradations of the regularity inherent in the standards, for
example, by added noise, interruptions, or frequency distortions
(Micheyl et al., 2003; Bader et al., 2017; Uhrig et al., 2017). That
is, P3a amplitude might be decreased and latency increased if
deviants violate a regularity that is not defined by exact sound
or pattern repetitions, for instance, in the case of a new melodic
pattern occasionally occurring among pattern repetitions in a
transposed form (Bader et al., 2017).

In the current study, we investigated the early phase of
implicit auditory pattern learning. The presented sounds were
attended; however, the pattern regularity rule was irrelevant
for the task at hand. Thus, learning occurred incidentally
rather than intentionally (Perruchet and Pacton, 2006). During
the experiment, a standard six-tone pattern is either repeated
identically to the listeners or repeated, containing distortions,
which leave only 5/6 of the standard pattern intact during each
presentation. In particular, the three experimental conditions
included (1) an exact-repetition condition (exact) in which sound
patterns within a train were perfect repetitions without any
distortion; (2) a white-noise-distortion condition (wn) in which
one tonal segment of the repeating sound pattern was replaced
randomly by Gaussian noise, and (3) a wrong-pitch-distortion
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condition (wp) in which one tonal segment of the repeating
sound pattern underwent a random shift in pitch. The respective
distortions could affect a different tonal segment in each pattern
presentation; the same segment would be intact in the next
pattern presentation. Importantly, we were not measuring the
ERPs to the distortions in every trial but, rather, the ERPs to
occurrences of a completely new pattern, whether or not the
preceding pattern learning happened with or without distortions.
If the buildup of a pattern representation is (at least partly)
robust against pattern variance in complex auditory stimuli, we
hypothesize that MMN and P3a will be elicited in conditions with
and without distortions.

However, given that a lower quantity of unambiguous
information guides the initial learning process, one might
expect poorer pattern representation from distorted standard
sounds as indicated by decreased MMN and P3a amplitude
and possible latency delays. Given that an equal portion (five
out of six tones) was unambiguously informative about the
identity of the standard pattern in both distortion conditions,
one might expect to find similar impairments in the two
distortion conditions. Nevertheless, there are certainly qualitative
differences between white noise and wrong pitch distortions.
Noise contains the frequencies of the “true” pattern segment and
can involve filling-in or restoration processes, once an internal
representation of the standard pattern has been formed; whereas
wrong pitch distortions might interfere with the formation of a
pattern representation. Therefore, differential effects on MMN
and/or P3a could be expected in the two distortion conditions,
particularly with stronger impairments in the wrong-pitch
condition. If that is the case, one can conclude that potentially
different mechanisms rule the formation of pattern identity
representations in the context of white noise or wrong pitch
distortions. This would also be compatible with masking studies,
showing stronger degrading effects on speech intelligibility when
it is masked by similar stimulus material, such as irrelevant
speech (as in the case of informational masking), than when it
is masked by noise (as in the case of energetic masking) (Cooke
et al., 2008; Lidestam et al., 2014).

Furthermore, if we observed such distortion-specific effects
already at the level of MMN, this would argue in favor of
an impact of our manipulation on relatively early merely
perceptual and automatic processing levels. In contrast, if
they were confined to the P3a level, this would indicate that
distortion processing occurs only at a later stage in the course
of more context-dependent novelty evaluation and automatic
orienting of attention.

As mentioned above, we expect MMN and P3a elicitation to
full pattern changes in all conditions and a possible differentiable
effect of the inserted distortions. These effects might also interact
with the number of preceding standards. Therefore, the number
of standard patterns (with or without distortions) preceding a
deviant was varied (1, 2, 3, 6, or 12 standard patterns) in a roving-
standard paradigm (Winkler et al., 1996; Bendixen and Schröger,
2008; Garrido et al., 2009). According to previous studies (Cowan
et al., 1993; Winkler et al., 1996; Bendixen et al., 2007; Garrido
et al., 2008; Bader et al., 2017), we expect to see a growth in
MMN (and P3a) amplitude with increasing numbers of preceding

standards in all conditions, if the implicit learning mechanisms
are robust against the inserted distortions. Likely, both standard
and deviant ERPs contribute to the MMN increase with deviant
ERPs growing more negative and standard ERPs growing more
positive (and vice versa for the P3a) as a function of the number
of previous standards in a train (Baldeweg et al., 2004; Bendixen
et al., 2007; Costa-Faidella et al., 2011; Bader et al., 2017). We will
model the emergence and growth, using a logarithmic regression
analysis, because regression coefficients can be informative of the
time course and the strength of the implicit formation of pattern
representations in our three distortion conditions.

MATERIALS AND METHODS

Participants
The experimental protocol was approved by the Ethical
Committee of the University of Leipzig and was in accordance
with the Code of Ethics of the World Medical Association
(Declaration of Helsinki). The participants gave written informed
consent before experimental sessions. All the subjects in
the experiment participated for credit points or monetary
compensation (€8 per hour). Of the 19 healthy subjects (age
range: 19–40 years, 18 females) that participated in this research,
all reported normal hearing and 17 out of 19 participants were
right-handed. All of them were Leipzig University students, and
84% reported to have played a musical instrument for some time
(M = 6.6 years, SD = 4.2 years).

Materials
As in one of our previous studies (Bader et al., 2017), auditory
stimuli were composed of 300-ms sound patterns, consisting
each of six concatenated 50-ms segments with randomly chosen
fundamental frequencies between 220 and 880 Hz (in 25 semitone
steps). Harmonics were added to each fundamental frequency
until a cutoff at 6,000 Hz. Starting at 3,000 Hz, tonal segments
were modulated by reducing the signal linearly resulting in 0%
intensity at 6,000 Hz. For a smoother sound, odd harmonics
(uneven positive integer multiples of the fundamental frequency)
were additionally attenuated to 20% of their intensity. To prevent
loudness differences between segments, intensities were root
mean square equalized. Segments included a 5-ms rise and a 5-
ms fall time, and there were no gaps introduced between the
six segments when concatenating them to a sound pattern. The
stimulus onset asynchrony (SOA) between patterns presented in
our auditory sequences was set to 650 ms.

Design and Procedure
Sound patterns were presented in a roving-standard paradigm
(Cowan et al., 1993; Winkler et al., 1996; Bendixen et al., 2007;
Garrido et al., 2008) with varying train lengths; a randomly
generated sound pattern was presented either 1, 2, 3, 6, or 12
times in a sequence before a newly generated pattern occurred,
which started a new train of stimuli. In a single block of the
experiment, each possible train length occurred 10 times in
random order, resulting in 240 pattern presentations per block.
As in our previous study (Bader et al., 2017), 10 additional trials

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 68282030

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-682820 July 5, 2021 Time: 19:23 # 4

Bader et al. Regularity Extraction Despite Uncertainty

FIGURE 1 | An example of a pattern sequence, in which patterns were presented in a roving-standard paradigm. At the third position, the pattern has been
presented three times; before, at the fourth position, a new train started with a new sound pattern (deviant), which, itself, is repeated within that next train. Each
deviant corresponds to a first standard of a new train. Each pattern was composed of six concatenated 50-ms segments, differing in fundamental frequency (black
horizontal bars). SOA (stimulus onset asynchrony) was set to 650 ms (= 300-ms pattern duration + 350-ms interstimulus interval). The top line (A) depicts the
identical repetition of a sound pattern within a train in the exact-repetition condition. The middle line (B) depicts the white-noise-distortion condition, in which a
randomly chosen segment of each sound pattern was replaced by white noise, marked with the black vertical bar. The bottom line (C) depicts the wrong-pitch
condition, in which a randomly chosen segment of each sound pattern was replaced by a new segment of randomly chosen new pitch, indicated by the arrow.

of train length 1 were included in each block, in the way that one
trial of train length 1 was directly followed by another trial of train
length 1. In this context, three pattern changes always occurred
in a row. This served to have pattern changes that did not follow
a pattern repetition, and it ensured the investigation of memory
trace formation, starting with a first pattern presentation. Here,
the first pattern change served as a deviant with respect to the
previous train, the second served as a “standard” of train length
1, and the third served as a “deviant” of train length 1. This
terminology is consistent with the one used for other train lengths
but, admittedly, arbitrary, since stimuli of train length 1 do not
have an actual history of pattern repetition. Overall, for each train
length, a similar number of standard and deviant patterns was
available for ERP analysis (Bader et al., 2017).

The experiment consisted of two sessions with a total of
36 blocks (12 blocks × 3 conditions). In each session, six
blocks of each condition were presented in random order. In
the exact-repetition condition, patterns were repeated 100%
identically within a train. In the white-noise condition, during
each presentation of a melodic pattern, one randomly chosen
segment out of the six was replaced by a 50-ms snippet of
white noise. In the wrong-pitch condition, the pitch of one
segment in each pattern was changed to a randomly chosen
new pitch, while keeping all other characteristics of that segment
(e.g., timbre) unchanged. The randomly chosen pitch for the
new segment could keep the contour of the pattern intact, or
violate it with equal probability. Each position of a pattern (1–
6) could be affected by this manipulation with equal probability
in the two distortion conditions—randomly selected from trial to
trial. The intensity of the white noise segment was root-mean-
square equalized to the rest of the pattern. Figure 1 depicts an
example of a train with three patterns and the beginning of the
following train.

At the beginning of the first session, ability of the participants
to tell whether two melodic phrases are the same or different
was measured via the melody part of musical ear test (MET) of
Wallentin et al. (2010). It contains 52 trials during which two

short melodies (comprising of three to eight tones) are played
with a tempo of 100 beats per minute, one after the other, with
sampled piano sounds. This part of the MET lasts approximately
10 min. In half of the 52 trials, the two melodies are identical. In
order to be above-chance level, the participants must score 32 out
of 52 trials correctly (= 62%).

During the experimental sessions, the participants were seated
in an electrically and acoustically shielded chamber in our
laboratory at the Institute of Psychology of Leipzig University.
To minimize eye movements, the participants fixated a cross
on a computer screen placed behind a window outside the
chamber 130 cm from the eyes of the participants. Auditory
stimuli were presented binaurally over headphones (Sennheiser
HD 25) at an intensity level of approximately 78 dB SPL. The
participants were not informed about the roving rule. While
listening to the presented sound patterns, the subjects performed
a loudness change detection task in order to ensure their attention
on the auditory stimulation. Occasionally, the sound patterns
were presented with a higher volume (+ 4 dB, five sound
patterns = 2% per block) or with a lower volume (–4 dB, five
sound patterns = 2% per block). The participants pressed the
left button of a response pad as soon as they detected a sound
pattern of lower volume and the right button of the response
pad as soon as they detected a sound pattern of higher volume.
The targets were distributed randomly over each block with the
restriction of at least two non-targets in between. After finishing a
block, the participants received feedback on their performance (a
ratio of hits, interchanged buttons, false alarms, and their mean
reaction time). After each block, the subjects had a short break,
allowing for movements.

Additionally, at the end of the second experimental session,
the participants performed an active pattern change detection
task to measure behavioral detectability of pattern changes. In
these active blocks, the SOA was prolonged to 1,100 ms for the
participants to have sufficient time for solving the task. They
were instructed to detect the onset of a new train while ignoring
segment distortions. They pressed a button of the response pad as
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soon as they detected a change to a new sound pattern. After short
training, each subject performed one block of each distortion
condition, consisting of 200 trials each (8 times train lengths 2,
3, 6, and 12; 16 times train length 1). The order of conditions was
counterbalanced over the participants.

Data Acquisition and Analyses
Electroencephalography data were collected continuously from
64 Ag/AgCl active electrodes. The electrodes were positioned
according to the international 10–20 system in a nylon cap. The
vertical and horizontal electrooculograms (EOG) were measured
with external electrodes placed above and below the right eye
and at the outer canthi of both eyes, respectively. As possible
offline references, additional electrodes were placed on the tip of
the nose and over each mastoid. All electrode signals were (DC)
amplified and continuously sampled with a rate of 512 Hz (an
anti-aliasing filter with –3 dB at 1/4 of the sampling frequency) by
BioSemi Active-Two amplifiers. No high-pass filter was applied
online. The BioSemi system uses the common mode sense (CMS)
and the driven right leg (DRL) electrode—placed at different
sites at the back of the head—to reference the recording to the
CMS–DRL ground while minimizing the effect of external noise
sources1.

Offline, EEG data were re-referenced to the average signal
of the two mastoids (Paavilainen et al., 1989; Ritter et al.,
1992; Schröger, 1997) and filtered using a 0.5 Hz high pass
filter (transition bandwidth of 1 Hz, filter order 1,690) and a
35 Hz low pass filter (transition bandwidth of 10 Hz, filter
order 170). Both filters were Kaiser windowed sinc FIR filters
(beta = 5.653, stopband attenuation = –60 dB implemented
in EEGLAB (Delorme and Makeig, 2004; Widmann et al.,
2015). Epochs of 650-ms duration were extracted from the
continuous electroencephalography (EEG) time-locked to sound
pattern onset. No baseline correction was applied to avoid the
introduction of pre-stimulus neuroelectric activity in the baseline
period into the post-stimulus waveforms (Urbach and Kutas,
2006). Epochs were sorted for each participant, condition, and
stimulus type. Artifactual epochs with a signal range exceeding
100 µV on any recording channel (including EOG channels)
were discarded from the analyses. To exclude trials containing
artifacts, which are not characterized by extreme amplitude
but by noise, we additionally ran a sorted averaging procedure
(Muhler and von Specht, 1999; Rahne et al., 2008), during which
all epochs of one condition and one participant were sorted
according to their noise level (quantified by the root mean square
of the voltage and sorted from lowest to highest) and successively
entered the average as long as they increase the overall signal-
to-noise ratio of the average. Epochs with extreme noise levels,
which have a deteriorating effect on the signal to the noise ratio,
were excluded. On average, 87 epochs (= 73%) remained for
analysis across conditions and the participants. The data of all the
participants went into analyses.

Event-related potentials were averaged for deviant sounds
(the first pattern of a new train) and for standard sounds
(the last corresponding pattern of the preceding train) in each

1https://www.biosemi.com/faq/cms&drl.htm

condition. Difference waves were computed by subtracting the
standard from the deviant ERPs. To compare ERP effects, in
general, between the three conditions, we pooled the deviant
and standard ERPs of train lengths 3, 6, and 12 in order to
extract a general difference waveform in each condition (general
analysis). Train lengths 1 and 2 were not included in the
general analysis, because former studies showed that perceptual
regularity extraction requires at least two repetitions (i.e., three
presentations) of the standard before unexpected complex sound
patterns elicit an MMN (Bendixen and Schröger, 2008; Bader
et al., 2017). With non-parametric cluster-based permutation
tests (Maris and Oostenveld, 2007), we tested for the presence of
significant MMN and P3a components in each condition within
this general analysis by comparing the whole epoch of the deviant
ERP with the standard ERP (α-level for channels and clusters:
Monte Carlo p < 0.05). About 1,000 permutations were run for
each test, and dependent samples t-tests quantified the effect.
These analyses and the creation of topographical scalp plots were
run in FieldTrip (Oostenveld et al., 2011).

For the statistical assessment, amplitude measures were
derived from the individual ERPs as the mean signal amplitude
in the component time interval for combined conditions (MMN:
200–300 ms after the stimulus onset, P3a: 400–500 ms after the
stimulus onset). An estimate of relative slope of each component
at the latency for which 75% of the peak amplitude was reached
was determined, using the jackknife approach (Miller et al., 1998;
Kiesel et al., 2008).

The MMN and P3a amplitude were separately subjected
to a repeated measures analysis of variance (ANOVA) with
the factors condition (exact, wn, wp), stimulus type (deviant,
standard), and train length (1, 2, 3, 6, and 12) as within-
subject factors. For the MMN, maximal peak deflections were
distributed over different electrodes in central-parietal regions
(CPz, Pz, POz). Following a data-driven approach, we focused
our MMN analyses on this region with maximal amplitude,
and we discuss this rather unexpected topography later (see
Discussion). To examine possible topography differences, the
factor electrode (CPz, Pz, and POz) was added to the ANOVA.
P3a measures were taken from electrode FCz because amplitude
deflected maximally at this electrode in all conditions. Three
condition-wise repeated measures ANOVAs, with the factors
stimulus type (deviant, standard) and train length (1, 2, 3, 6, and
12), and two stimulus-type-wise repeated measures ANOVAs,
with the factors condition (exact, wn, and wp) and train
length (1, 2, 3, 6, and 12), were run to explore the three-
way interactions for MMN and P3a. To investigate in more
detail whether and how amplitude of MMN and P3a, as well as
the contribution of deviant and standard stimuli to amplitude
of both components, changed systematically as a function of
train length; post hoc logarithmic trend analyses were run for
difference waveforms, deviant and standard ERPs, separately.
The standardized regression coefficient r and its 95% confidence
interval (lower and upper bounds) were reported. All ANOVAs
generalized eta squared (η2) served as an estimate of effect
size (Bakeman, 2005), and the Greenhouse–Geisser correction
was applied when the assumption of sphericity was violated
(corrected df s were reported). All parametric statistical analyses
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and the creation of figures were run with RStudio (RStudio. PBC.
Version 1.3.1073).

To ensure the participants attended to the auditory
stimulation during the EEG session, we analyzed sensitivity
d′ according to Macmillan and Creelman (2004) to the loudness
changes. Sensitivity d′ was adjusted for extreme hit or false
alarm rates to avoid infinite d′ values by adding 0.5 to all
response counts (Brown and White, 2005; Hautus and Lee,
2006). Reaction times were measured by calculating the latency
between the pattern onset and the key press. Response latencies
greater than two SOAs (1,300 ms) were excluded from analysis.
To check further for unwanted side effects, the behavioral data
in the loudness change detection task were additionally analyzed
in repeated measures ANOVA with the factors session (first,
second) and condition (exact, wn, and wp).

The active pattern change detection task at the end of the
second EEG session was analyzed in terms of the signal detection
theory, by extracting an index of sensitivity d′ (Macmillan
and Creelman, 2004) and correcting it for an extreme hit or
false alarm rates by adding 0.5 to all response counts (Brown
and White, 2005; Hautus and Lee, 2006). Reaction times were
measured by calculating the latency between the pattern onset
and the key press. Responses with latencies greater than the SOA
(1,100 ms) were excluded from the analysis. To compare the
behavioral performance between conditions, repeated measures
ANOVAs and Bonferroni-corrected two-tailed t-tests were run.
Cohen’s d was calculated as an estimate of effect size for Student’s
t-tests. Additionally, hit rates were analyzed via repeated
measures ANOVA with the factors condition (exact, wn, and wp)
and train length (1, 2, 3, 6, and 12) and via logarithmic trend
analysis to investigate behavioral effects condition-wise and as a
function of the number of previous standard repetitions.

RESULTS

Behavioral Performance in the MET and
in the Loudness Change Detection Task
In the MET, the participants scored, on average, 72% correct
(range: 42–88% SD = 12%, 17/19 subjects scored above chance).
In the loudness change detection task, which participants
performed during the EEG recordings, the targets were
discriminated with high accuracy. In the first session, averaged
sensitivity over the participants (N = 19) was d′ = 3.71 (SD = 0.58)
in the exact-repetition condition, d′ = 3.45 (SD = 0.64) in the
white-noise condition, and d′ = 3.60 (SD = 0.70) in the wrong-
pitch condition. In the second session, averaged sensitivity over
the participants (N = 19) was d′ = 3.92 (SD = 0.52) in the
exact-repetition condition, d′ = 3.80 (SD = 0.51) in the white-
noise condition, and d′ = 3.92 (SD = 0.58) in the wrong-pitch
condition. A repeated measures ANOVA with the factors session
(first, second) and condition (exact, wn, and wp) revealed the
main effect of session [F(1, 18) = 39.17, p < 0.001, η2 = 0.69]
but no significant effect of condition [F(2, 36) = 3.07, p = 0.060,
η2 = 0.15]. No interaction between condition and sessions was
found [F(2, 36) = 0.52, p< 0.60, η2 = 0.03].

In the first session, reaction times for correctly detected target
sounds were M = 634 ms (SD = 50 ms) in the exact-repetition
condition, M = 664 ms (SD = 53 ms) in the white-noise condition,
and M = 631 ms (SD = 49 ms) in the wrong-pitch condition. In
the second session, reaction times for correctly detected target
sounds were M = 609 ms (SD = 59 ms) in the exact-repetition
condition, M = 628 ms (SD = 58 ms) in the white-noise condition,
and M = 617 ms (SD = 54 ms) in the wrong-pitch condition.
A two-way repeated measures ANOVA revealed a significant
effect of condition [F(2, 36) = 13.99, p < 0.001, η2 = 0.04]
and of session [F(1, 18) = 14.08, p = 0.001, η2 = 0.05]. These
main effects were not qualified by an additional interaction [F(2,
36) = 1.32, p = 0.28, η2 = 0.01]. Bonferroni-corrected two-tailed
t-tests showed that, across the sessions, the reaction times in
the white-noise condition differed significantly from the exact-
repetition condition and the wrong-pitch condition [exact vs.
wn: t(37) = –3.59, p = 0.003 d = –1.18; wn vs. wp: t(37) = 3.09,
p = 0.001, d = 1.02; exact vs. wp: t(37) = –0.43, p = 1.000,
d = –0.14].

The participants showed a high sensitivity in the active pattern
change detection task at the end of the EEG recordings in
the exact-repetition condition [d′ = 3.12 (SD = 0.77)]. The
sensitivity in the white-noise condition was d′ = 1.90 (SD = 0.47)
and in the wrong-pitch condition d′ = 0.96 (SD = 0.28).
Repeated measures ANOVA comparing the three conditions
revealed a significant effect of condition [F(0.96, 34.53) = 125.68,
p < 0.001, η2 = 0.74]. Bonferroni-corrected two-tailed t-tests
showed significant differences between each condition pair [exact
vs. wn: t(18) = 8.47, p< 0.001, d = 3.99; wn vs. wp: t(18) = 10.12,
p < 0.001, d = 4.77; exact vs. wp: t(18) = 13.31, p < 0.001,
d = 6.27].

On average, reaction times for correctly detected target
sounds were M = 578 ms (SD = 34 ms) in the exact-repetition
condition, M = 610 ms (SD = 39 ms) in the white-noise
condition, and M = 617 ms (SD = 50 ms) in the wrong-pitch
condition. A one-way repeated measures ANOVA revealed a
significant effect of condition [F(2, 36) = 12.54, p < 0.001,
η2 = 0.15]. Bonferroni-corrected two-tailed t-tests revealed
significant differences between exact vs. wn: t(18) = −3.94,
p = 0.003, d = –1.86 and exact vs. wp: t(18) = –3.90, p < 0.003,
d = 1.84. The difference in reaction times between the white noise
and the wrong-pitch condition was not significant [t(18) = –1.08,
p = 0.88, d = 0.51]. The results of sensitivity and reaction time
analysis can be seen in Figures 2A,B.

A repeated measures ANOVA on the hit rates, including the
factors condition (exact, wn, and wp) and train length (1, 2, 3,
6, and 12) showed a significant main effect of condition [F(2,
36) = 103.98, p < 0.001, η2 = 0.48] and a significant main
effect of train length [F(4, 72) = 51.36, p < 0.001, η2 = 0.35].
These main effects were qualified by an additional interaction
[F(8, 144) = 5.11, p < 0.001, η2 = 0.08]. A highly significant
logarithmic trend for the train length effect was revealed for each
condition [exact: F(1, 18) = 22.52, p < 0.001, η2 = 0.56; wn:
F(1, 18) = 228.30, p < 0.001, η2 = 0.93; wp: F(1, 18) = 35.10,
p < 0.001, η2 = 0.66]. Logarithmic regression analyses revealed
a steeper increase of the hit rates with increasing train length in
the white-noise condition than in the wrong-pitch condition, as
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FIGURE 2 | Behavioral performance in the active pattern change detection task. (A) Violin plots show participants sensitivity index d′ when actively detecting pattern
changes in the exact-repetition condition (exact: blue), in the white-noise condition (wn: red), and in the wrong-pitch condition (wp: green). (B) Violin plots show
participants reaction times in the active pattern change detection task. The colored dots indicate the results of each single participant (N = 19). The black dots show
the mean of all the participants, and whiskers indicate the corresponding standard error of the mean. The shapes (gray) show the distribution of results over all the
participants. (C) Mean proportion of hits for the exact-repetition condition (exact: blue), the white-noise condition (wn: red), and the wrong-pitch condition (wp:
green) on deviant sound patterns as a function of the number of preceding standard sound patterns are shown. Whiskers indicate standard errors of mean.

confidence intervals did not overlap (wn: r = 0.23; CI: 0.19–0.28,
wp: r = 0.11; CI: 0.07–0.16). A ceiling effect in the exact-repetition
condition caused a non-optimal fit of the logarithmic regression
and, therefore, an overlap with the confidence interval of the
wrong-pitch condition, but not so with the white-noise condition
(r = 0.13; CI: 0.08–0.18). Mean hit rates are depicted in Figure 2C.

EEG Data
The non-parametric cluster-based permutation tests (see
Figure 3) showed that grand-averaged difference waveforms
(collapsed for train length 3, 6, and 12) elicited negative
deflections prior to 300 ms after the stimulus onset in all
conditions, likely reflecting MMN, even though its amplitudes
were largest at central-parietal and parietal electrodes (exact: Pz:
M = –1.81 µV at 252 ms; wn: CPz: M = –1.01 µV at 240 ms;
wp: POz: M = –0.91 µV at 211 ms). This negative component
was followed by a positive deflection in all conditions, peaking
at electrode FCz (exact: M = 3.90 µV at 402 ms; wn: M = 1.83
µV at 475 ms; wp: M = 1.79 µV at 488 ms), reflecting P3a (see
Figure 4B).

MMN Latency
Jackknife estimates of the MMN slope latency of the grand-
averaged difference waves (at collapsed electrodes CPz, Pz,
and POz), using the relative 75% peak amplitude criterion of
the grand-averaged difference waves were Mjack = 223 ms
(SDjack = 3.12 ms) for the exact-repetition condition,
Mjack = 175 ms (SDjack = 14.38 ms) for the white-noise
condition and Mjack = 194 ms (SDjack = 2.31 ms) for the wrong-
pitch condition. A one-way repeated measures ANOVA did not
reveal a significant effect of condition: Fadj (1.11, 19.93) = 0.44,
p = 0.51, η2 = 0.09.

P3a Latency
Jackknife estimates of the P3a slope latency at electrode FCz
of relative 75% peak amplitude criteria of the difference were

Mjack = 369 ms (SDjack = 2.46 ms) for the exact-repetition
condition, Mjack = 402 ms (SDjack = 1.19 ms) for the white-noise
condition and Mjack = 428 ms (SDjack = 7.08 ms) for the wrong-
pitch condition. A one-way repeated measures ANOVA did not
reveal a significant condition effect: Fadj (1.19, 21.45) = 2.68,
p = 0.12, η2 < 0.001.

MMN Mean Amplitudes
ERP difference waves and scalp distributions of MMN (and P3a)
can be seen in Figure 4.

A four-way repeated measures ANOVA with the factors
condition (exact, wn, wp), stimulus type (dev, stand), train length
(1, 2, 3, 6, and 12) and electrode (CPz, Pz, and POz) for
mean amplitudes in the MMN time window (200 to 300 ms
after the stimulus onset) neither revealed a significant 4-way
interaction [F(6.36, 114.44) = 1.50 p = 0.18 η2 < 0.001] nor
any three-way interaction, including the factors electrode and
condition [condition × type × electrode: F(2.76, 49.64) = 1.05,
p = 0.38, η2 < 0.001; condition × train length × electrode:
F(5.48, 98.59) = 1.12, p = 0.36, η2 < 0.001] that would point to
topographical differences between conditions.

Instead, the ANOVA revealed significant main effects
[condition: F(2, 36) = 17.74, p < 0.001, η2 = 0.05; stimulus
type: F(1, 18) = 41.47, p < 0.001, η2 = 0.07; train length:
F(4, 72) = 3.70, p = 0.01, η2 = 0.02] and significant two-way
interactions [condition× stimulus type: F(2, 36) = 4.37, p = 0.02,
η2 = 0.02; condition × train length: F(8, 144) = 4.53, p < 0.001,
η2 = 0.03; stimulus type × train length: F(4, 72) = 26.05,
p < 0.001, η2 = 0.11]. All those effects were qualified by a three-
way interaction condition × stimulus type × train length: F(8,
144) = 2.54, p = 0.01, η2 = 0.03.

Subsequently, we first tested whether in each of the three
conditions the deviant ERP differed from the standard ERP (main
effect of stimulus type) and whether this difference developed
with increasing train length (interaction stimulus type × train
length). Both the stimulus type effect [exact: F(1, 18) = 25.40,
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FIGURE 3 | Grand-averaged event-related potentials (ERPs), difference waveforms, and results of the cluster-based permutation test. Top: Grand-averaged ERPs at
electrode Cz for combined train lengths 3, 6, and 12 in the exact-repetition condition (exact: blue), in the white-noise condition (wn: red), and in the wrong-pitch
condition (wp: green). ERPs were elicited by standards (dashed line) and deviants (solid line). Difference waves of the grand-averaged ERPs (deviants minus
standards) are shown as thick solid lines. Vertical solid lines indicate the pattern onset at 0 ms and the pattern offset at 300 ms. Bottom: Plots are illustrating
significant differences (cluster p < 0.05) between ERPs to deviants and standards according to cluster-based permutation tests for combined train lengths 3, 6, and
12. Red and blue portions indicate time points/electrodes in which the ERPs to deviants are more positive and negative, respectively. Color brightness indicates the
amplitude of the difference. White portions indicate time points/electrodes at which no significant differences were found. Negative deflections (blue) can be seen
around 200–300 ms, and positive deflections (red) are found between 300 and 600 ms after the stimulus onset.

p < 0.001, η2 = 0.16; wn: F(1, 18) = 5.54, p = 0.03, η2 = 0.03;
wp: F(1, 18) = 5.76, p = 0.03, η2 = 0.03] and the interaction
stimulus type × train length [exact: F(4, 72) = 19.25, p < 0.001,
η2 = 0.20; wn: F(4, 72) = 5.17, p = 0.001, η2 = 0.10; wp: F(4,
72) = 4.05, p = 0.01, η2 = 0.06] were significant in each condition.
Particularly, the stimulus type× train length interactions resulted
from increasingly negative MMN amplitudes of the deviant
minus standard difference with train length (see Figure 5A).

To further explore the origin of the condition × stimulus
type× train length interaction, we analyzed deviant and standard
amplitudes at the centro-parietal electrodes in separate two-
way ANOVAs for possible train length effects and interactions
with condition. Here, we found for the deviants a significant
condition [F(2, 36) = 12.03, p< 0.001, η2 = 0.11] and train length
effect [F(4, 72) = 20.92, p < 0.001, η2 = 0.16] and a significant
condition× train length interaction [F(8, 144) = 4.97, p< 0.001,
η2 = 0.08]. However, for standards, the two-way ANOVA revealed
only a train length effect [F(4, 72) = 8.05, p < 0.001, η2 = 0.07].
The condition effect [F(2, 36) = 2.41, p = 0.10, η2 = 0.01]
and the condition × train length interaction [F(8, 144) = 1.19,
p = 0.31, η2 = 0.02] were not significant. This indicates a
similar development of the standard amplitudes with train length
independently of condition and a different development of
deviant amplitudes with train length in dependence of condition.
Furthermore, we observed a significant logarithmic trend for the
increase in deviant negativity with increasing train length in all
three conditions [exact: F(1, 18) = 67.48, p< 0.001, η2 = 0.79; wn:
F(1, 18) = 13.22, p = 0.002, η2 = 0.42; wp: F(1, 18) = 5.20, p = 0.04,

η2 = 0.22] (see Table 1). Logarithmic regression analyses revealed
a steeper increase in negativity for deviants in the exact-repetition
condition (r = –0.82; CI: –1.05 to –0.59) than in the white
noise (r = –0.28; CI: –0.49 to –0.06) and wrong-pitch condition
(r = –0.20; CI: –0.39 to –0.02) (see Table 1 and Figure 5B).

P3a Mean Amplitudes
A repeated measures ANOVA with the factors condition (exact,
wn, and wp), stimulus type (dev, stand) and train length
(1, 2, 3, 6, and 12) for mean amplitudes in the P3a time
window (400 to 500 ms after the stimulus onset) revealed a
significant main effect of condition [F(2, 36) = 6.47, p = 0.004,
η2 = 0.01]. Furthermore, the main effect of stimulus type
[F(1, 18) = 122.86, p < 0.001, η2 = 0.36] and the main
effect of train length [F(4, 72) = 4.64, p = 0.002, η2 = 0.01]
were found. The two-way interactions condition × stimulus
type [F(1.50, 26.97) = 28.57, p < 0.001, η2 = 0.07] and train
length × stimulus type [F(2.76, 49.70) = 38.45, p < 0.001,
η2 = 0.09], as well as the interaction condition × train length
[F(8, 144) = 2.18, p = 0.03, η2 = 0.01], were significant.
However, the main effects and the two-way interactions were
qualified by an additional three-way interaction of the factors
condition × stimulus type × train length: [F(8, 144) = 5.13,
p< 0.001, η2 = 0.02].

Two-way repeated measures ANOVAs with the factors
stimulus type (dev, stand) and train length (1, 2, 3, 6, and 12)
revealed the main effect of stimulus type [exact: F(1, 18) = 95.95,
p< 0.001, η2 = 0.52; wn: F(1, 18) = 86.24, p< 0.001, η2 = 0.31; wp:
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FIGURE 4 | (A) Potential topographies of the grand-averaged event-related potential (ERP) differences for combined train lengths 3, 6, and 12 for the components
of interest mismatch negativity (MMN) (top) and P3a (bottom), depending on condition (left: exact-repetition condition, exact; middle: white-noise condition, wn; right:
wrong-pitch condition—wp). Topographies show the time point with the maximal amplitude deflections. Corresponding electrodes are highlighted. (B) Difference
waves of the grand-averaged ERPs (deviants minus standards) for combined train lengths 3, 6, and 12 at electrodes FCz (top), CPz (middle), and POz (bottom).
Conditions are indicated by different colors (exact: blue, wn: red, and wp: green). Vertical solid lines indicate the pattern onset at 0 ms and the pattern offset at
300 ms.

F(1, 18) = 57.71, p< 0.001, η2 = 0.20] and an interaction between
stimulus type and train length [exact: F(4, 72) = 26.51, p< 0.001,
η2 = 0.16; wn: F(4, 72) = 20.31, p < 0.001, η2 = 0.11; wp: F(4,
72) = 4.09, p = 0.005, η2 = 0.04] for each experimental condition.
Particularly, the stimulus type× train length interactions resulted
from increasing positive P3a amplitudes of the deviant minus
standard difference with train length (see Figure 5A).

To further explore the origin of the condition × stimulus
type × train length interaction, we analyzed deviants and
standards in separate two-way ANOVAs for possible train
length effects and interactions with conditions. Here, we found
for the deviants a significant condition [F(2, 36) = 24.56,
p < 0.001, η2 = 0.15] and train length effect [F(4, 72) = 31.84,
p < 0.001, η2 = 0.16], which was qualified by a significant
condition × train length interaction [F(8, 144) = 3.90,
p < 0.001, η2 = 0.04]. For standards, the two-way ANOVA
revealed a train length effect [F(4, 72) = 11.76, p < 0.001,
η2 = 0.06] and a condition effect [F(2, 36) = 10.07, p < 0.001,
η2 = 0.03]. Also, the condition × train length interaction
[F(8,144) = 3.78, p < 0.001, η2 = 0.02] was significant.

Despite significant effects and interactions for deviants and
standards, the effects differed between conditions in their
strength as post hoc logarithmic trend analysis shows (see
Table 1). We observed a significant logarithmic trend for the
increase in deviant positivity with increasing train length in all
three conditions [exact: F(1, 18) = 47.90, p < 0.001, η2 = 0.73;
wn: F(1, 18) = 75.38, p < 0.001, η2 = 0.81; wp: F(1, 18) = 6.51,
p = 0.02, η2 = 0.27]. Logarithmic regression analyses revealed a
steeper increase in positivity for deviants in the exact-repetition
condition (r = 0.95; CI: 0.57–1.32) compared with the wrong-
pitch condition (r = 0.29; CI: 0.01–0.56). Confidence intervals
in the white-noise condition (r = 0.67; CI: 0.38–0.96) overlapped
with the increase in the exact-repetition condition and the wrong-
pitch condition. For standards, we did not find a significant
logarithmic trend in the wrong-pitch condition [F(1, 18) = 1.65,
p = 0.22, η2 = 0.08] in contrast to the exact-repetition condition
[F(1, 18) = 11.70, p < 0.001, η2 = 0.40] and the white-noise
condition [F(1, 18) = 18.03, p < 0.001, η2 = 0.50]. The difference
waves of the wrong-pitch condition also developed less steeply
than in the exact-repetition condition and in the white-noise
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FIGURE 5 | (A) Grand-averaged mean amplitudes in the mismatch negativity (MMN) (left) and P3a (right) time windows. ERPs were elicited by standards
(triangles/dashed lines) and deviants (points/solid thin lines). Difference wave amplitudes (deviant minus standard) are shown by rectangles and solid thick lines.
Results are plotted condition-wise (top: exact/blue, middle: wn/red, bottom: wp/green). Whiskers denote standard errors of the mean. (B) Logarithmic regression
analysis. Mean amplitudes in the MMN (left) and P3a (right) time windows. Results are plotted stimulus-type wise (top: deviants/points; middle: standards/triangles;
bottom: differences/rectangle). Conditions are indicated by colors (exact: blue, wn: red, and wp: green). Whiskers denote standard errors of the mean. Train lengths
are scaled logarithmically, and trend lines indicate the lines of the best fit.

condition as confidence intervals did not overlap (exact: r = 1.35;
CI: 0.91–1.80, wn: r = 1.11; CI: 0.79–1.44, wp: r = 0.42; CI:
0.11–0.73) (see Table 1 and Figure 5B).

DISCUSSION

In this study, we investigated the implicit memory formation
for repeated auditory objects in situations in which single
occurrences of the same object were subject to variability. More
specifically, in three conditions, we studied how repetitions of
unfamiliar short sound patterns lead to the formation of pattern-
specific auditory sensory memory representations when single
instances of pattern repetitions are identical (exact) or when they
contain small distortions by replacing a segment of the pattern
information either by white noise (wn) or by a wrong pitched
segment (wp). The participants were not explicitly focusing on
the pattern-repetition rule and, instead, performed the task of
detecting occasionally occurring loudness changes in the auditory
sequence. They performed this task with high accuracy and in
the second session of the experiment with increased sensitivity
and faster reaction times, likely due to familiarity and learning
effects. Sensitivity of the participants to detect loudness changes
was not affected by condition. However, the reaction times were
significantly slower in the white-noise condition. It is possible the
white-noise insertions were stronger distractors from the task,
because these segments differed in sound quality from all the
other segments of the sound pattern.

As expected, the occurrence of a new sound pattern elicited
an MMN and a subsequent P3a; both of which appeared with
their typical time course according to previous studies, using

an auditory oddball (Alho et al., 1997; Schröger and Wolff,
1998b; Roeber et al., 2003; Debener et al., 2005) and roving-
standard paradigms (Cowan et al., 1993; Baldeweg et al., 2004;
Bendixen and Schröger, 2008; Garrido et al., 2008). However,
the central-parietal distribution of an MMN seems rather
untypical, since it can usually be observed at fronto-central
recording sites (Näätänen et al., 2001, 2007; Winkler, 2007).
We already observed rather posterior MMN topography in a
previous study, using similar stimulus material in a comparable
experimental procedure (Bader et al., 2017). An explanation for
this topography could be the fact that the participants attended
the sound sequence (although the pattern changes themselves
were task irrelevant). That is, attention might have modulated
the otherwise automatic mismatch detection process, potentially
allowing for the contribution of an N2b-like component. Yet,
even in this case, a more central but not a posterior distribution
is expected (e.g., Woods, 1992). Furthermore, the task irrelevance
of the pattern changes, and the early latency of the negative
peak argues rather against an N2b. Coy et al. (2021) indicate
that N2b for task-relevant pattern changes occurs later and can
be dissociated from MMN, since, in their data, N2b latency
is modulated by the difficulty of the deviant discrimination,
whereas MMN latency is not. An alternative explanation could
be that the auditory task increased the distracting nature of
the deviants (Schröger and Wolff, 1998a). This could evoke a
prominent and early P3a in the current paradigm (compared with
the more typical passive listening situation). An early emergence
of a frontally distributed P3a might partly overlap with the MMN
time window and shift the topography toward more posterior
sites. Nevertheless, more posterior distributions of the MMN
have also been reported in other studies in which the participants
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TABLE 1 | Logarithmic trend and regression analysis for the main effect of train length on MMN and P3a amplitudes.

MMN P3a

F(1, 18) P η2 β (upper bound - lower bound) F(1, 18) P η2 β (upper bound - lower bound)

standards

exact 4.82 0.04 0.21 0.19 (−0.00 to 0.38) 11.70 0.00 0.40 −0.41 (−0.79 to −0.03)

wn 14.25 0.00 0.44 0.28 (0.09 to 0.46) 18.03 0.00 0.50 −0.45 (−0.84 to −0.05)

wp 4.12 0.06 0.19 0.16 (−0.03 to 0.35) 1.65 0.22 0.08 −0.14 (−0.48 to 0.21)

deviants

exact 67.48 0.00 0.79 −0.82 (−1.05 to −0.59) 47.90 0.00 0.73 0.95 (0.57 to 1.32)

wn 13.22 0.00 0.42 −0.28 (−0.49 to −0.06) 75.38 0.00 0.81 0.67 (0.38 to 0.96)

wp 5.20 0.04 0.22 −0.20 (−0.39 to −0.02) 6.51 0.02 0.27 0.29 (0.01 to 0.56)

difference

exact 52.36 0.00 0.74 −1.01 (−1.27 to −0.75) 70.57 0.00 0.80 1.35 (0.91 to 1.80)

wn 20.18 0.00 0.53 −0.55 (−0.82 to −0.29) 58.64 0.00 0.77 1.11 (0.79 to 1.44)

wp 7.07 0.02 0.28 −0.36 (−0.61 to −0.12) 7.04 0.02 0.28 0.42 (0.11 to 0.73)

watched a silent movie, suggesting that the complexity of the
auditory stimuli (e.g., speech and action words) could also result
in such atypical MMN topography, indicating activation of a
more global network (Shtyrov et al., 2004; Hasting et al., 2007).

Sensory Memory Trace Formation as
Indexed by MMN
The MMM implies that the regularity of repeated complex
sound patterns was encoded into a predictive model, and that
a change in the overall pattern was detected (Denham and
Winkler, 2006; Bendixen et al., 2012; Winkler and Schröger,
2015). This was the case for exact pattern repetitions as well
as patterns containing distortions of quality of one segment
(white noise) or pitch. We conclude that the auditory system
quickly forms pattern representations, even when distortions
introduce uncertainty into the implicit learning process.
Nevertheless, the amplitude of the MMM was smaller with
standard variability, suggesting diminished precision of the
predictive model.

Yet MMN amplitude was larger in the condition without
distortions compared with the conditions with distortions
in the standard patterns. This suggests that the certainty
about the repetition regularity must be higher in the exact-
repetition condition, which results in more pronounced deviant-
related negativity. In particular, MMN amplitudes increased
as a function of preceding number of standards, following a
logarithmic trend in all conditions, suggesting a fast buildup
of pattern representations, particularly with the initial pattern
repetitions (see also Baldeweg et al., 2004; Costa-Faidella et al.,
2011; Bader et al., 2017). In general, two effects caused the growth
in MMN: an increasing positivity for standard ERPs and an
increasing negativity for deviant ERPs in the respective MMN
time window as a function of train length. The steepness, with
which MMN amplitudes grew with increasing train length, was
modulated by condition. This effect was mainly driven by the
deviant responses, which yielded a steeper growth function in
the exact repetition condition than in the conditions containing
distortions. The train length effects on standard responses were

not modulated by condition, yet, already, their size was smaller
than those for deviants.

While change detection was affected by whether distortions
were introduced or not, it was not modulated by the type of
distortion (noise or wrong pitch information). It seems to be
mainly the number of intact segments within the sound patterns,
guiding the fundamental process of extracting pattern identity
representations as generative predictors under uncertainty, at
least on this early processing stage.

The Role of Exact and Distorted Pitch
Code on Evaluation Processes as
Indexed by P3a and Behavior in an
Active Pattern Change Detection Task
Subsequent to the MMN, a P3a component with typical fronto-
central distribution was elicited, and systematic repetition-related
modulations of amplitudes were found in all the conditions (see
also Bendixen et al., 2007; Horvath et al., 2008; Bader et al.,
2017). P3a amplitude increased logarithmically as a function of
the number of preceding standard stimuli in all the conditions.
This is congruent with studies showing that the P300 amplitude
for task-irrelevant deviants is increased, if they occur with lower
probability (Squires et al., 1975; Katayama and Polich, 1996)
since, in our study, decreased local deviant probability (resulting
from longer train lengths) led to an increase of P3a. Overall, P3a
magnitude is associated with the degree of novelty and constitutes
a marker of the evaluative processing of the contextual novelty
(Friedman et al., 2001; Bendixen and Schröger, 2008). Even
though attention was focused on a rule-independent task, deviant
stimuli likely captured involuntarily attention and were evaluated
on the basis of their underlying pattern structure in all conditions.

The growth of P3a as a function of train length resulted from
both an increasing positivity for deviant ERPs and an increasing
negativity for standard ERPs in the respective P3a time window.
For both stimulus types, the growth function was modulated
by condition. At the level of the difference waveform, the
steepest logarithmic increase in P3a amplitudes with train length
was found in the exact-repetition condition. The logarithmic
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growth of P3a amplitudes in the wrong-pitch condition was
distinctly less steep compared with the white noise and the
exact-repetition condition. Thus, the growth of P3a activity with
increasing number of preceding standards seems to be lowest
in the condition with wrong pitch information. Consequently,
pattern changes in the context of exact repetitions and white
noise distortions might need fewer standard presentations to
evaluate deviants as potential novels or targets and to trigger
a call for attention of equal strength than pattern changes
occurring among repetitions with wrong pitch distortions.
Condition differences between P3a growths were partly due
to the processing of the standard events. In the wrong-pitch
condition, standard responses in the P3a time window did not
show a logarithmic repetition-related modulation as opposed to
the exact repetition and the white-noise-distortion condition.
The amplitude decreases with the number of repetitions seems
relatively flat, but confidence intervals overlapped with the exact
repetition and the white-noise-distortion condition. Overall, the
processing of deviating events had a stronger contribution to the
condition differences on the P3a level (similar to what we found
for the MMN). In the exact-repetition condition, the logarithmic
trend of systematic amplitude modulations was much steeper
than in the wrong-pitch condition.

Despite the pronounced differences in P3a amplitude,
estimated component latencies were not affected by our
experimental manipulation. The time needed to internally
evaluate pattern identity seems not higher with noise or wrong
pitch insertions. Here, the auditory system seems equally quick
in classifying the stimuli, in evaluating the novelty of the
deviance, and in automatically orienting attention toward the
task-irrelevant novel patterns (Polich, 2007; Horvath et al., 2008;
Wetzel et al., 2013; Winkler and Schröger, 2015).

The behavioral performance in the active pattern change
detection task showed highest accuracy in the exact-repetition
condition, less accuracy in the white-noise condition, and least
accuracy in the wrong pitch segment condition. The development
of the hit rates as a function of train length also followed a
logarithmic trend in all conditions with the hit rates in the exact-
repetition condition, developing quickly toward a ceiling effect
and most slowly in the wrong-pitch condition, mirroring the
pattern of results at the level of P3a.

Effects of the Different Types of
Distortion at the Levels of Sensory
Memory Formation and Contextual
Stimulus Evaluation
Effects in the MMN time range did not distinguish between the
two types of distortions that we introduced in the sequences. In
both cases, when a pattern segment was occasionally replaced
by white noise or by a differently pitched segment, the typical
negativity observed for deviant responses grew less steeply
compared with the condition with exact pattern repetitions.
As the portion of matching pattern segments was similar for
both conditions (five out of six), one could speculate that, at
this early processing stage, the strength of regularity encoding
mainly depends on the probability of matching information in

spectrotemporal space. A previous study revealed that object
representations can be retrieved from repetitions embedded
in different backgrounds and suggested the correlation of
input spectrograms between several non-perfect repetitions as a
potential mechanism to achieve this (McDermott et al., 2011).

In contrast to the MMN findings, the type of distortion (white
noise or wrong pitch information) seems to have a greater impact
on evaluation processes at the stage of P3a. Here, we observed a
clear disadvantage for the wrong pitch compared with the exact-
repetition condition, whereas the response pattern in the white-
noise condition resembled that of the exact-repetition condition.
This suggests that the higher cognitive evaluation process and the
attentional switch toward a deviant pattern are not substantially
impaired in the white-noise condition. This could be explained
by processes related to stream segregation or perceptual filling-
in. Firstly, the white noise segments differed substantially from
the other five segments in their spectral composition, leading to
a vastly different timbre percept. This could have assisted the
segregation of pattern and distracter information, allowing the
later stages of evaluating a newly incoming pattern to be less
disturbed. Secondly, white noise insertions could even lead to
a partial restoration of the perceptual continuity of an intact
standard pattern (Warren et al., 1997, 1988), particularly since
the pitch forming spectral components of the replaced pattern
segment can physically be found in the 50-ms white noise
segment. This could explain similar processing of standards
and deviants in the exact and the white-noise condition. The
processing of wrong pitch information might have prevented
segregation and restoration processes. Here, the similar timbre
of the distorted segment promoted the percept of a continuous
sound pattern, and a segregation mechanism cannot take an
effect. Also, the wrong pitch information is simply misleading,
and there is no option for a perceptual restoration of erased
or ambiguous information. This might have led to the greater
disadvantage for the wrong-pitch condition and is compatible
with explanations of failed segregation in informational masking
studies (Kidd et al., 2008).

Overall, our two types of manipulations might remind of
energetic and informational masking. During energetic masking,
the processing of a sensory event is degraded typically by
a noise masker, where, mainly, the energy relation between
the signal and the masker determines their separability and
the amount of difficulty in perceiving the signal (Muller-Gass
et al., 2001; Darwin, 2008; Moore, 2008; Wilson et al., 2012).
During informational masking, it is, additionally, the similarity
(either the acoustic or the semantic similarity) between the
target and masker sound that deteriorates segregation and
perception of the signal sound, such as when a speech signal
is masked by speech (Dirks and Bower, 1969; Durlach et al.,
2003; Scott et al., 2004; Gutschalk et al., 2008; Kidd et al.,
2008; Mattys et al., 2012). In masking studies, it has been
found that irrelevant information is easier to suppress when
energetic masking is dominant, thus facilitating the processing of
relevant sensory information (Lidestam et al., 2014). In contrast,
when informational masking is dominant, a widespread general
attentional network is activated to distinguish distracter and
target information (Szalárdy et al., 2019). In our study, the wrong
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pitch segment is due to its spectral profile acoustically highly
similar to the pattern elements themselves. The uncertainty about
which are the five relevant (intact) segments of the tonal pattern
is maximally high, and segregation between the true pattern
and the replaced distracting element will not be as easy as in
the white-noise condition. In that sense, replacing valid pattern
information by white noise or by wrong pitch information could
lead to distinct forms of interference that might be resolved
at different processing levels and even distinguishable neural
circuits (Scott et al., 2004).

CONCLUSION

In the present study, we demonstrated that the auditory system is
able to form pattern representations and predictions even in the
context of uncertainty. MMN and P3a were elicited in response
to deviants in all conditions at similar latency estimations.
Independent of distorted segments, an implicit and automatic
buildup of regularity representations and deviance detection,
with a following call for attention toward the stimuli, can be
assumed. However, we found a general advantage for the exact-
repetition condition over the two distorted repetition conditions.
This is shown by steeper logarithmic amplitude changes on
MMN and the P3a level, with increasing number of repetitions,
as well as in the behavioral performance in the active pattern
change detection task. The processing on the MMN level does
not seem to differentiate between the qualities of the distortions
but reacts to general (mis-)matching statistics between the sound
patterns. At the level of P3a, we observed an influence of
the type of distortion. On this processing stage, white-noise
distortions may not have impeded stimulus processing to such
an extent as wrong pitch distortions did. This is evidenced by
the distinct degradation of the P3a, which also goes along with
the behavioral findings in the active pattern change detection
task. Additionally, our results revealed that deviant processing is
more affected by our experimental manipulations compared with
standard processing.

To sum up, our findings indicate that the auditory system
is able to quickly extract regularities and generate reliable
predictions, even when the to-be-extracted patterns contain
distortions. However, higher cognitive processing and the
involvement of an attentional network might give the basis for
the subtler evaluation of the acoustic input with regard to the
type of distortion. The segregation between informative pattern
segments and the distorting element, as well as the accessibility
of a possible interpolation mechanism (like the one discussed for

the continuity illusion), might explain the facilitated processing
of white noise compared with wrong-pitch distortions on later
processing stages that govern the elicitation of P3a and guide
behavioral responses.
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The human brain has the astonishing capacity of integrating streams of sensory
information from the environment and forming predictions about future events in an
automatic way. Despite being initially developed for visual processing, the bulk of
predictive coding research has subsequently focused on auditory processing, with the
famous mismatch negativity signal as possibly the most studied signature of a surprise
or prediction error (PE) signal. Auditory PEs are present during various consciousness
states. Intriguingly, their presence and characteristics have been linked with residual
levels of consciousness and return of awareness. In this review we first give an overview
of the neural substrates of predictive processes in the auditory modality and their relation
to consciousness. Then, we focus on different states of consciousness - wakefulness,
sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive
processing has been able to disclose about brain functioning in such states. We review
studies investigating how the neural signatures of auditory predictions are modulated
by states of reduced or lacking consciousness. As a future outlook, we propose
the combination of electrophysiological and computational techniques that will allow
investigation of which facets of sensory predictive processes are maintained when
consciousness fades away.

Keywords: prediction error, mismatch negativity, coma, sleep, anesthesia, P300

INTRODUCTION

Learning information from our environment and forming predictions about future events is a key
skill for survival. Stimuli from the world around us contain repetitive rules and patterns, as for
example music, or speech. Being able to form predictions about future events facilitates perception
and increases chances of survival, as a deviation from an expected pattern can signal danger.

The human brain has the astonishing capacity to formulate predictions about future events,
relying on internal models that generate automatic predictions (generative models) about the most
plausible states of the environment given prior information. Neural predictions are generated not
only in the case of active perception (SanMiguel et al., 2013), but also when conscious access to
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the environment is diminished, such as in sleep, anesthesia,
or coma (Figure 1). The study of predictive processes has
pervaded neuroscientific publications in the last three decades
and painted a new view of the brain as a predictive organ (Dayan
et al., 1995; Friston, 2005). Prediction provides explanation of
phenomena at both the macro- and the micro-scales of brain
functioning, including psychology (perception, cognition) and
electrophysiology (neuronal processes). The study of predictive
processes, which was first hinted to in the later 1800s (Lotze,
1852; Von Helmholtz, 1867) has been concretely formalized
by statistics, information theory and machine learning. This
review will focus on how sensory predictions have been used to
probe different states of consciousness, and on what unknowns
they have revealed about brain dynamics and functioning in
these different states. By summarizing research done in both
humans and animals, we examine the different components
of the predictive network, and how these are modulated by
conscious perception.

INTRODUCTION TO AUDITORY
PREDICTIVE MECHANISMS

Paradigms for Studying Sensory
Predictions and Consciousness
The most common sensory modality for studying predictive
processes in the absence of consciousness is the auditory
modality. Auditory stimulation is relatively straightforward to
achieve, and it can reach the brain even in the absence of
attention, or under conditions where eyes are closed, such as for
example during sleep. The most famous paradigm for studying
sensory predictions is the oddball paradigm (Näätänen and Alho,
1995; Garrido et al., 2009b), where a stream of identical repeated
sounds (standards) is broken by an oddball, or a different sound
(deviant), that is occasionally presented. In this paradigm, a
regularity is built by repeating stimuli or sequences of stimuli.
Prediction errors (PE) are signaled when deviations from the
established regularity occur (Mumford, 1992; Rao and Ballard,
1999; Friston, 2005), by comparing neural responses to predicted
(standard) versus observed (deviant) stimuli. Other experimental
paradigms consist of the roving paradigm, where the oddball
sound is followed by a stream of identical sounds, which at
some point become standards, and are then followed by another
stream of oddball sounds that turn into standards, with this
pattern repeating (Garrido et al., 2009b); and the local-global
paradigm (Bekinschtein et al., 2009), which is used to study
local and global deviance effects. In the local-global paradigm,
two forms of regularities are created – a local and a global one.
These two types of regularities are built over single sounds (local),
or groups of sounds (global). For local deviance, a standard
sound is repeated a few times, followed by a deviant sound
(e.g., aaaaB). This is similar to the deviance effect in a standard
oddball paradigm. The global deviance effect is built by repeating
this classic oddball structure, and then breaking this sequence
by replacing the deviant in the third repetition with a standard
(aaaaB aaaaB aaaaa).

Mechanisms Underlying Auditory
Predictions
Stimulus Specific Adaptation and Deviance Detection
To formulate a prediction, first a regularity needs to be
established, often through repetition. Repeating a given stimulus,
for example a sound, results in a reduced response at the
neural level, commonly referred to as stimulus specific adaptation
(SSA) in animal research (Carbajal and Malmierca, 2018; Sikkens
et al., 2019), and repetition suppression (RS) in human research
(Rangarajan et al., 2020). SSA quantifies the change in the firing
rate of a neuron when a certain tone is frequently or infrequently
presented (Ulanovsky et al., 2004; Khouri and Nelken, 2015). The
SSA was first recorded in the cortex of anesthetized cats (Condon
and Weinberger, 1991), where small but precise reductions in
the responses to standard, tones were demonstrated, appearing
minutes after the first presentation of the standard, and lasting
for an hour or more. Neurons along the auditory pathway
and in frontal and subcortical areas (see section “Cortical and
Subcortical Generators”) show progressively reduced responses
to repetitive stimuli, possibly as a result of short-term plasticity
(Carbajal and Malmierca, 2018). Interestingly, neurons along the
auditory processing pathway can express SSA, which in mice
include parts of the inferior colliculus (IC), the dorsal and medial
divisions of the medial geniculate body (MGB) and parts of the
auditory cortex (Carbajal and Malmierca, 2018). This pathway
is thought to carry predictions and prediction error signals
(Carbajal and Malmierca, 2018).

A second crucial component of formulating a prediction is
being able to detect violations from an established regularity.
A deviant event may result in an increased neuronal response
compared to the response to regular events, a phenomenon
referred to as Deviance Detection (DD; Sikkens et al., 2019). For
DD to occur, the increased neural response to deviant stimuli
needs to be stronger than the neural response to standard stimuli,
over and above SSA. DD is considered a correlate of error
signaling (Sikkens et al., 2019). Although SSA occurs at early
latencies, generally within the first 80 ms after stimulus onset, DD
occurs at later latencies, around 120–240 ms post-stimulus onset
(Sikkens et al., 2019). Macroscopically, these two processes of SSA
and DD are thought to be contributors to a human EEG signature
of regularity detection, the MMN (Sikkens et al., 2019).

Mismatch Negativity
The Mismatch Negativity (MMN) signal was first discovered
in the late 1970’s (Näätänen et al., 1978). The MMN manifests
as a negative component of a difference wave peaking at about
100–250 milliseconds (ms) post-deviance onset, obtained by
subtracting responses to standard stimuli from responses to
deviant stimuli (Näätänen, 2003; Garrido et al., 2009b). MMN
was originally thought to be elicited based on a previously
created sensory memory trace (Näätänen, 2003), thus offering
an observation window into the central auditory system and
its functioning (Näätänen and Escera, 2000). This is known
as the “trace-mismatch” explanation of MMN (Winkler, 2007),
where MMN is seen as a signal of mismatch or surprise between
a retrospective memory trace and the current input. Another
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FIGURE 1 | Manifestation of auditory predictive processes in different consciousness states. States of consciousness are placed according to the observed level of
wakefulness and awareness, adapted from Laureys, 2005. The colors represent similarities or overarching groupings of states of consciousness. While there is a
continuum from coma to conscious wakefulness, minimally conscious state and unresponsive wakefulness syndrome do not lie on the same continuum; neither do
REM sleep, meditation, and hypnosis. The positioning of different consciousness states is following previous studies (e.g., Laureys, 2005) when possible and is an
approximate estimate for consciousness states that were not originally included in previous studies (e.g., hypnosis, meditation). *DE: deviance effects, grouping
together mainly effects observed at scalp EEG level. For more fine-grained information for each consciousness state we refer readers to Tables 1–4.

interpretation of MMN is found in the adaptation hypothesis
(May et al., 1999; Jääskeläinen et al., 2004). According to this
hypothesis, cells tuned to standard sounds adapt, while cells
tuned to more infrequent deviant sounds do not adapt and thus
elicit higher responses (May et al., 1999). More recently, the
MMN has been examined under the lens of predictive coding,
which suggests that the MMN is a neural signature of a sensory
prediction error signal, and that it represents an ‘error’ response
that is elicited by deviant sounds (Garrido et al., 2009b). This
view is supported by computational modeling studies, which
have linked trial by trial changes in the MMN signal with the
adjustment of an internal probabilistic model of the environment
(Lieder et al., 2013). Under predictive processing, MMN is a
signal of mismatch between sensory input and, contrary to the
“trace-mismatch” hypothesis, a prospective and not retrospective
sensory stimulus.

Interestingly, the MMN is described as a pre-attentive,
automatic response, which can be elicited despite variations in
states of wakefulness (Sculthorpe et al., 2009), such as during
sleep or anesthesia, coma, or states of altered awareness, including
hypnosis and meditation (Cahn and Polich, 2009; Chennu and
Bekinschtein, 2012; Morlet and Fischer, 2014; Jamieson, 2016). In

addition to extensive research in humans, MMN responses have
also been recorded in cats (Csépe et al., 1987; Pincze et al., 2001),
monkeys (Javitt et al., 1992, 1994), rabbits (Ruusuvirta et al., 1995,
1996a,b), guinea pigs (Kraus et al., 1994), and rats (Shiramatsu
et al., 2013; Harms et al., 2014), via epidural EEG electrodes or
cortical surface microelectrode arrays. Results are comparable,
but not completely identical. For example, MMN responses in
cats appear with shorter latencies due to the smaller size of cat
cortex (Pincze et al., 2001). In summary, the MMN is an event-
related potential (ERP) component that represents a scalp EEG
signature of predictive processing, and is observed across species
and states of consciousness.

P300
The P300 component is a positive deflection in the human ERP,
with a peak latency at about 300 ms post-stimulus onset in
response to a novel or task-relevant stimulus (Sutton et al., 1965).
The P300 is usually elicited in an oddball paradigm when
behavioral responses to deviants are demanded – thus, as a
response to a target deviant stimulus (Picton, 1992). It has been
proposed that the P300 reflects contextual updating (Donchin,
1981; Donchin and Coles, 1988) driven by attentional processes
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(Polich, 2007), namely updating of a stimulus or of task-related
(working) memory and expectancies (Verleger, 1988). The P300
has two main subcomponents, the P3a and P3b, which have
different topographies and functional implications. While the
P3a is fronto-centrally distributed and appears as a response to
novel and distracting stimuli, the P3b is maximal over parietal
recording sites in response to conscious detection of target and
novel stimuli (Squires et al., 1975; Polich, 2007).

Neural Circuits Underlying Auditory
Predictions
Predictive neural traces manifest in multiple stages of sensory
processing. The most prevalent view is that higher level
regions in a processing hierarchy generate and propagate
sensory predictions to lower level regions, which compare these
predictions to the actual sensory input (Rao and Ballard, 1999;
Friston, 2005). Predictions flow ’down’ the processing stream
from higher level areas to lower level areas, while the opposite
is true for error signaling, meaning that errors are signaled
’upward’ by lower level areas detecting a mismatch with the
current prediction (Rao and Ballard, 1999; Bastos et al., 2012).
Importantly, the signaling of predictions and errors is posited
to underlie multiple stages of information processing, so that
sensory processing would, at each processing level, have to
resolve the correspondence between predictions and sensory
input (Friston, 2005; Summerfield and Egner, 2009). For this
reason, some argue that predictive coding theories go beyond
the standard bottom-up and top-down dichotomy (Rauss and
Pourtois, 2013), as higher levels do not only modulate activity
at lower levels of processing, but have the chance to initiate
such activity (Mumford, 1992), in addition to lower level stages
of the hierarchy being able to generate predictions for higher-
level error signals (Kok and de Lange, 2015). There are multiple
models of predictive processing (e.g., Spratling, 2008a,b; Bastos
et al., 2012), which deviate from standard models with regards
to where the error units are situated (i.e., in middle and not
superficial cortical layers), and how predictions flow (i.e., not only
’downward’ through the processing stream, but also ’upward’).
Nevertheless, most models posit that error and predictive units
have different laminar profiles (see Heilbron and Chait, 2018 for
a detailed review).

Cortical and Subcortical Generators of Sensory
Predictions
Sensory predictions are supported by distributed circuits in the
brain, including sensory and prefrontal, but also subcortical
regions, which may compute different variables related to
predictions (Johnson et al., 2020). Predictive mechanisms are
not only inherent properties of microcircuits in the brain,
but also find expression through cortical connectivity (Johnson
et al., 2020). Connected regions in the cortical hierarchy interact
recurrently in a joint effort to find the world model that best
explains the sensory inputs in the prediction units, and thereby
reduce the activity of these units (Kok and de Lange, 2015).

In the auditory modality, magnetoencephalography (MEG)
studies first showed that the MMN is generated in the auditory
cortex (Hari et al., 1984). Later, using functional Magnetic

Resonance Imaging (fMRI) and EEG, it was discovered that
frontal regions are also involved in MMN generation (Alho,
1995; Opitz et al., 2002). Specifically, Opitz et al. (2002) used
fMRI and EEG to study the temporal and frontal generators
of the MMN and showed that responses to deviant stimuli of
medium and large, but not small amplitude are found in the
superior temporal gyrus (STG) bilaterally, and in the inferior
frontal gyrus (IFG). Since then, these areas were often studied
using EEG and fMRI combined with dynamic causal modeling
(Garrido et al., 2007, 2008, 2009a; Boly, 2011; Chennu et al.,
2016), and were also confirmed by multiunit activity (MUA)
recordings (Nieto-Diego and Malmierca, 2016) and local field
potential (LFP) measurements of SSA in rats (Imada et al., 2013).
The neural correlates of the P300 component have been
localized to multiple brain regions. The generators of the P3a
include frontal cortical generators, the cingulate cortex, the
supramarginal gyrus, and the hippocampus, while the generators
of the scalp P3b include mainly temporo-parietal and frontal
regions (Fonken et al., 2019).

Intracranial EEG (iEEG) recordings in humans have further
advanced our understanding of the neural underpinnings of
the predictive circuit (Johnson et al., 2020), by confirming the
involvement of temporal and frontal regions in responding
to deviant events (e.g., Rosburg et al., 2005). Additionally,
Durschmid and colleagues showed that the temporal cortex
detects deviations at the level of single stimuli, while prefrontal
regions are sensitive to whether these deviations were predictable
(Dürschmid et al., 2016), as well as to the likelihood of a deviant
sound to occur (Dürschmid et al., 2019). Intracranial recordings
have also implicated the posterior cingulate and parietal lobe
(Halgren et al., 1995; Clarke et al., 1999), limbic structures
such as the hippocampus, the amygdala (Halgren et al., 1980),
and basal ganglia and thalamic circuits such as the caudate
nucleus (Kropotov et al., 2000) and nucleus accumbens (Zaehle
et al., 2013; Dürschmid et al., 2016) in supporting the auditory
predictive network.

In addition, Cacciaglia et al. (2015) used event-related fMRI
during an oddball task and found evidence of involvement
of human inferior colliculus (IC) and MGB of the thalamus
(Cacciaglia et al., 2015), confirming previous similar results found
using SSA in animals for the occurrence of infrequent speech-like
stimuli (Kraus et al., 1994), as well as for sounds with different
binaural phases (King et al., 1995). fMRI studies further involved
the amygdala (Kropotov et al., 2000; Czisch et al., 2009; Blackford
et al., 2010) and hippocampal (Blackford et al., 2010) structures in
deviance detection. Subsequent single unit recordings, and fMRI
implicated the IC (Pérez-González et al., 2005; Malmierca et al.,
2009; Patel et al., 2012; Gao et al., 2014) and the MGB (Anderson
et al., 2009; Antunes et al., 2010; Richardson et al., 2013) in SSA
(see also, Duque et al., 2015 for an extensive review on subcortical
structures implicated in SSA generation).

In summary, sensory predictions rely on a distributed network
of brain regions, expressed in low-level sensory processing
areas, cortico-thalamic circuits involving subcortical thalamic
and basal ganglia structures together with the amygdala and
hippocampus, as well as higher-level parietal and frontal areas.
This complex distributed network involved in sensory processing
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and PE generation works in concert to allow learning of sensory
regularities and the formation of predictions.

Attention
The role of attention in MMN generation was initially
investigated in auditory tasks, where the ear to be attended was
manipulated (Näätänen et al., 1993; Trejo et al., 1995; Alain and
David, 1997). The debate was initiated when Näätänen proposed
that the MMN was unaffected by manipulations of attention
(see Näätänen, 1990 for a review). This view was challenged
by research showing attentional effects on MMN (Woldorff and
Hillyard, 1991; Szymanski et al., 1999; Auksztulewicz and Friston,
2015). There is now a plethora of studies showing that attention
enhances the amplitude of MMN (Woldorff and Hillyard, 1991;
Alain and David, 1997; Szymanski et al., 1999; Chennu et al.,
2013; Auksztulewicz and Friston, 2015) and P300 (Chennu
et al., 2013) responses. Electrophysiologically, manipulations of
attention have been shown to predominantly affect the detection
of oddball stimuli in prefrontal, but not temporal, regions, and to
increase effects of oddball detection (Kam et al., 2020).

Later views suggested that the MMN response can be
considered as a two-step process, composed of both standard
formation and deviance detection (Sussman, 2007). The standard
formation phase consists of auditory processes such as scene
analysis and is susceptible to attentional effects. In contrast,
the deviance detection phase, which depends on the standard
formation phase, is independent of attentional manipulations.
From a computational perspective, attention is thought to
increase the precision of PEs, leading to more reliable estimates
and a more accurate update of an environmental model
(Auksztulewicz and Friston, 2015).

Although attention is not the focus of the present review,
it can be argued that inattentive states represent states where
sensory signals and predictions are elicited in an automatic
way, as in unconscious states. We therefore mentioned these
key findings in the field to emphasize that the brain not
only produces predictions about the features of a signal (i.e.,
intensity, frequency, etc.), but also about the signal’s reliability
or precision (i.e., how predictable is the signal). When signal
reliability is low, such as in inattentive conditions, deviations are
down-weighted; when it is high, deviations are amplified and
prioritized for further processing (Heilbron and Chait, 2018). In
this view, predictive processes and attentive processes are distinct,
independent processes which can interact. The role of predictive
mechanisms is making inferences about what causes the sensory
input and how precise this input is, whereas attention optimizes
the precision of this input and regulates the gain of feedforward
PEs (Schröger et al., 2015).

SENSORY PREDICTIONS IN REDUCED
CONSCIOUSNESS STATES

Automatic sensory predictions manifest during wakefulness,
but also when conscious access to the environment is lost, as
will be subsequently reviewed. The interest for studying how
neural responses are elicited during various awareness states first

appeared when it was discovered that the MMN was evoked in
the absence of attention (Näätänen, 1990), albeit with a much
lower amplitude. MMN responses were even observed when
subjects were engaged in other tasks, such as reading a book
(Näätänen et al., 1993). Early studies recording MMN responses
in animals anesthetized with barbiturates also confirmed MMN
responses (Csépe et al., 1987; Javitt et al., 1992; Kraus et al.,
1994). MMN responses were also observed during sleep in
humans (Nielsen-Bohlman et al., 1991) and animals (Csépe et al.,
1987). These studies indicated a great potential for studying
auditory predictions in the absence of conscious access to the
environment. Therefore, the value of the MMN response as
a diagnostic tool for patients with disorders of consciousness
(Chennu and Bekinschtein, 2012), or with psychiatric disorders
(e.g., depersonalisation and derealisation) became evident (Lew
et al., 2003; Kotchoubey et al., 2005; Wijnen et al., 2007).

Understanding the neural underpinnings that are associated
with the emergence of conscious experience is of one of the main
unresolved questions in neuroscience, with a first major challenge
consisting in the clarification of the experimental definition of
the term consciousness (Dehaene and Changeux, 2011). This is
a fundamental challenge, due to the implications it brings for
patients in coma, anesthesia, and those suffering from disorders
of consciousness. Here, we adopt a widely used, non-exhaustive,
functional definition of consciousness, which assesses conscious
states by their expressed level of consciousness (wakefulness)
on the one hand, and content of consciousness (awareness)
on the other hand (Laureys, 2005; and Figure 1). This clinical
definition of consciousness is also used to diagnose disorders of
consciousness (see Giacino et al., 2014 for a review), characterized
by a disrupted relationship between awareness and wakefulness
(Gosseries et al., 2011), where observations of spontaneous and
stimulus-evoked behaviors are used. Predictive processing was
recently characterized as a “neural motif,” which is present
in many computations in the brain (Aitchison and Lengyel,
2017), but how does it relate to our conscious wakefulness and
awareness? In fact, auditory predictive coding is commonly used
to assess residual brain functions in patients with disorders of
consciousness, often through scalp EEG components that are
considered as neural signatures of predictive processing (Chennu
and Bekinschtein, 2012; Gosseries et al., 2014a).

In the next sections we will provide an overview of findings
from the last 30 years studying the extent to which the neural
markers of predictive processes are altered by reduced or
absent consciousness. We will present findings from studies in
sleep, anesthesia, disorders of consciousness, or altered states
of consciousness, in humans and animals. In particular, we
will focus on different neural signatures of auditory predictive
processes, such as MMN and P3, or SSA, and we will review
how these are modulated by the absence or reduction of
consciousness. When possible, we will elaborate on neural
mechanisms and circuits of auditory predictions, for example, in
the case of studies using techniques with a high spatial resolution
(e.g., iEEG or source localization techniques). In other cases,
we will discuss findings based on neural markers of predictive
processing at a more macroscopic level such as scalp EEG
components and their possible clinical applications.
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SLEEP

Sleep represents a naturally occurring and rapidly reversible
state of reduced consciousness (Campbell and Colrain, 2002).
Sleep electrophysiology is altered with respect to wakefulness
(Destexhe et al., 2007; Cox et al., 2014), but is well-characterized
and relatively uniform across individuals (Steriade, 2006). In
terms of the physiology of sleep, we distinguish paradoxical sleep
or rapid eye-movement sleep (REM), and non-REM (NREM)
sleep, which is further divided into three stages. NREM1 is the
sleep onset period, NREM2 is light sleep, and NREM3 sleep
is slow-wave-sleep. Different sleep stages have been associated
with reduced consciousness or arousal (Goupil and Bekinschtein,
2012; Lendner et al., 2020).

Research in Humans
Several studies have investigated the neural correlates of MMN
during sleep (Camman et al., 1987; Csépe et al., 1987; Näätänen
and Lyytinen, 1994; Sallinen et al., 1994; Winter et al., 1995;
Loewy et al., 1996; Atienza et al., 1997; Sallinen and Lyytinen,
1997; to name a few). After the wave of research in the 90’s, which
employed standard intensity or duration oddball paradigms, the
consensus was that MMN and P300 components appeared in
REM sleep, but not in NREM2 (see e.g., Winter et al., 1995;
Loewy et al., 1996, 2000; Cote, 2002; Colrain and Campbell,
2007; Sculthorpe et al., 2009). The main evoked potentials were
K-complexes and late potentials that were functionally different
from the classic deviance response (Wesensten and Badia, 1988;
Nielsen-Bohlman et al., 1991; Van Sweden et al., 1994; Nordby
et al., 1996). Nevertheless, some studies still indicated differential
processing of auditory information even during deeper sleep
stages (Nielsen-Bohlman et al., 1991; Winter et al., 1995).
Laboratories therefore modified their paradigms in order to have
more sensitive tests, and presented either rapidly succeeding
stimuli (every 150 ms) (Sabri et al., 2003), or used “hyper-
salient” stimuli (Chennu and Bekinschtein, 2012) – i.e., very
rare, very deviant stimuli, as used for example by Loewy and
colleagues, with low probability and 1000 Hz difference between
the standard and the deviant stimuli. In some of these studies,
MMN responses were elicited during NREM1 and NREM2 (Sabri
et al., 2003; Sabri and Campbell, 2005), whereas in others they
were only evoked during REM sleep (Loewy et al., 1996; see
Table 1A for a summary).

A more recent study employed MEG and EEG recordings
during sleep and used a local-global paradigm (Strauss et al.,
2015). Results showed a disrupted global response in NREM2
sleep, associated with an absence of the P300 response together
with a simultaneous absence of behavioral responses, despite
retained local mismatch responses across all sleep stages (Strauss
et al., 2015). Moreover, authors used an additional manipulation
where expectation was induced by alternating different sounds
(aBaBa and aBaBB sequences), instead of repeating the same
stimulus (aaaaa). In this case, the differential response that was
observed between predicted and unpredicted sequences during
wakefulness vanished during NREM2 sleep. This was interpreted
as evidence that predictive processing during sleep could be
explained with an adaptation framework (through repetition of

TABLE 1 | Studies in sleep.

(A) Humans

Study Paradigm Phase Deviance
effects

Wesensten and Badia,
1988

Pitch oddball REM Yes

NREM2 Yes

Nielsen-Bohlman et al.,
1991

Pitch oddball NREM2 Yes

Van Sweden et al.,
1994

Pitch oddball REM Yes

NREM Yes

Winter et al., 1995 Pitch oddball NREM Yes

Nordby et al., 1996 Pitch oddball REM No

NREM No

Loewy et al., 1996 Pitch oddball REM Yes

NREM 2 No

NREM 3 No

Loewy et al., 2000 Intensity oddball REM No

NREM 2 No

Sabri and Campbell,
2002

Pitch oddball NREM 3 Yes

Sabri et al., 2003 Pitch oddball NREM 2 Yes

NREM 1 Yes

Sabri and Campbell,
2005

Pitch oddball REM Yes

NREM 1 Yes

NREM 3 Yes

Sculthorpe et al., 2009 Repetition oddball REM Yes

NREM No

Strauss et al., 2015 Local-global REM Only local

NREM 1 Only local

NREM 2 Only local

(B) Animals

Study Paradigm Phase Deviance
effects

Species

Csépe et al., 1987 Pitch oddball NREM Yes Cats

Nir et al., 2015 Pitch oddball REM SSA Rats

NREM SSA

*NREM, non-rapid eye movement sleep; REM, rapid eye movement; SSA, stimulus-
specific adaptation.

the same stimuli) and not by using prediction error (through
repetitions of different stimuli) mechanisms.

Even when MMN responses are present during sleep, their
characteristics (i.e., amplitude or latency) are typically attenuated
with respect to awake conditions (Atienza et al., 2001). It
is, however, unclear whether predictive processes during sleep
are altered because the underlying predictive computations are
fundamentally different compared to wakefulness, or because the
sleep electrophysiology is modified (Sabri and Campbell, 2002).
Apart from detecting deviant events, there is an ongoing debate
whether new information can be learned during sleep, and if
so, under which conditions (Andrillon et al., 2017). A large
body of literature reports no evidence for learning new rules
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in deep NREM sleep, but more recent findings show that
semantic associations can be learned if these are presented
during peaks (i.e., “up” states) of slow-wave activity (Züst et al.,
2019), which are characterized by similar conditions of cortical
excitability as wakefulness (Destexhe et al., 2007; Cox et al.,
2014). Moreover, other studies have shown that sleep facilitates
encoding of previously learned generative models, improving
sensory predictions (Lutz et al., 2018).

Research in Animals
Animal sleep research has investigated evoked responses in
sensory systems (Hennevin et al., 2007). From a physiological
viewpoint, two states of sleep are classically categorized
in animals, paradoxical or REM sleep, and NREM sleep.
Physiological studies in sleep further demonstrate preserved
auditory processing (Edeline et al., 2000; Issa and Wang, 2008),
with reported decreases in the amount and quality of information
reaching the higher-level cortices (for an extensive review, see
Coenen and Drinkenburg, 2002; see also Murata and Kameda,
1963). This reduction in information transmission is thought
to be due to thalamic gating (McCormick and Bal, 1994), with
sensory input to the cortex partially blocked at the thalamus
(Hall and Borbely, 1970; Edeline et al., 2000). Pre-thalamic
processing is thought to be mostly maintained (Steriade, 1991).
Nevertheless, relevant stimuli can have some form of impact on
the functional state of the sleeping animal, suggesting that the
sleeping brain is still able to judge the meaningfulness of stimuli
(Nielsen-Bohlman et al., 1991). Sophisticated paradigms suggest
that simple forms of learning are also still possible, as for example
in extinction (where a pre-conditioned association between two
stimuli is erased) and pre-exposure (when animals are exposed
to the to-be-conditioned stimulus before actual conditioning)
experiments; and there is evidence that new associations can be
formed with lower quality than the ones formed during waking
(Coenen and Drinkenburg, 2002).

An early study in cats reported that the MMN can be
elicited during all sleep stages (Csépe et al., 1987). Auditory
evoked potentials were elicited by standard and deviant tones
of different probabilities during wakefulness and sleep. A large
MMN response was elicited by deviant tones, with MMN
amplitude inversely proportional to deviants’ probability. MMN
during slow-wave sleep exhibited longer latency and was only
evoked by deviant tones at the lowest probabilities. Another
more recent study in rats used an oddball paradigm and found
comparable SSA responses across REM, NREM and wake cycles
in the core auditory region, defined by the authors as the core
auditory fields receiving input from the ventral division of the
medial geniculate nucleus of the thalamus (Nir et al., 2015;
Figure 2B; see also Table 1B, for a summary). This suggests that
evoked activity in low-level sensory cortices during sleep is driven
by external stimuli with little modulation by the vigilance state,
and that the disconnection of cortical processing during sleep
may occur at a later stage, thus corroborating the physiological
findings described above.

Conclusion
In conclusion, the majority of sleep studies suggest that auditory
predictive processing may be retained during sleep, in particular

within core auditory areas (Nir et al., 2015). There is consensus
that scalp EEG components related to predictive processes
can manifest during REM sleep, with similar characteristics as
during wakefulness. For NREM, the question of whether auditory
predictions can occur remains actively debated. One key factor
that will need to be taken into account in the design of new
experiments and during data analysis is the complex and dynamic
brain physiology of sleep.

Different sleep stages are characterized by multiple local
disruptions (Drummond et al., 2004; Magnin et al., 2010), leading
to qualitatively different epochs with differences in sensory
processing (Hennevin et al., 2007). Additionally, different stages
of sleep are not homogeneous, as they are characterized by
tonic and phasic fluctuations of arousal, of the background EEG
activity, and of neuromodulator release (Hobson et al., 2000). As a
result, cortico-thalamic long-range connectivity is affected, while
some basic cortico-cortical connectivity might be preserved, as
for example in the default mode network (Koike et al., 2011).

These fluctuations in sleep physiology might explain the
attenuated MMN responses measured during sleep, and might
mirror the decreasing thalamic activity, by indicating an impaired
bottom-up component of MMN elicitation (Atienza et al.,
2002). The impaired top-down component might stem from
prefrontal lobe deactivation during sleep (Atienza et al., 2002).
The cortico-thalamic network during REM sleep seems to be
characterized by general activations in thalamic and posterior
areas including temporo-occipital cortices (Maquet et al., 1996;
Braun et al., 1997; Maquet, 2000; Portas et al., 2000), while
frontal area activity is reduced (Maquet, 2000; Portas et al., 2000).
All these areas are deactivated during NREM sleep (Maquet,
2000). Alternatively, connectivity at a later stage of information
processing has also been reported during sleep (Massimini
et al., 2005; Horovitz et al., 2009; Tagliazucchi et al., 2013),
with preserved activation of primary sensory cortices in both
animals (Peña et al., 1999; Edeline et al., 2001; Issa and Wang,
2008) and humans (Portas et al., 2000; Czisch et al., 2002;
Dang-Vu et al., 2011).

Future research investigating predictive processing in sleep
is crucial, given the sparseness of the current literature.
Auditory paradigms are particularly important for assessing
brain processing during sleep, as well as associations between
sleep disorders and generalized reduced cognitive performance
(Pilcher and Huffcutt, 1996; Banks and Dinges, 2007), or
impaired auditory processing (Raz et al., 2001; Key et al., 2009;
Bortoletto et al., 2011; Liberalesso et al., 2012; Leite et al., 2017).

ANESTHESIA

Phenomenologically and behaviorally, anesthetic states can
be described as a continuum ranging between mild sedation,
“a pharmacologically induced, reversible state, characterized
by dose-related impairment of cognitive functions, including
attention and memory, but during which consciousness and
awareness are maintained” (Stamatakis et al., 2010), to complete
anesthesia, “a drug-induced loss of consciousness during
which patients are not rousable, even by painful stimulation”
(Anesthesiologists Task Force on Intraoperative Awareness, 2006).
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FIGURE 2 | Examples of auditory predictive processes across states of reduced consciousness. (A) Auditory averaged ERP responses to standard (black) and
deviant (red) tones during normal wakefulness (left), NREM sleep (middle) and REM sleep (right) from EEG recordings in rats. Figure adapted from Nir et al. (2015).
EEG recordings showed weaker responses following standard compared to deviant tones in wakefulness, NREM and REM sleep, an effect that was additionally
quantified by the authors as SSA in single unit activity of the primary auditory cortex (Nir et al., 2015). (B) Local Deviance effects in electrocorticography (ECoG)
recordings of patients with epilepsy (Figure adapted from Nourski et al., 2018). Pink dots show electrodes with significant differences between responses to standard
and deviant sounds in high frequency activity (HFA; 70–150 Hz); blue dots show electrodes with differences in evoked potentials (AEP); and pink and blue dots show
electrodes with significant AEP and HFA effects. Local deviance was defined as significant increases in response to the deviant versus standard stimuli along a
0–800 ms post 5th stimulus window: (aaaaB – aaaaa) or (BBBBa – BBBBB). Stimuli were vowels /α/ and /i/, extracted from a female voice uttering the words h/α/d
and h/i/d. Significant electrodes are shown for the awake state (left), for sedation (middle) and for the anesthesia state (right). (C) Auditory evoked potentials (AEP)
and scalp topographies for an exemplar awake control and a coma patient, measured over frontal electrodes to standard (black) and duration deviant (gray) sounds,
as well as the difference of the two responses (red; Figure adapted from Tzovara et al., 2013). The awake control shows a typical N100 response to auditory stimuli,
manifesting as a central negativity in the AEP topography, and an MMN response starting around 170 ms post-stimuli onset. The exemplar patient shows differential
responses between standard and deviant sounds at later latencies, after 220 ms post-stimuli onset. Red rectangles signify periods of significant difference in
response to standard vs. deviant sounds.

Anesthetics have complex effects on neural activity, such
as alterations in the activity of wide-spread cortico-thalamic
networks (Rudolph and Antkowiak, 2004; Scheinin et al., 2021),
and disruptions of cortico-thalamic connectivity (Guldenmund
et al., 2017). Interestingly, general anesthesia and NREM sleep

share similarities, such as slow oscillatory activity, a disruption
of cortico-cortical connections (Massimini et al., 2005; Pal et al.,
2016), and changes in non-oscillatory neural dynamics (Lendner
et al., 2020). During anesthesia and NREM, thalamocortical
hyperpolarized neurons are alternating between active and silent
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periods. By contrast, during wakefulness and REM sleep, the
thalamocortical system is depolarized with awake-like low-
voltage activity, and with tonic firing in neurons (Steriade et al.,
2001). At high doses, general anesthesia during surgery can
approximate brain stem death, where patients are unconscious,
have inhibited brain stem reflexes, do not respond to nociceptive
stimuli, and require cardiorespiratory and thermoregulatory
support (Brown et al., 2010). These levels of anesthesia can be
accompanied by isoelectric (i.e., almost a flat line) EEG activity
(Brown et al., 2010).

In terms of cerebral metabolism, most anesthetics result
in a general reduction in cortical brain activity, with certain
regions, including cortical association areas, the thalamus, and
the midbrain showing a higher decrease in cerebral metabolism
(Heinke and Koelsch, 2005). In human studies, anesthesia is
typically induced using either propofol (Plourde and Picton,
1991; Reinsel et al., 1995; Koelsch et al., 2006) or opioids
(Plourde and Boylan, 1991). Propofol is an agonist at the GABA
receptor and exerts a hypnotic and sedative effect through this
mechanism (Rudolph and Antkowiak, 2004). Light propofol
anesthesia, as administered in surgery, causes stage 2 sleep-
like brain electrophysiological activity, with sleep and sleep-like
spindles appearing during deep propofol anesthesia (Stamatakis
et al., 2010; see Purdon et al., 2015, for a review). Opioids such
as fentanyl are mostly used in cardiovascular surgery due to
limited fluctuations in cardiovascular dynamics (Saidman et al.,
1984). The EEG trace during opioid anesthesia is characterized
by high amplitude slow delta waves (Wauquier et al., 1984).
Opioids provide anesthesia, analgesia and unconsciousness
after premedication with other anesthetic agents such as
benzodiazepines (Sebel et al., 1981).

Research in Humans
Early human anesthesia studies did not compute the MMN
response, but rather examined the P300 response, due to
its suspected association with conscious awareness (Plourde
and Boylan, 1991; Plourde and Picton, 1991; Reinsel et al.,
1995). These studies report a decrease in amplitude of the
P300 response with progressive sedation and abolishment when
unconsciousness is reached (Plourde and Boylan, 1991; Plourde
and Picton, 1991; Sneyd et al., 1994; Reinsel et al., 1995),
accompanied by absent behavioral responses to deviant stimuli
(Plourde and Picton, 1991).

Later studies carried out in the 2000’s (Simpson et al.,
2002; Yppärilä et al., 2002; Heinke et al., 2004; Koelsch
et al., 2006) started to measure MMN responses alongside
the P300 responses. These studies reported a dose-dependent
incremental breakdown of MMN and P300 (Yppärilä et al.,
2002; Heinke et al., 2004; Koelsch et al., 2006). As patients
transition from wakefulness to anesthesia, AEPs tend to decrease
in amplitude: Simpson et al. (2002) reported that N100
(thought to reflect the early processing of acoustic features of
a stimulus; Näätänen and Picton, 1987) responses to auditory
stimuli disappear when patients become unconscious, and MMN
is no longer elicited right before consciousness is lost, at the
point of highest propofol concentration at which patients are still
responsive. Yppärilä et al. (2002) complemented these findings by

showing that the amplitudes of AEPs including N100 and MMN
gradually decrease, and latencies gradually increase as patients
transition from light to deep sedation. Notably, a small subset
of patients retains both MMN and P300 responses even in deep
sedation (Yppärilä et al., 2002). Similar findings were reported
by Heinke et al. (2004), who showed decreasing amplitudes and
increasing latencies for MMN as propofol sedation progresses,
and an abolishment of P300 responses in deeper sedation levels
(Heinke et al., 2004).

Koelsch et al. (2006) measured MMN and P300 responses
in healthy volunteers undergoing propofol sedation in a state
of sedation shallower than surgical anesthesia, as participants
were still arousable by loud and repeated utterances of their
own name or by mild prodding. The authors noted reduced,
but existent, MMN and P3a responses during propofol sedation,
with a missing P3b response. With recovery from deep propofol
sedation, MMN recovered quickly to wake levels, but not
the P300 response. Lastly, Zhang et al. (2018) report that
MMN is abolished during deep anesthesia. The authors used
source localization techniques to investigate how the network
underlying the MMN response during awake conditions is altered
by anesthesia. Deviant stimuli during anesthesia induced less
long-distance connections between frontal and temporal-parietal
regions than in an awake state (Zhang et al., 2018).

More recent studies have employed the local-global paradigm
(Shirazibeheshti et al., 2018; Witon et al., 2020) with high-
density EEG or iEEG recordings (Nourski et al., 2018) to test
this hypothesis directly. Specifically, Shirazibeheshti et al. (2018)
measured high-density EEG during a local-global paradigm in
wakefulness, propofol sedation, and recovery. During sedation,
both local and global deviance responses were recorded, but
their amplitude was reduced with respect to wakefulness. The
authors observed an interaction between effects of local and
global deviance, namely that effects of local deviance exacerbate
effects of global deviance. Nevertheless, under anesthesia this
interaction was reduced. The authors posited that the coincidence
of local and global deviance had a facilitatory effect on global
deviance responses, which was reduced when individuals were
sedated. Witon et al. (2020) further examined the neural circuits
of this effect and observed effects of sedation on local deviance
responses during early (100–150 ms post-stimulus onset) and
middle (250–350 ms) time periods, indicative of modulations of
evoked power responses early in the processing pathway. The
interaction between the local and global effects was significant
in a late time window (400–600 ms). The authors found a
locally mediated acceleration of global deviance responses (Witon
et al., 2020) during sedation and recovery. The second important
interaction – the local standard global deviant, representing
the pure global deviance effect – was reduced in anesthesia
compared to recovery. Here, deviance processing is thought to
be instantiated by more higher-level than low-level predictions.
Key findings during sedation included a reduction in amplitude
of the responses, and a slowing of the responses to deviant stimuli,
specifically in global deviance.

Nourski et al. (2018) examined the neural networks that
are preserved for local and global deviance responses in iEEG
recordings. High frequency activity responses, which correlate
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with local infragranular multi-unit activity and superficial
dendritic potentials (Leszczynski et al., 2020), and intracranial
auditory evoked potentials were recorded. Authors used vowels
instead of pure tones in patients implanted in temporal and
inferior frontal regions, as well as in the amygdala, under
propofol sedation. This study reported retained local deviance
effects under loss of consciousness in auditory regions, but
not outside of these regions, indicating intact low-level sensory
predictive processing independent of the state of consciousness
(Figure 2). By contrast, local deviance responses in frontal
regions began to reduce during initial sedation and vanished
during anesthesia. Global deviance was completely abolished
with anesthesia, and in some patients, it was abolished even
during a sedated state in which they were still responsive (Nourski
et al., 2018). The authors concluded that the presence of a global
deviance effect is indicative of conscious processing, while its
absence is not necessarily linked to loss of consciousness (see
Table 2A for a summary).

Research in Animals
In animals, anesthesia is mostly induced using ketamine,
urethane, or halothane (see Table 2B for summary). Anesthesia
in general, whether with barbiturates or ketamine, seems to
have more wide-spread effects in animals than in humans.
Specifically, inhibition of auditory cortical units was reported
70 years ago (Thomas and Jenkner, 1952). Anesthetics are
known to affect the entire central auditory pathway, from
the dorsal cochlear nucleus (Young and Brownell, 1976) to
core auditory regions (Gaese and Ostwald, 2001), such as
the primary auditory cortex (A1). A1 neurons demonstrate
reduced mean bandwidth in anesthesia than when animals
are awake, with reductions up to threefold (Qin et al., 2003).
In particular, ketamine anesthesia depth modulates not only
average evoked responses but also response variability, which is
highest under medium anesthesia, where ongoing cortical activity
exhibits rhythmic bursting activity (Kisley and Gerstein, 1999).
Importantly, this observed variability in shape and amplitude
can be accounted for by the background ongoing activity,
which speaks for transitions in thalamocortical excitability
modulating these effects (Zurita et al., 1994). Specifically,
stronger excitatory responses are observed in the thalamus
after ketamine injection, despite decreasing overall cortical and
thalamic firing rates (Kisley and Gerstein, 1999). Halothane, a
gas anesthetic, shows a weaker suppressive effect on auditory-
evoked responses (Johnson and Taylor, 1998; Moshitch et al.,
2006), with responses found to sometimes resemble those in
awake animals. Auditory working memory was found to be active
for hundreds of ms after stimulus onset (Moshitch et al., 2006).
Urethane causes moderate cardiovascular depression, with long
duration of anesthesia (greater than 24 h), excellent anesthesia
depth, and analgesia (Field et al., 1993). During urethane
anesthesia auditory neurons show higher minimum thresholds,
lower spontaneous firing rates, longer response latencies, and
more frequent occurrence of tuning alterations, with stronger
inhibition (Huang et al., 2013).

Because anesthesia facilitates experimental procedures, there
are a multitude of deviance studies done in different species

of anesthetized animals. Most of the studies have been carried
out in rats (Ruusuvirta et al., 1998; Lazar and Metherate, 2003;
Eriksson and Villa, 2005; Astikainen et al., 2006; Nakamura
et al., 2011; Taaseh et al., 2011; Xu et al., 2014; Takahashi
et al., 2015; Ahnaou et al., 2017; Parras et al., 2017; Rui
et al., 2018; Cappotto et al., 2021), and mice (Ehrlichman
et al., 2008; Chen et al., 2015; Duque and Malmierca, 2015;
Duque et al., 2018; Lipponen et al., 2019), with a few studies
in non-human primates (Uhrig et al., 2014), guinea pigs
(Kraus et al., 1994; Christianson et al., 2014), gerbils (Bäuerle
et al., 2011), and songbirds (Beckers and Gahr, 2012). These
studies mainly report successful recordings of SSA or MMN-
like responses in auditory cortices, especially under urethane
anesthesia (Astikainen et al., 2006; Taaseh et al., 2011; Duque
et al., 2015; Rui et al., 2018). Nevertheless, depending on the
used anesthetic, higher-level deviance responses are attenuated
or eliminated, despite retained low-level responses to deviant
stimuli, as for example under ketamine anesthesia (Ehrlichman
et al., 2008; Uhrig et al., 2016). Uhrig et al. (2016) anesthetized
macaque monkeys with propofol and ketamine and presented
a local-global auditory task during anesthesia. The authors
observed no local deviance responses during light propofol
sedation and deep anesthesia. By contrast, the global effect
was preserved in core auditory areas bilaterally and the MGN,
as well as in the anterior cingulate and prefrontal areas,
albeit with diminished activations compared to wakefulness.
During anesthesia, the global effect was reduced compared to
wakefulness in all brain regions.

Thalamic SSA responses were recorded during ketamine
anesthesia in gerbils (Bäuerle et al., 2011). In order to control
for auditory cortical regulatory effects on subcortical regions,
the authors pharmacologically inactivated cortical regions using
muscimol, which preserves subcortical auditory processing.
Interestingly, this led to a reduction of responses in the
MGB of the thalamus of the anesthetized gerbil. The authors
interpreted their findings as a demonstration that SSA in
subcortical structures is mainly regulated by the descending
corticofugal system, highlighting a more general function in
information processing than just novelty detection. Finally,
another interesting study in anesthetized zebra finches (Beckers
and Gahr, 2012) used a switching oddball paradigm with
naturalistic short-range contact zebra finch social calls, different
to usual zebra finch background vocalizations. Birds were
anesthetized with isoflurane gas, which produces behavioral and
physiological effects through binding at multiple targets in the
brain and central nervous system (binding to GABAa receptors
and enhancing GABAergic inhibition; blocking glutamate release
by binding to NMDA receptors), and shows similar effects
on EEG as propofol (Purdon et al., 2015). Results indicate
deviance processing in secondary, but not primary, cortices,
suggesting that deviant events, more than just stimulating a
larger part of a single sensory processing network, may activate
a different network compared to standards, eliciting more
widespread activity. It is worth noting that social calls are more
complex than the pure tones generally used in the majority
of oddball paradigms, and thus might recruit more complex
predictive mechanisms.
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TABLE 2 | Studies in anesthesia.

(A) Humans

Study Paradigm Agents Anesthesia (A)/
sedation (S)

Surgical A/S Deviance
effects

Plourde and Picton,
1991

Pitch oddball Thiopental, fentanyl,
and isoflurane ± nitrous
oxide

A Yes No

Plourde and Boylan,
1991

Pitch oddball Sufentanil with
lorazepam
premedication

A Yes No

Reinsel et al., 1995 Pitch oddball Propofol S No Yes

Sneyd et al., 1994 Pitch oddball Propofol S No Yes

Simpson et al., 2002 Pitch oddball Propofol S - conscious No Yes

S - unconscious no

Duration oddball S - conscious no

S - unconscious no

Yppärilä et al., 2002 Pitch oddball Propofol S Yes Yes

Heinke et al., 2004 Propofol S - light Yes Yes

S - deep Yes

S - unconscious No

Koelsch et al., 2006 Pitch oddball Propofol S No Yes

Zhang et al., 2018 Pitch oddball Propofol S - deep No No

Nourski et al., 2018 Local-global Propofol A - conscious Yes Only local

A - unconscious Only local

Shirazibeheshti et al.,
2018

Local-global Propofol S - unconscious No Local and
global

Witon et al., 2020 Local-global Propofol S - moderate No Local and
global

(B) Animals

Study Paradigm Agents Deviance
effects

Species

Ruusuvirta et al., 1998 Pitch oddball Urethane Yes Rats

Lazar and Metherate, 2003 Pitch-frequency oddball Urethane-xylazine SSA Rats

Eriksson and Villa, 2005 Pitch oddball Ketamine-xylazine No Rats

Astikainen et al., 2006 Pitch-intensity oddball Urethane Yes Rats

Nakamura et al., 2011 Pitch-duration oddball Fentanyl-medetomidine-isoflurane Yes Rats

Taaseh et al., 2011 Pitch oddball Halothane Yes Rats

Xu et al., 2014 Aurality-specific noise Sodium pentobarbital SSA Rats

Takahashi et al., 2015 Pitch oddball Isoflurane SSA Rats

Ahnaou et al., 2017 Pitch oddball Ketamine Yes Rats

Rui et al., 2018 Pitch oddball Urethane SSA Rats

Ehrlichman et al., 2008 Pitch oddball Ketamine No Mice

Chen et al., 2015 Pitch oddball Isoflurane SSA Mice

Duque and Malmierca, 2015 Pitch oddball Urethane ± acepromazine SSA Mice

Duque et al., 2018 Pitch oddball Ketamine-xylazine SSA Mice

Lipponen et al., 2019 Duration oddball Urethane No Mice

Uhrig et al., 2016 Local-global Propofol Only global, no
local

Primates

Ketamine Only local, no
global

Kraus et al., 1994 Pitch oddball Ketamine-xylazine Yes Guinea pigs

Christianson et al., 2014 Roving standard Urethane-buprenorphine SSA Guinea pigs

Bäuerle et al., 2011 Roving standard Ketamine-xylazine SSA Gerbils

Beckers and Gahr, 2012 Naturalistic oddball Isoflurane Yes Songbirds

*SSA, stimulus-specific adaptation; Yes, effects other than SSA.
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Conclusion
Overall, studies in humans and animals suggest that auditory
predictions are reduced but may still be present in conditions
of sedation and anesthesia. Interestingly, scalp EEG components
corresponding to auditory predictive processes like the MMN
or P3a may be preserved in anesthesia but are altered with
respect to wakefulness. The latencies of scalp level auditory
and deviance components are longer, and their amplitudes
decrease. Moreover, the processing of deviant events at a local
level is spatially restricted as shown via iEEG and source
localization studies (Nourski et al., 2018; Zhang et al., 2018).
Global deviance effects seem to be further restricted or even
absent as the depth of anesthesia progresses in humans (Nourski
et al., 2018; Shirazibeheshti et al., 2018), although they may
be preserved in core auditory areas, at least in non-human
primates (Uhrig et al., 2016). Importantly, similar to sleep,
SSA is preserved also in anesthesia. These findings suggest
that predictive processes are maintained to some degree under
anesthesia, although they involve limited brain regions and sub-
networks as compared to wakefulness.

DISORDERS OF CONSCIOUSNESS

One important application of auditory deviance paradigms has
been the prognosis of patients with disorders of consciousness
(DOC; Lew et al., 2003; Kotchoubey, 2005; Wijnen et al.,
2007; Tzovara et al., 2013). DOCs are defined as a disrupted
relationship between the two components clinically defining
consciousness – wakefulness/arousal and awareness (Laureys,
2005). Coma is characterized by the absence of arousal and
awareness. The vegetative state (VS) or unresponsive wakefulness
syndrome (UWS; Laureys et al., 2010) is described by some
degree of arousal in the absence of awareness, and the minimally
conscious state (MCS) is characterized by preserved arousal with
varying signs of awareness (Gosseries et al., 2011; Figure 1).
In contrast, in the locked-in syndrome, often a consequence
of brainstem damage, patients are fully aware and awake, but
suffer from complete paralysis of all voluntary muscles except
for vertical eye movements, as in amyotrophic lateral sclerosis
(Bauer et al., 1979; Sharma, 2011). The famous American
case of patient Terri Schiavo (see e.g., Perry et al., 2005)
is a good example of the important and nuanced medical,
ethical, religious, social, familial, philosophical, and political
debates around retained awareness and prognosis in patients
suffering from DOC.

About 50% of patients emerging from coma are expected to
evolve into a MCS (Giacino et al., 2006), which is difficult to
differentially diagnose from UWS because of intermittent signs
of consciousness in MCS patients (Fins et al., 2007). Despite the
immense societal importance, DOCs remain among the most
poorly understood conditions of modern neurology (Boly et al.,
2012). For many years, clinical and behavioral examinations were
the leading approaches to diagnosing retained consciousness
(Plum and Posner, 1982), but this approach has high rates of
misdiagnosis (Laureys, 2005). Electrophysiology typically using
ERPs is currently used in the majority of studies investigating

patients with DOC (see Giacino et al., 2006; Owen and Coleman,
2007; Demertzi et al., 2008; Boly, 2011; Boly et al., 2012; Gosseries
et al., 2014b), and is applied to the search for a “consciousness
marker” to be used in diagnosis of DOC.

Auditory Predictions and Their Link to
Coma Outcome
Despite the heterogeneity of coma aetiologies and types of
brain injury, several studies suggest that some patients in a
coma can detect environmental deviant events at a neural
level (Laureys et al., 2004; see also Table 3A for a summary).
For instance, scalp EEG components such as the MMN and
P300 correlate with patients’ outcome (Fischer et al., 1999;
Kane et al., 2000; Luauté et al., 2005; Daltrozzo et al., 2007).
Studies undertaken in the 90s have shown that some, but
not all, coma patients may have preserved N100 (thought to
reflect the early processing of acoustic features of a stimulus;
Näätänen and Picton, 1987) and MMN responses, indicative
of intact auditory deviance processing (Fischer et al., 1999;
Daltrozzo et al., 2007). Interestingly, the presence of a MMN
response was more frequently observed in patients who later
awoke from coma (Fischer et al., 2004; Naccache et al., 2005),
suggesting that the MMN is a predictor of patients’ chances of
awakening. This hypothesis was driven by the fact that non-
survivors generally did not show a MMN response (Fischer
et al., 2004). However, these studies were performed several
weeks or months after coma onset (Fischer et al., 2004; Boly,
2011).

More recent studies, performed in post-anoxic coma patients,
have examined deviance processing in the acute coma phase,
within the first 36 h of coma (Tzovara et al., 2013, 2016; Juan et al.,
2016). In order to overcome the inherent difficulties associated
with the detection of ERP components over single electrodes,
these studies applied a multivariate decoding analysis (Tzovara
et al., 2013) which models topographies of single-trial EEG
activity. The model estimation was performed on a portion of the
data (the training data set) and then used to decode the category
of sounds (standard/deviant) in a separate portion of data. An
above chance decoding performance implied a differential scalp
EEG response to standard vs. deviant stimuli, focusing on the
most discriminative time-windows within the trial. These studies
have shown that during acute coma, even patients who do not
survive show differential patterns of EEG activity in response to
standard vs. deviant stimuli. Moreover, discrimination between
standard and deviant sounds deteriorates from the first to the
2nd day of coma in non-survivors, while an improvement in
auditory discrimination is observed for patients who later awake
from coma (Tzovara et al., 2013, 2016).

More work in the acute coma phase using a local-global
paradigm has shown that the global deviance effects, assessed
via topographic patterns on scalp EEG, were preserved in 10
out of 24 patients (Tzovara et al., 2015). Moreover, while the
global effect was not in itself predictive of the patient’s outcome,
an improvement in decoding global standard vs. global deviant
stimuli over the first 2 days of coma was informative of survival
and return of consciousness (Tzovara et al., 2015).
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TABLE 3 | Studies in disorders of consciousness.

(A) Coma

Study Paradigm Time of testing Patients showing
deviance effects

Fischer et al.,
1999

Duration oddball 8.7 ± 11 days 33/128 patients

Fischer et al.,
2004

Duration oddball 10.3 ± 11.4 days 88/346 patients

Luauté et al.,
2005

Duration oddball 10.3 ± 11.4 days Yes

Naccache
et al., 2005

Pitch oddball 4–96 days 10/33 patients

Tzovara et al.,
2013

Pitch, duration,
location oddball

First 48 h 9/30 patients

Tzovara et al.,
2015

Local-global First 48 h Global in 10/24
patients

Pfeiffer et al.,
2018

Duration, location,
pitch oddball

First 48 h 25/66 in 1st and
31/66 patients in
2nd day of coma

Somatosensory
oddball

16/66 patients in
1st and 23/66 in
2nd day of coma

(B) UWS/MCS

Study Paradigm Deviance effects Patients showing
deviance effects

Perrin et al.,
2006

Personal name
oddball

Yes 6 MCS; 3/5 UWS;
4 LIS

Wijnen et al.,
2007

Pitch oddball Yes 10 UWS at first
measurement

Bekinschtein
et al., 2009

Local-global Local 3/4 UWS, 4/4 MCS

Global 3/4 MCS

Risetti et al.,
2013

Pitch-duration
oddball with own
name; active
counting of name

Yes UWS:
active < passive;
MCS:
passive > active

Passive Yes 10/11 patients

King et al.,
2013

Local-global Local All

Global Only MCS, not
UWS

Faugeras et al.,
2011

Local-global Yes 2/22 patients

Faugeras et al.,
2012

Local-global Local Only CS and MCS

Global Only controls

Perez et al.,
2021

Local-global Local N/A

Global 43 (E)MCS/ 23
UWS out of 236
total

*N/A not reported; MCS, minimally conscious state; (E)MSC, (exit) MCS;
UWS, unresponsive wakefulness syndrome; LIS, Locked-in Syndrome; CS,
conscious ± paralysis.

The vast majority of deviance studies in coma target the
auditory pathway, with the exception of one study comparing
auditory and somatosensory stimuli, using the same oddball

paradigm (Pfeiffer et al., 2018). Interestingly, this study found
that discrimination between deviant and standard events at the
EEG level is preserved in acute coma for both the auditory and
somatosensory modalities. However, only the auditory modality
was informative of coma outcome, with an improvement
in auditory discrimination being indicative of survival. The
specificity of deviance mechanisms for outcome prognosis is
also highlighted by a study performed on the same type of
patients, examining discrimination of naturalistic sounds, which,
albeit preserved in some patients, was not informative of
coma outcome (Cossy et al., 2014). Overall, these studies show
that sensory deviance effects can be preserved in acute coma,
suggesting a fundamental role for auditory predictions in relation
to consciousness.

Auditory Predictions Differentiating
Consciousness Levels
Unresponsive wakefulness syndrome is typically characterized
by spared brainstem activity with widespread severe damage to
gray and white matter in both cerebral hemispheres (Laureys
et al., 2004). Although brainstem metabolism can be spared
in UWS, preserving arousal and autonomic functions, several
cortical regions, including prefrontal regions, parietotemporal
and posterior parietal cortices, and the precuneus, are typically
impaired (see Laureys et al., 2004 for a detailed review).
Regarding patients, spared medial parietal cortex (precuneus)
and adjacent posterior cingulate cortex metabolism seem to
differentiate MCS from UWS (Laureys et al., 2004). Overall
cortical metabolism is slightly higher in MCS than in UWS
patients (Laureys, 2005).

Deviance effects are posited to correlate with retained
consciousness in UWS and MCS patients (e.g., Wijnen et al.,
2007; see Table 3B for a summary). While MMN and P300 can be
recorded in both clinical groups, global deviance effects in active
tasks (e.g., counting the number of deviant stimuli, but without
behavioral responses) are only recorded in MCS, and thus are
associated with the presence of residual levels of consciousness.
A study using a passive and active oddball paradigm (i.e., where
participants had to count the deviant stimulus) in MCS and UWS
patients recorded MMN (between standard and deviant tones)
and P300 (in response to the patients’ own name) responses in all
but one patient (Risetti et al., 2013). Nevertheless, only in MCS
did the P300 increase in amplitude during the active condition,
corroborating the possible advantage of using this paradigm for
probing awareness by bypassing the motor response. In a similar
paradigm, Perrin et al. (2006) observed the P300 response to
patients’ own name in 3 out of 5 UWS patients, and in all MCS
patients, concluding that this ERP component is not specific
enough to differentiate UWS ad MCS patients.

When regularities are established over groups of sounds,
past studies have shown a link between global deviance effects
in UWS patients and the presence of residual consciousness
(Faugeras et al., 2011, 2012; King et al., 2013). Particularly, global
deviance effects have been linked to conscious perception, mainly
supported by the absence of evidence for a global deviance effect
in UWS patients (Bekinschtein et al., 2009; Faugeras et al., 2012;
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King et al., 2013). Bekinschtein et al. (2009) measured local
deviance effects in UWS/VS and MCS patients, but no global
effects. King et al. (2013), observed a global effect in 14 % of UWS
and 31 % of MCS patients. A more recent study reported that the
presence of a global deviance effect in UWS patients is related
to an eventual return of consciousness, while its absence is not
informative of patients’ outcome (Perez et al., 2021). In particular,
the majority of patients that showed a global effect eventually
regained consciousness, while amongst patients that did not show
a global effect some regained consciousness, and some did not,
paralleling findings based on MMN (Fischer et al., 2004).

When investigated during recovery from UWS, the MMN was
found to be an important predictor of recovery ability (Wijnen
et al., 2007), as MMN amplitudes increased with recovery.
Moreover, a sudden increase in amplitudes preceding overt
external communication was interpreted as consolidation of the
networks and mechanism supporting this ability. The study of
functional connectivity supports this hypothesis (Boly et al.,
2011). Boly et al. (2011) used a roving MMN paradigm in MCS
and UWS patients and modeled cortical source activity using
scalp EEG data to quantify backward and forward connections
between temporal and frontal cortices during MMN generation.
The authors found that compared to MCS and healthy controls,
UWS patients had impaired connections from frontal to superior
temporal cortex, but no impairments in connectivity within
temporal cortical networks.

Conclusion
Taken together, studies in patients in a coma or with DOC show
that scalp level EEG signatures of auditory predictive processes,
including the MMN, may be preserved. An improvement of
differential responses between standard and deviant stimuli over
the 1st days of coma, or the presence of MMN responses in later
coma stages, are frequently observed in patients that eventually
regain consciousness.

Investigations of the neural circuits of predictive processes
in patients with DOC remain sparse, and report that an
impairment in predictive mechanisms may be accompanied by
an impairment in backward connections from frontal to temporal
cortical regions (Boly et al., 2011). One main challenge in
studies with patients is pathological heterogeneity, for example
relating to the cause of coma or DOC, to whether a focal lesion
is present or not, or to the time of recording, as this may
be followed by reconfigurations of brain networks supporting
processing of environmental stimuli. Further studies of circuit
level mechanisms are needed to better disentangle impaired and
retained sensory predictive processes in patients with DOC, and
link those to disease etiology and outcome.

ALTERED STATES OF CONSCIOUSNESS

Altered states of consciousness were first defined in the late
60’s as “any mental state(s), induced by various physiological,
psychological, or pharmacological maneuvers or agents. An
altered state of consciousness can be recognized subjectively
by the individual [...] as representing a sufficient deviation

in subjective experience or psychological functioning from
certain general norms for that individual during alert, waking
consciousness” (Ludwig, 1966). Despite the fact that all the
above-mentioned states can be considered altered states of
consciousness, we here focus on those states induced by hypnosis
and meditation (see e.g., Vaitl et al., 2005, for a review) due to
availability of research using MMN paradigms in these states.

The psychological mechanisms that hypnosis and meditation
engage are distinct: while hypnotic suggestions are utilized to
elicit changes in experience, meditation may be considered as
a form of mental training that induces alterations in attention
and self-regulation (Jamieson, 2016). A common feature of
hypnosis and meditation is that both processes involve self-
regulation, including attentional control and self-awareness.
These involve sensory and frontal-parietal attentional systems
that also support predictive processing (Tang et al., 2015;
Jamieson, 2016). The human brain is hypothesized to use both
perceptual and active inference to maximize the effectiveness of
predictive processing: for perceptual inference internal models
are adjusted to best fit perception using predictions that best
explain the experienced sensory information, whereas active
inference consists of performing actions that produce sensory
input conforming to predictions (Martin and Pacherie, 2019).
Perception in itself can be divided into exteroception (perception
of the external world), proprioception (perception of one’s own
motion and one’s body in space), and interoception (perception
of one’s own homeostatically regulated physiological states)
(Jamieson, 2016), all of which are used to generate predictive
models of the world, our bodies and our mental states. As
discussed below, the processes of perceptual and active inference
are altered during both meditation and hypnosis through
modified priors as well as through altered perception. Despite
sparse research into the topic of auditory deviance processing
in hypnosis and meditation, the few existing studies are worth
discussing, due to insights they might offer into mechanisms of
self-regulation.

Meditation
Meditation describes practices of self-regulation (Kabat-
Zinn, 1982) and modulates the awareness component of
consciousness (Brown and Ryan, 2004). Predictive processing
during mindfulness meditation is thought to correspond to
reductions in active inference and in the influence of priors
(Pagnoni, 2019), as well as reduced stimulus salience weighting
(Jamieson, 2016) – leading to reduced PEs, and thus reduced
updating of expectancies, with parallel enhanced precision of
proprioceptive and interoceptive predictions (Pagnoni, 2019).
Collectively, these processes might lead to enhanced matching
of interoceptive predictions and feedback (Jamieson, 2016), and
thus to meta-awareness (Pagnoni, 2019).

Several ERP studies have investigated auditory oddball
paradigms in mindfulness meditation (Cahn and Polich, 2009;
Atchley et al., 2016; Biedermann et al., 2016; Fucci et al., 2018;
see Table 4A for a summary). Cahn and colleagues compared
a passive oddball task to a control thought period in expert
meditators. They observed reduced amplitudes of the N1 and P2
components, representing early processing of acoustic features
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TABLE 4 | Studies in altered states of consciousness.

(A) Meditation

Study Paradigm When Deviance effects

Cahn and
Polich, 2009

Pitch oddball
with distractor

During meditation Yes

Atchley et al.,
2016

Active pitch
oddball with
distractor

Before meditation Meditators > controls

Passive pitch
oddball with
distractor
(meditation)

During meditation Controls > meditators

Biedermann
et al., 2016

Pitch oddball Imaginative task Meditators > controls

During meditation Meditators > controls

Fucci et al.,
2018

Pitch oddball Open presence
meditation

Meditators = controls

Focused attention
meditation

Meditators > controls

Reading Meditators = controls

(B) Hypnosis

Study Paradigm When Deviance effects

Csépe et al.,
1997

Phoneme
oddball

During hypnosis Hypnposis < baseline

Kallio et al.,
1999

Pitch oddball During hypnosis Hypnosis > baseline
(one virtuoso)

Jamieson et al.,
2005

Roving
standard

Before hypnosis Yes

During hypnosis Yes

After hypnosis Yes

Hiltunen et al.,
2019

Pitch oddball Before hypnosis Yes

During hypnosis Yes

After hypnosis Yes

of a stimulus, and later P300 components to deviant tones
and distractors (white noise), but not to standards (Cahn and
Polich, 2009). Another study showed reductions in amplitudes
of N1 and P2 components for all types of stimuli (standards,
deviant, distractor), but not later P300, during mindfulness
as compared to a tone detection task in expert and novice
meditators versus controls (Atchley et al., 2016). A recent study
in novice and expert meditators compared MMN responses
during mindfulness meditation to a reading control condition
(Biedermann et al., 2016). MMN amplitude was larger for both
reading and meditation conditions in meditators as compared
to controls. In novices, MMN responses were also increased
during meditation as compared to reading. Taken together, these
results indicate that mindfulness meditation might be associated
with larger early sensory detection peaks for standard events,
larger MMN responses and reduced P3a responses compared
to normal wakefulness, which might be interpreted as greater
environmental monitoring abilities, then applied to disengaging
from distracting stimuli (supported by smaller early sensory
detection peaks for distractors).

Hypnosis
Individuals who are susceptible to hypnosis are reported to
experience changes in subjective awareness (Kihlstrom, 2005;
Pekala, 2015). Hypnosis is thought to affect both active and
perceptual inference, as well as perception, per se through
attentional modulation (Jamieson, 2016, 2018; Martin and
Pacherie, 2019). There are only a handful of studies investigating
auditory predictive processes during hypnosis (Csépe et al.,
1997; Kallio et al., 1999; Jamieson et al., 2005; Hiltunen
et al., 2019; summarized in Table 4B). Perhaps the earliest
systematic studies of this type were conducted by Gruzelier
and colleagues (see Gruzelier, 1998, for a summary). In brief,
medium-high hypnosis susceptible participants, but not low,
showed decreased P300 to auditory oddballs and reduced
MMN amplitudes during and following a hypnotic induction
compared to pre-induction. By contrast, participants with
low susceptibility showed an increase in MMN amplitudes
following hypnotic induction. Measuring deviance responses
in a passive oddball paradigm before the hypnotic induction
and during neutral hypnosis (Kallio et al., 1999), as well as
after the hypnosis in highly hypnotisable subjects (Jamieson
et al., 2005; Hiltunen et al., 2019), and sometimes also using
phonemes and participants with different levels of hypnotic
suggestibility (Csépe et al., 1997), different studies demonstrate
either increases or decreases of MMN amplitudes during
hypnosis as compared to pre- or post-hypnosis. Another study
found suppressed MMN amplitudes during hypnosis in highly
hypnotisable subjects and no differences during waking between
high, middle and low hypnotisable subjects (Csépe et al., 1997).
While no changes were found in a recent study focusing
on mean amplitude of ERP components from responses to
standard and deviant sounds (Hiltunen et al., 2019), Jamieson
et al. (2005) found increases in amplitude for MMN over
frontal electrodes during hypnosis as compared to pre- and
post-hypnosis in high suggestible participants (Jamieson et al.,
2005). This trend was observed for these participants in
temporal electrodes, too, but not for low suggestible participants,
who showed linear increases in these electrodes from pre-
to during to post-hypnosis. One possible interpretation for
these results is that precision of deviance processing was
enhanced, despite the engagement of attentional control with
another active task.

Conclusion
As a general conclusion, it is hypothesized that both meditation
and hypnosis modulate predictive processes manifesting through
scalp EEG components. For meditation, the results are
too sparse and heterogeneous to draw firm conclusions,
highlighting the need for more research. To address these
heterogeneous results, predictive processing theories offer
testable hypotheses to assess these changes in awareness and
subjective perception that are at the core of these states.
Some of the seemingly inconsistent results in hypnosis and
meditation emphasize the limitations of this literature: the
focus on analysis of ERP components at single electrodes, the
heterogeneity of instructions, high inter-individual variations,
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and the differences in statistical analyses and dependent
variables, making it difficult to draw consistent conclusions.
Future research can address these issues by focusing on
replication studies using similar task instructions, and moving
beyond analysis of single EEG electrodes, to measures that
quantify the whole electrical field at the scalp level (see e.g.,
Michel and Murray, 2012).

DISCUSSION AND FUTURE OUTLOOK

A large body of literature has shown that sensory predictive
signals manifest in the absence of consciousness. Here, we
approached consciousness via states where consciousness is
reduced or absent (sleep, anesthesia, disorders of consciousness),
or altered (hypnosis, meditation). In the absence or alteration
of consciousness, predictive processes can be preserved for
predictions built over simple and long-lasting regularities. At the
level of scalp EEG, evoked components associated with auditory
predictions tend to have a reduced amplitude with decreasing
levels of consciousness. At the level of generators, several
studies suggest that the network underlying the generation of
sensory predictions is restricted when conscious access and
behavioral reactivity to the environment is lost. In the absence of
consciousness, core auditory areas can preserve their capacities
for generating deviance effects, while such effects in areas that are
’higher’ in the sensory processing hierarchy (i.e., frontal areas)
are abolished, likely as a result of disruption of connections from
higher to lower regions.

However, as the generation of sensory predictions extends well
beyond a two-node circuit of frontal-sensory areas, it remains an
open question how each of the regions and the corresponding
networks involved in sensory predictions is altered by the loss
of consciousness. Importantly, the brain is a complex system,
where mental states arise through the principle of emergence, and
thus through an interaction of multiple functional, structural, and
computational levels (Bassett and Gazzaniga, 2011). Within these
computations, sensory predictive processes appear as a necessary,
but not sufficient, condition for consciousness.

From an electrophysiological viewpoint, the loss of
consciousness is accompanied by a plethora of changes in neural
activity, such as the disruption of thalamo-cortical and cortico-
cortical long-range connections, and changes in non-oscillatory
components of the EEG (Magnin et al., 2010; Lendner et al., 2020,
to name a few. These electrophysiological alterations may in turn
affect circuit level mechanisms underlying predictions. Future
studies should take into account these fundamental changes
in neural activity when designing new experiments to study
predictions in the absence of consciousness, and can choose to
selectively stimulate specific states of neural activity, such as “up”
or “down” sleep states.

In this review, we focused on neural signatures of predictive
processes both at the neuronal level (e.g., SSA) and at the scalp
EEG level (e.g., MMN or P300). The neural signals that can be
recorded with scalp EEG have limited interpretation about the
precise circuit or mechanisms underlying auditory predictions,
because of the poor spatial resolution of EEG responses.

Nevertheless, these scalp EEG components have strong
clinical applications because of their relatively straightforward
implementation (i.e., no invasive recordings are needed) that can
facilitate their integration with other clinical measures to detect
residual levels of consciousness.

From Electrophysiology to
Computational Models
As the loss of consciousness engenders drastic changes to
the predictive circuit, another important future question
is how these changes affect the neural computations that
lead to a predictive signal. Although theoretical modeling
has been widely applied in the field of threat predictions
(e.g., Tzovara et al., 2018), or reward learning (Abbott
and Dayan, 2005), attempts to model sensory predictions
are limited. This is important given the fact that scalp
EEG responses associated with deviance processing such as
the MMN are compound responses, reflecting multiple and
complex processes from multiple brain regions and neural
computations. Distinguishing which neural computations of
deviance processing (e.g., adaptation, PEs, update of an internal
model) are performed in different cortical and subcortical
structures involved in the sensory predictive network is a crucial
future necessity.

Previous studies have tested various theories of auditory
PE generation, and have shown that trial-by-trial changes in
deviance EEG responses are compatible with a Bayesian updating
of a probabilistic model of the environment in the auditory
(Lieder et al., 2013), somatosensory (Ostwald et al., 2012), and
visual modalities (Stefanics et al., 2018). Modeling work has
also supported claims that deviance effects reflect PE signals,
weighted by the precision of predictions (Stefanics et al., 2018),
with attention increasing the precision of PEs (Smout et al.,
2019). Nevertheless, the MMN still remains opaque in terms
of which computational components it represents, and which
changes these components undergo when consciousness is lost.

A principled way to model PE signals comes from the field
of reinforcement learning (see e.g., Hoy et al., 2021). When
studying reward PEs, past studies have applied an axiomatic
model developed in the field of economics to assess whether
responses indeed reflect PEs (Caplin and Dean, 2008; Rutledge
et al., 2010). Developed for testing dopamine-related hypotheses,
namely whether the firing rate of midbrain dopamine neurons
reflect PEs, these axioms represent necessary and sufficient
conditions for a brain response to be considered a true PE signal.
Given theoretical work drawing similarities between reward and
sensory PEs (Gardner et al., 2018), future studies can investigate
computational approaches to offer more objective means to
disentangle complex constructs such as the MMN.

Regarding the ambiguity as to which computational
components are altered when consciousness is lost, some
first attempts to resolve this question have used ketamine, which
was shown to diminish model quantities that correspond to
PE signals related to higher order predictions, like transition
probabilities (Weber et al., 2020). Another recent study examined
how awareness and task-relevance affect the neural computations
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of the MMN component (Schlossmacher et al., 2021). When
stimuli were task-irrelevant, both in unaware and aware
conditions, the MMN was best explained by an adaptation model,
whereas when stimuli were aware and task-relevant, the MMN
was best explained by a precision-weighted prediction error.
Interestingly, although the trial-by-trial N100 amplitude of the
EEG response to repeated tones in UWS patients has been
shown to change (Kotchoubey et al., 2006), indicative of cortical
learning, to date there are no attempts to formally model such
changes. Future studies will need to link the electrophysiological
alterations that are observed in sensory predictions during
sleep, coma or anesthesia to computational models, in order to
obtain a mechanistic understanding of the neural computations
underlying sensory predictions in the absence of consciousness.

An important future question is whether the presence or
absence of consciousness can be linked to specific computations
that result in the generation of prediction signals. It has been
proposed that one of the main functions of consciousness is the
generation of internal representations from incoming sensory
input (Kanai et al., 2019) so that we can act meaningfully on
this input (Hohwy, 2012). Under standard predictive theories, the
influence of PEs depends on their precision (Auksztulewicz and
Friston, 2015; Kanai et al., 2015), and, as explained previously,
this is the effect of attentional selection. This means that
ascending PEs with higher precision have more model-updating
power than those with lower precision (Witon et al., 2020). Future
studies can evaluate whether a similar computational role can be
attributed to different states of consciousness and, in particular,
according to their arousal and awareness contents.

Conclusion
In this review, we summarized studies investigating sensory
predictions and their modulations by the loss of consciousness.

We reviewed studies of animal and human physiology, from the
fields of sleep, anesthesia, disorders of consciousness, hypnosis
and meditation. Predictive processes represent a key, cross-
species mechanism of perception, that manifests in an automatic
way, and is embedded in distributed neuronal circuits. Refining
our understanding of the neural networks and computations
that underly sensory predictions in the physiological absence
of consciousness (i.e., sleep or anesthesia) can advance our
understanding of its pathological loss, and lead to improved,
theory-driven strategies for diagnosis and prognostication in
patients with disorders of consciousness.
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The human face is one of the most frequently used stimuli in vMMN (visual mismatch
negativity) research. Previous studies showed that vMMN is sensitive to facial emotions
and gender, but investigations of age-related vMMN differences are relatively rare. The
aim of this study was to investigate whether the models’ age in photographs were
automatically detected, even if the photographs were not parts of the ongoing task.
Furthermore, we investigated age-related differences, and the possibility of different
sensitivity to photographs of participants’ own versus different ages. We recorded
event-related potentials (ERPs) to faces of young and old models in younger (N = 20;
18–30 years) and older groups (N = 20; 60–75 years). The faces appeared around the
location of the field of a tracking task. In sequences the young or the old faces were
either frequent (standards) or infrequent (deviants). According to the results, a regular
sequence of models’ age is automatically registered, and faces violating the models’
age elicited the vMMN component. However, in this study vMMN emerged only in
the older group to same-age deviants. This finding is explained by the less effective
inhibition of irrelevant stimuli in the elderly, and corresponds to own-age bias effect of
recognition studies.

Keywords: oddball, visual mismatch negativity (vMMN), facial stimuli, aging, own-age bias

INTRODUCTION

The information content of the human face encompasses various important pieces of information
such as identity, gender, race, age, and emotional state. This set has utmost importance in
interpersonal and social behavior. In this study our aim was to investigate the possibility of
automatic registration of age by using the visual mismatch negativity (vMMN) component of the
event-related potentials (ERPs) of the brain electric activity.

Visual mismatch negativity emerges to visual events that violate the regularities of a stimulus
sequence, even if the eliciting stimuli are unrelated to an ongoing task (for reviews see Kimura
et al., 2011; Stefanics et al., 2015). VMMN is usually investigated in the passive oddball paradigm.
In this paradigm participants perform a visual (or sometimes auditory) task, while the vMMN-
related events are presented outside the task’s context as unattended stimuli. The characteristics
of the frequent (standard) events of stimulus sequences may acquire representation, even if the
characteristics are simple visual features such as color, orientation, spatial frequency, etc. VMMN
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also emerges to perceptual categories like symmetry (Kecskés-
Kovács et al., 2013b) and orderliness (Durant et al., 2017).

The human face is one of the most frequently used stimuli
in vMMN research. VMMN is especially sensitive to facial
emotions, i.e., rare (deviant) faces expressing a different emotion
from the frequent (standard) faces within the same sequence (e.g.,
Astikainen and Heitanen, 2009; Li et al., 2012; Stefanics et al.,
2012; for a review see Kovarski et al., 2017). In case of gender
as another facial feature, Kecskés-Kovács et al. (2013a) recorded
vMMN to faces of female models within sequences of male faces,
and vice versa.

In the present study we investigated the possibility of a similar
effect, automatic detection of age by showing photographs of
faces of models with different ages. Furthermore, we compared
vMMN differences between older and younger participants.
Investigations of age-related vMMN differences are relatively
rare. Nevertheless, this is an important topic, because vMMN
provides direct evidence about the sensitivity of automatic
registration of environmental regularities, and the putative
change of sensitivity with aging. So far in the context of age
differences the majority of vMMN studies applied low-level
deviancies, and the results are equivocal. Lorenzo-López et al.
(2004) investigated vMMN to horizontally drifting sinusoidal
gratings and obtained a long-lasting posterior negativity.
Whereas in the older group the negativity was different from
zero only at the Oz electrode site, it had a broader distribution
in younger participants. Tales et al. (2002) presented single and
double bars as standard and deviant stimuli. VMMN in the
younger group emerged in the 250–400 ms range, but in the
older group they obtained vMMN only in the later part of this
range. However, using the same method, Stothart et al. (2013)
obtained no age-related differences. Recently, we compared
older and younger groups in three studies (Gaál et al., 2017;
Sulykos et al., 2017, 2018). In our laboratory Sulykos et al.
(2017) investigated vMMN to the offset of parts of continuously
presented objects. Age-related vMMN difference emerged in the
180–220 ms range, but there was no vMMN difference in the
earlier part of this component. In the Sulykos et al. (2018)
study checkerboard stimuli were presented. VMMN appeared
in the 100–300 ms range in both age groups, but in the later
part of vMNN the amplitude was smaller in the older group.
In contrast with the simple stimuli of the above studies, Gaál
et al. (2017) investigated category-related vMMN, i.e., letters and
pseudo-letters. The stimuli were presented in pairs of subsequent
fragments, and the two fragments together constituted the stimuli
as wholes. The main variable was the duration between the onset
of the fragments, therefore the integration effects on vMMN were
investigated in the two age groups. The integration period of the
fragments was longer in the older group, showing longer stimulus
persistence in the elderly. As this review of previous studies
shows, with the exception of the Gaál et al. (2017) study, only
low-level features were investigated in the context of age-related
differences. One of the aims of the present study is to investigate
age-related effects of automatic detection in the case of complex
stimuli violating sequential regularities. As far as we know, this is
the first vMMN study that investigated the sensitivity of an older
and a younger group in the domain of human faces.

As another aim of this study, we investigated vMMNs to
deviant photographs showing models of the same age as or
a different age than the age of the participants. This issue
is related to the phenomenon of own-age bias (OAB). As a
considerable body of research shows, people are more efficient
in recognizing photographs depicting faces of their own age
than faces depicting different ages (for reviews see Rhodes and
Anastasi, 2012; Wiese et al., 2013). Theories about the OAB
proposed that people have more practice in processing faces of
others with age similar to their own. This view emphasizes the
importance of the different frequency of encounters for people
with different ages (He et al., 2011). As an argument for the
importance of encounter frequency, the OAB effect is reduced
or even absent in groups with considerable experience with
other age-groups (Harrison and Hole, 2009; Wiese et al., 2012).
It is possible that in a multidimensional system of perception
(Valentine, 1991), as an effect of less frequent experience, other-
age faces are farther away from the more discriminative central
regions on various dimensions. However, besides the frequency
of encounter, motivational and social group relations have also
been suggested as underlying mechanisms of OAB. This type
of theory was originally proposed for the own-race bias (ORB)
in face recognition, an effect stronger than OAB (Mukudi and
Hills, 2019). Sporer (2001) supposed that ingroup-outgroup
differentiation is an automatic process. The categorization-
individualization model (Hugenberg et al., 2010) proposed that
in an initial processing stage face processing is categorical, and
individualization is a process at a subsequent stage. In the case
of faces of a different age, processing is frequently restricted
to the first stage. However, across different age groups OAB
is not perfectly symmetrical. According to results by Bartlett
and Leslie (1986) and Wiese et al. (2008), in groups of older
participants no OAB emerged.

As results of some OAB studies show, both stages of the
hypothesized processes are automatic. This is because following
incidental learning of faces (attractiveness or friendliness rating
or age estimation, search for a non-facial target feature),
subsequent face recognition is similar to the effect of intentional
(attentional) learning (Randall et al., 2012; Neumann et al., 2014).
To investigate the possibility of automaticity of OAB-related
effects and of age-related sensitivity differences, we compared
a younger and an older group of participants in a vMMN
paradigm with sequences of young standard – old deviant and old
standard – young deviant photographs. We applied the method
developed by Stefanics et al. (2012) for emotion-related vMMN.
Accordingly, we presented four photographs around a central
task field. As a modification of the method, to ensure continuous
attentional engagement to the task-field, we introduced a tracking
task. What did we expect in the present study? On a general
level we expected the automatic perception of the models’ age,
that is, the appearance of a negative deviant minus standard
difference potential (vMMN) over the posterior locations within
the 200–400 ms post-stimulus latency range. As a more specific
possibility, we expected to find an OAB by registering a vMMN
difference between the age groups in the young standard –
old deviant and old standard – young deviant conditions.
According to the categorization-individualization model of
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OAB (Hugenberg et al., 2010), only the own-age photographs
are processed at the level of individual features. Such age-
related difference may lead to increased sensitivity to own-age
deviants, and accordingly, a larger deviant minus standard ERP
difference for photographs of models of the same age as that of
the participants.

Age difference of photographs per se elicits ERP differences.
As an example, in a gender categorization task a larger anterior
positivity and a smaller anterior negativity emerged to old
faces in a younger group, and in the same group a larger late
positivity emerged to old faces in a later latency range (Ebner
et al., 2011). Therefore, in the present study we compared the
ERPs to stimuli of the same age as deviants and standards
(inverse control procedure). Face processing is dependent on
the orientation of the photographs. Upside-down presentation of
faces decreases the effectiveness of face-specific processing (Yin,
1969; for a review see Rossion, 2009). Low-level visual differences
are preserved in upside-down photographs, therefore vMMN
differences between original and upside-down presentation argue
against the role of age-related low-level feature differences.
Accordingly, we did not expect deviant minus standard ERP
difference for upside-down faces.

In summary, our main goal was to study the possibility
of automatic registration of age and to investigate age related
sensitivity differences by using the visual mismatch negativity.
We compared a younger and an older group of participants in
a passive oddball paradigm with sequences of young standard –
old deviant and old standard – young deviant photographs.
According to results of previous vMMN studies with facial
features, we expected the appearance of a negative deviant
minus standard difference potential (vMMN) over the posterior
locations within the 200–400 ms post-stimulus latency range and
we expected to find an OAB, a larger deviant minus standard ERP
difference for photographs of models of the same age as that of
the participants.

MATERIALS AND METHODS

Participants
Twenty older (60–75 years) participants were selected from
a larger pool of available participants. This selection was
independent of the potential difference between the deviant
minus standard ERPs difference, but they had discernible P1
and N1/N170 exogenous components. In the younger (18–
30 years) group seven participants were excluded from a starting
sample of 27 participants because they had no discernable
exogenous components. This way there were 20 participants in
each age group (younger adults: 10 women; mean age: 22.0 years,
SD = 2.34 years, older adults: 11 women; mean age: 68.45 years,
SD = 3.62 years). Cognitive functions were measured by four
subtests (Similarities, Digit Span, Matrix Reasoning, and Digit
Symbol-Coding) of the Hungarian version of WAIS-IV (Rózsa
et al., 2010). The aggregated mean points were 43.65 (SD = 5.85)
in the younger group and 52.45 (SD = 8.31) in the older group.
All participants were right-handed, had normal or corrected-
to-normal vision (measured via a Hungarian version of Snellen

card), and were free of any kind of neurological or psychiatric
disease. Older adults were paid for participation. Younger adults
participated in the experiment for course credit, except two
paid participants, who were no longer college students. Written
informed consent was obtained from all participants prior to the
experimental procedure.

The study was conducted in accordance with the Declaration
of Helsinki and approved by the United Ethical Review
Committee for Research in Psychology in Hungary (EPKEB).

Stimuli and Procedure
The stimuli were presented on a 24′′ LCD monitor (Asus
VS229na, 60-Hz refresh rate) on a gray (44.48 cd/m2) background
at a viewing distance of 1.44 m. ERP-related stimuli consisted of
black and white photographs of 16 young and 16 old male models
taken from the database constructed by Minear and Park (2004).
Using Adobe Photoshop CS3 Extended 10.0 (Adobe Systems Inc.
San Jose, CA, United States) the photographs were converted
to grayscale (8 bit) and inserted onto a gray background. Each
stimulus screen consisted of images of four different individuals,
either four young male faces or four old male faces. The
photographs appeared on the upper-left, upper-right, lower-left,
and lower-right sides from the center of the screen. The average
luminance of the faces was 62 cd/m2 (SE = 1.2 cd/m2). The size
of the images was 260 × 360 pixels (2.9◦ × 4.0◦). The center of
each image was at a 2.7◦ horizontal and 2.7◦ vertical viewing angle
from the center of the screen. Stimulus duration was 150 ms, the
inter-stimulus intervals were between 366 and 416 ms with a jitter
in steps of 16.67 ms.

There were four conditions in the experiment in separate
blocks (i.e., inverted and upright faces were presented in separate
sequences). Photographs were presented either in the original
position or inverted (Position: upright, inverted). Either the
photographs of young or old models were deviant stimuli
(Photographs: young, old). In the sequences 20% of the stimuli
were deviants. The order of presentation of conditions was
counterbalanced across participants. There were 400 stimuli (320
standards and 80 deviants) within a condition. The presentation
order of the models was random with the restriction that a
photograph of the same model was not presented at subsequent
stimuli, that is, faces changed trial-by-trial. (The photograph of a
model as standard face was repeated 80 times, a deviant one was
repeated 20 times within a condition).

The task-relevant stimuli appeared on the central area of
the screen and consisted of two disks. A red disk served as a
fixation point (0.19◦ visual angle), and a green disk (0.38◦) made
horizontal pseudorandom movements around the red disk. The
participant’s task was to keep the green disk as close to the fixation
point as possible using the S (left) and É (right) keys of the
keyboard. Errors occurred when the distance of the two disks
exceeded 0.77◦ in either direction. In case of an error, the color of
the green disk changed to blue providing online visual feedback.
Performance (the sum of the errors in one block) was reported
on the screen at the end of each block. Figure 1 shows examples
of the stimulus display. The experiment started with a practice
block (252 trials) to ensure that the participant fully understood
the task. In the practice sequence an equal number of young
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FIGURE 1 | Examples of the stimulus display. At the center there is the task-field with the target and moving circles is at the center.

and old faces were mixed within the sequence. EEG was not
recorded in this block.

Measurement of Brain Electric Activity
Electrophysiological recording was performed in an electrically
and acoustically shielded room. Electrical brain activity was
recorded from 32 locations according to the extended 10–20
system (BrainVision Recorder 1.21.0303, ActiChamp amplifier,
Ag/AgCl active electrodes, EasyCap (Brain Products GmbH),
sampling rate: 1000 Hz, DC-70 Hz online filtering). The ground
electrode was placed on the forehead (AFz) and the reference
electrode was on the nose tip. Both horizontal and vertical
electrooculogram signals (HEOG and VEOG) were recorded
with bipolar configurations between two electrodes (placed
lateral to the outer canthi of the two eyes and above and
below the left eye, respectively). The EEG signal was bandpass
filtered offline with a non-causal Kaiser-windowed Finite Impulse
Response filter (low pass filter parameters: 30 Hz of cutoff
frequency, beta of 12.2653, a transition bandwidth of 10 Hz; high
pass filter parameters: 0.1 Hz of cut off frequency, a transition
bandwidth of 0.2 Hz). Epochs ranging from −100 to 600 ms
relative to the onset of stimuli were extracted for all deviants and
for those standards that immediately preceded a deviant. The
first 100 ms of each epoch served as the baseline. Epochs with
larger than 100 µV or smaller than 2 µV voltage change were
considered artifacts and rejected from further processing. ERPs
were calculated by averaging the extracted epochs (separately
for standards and deviants for young and old faces). Difference

waveforms were created by subtracting the ERPs to standards
from the ERPs to deviants, separately for the two age category
of the models (inverse control procedure), i.e., deviant and
standard responses to physically identical stimuli were compared
(deviant old face vs. standard old face and deviant young face vs.
standard young face).

Analyses and Comparisons
Exogenous Components
P1 latency was measured at POz and Oz locations as the largest
positivity within the 60–130 ms range, and P1 amplitude was
measured as the average of a ± 10 ms range around the
group averages. Amplitude and latency values were calculated
in repeated measure ANOVAs with between group factor of
Group (younger, older), and within group factors of Photograph
(young, old), Stimulus (deviant, standard), and Position (upright,
inverted). N1/N170 latency was measured at PO7 and PO8
locations as the largest negative/smallest positive value in the
100–200 ms range, and N1/N170 amplitude was measured as the
average of a ± 10 ms range around the group averages. In the
ANOVAs on latencies and amplitudes, Location (left, right) was
included as an additional factor. P2 latency (as the largest positive
value) was measured within the 170–270 and 190–290 ms latency
ranges (younger and older group, respectively), and amplitude
was measured as the average of a ± 10 ms range around the
group averages at P7 and P8 locations. In the ANOVAs the
between group factor was Group (younger, older), and within
group factors were Photograph (young, old), Stimulus (deviant,
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standard), Position (upright, inverted), and Location (left, right).
We report here only age-related differences, because other aspects
of exogenous activity are beyond the scope of this study1.

Difference Potentials
To explore the possibility of deviant minus standard differences,
as the first step we calculated consecutive t-tests (difference
from zero as null-hypothesis) at PO7, PO3, POz, PO4, PO8, O1,
Oz, and O2 locations on the deviant minus standard difference
potentials at all points within the 200–400 ms latency range,
i.e., in the expected range of vMMN. As criteria we considered
significant t-values (p < 0.05) at least over two adjacent locations
and 20 subsequent significant points (20 ms per location).
Afterward we investigated the difference potentials in two epochs:
in 230–270 and 330–370 ms, respectively, i.e., the middle part of
the 200–300 and 300–400 ms latency ranges. These investigations
were conducted in a posterior ROI, containing PO7, PO3, POz,
PO4, PO8, O1, Oz, and O2 locations. These tests were conducted
only if there were significant results in the exploratory analyzes.
In the two epochs we calculated Benjamini-Hochberg corrected
t-tests, comparing the difference potentials to zero. In these
calculations the Statistica 13 (TIBCO Software Inc.) was applied.
In case of tendencies of deviant minus standard differences,
we conducted Bayesian statistics (JASP Team, 2018) to control
the reliability of null effects (this calculation was not planned
a priori). We used the default prior option for the t-tests, a
Cauchy distribution with spread r set to 0.707. All tests were
two-tailed2.

In case of reliable differences between the ERPs to deviant
and standard stimuli, we conducted a source analysis using
the sLORETA method. These results, along with the applied
calculations are presented in Supplementary Materials.

RESULTS

Behavioral Results
The number of errors (the circle outside the target field) was
larger in the older group (36.1, SE = 11.9) than in the younger
group (2.10, SE = 0.60), according to the Mann-Whitney test,
p < 0.001. The task was easier in the younger group, however,
as we noted, participants of the older group attempted to
concentrate on the task.

Event-Related Potentials
Exogenous Components
As Figure 2 shows, ERPs were different in the two age-groups.
Following the P1 component, in the older group the ERP
returned to the baseline, and the N1 component was followed by

1The complete data set is available in the Supplementary Material.
2It should be noted, that in a formal sense an ANOVA with factors of Group
(younger, older), Photograph (young, old), Stimulus (deviant, standard), and ROI
(parieto-occipital, occipital) corresponds to the design. However, due to the
lack of significant differences in the younger group, it is equivocal to select a
proper latency range of measurements. Results of an ANOVA using the range of
significant difference between young and old photographs in the older group show
only significant Group× Picture interaction: F(1,38) = 4.13, p < 0.05, ηp

2 = 0.10.

the P2. In the younger group N1 did not reach the baseline. This is
because the negativity superimposed on a positive wave, and this
positivity peaked as P2. Table 1 shows the latency and amplitude
values of these components.

On the P1 latency values we obtained a significant main effect
of Group, F(1,38) = 14.66, ηp

2 = 0.28, p < 0.001, showing shorter
P1 latency in the older group. For the P1 amplitude, despite the
apparent difference we obtained no age-related difference. For the
N1 latency we obtained no age-related differences. It is worth
noting that the latencies were below 150 ms, which is shorter
than the usual N170 latency. As it is evident from Figure 2,
N1 amplitude was larger in the older group, accordingly, this
difference was significant, F(1,38) = 11.42, ηp

2 = 0.23, p < 0.01. P2
latency was longer in the older group, F(1,38) = 33.60, ηp

2 = 0.47,
p < 0.001, and P2 amplitude was larger in the younger group,
F(1,38) = 10.15, ηp

2 = 0.21, p = 0.003.

Difference Potentials
In the inverted condition the difference potentials failed to
pass the criteria of the exploratory analysis, therefore we did
not analyze this condition further. In the younger group the
deviant minus standard difference just failed the criteria (at the
photography with young models, in the 200–300 ms range there
were negativities of 28 and 16 ms long epochs at O2 and Oz
locations, respectively), therefore we further analyzed the earlier
range in this age group. In the older group significant negativity
emerged within the 343–374 ms latency range at all locations for
the photographs depicting old models.

Figure 3 shows the difference potentials, and Figure 4 shows
the surface distribution of the difference potentials in the 230–
270 and 330–370 ms ranges to upright photographs in the
two age-groups for the two ages of models. Table 2 shows
the mean amplitude values of the above ranges. In the t-tests
significant differences appeared in the older group in the 330–
370 ms range for the photographs of old models, t(19) = 3.76,
d = 0.79, p < 0.05 (Benjamini-Hochberg corrected), and there
was a tendency for the negativity for young models t(19) = 2.05,
d = 0.46, p < 0.06 (uncorrected). In the younger group we
obtained a tendency of young deviant-related negativity in the
230–270 ms range, t(19) = 1.85, d = 0.41, p < 0.08 (uncorrected).
No other comparison approached significance.

In the Bayesian analyses we obtained strong evidence for the
negative difference potential in the older group for upright old
models in the 330–370 ms range (BF10 = 15.93). In this condition
an anecdotal evidence appeared in the 330–370 ms range for
young models (BF10 = 1.31). In the younger group the apparent
negativity for the young models in the 230–270 ms range was
unreliable (BF10 = 0.97).

DISCUSSION

The aim of the present study was to investigate the possibility
of automatic identification of models’ age in photographs. To
this end, in a passive oddball sequence of photographs some
model’s age were different (deviants) from the frequent age of
the models (standards). We investigated a group of younger and
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FIGURE 2 | Event-related potentials in the younger and older groups to upright and inverted (-i) photographs of young and old models. For illustrative reasons the
posterior ROI is divided into left (PO7, PO3, O1) middle (POz, Oz) and right (PO8, PO4, O2) parts.

TABLE 1 | Mean amplitude (µV) and latency (ms) values of the P1, N1, and P2 components for upright and inverted photographs in the younger and older groups to the
standard stimuli. P1 was measured at POz, N1 was measured at PO8 and P2 was measured at P7 (S.E.M. in parenthesis).

Younger group Older group

Photo Upright Inverted Upright Inverted

Young Old Young Old Young Old Young Old

Latency

P1 96 (3.42) 91 (3.43) 91 (3.18) 94 (3.87) 83 (3.00) 79 (2.00) 80 (2.48) 81 (2.90)

N1 139 (4.40) 146 (4.66) 146 (5.34) 149 (4.21) 144 (7.41) 138 (6.84) 139 (6.37) 140 (6.51)

P2 213 (5.06) 207 (4.85) 213 (5.09) 217 (5.12) 247 (6.29) 243 (6.09) 250 (6.17) 244 (6.10)

Amplitude

P1 5.2 (0.74) 4.8 (0.94) 5.1 (0.82) 5.0 (0.91) 3.7 (0.46) 3.7 (0.50) 3.3 (0.43) 3.4 (0.54)

N1 1.4 (0.55) 1.8 (0.60) 1.8 (0.63) 2.1 (0.63) −0.7 (0.53) −0.2 (0.90) −0.4 (0.78) −0.4 (0.80)

P2 4.2 (0.57) 3.5 (0.66) 3.9 (0.66) 4.0 (0.69) 1.7 (0,55) 2.0 (0.56) 1.7 (0.53) 1.3 (0.62)
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FIGURE 3 | Deviant minus standard difference potentials in the younger and older groups to upright photographs of young and old models. For illustrative reasons
the posterior ROI is divided into left (PO7, PO3, O1) middle (POz, Oz) and right (PO8, PO4, O2) parts.

FIGURE 4 | Surface distribution of the deviant minus standard difference potentials in the 230–270 and 330–370 ms latency ranges in the younger and older groups
to upright photographs of young and old models.

a group of older participants with deviant photographs of old
and young models, and expected deviant minus standard event-
related activity, the visual mismatch negativity (vMMN). As a
specific expectation, we anticipated different effects to own-age
vs. other-age deviancies.

Reliable deviant minus standard negativity (using traditional
and Bayesian methods) appeared only in the older group to
upright photographs of old models. This difference emerged

in the 330–370 ms latency range, and it can be identified as
vMMN. Although there was a tendency for similar posterior
negativity to photographs of young models, the above results
are a hint of the own-age effect, i.e., increased sensitivity to
infrequent photographs of faces of age similar to that of the
participants. Another tendency in the younger group for deviant
minus standard difference at photographs of young models (in
the 230–270 ms range) does not contradict the possibility of
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TABLE 2 | Mean amplitude of the difference potentials (µV) in the younger and
older groups in the 230–270 and 330–370 ms ranges to upright photographs of
young and old models (S.E.M. in parenthesis).

Younger group Older group

Young model Old model Young model Old model

230–270 ms −0.83 (0.45) −0.24 (0.29) −0.36 (0.33) −0.20 (0.37)

330–370 ms −0.05 (0.67) 0.09 (0.46) −0.70 (0.34) −1.10 (0.31)

larger sensitivity to own-age faces. While the results in the older
group corresponded to our expectation, as one of the reviewers
noted, another way of thinking leads to different expectation.
If participants have higher sensitivity to same-age faces, then
it is likely that participants form a more robust standard
representation for same-age standards, and as a result, different-
age deviants elicit greater vMMN. However, we obtained no
results in this direction.

Visual mismatch negativity to face-related stimuli have been
reported in various post-stimulus latency ranges. The 320–370 ms
range is relatively late, but it is within the range reported in
previous studies (e.g., Susac et al., 2004, 2010; Gayle et al.,
2012; Kimura, 2012; Vogel et al., 2015) and also within the
vMMN range for other complex stimuli like right vs. left hands
(Stefanics and Czigler, 2012). Due to the dependence of the
position (upright vs. inverted) the effect seems to depend on
holistic face processing, instead of the effect of low-level physical
differences (e.g., Yin, 1969; Maurer et al., 2002; for review see
Rossion, 2009). Our inverse control method, i.e., the comparison
of faces of identical age in the role of deviant and standard,
underscores this statement.

Using a similar method (four photographs in eccentric
positions) Stefanics et al. (2012) obtained much more robust
vMMN to emotional deviancy, showing that facial age difference
is a less salient characteristic than facial emotion. Being an
unexpected result, the sensitivity to deviant photographs in the
older group deserves discussion. As a specificity of the present
design, four photographs were presented at eccentric locations,
and the task in the center of the screen required continuous
fixation to the task field. This arrangement required stronger focal
attention than other studies in the field of age-related vMMN
differences. As a possibility, younger participants concentrated
more effectively on the task-field, e.g., they were more efficient
in inhibiting the task-irrelevant part of the visual field. On the
one hand, this explanation corresponds to the compromised
inhibitory processes in some fields of aging research (e.g., Hasher
and Zacks, 1988), the larger effect of age-related distraction (e.g.,
Karthaus et al., 2020), and increased ERP effects of irrelevant
stimuli (Kojouharova et al., 2020). On the other hand, spatial
attention is relatively preserved in the elderly (for a discussion
see Lawrence et al., 2018), and as an example, in the flanker task
there is no robust age-related difference (De Bruin and Della Sala,
2018). Furthermore, less effective processing of events appearing
at parafoveal regions in older participants is also against the above
possibility. As an example, younger participants outperformed
older participants in detection of motion direction at parafoveal

areas (Park et al., 2020). However, according to some results,
irrelevant stimuli outside the focus of attention have larger effects
in older adults (Porter et al., 2012; Tsvetanov et al., 2013). As for
the vMMN research, in a recent study with younger participants
File and Czigler (2019) obtained considerable spatial attention
effects on vMMN. In the only study with complex stimuli
(meaningful vs. meaningless letter strings; Gaál et al., 2017) the
advantage of older participants was due to the longer aftereffect
of stimulus appearance. Longer aftereffect may facilitate the
more elaborate processing of stimuli. The relatively long vMMN
latency supports this assumption. The less efficient filtering of
the task-irrelevant stimuli together with the possible advantage in
stimulus coding seems to be a favorable condition for our older
group for the emergence of vMMN.

As the more specific aim of the present study, the investigation
of own-age bias (OAB) in the field of automatic change detection,
in the older group we obtained positive results. In this group
the magnitude of the reliable vMMN to photographs of old
models was similar to the vMMN amplitude in younger groups
to emotional face deviants (e.g., Chang et al., 2010; Wang
et al., 2014; Sel et al., 2016). As an apparent controversy, in
some studies OAB was less pronounced or even absent in older
participants (e.g., Harrison and Hole, 2009; Wiese et al., 2012).
However, our automatic change-detection procedure is different
from the recognition paradigm of OAB studies, apart from a
methodological similarity of a certain task that required task-
irrelevant coding of facial age (Randall et al., 2012; Neumann
et al., 2014). However, even in these studies participants had to
attend to other aspects of the faces (e.g., gender, aesthetic value).
As results on object-related attention (Duncan, 1984; Scholl,
2001) indicate, even if the ages of the models were task-irrelevant,
faces were not “unattended.” On the contrary, in the present
study the faces were outside the focus of attention, therefore
the faces were not only task-irrelevant, but they were also
“unattended.” As the results of the present study show, in the age
group with relevant vMMN (i.e., the older group), photographs
of their own age were automatically registered as deviant stimuli
among the photographs of models of other ages. This way our
results show that OAB has a component of automatic sensitivity.
On a theoretical (but speculative) level, vMMN is considered
as an index of predictive coding mechanism (Stefanics et al.,
2014). According to this account, the representation of incoming
stimuli is compared to the model of expected events. In case
of mismatch, an error signal is compared to gradually updated
models throughout a cascade of processes. As Hugenberg et al.
(2010) proposed, other-age photographs are processed only at
categorical level, whereas for own-age photographs there is
an attempt at processing at individual level. The attempt at
processing at a deeper level may contribute to a larger discrepancy
(surprise) effect and accordingly, to a stronger activity of the
match-mismatch mechanism.

Besides the deviant-related ERP differences, we obtained
robust age-related differences in the exogenous ERP activities
(P1, N1, and P2), i.e., earlier P1 in the older group, and larger
and earlier P2 in the younger group. In previous studies the
results on age-related differences on P1 are equivocal. Čeponiené
et al. (2008) obtained smaller visual P1 in the older group, and
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this difference was especially large over the occipital regions.
In contrast, after controlling for visual acuity (similar to that
in the present study), Daffner et al. (2013) obtained larger P1
in older participants. Our results on P1 can be interpreted as
preserved early processing in the older group. It is important to
remind that the stimuli of the present study were human faces.
P1 sensitivity to faces, especially to non-cropped photographs
has been reported earlier (e.g., Dering et al., 2011). However,
unlike in some studies (e.g., Pesciarelli et al., 2011), in the present
study we found no P1 amplitude difference between the upright
and inverted faces, showing that in the present study P1 had
no strong connection to a face-specific processing stage. Facial
stimuli typically elicit the posterior N170 component (e.g., Bentin
et al., 1996). The N1 component of the present study was earlier
than the usual latency of N170. Furthermore (like in case of P1),
we obtained no N1 difference between the upright and inverted
faces, e.g., longer N170 latency to inverted faces (Rossion et al.,
2000). In an earlier study with similar stimulus presentation
(four photographs at the four corners of the visual field) we
got characteristic N170 components (Stefanics et al., 2012). As
a marked difference between the studies, in the Stefanics et al.
(2012) study the target-stimuli appeared intermittently as a
change of the fixation cross, whereas the tracking task of the
present study required continuous attentive processing. The strict
attentional control might diminish the recordable negativity
within the 100–200 ms latency range.

In the younger group N1 superimposed on a positivity
peaked in the usual P2 range. The function of the processes
underlying P2 is unclear, but their role is implicated at different
stages of face processing (Itier and Taylor, 2004; Boutsen et al.,
2006). Amplitude changes of P2 (P200) appeared in studies that
investigated face-related decisions. Wiese et al. (2008) obtained
amplitude decrease for old faces at older participants, and
they interpreted the difference as deeper or more extensive
processing at stimulus ambiguity. Faerber et al. (2015) obtained
P2 (P200) amplitude reduction as a priming effect in younger
participants, supporting this interpretation. In a passive task,
i.e., without intentional decision demand, we obtained no such
amplitude difference.

In summary, sequences of photographs showing models
of particular age acquire memory representation for this
regularity, even if the photographs are irrelevant (unattended).
Photographs violating this regularity (deviants) elicit the vMMN
component. This process is more effective in older adults,

especially for deviant photographs of old models. Exogenous
visual components are markedly different in younger and older
groups, but little is known about the functional aspects of
these differences.
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Čeponiené, R., Westerfield, M., Torki, M., and Townsend, J. (2008). Modality-
specificity of sensory aging in vision and audition. Evidence from event-related
potential. Brain Res. 1215, 53–68. doi: 10.1016/j.brainres.2008.02.010

Chang, Y., Xu, J., Shi, B. N., Zhang, B., and Zhao, L. (2010). Dysfunction of
processing task-irrelevant emotional faces in major depressive disorder patients
revealed by expression-related visual MMN. Neurosci. Lett. 472, 33–77. doi:
10.1016/j.neulet.2010.01.050

Daffner, K. R., Haring, A. E., Alpert, B. R., Zhuravleva, T. Y., Mott, K. K., and
Holcomb, P. J. (2013). The impact of visual acuity on age-related differences
in neural markers of early visual processing. Neuroimage 15, 127–136. doi:
10.1016/j.neuroimage.2012.10.089

Frontiers in Human Neuroscience | www.frontiersin.org 9 August 2021 | Volume 15 | Article 70770275

https://www.frontiersin.org/articles/10.3389/fnhum.2021.707702/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2021.707702/full#supplementary-material
https://doi.org/10.1186/1744-9081-5-30
https://doi.org/10.1186/1744-9081-5-30
https://doi.org/10.3758/bf03197012
https://doi.org/10.3758/bf03197012
https://doi.org/10.1162/jocn.1996.8.6.551
https://doi.org/10.1016/j.neuroimage.2006.03.023
https://doi.org/10.1016/j.neuroimage.2006.03.023
https://doi.org/10.1016/j.brainres.2008.02.010
https://doi.org/10.1016/j.neulet.2010.01.050
https://doi.org/10.1016/j.neulet.2010.01.050
https://doi.org/10.1016/j.neuroimage.2012.10.089
https://doi.org/10.1016/j.neuroimage.2012.10.089
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-707702 August 18, 2021 Time: 13:44 # 10

Csizmadia et al. Older Adults Automatically Detect Age

De Bruin, A., and Della Sala, S. (2018). Effects of age on inhibitory control
are affected by task-specific features. Q. J. Exp. Psychol. 71, 1219–1233. doi:
10.1080/17470218.2017.1311352

Dering, B., Martin, C. D., Moro, S., Pegna, A. J., and Thierry, G. (2011). Face-
sensitive processes one hundred millisecond after picture onset. Front. Hum.
Neurosci. 15:93. doi: 10.3389/fnhum.2011.00093

Duncan, J. (1984). Selective attention and the organization of visual information.
J. Exp. Psychol. Gen. 113, 501–517. doi: 10.1037/0096-3445.113.4.501

Durant, S., Sulykos, I., and Czigler, I. (2017). Automatic deviation of orientation
variance. Neurosci. Lett. 658, 43–47. doi: 10.1016/j.neulet.2017.08.027

Ebner, N. C., He, Y., Fichtenholtz, H. M., McCarthy, G., and Johnson, M. K.
(2011). Electrophysiological correlates of processing faces of younger and older
individuals. Soc. Cogn. Affect. Neurosci. 6, 526–535. doi: 10.1093/scan/nsq074

Faerber, S. J., Kaufmann, J. M., and Schweinberger, S. R. (2015). Early
temporal negativity is sensitive to perceived (rather than physical) facial
identity. Neuropsychologia 75, 132–142. doi: 10.1016/j.neuropsychologia.2015.
05.023

File, D., and Czigler, I. (2019). Automatic detection of violations of statistical
regularities in the periphery is affected by the focus of spatial attention: a visual
mismatch negativity study. Eur. J. Neurosci. 49, 1348–1356.

Gaál, Z. A., Bodnár, F., and Czigler, I. (2017). When elderly outperform young
adults – integration in vision revealed by the visual mismatch negativity event-
related component. Front. Aging Neurosci. 9:5. doi: 10.3389/fnagi.2017.00015

Gayle, L. C., Gal, D. E., and Kieffaber, P. D. (2012). Measuring affective reactivity in
individuals with autism spectrum personality traits using the visual mismatch
negativity event-related brain potential. Front. Hum. Neurosci. 6:334. doi: 10.
3389/fnhum.2012.00334

Harrison, V., and Hole, G. (2009). Evidence for a contact.based explanation of
the own-age bias in face recognition. Psychon. Bull. Rev. 16, 264–296. doi:
10.3758/pbr.16.2.264

Hasher, L., and Zacks, R. T. (1988). “Working memory, comprehension, and aging:
a review and a new view,” in The Psychology of Learning and Motivation, ed. G.
Bower (San Diego, CA: Academic Press), 193–225. doi: 10.1016/s0079-7421(08)
60041-9

He, Y., Ebner, N., and Johnson, M. K. (2011). What predicts the own-age bias in in
face recognition? Soc. Cogn. 29, 97–109. doi: 10.1521/soco.2011.29.1.97

Hugenberg, K., Yiung, S. G., Bernstein, M. J., and Sacco, D. F. (2010). The
organization-individualization model: an integrative accoubt of the other-race
recognition deficit. Psychol. Rev. 117, 1168–1187. doi: 10.1037/a0020463

Itier, R. J., and Taylor, M. J. (2004). N170 or N1? Spatiotemporal differences
between object and face processing using ERPs. Cereb. Cortex 14, 132–142.
doi: 10.1093/cercor/bhg111

JASP Team (2018). JASP (Version 0.9.2) [Computer Software].
Karthaus, M., Wascher, E., Falkenstein, M., and Getzmann, S. (2020). The ability of

young, middle-aged and older drivers to inhibit visual and auditory distraction
in a driving simulator task. Transp. Res. F 68, 272–284. doi: 10.1016/j.trf.2019.
11.007

Kecskés-Kovács, K., Sulykos, I., and Czigler, I. (2013b). Visual mismatch negativity
is sensitive to symmetry as a perceptual category. Eur. J. Neurosci. 37, 662–667.
doi: 10.1111/ejn.12061

Kecskés-Kovács, K., Sulykos, I., and Czigler, I. (2013a). Is it a face of a woman or
a man? Visual mismatch negativity is sensitive to gender category. Front. Hum.
Neurosci. 7:532. doi: 10.3389/fnhum.2013.00532

Kimura, M. (2012). Visual mismatch negativity and unintentional temporal
context-based prediction in vision. Int. J. Psychophysiol. 83, 144–155. doi:
10.1016/j.ijpsycho.2011.11.010

Kimura, M., Schröger, E., and Czigler, I. (2011). Visual mismatch negativity and
its importance in visual cognitive sciences. Neuroreport 22, 669–673. doi:
10.1097/wnr.0b013e32834973ba

Kojouharova, P., Gaál, Z. A., Nagy, B., and Czigler, I. (2020). Age effects on
distraction in a visual task requiring fast reactions: an event-related potential
study. Front. Aging Neurosci. 7:596047. doi: 10.3389/fnagi.2020.596047

Kovarski, K., Latinus, M., Charpentier, J., Clery, H., Roux, S., Houy-Durand, E.,
et al. (2017). Expression related vMMN: disentangling emotional from neutral
change. Front. Hum. Neurosci. 11:18. doi: 10.3389/fnhum.2017.00018

Lawrence, R. K., Edwards, M., and Goodhew, S. C. (2018). Changes in the spatial
spread of attention with ageing. Acta Psychol. 188, 188–199. doi: 10.1016/j.
actpsy.2018.06.009

Li, X., Lu, Y., Sun, G., Gao, L., and Zhao, L. (2012). Visual mismatch negativity
elicited by facial expressions: new evidence from the equiprobable paradigm.
Behav. Brain Funct. 8:7. doi: 10.1186/1744-9081-8-7

Lorenzo-López, L., Amenedo, E., Pazo-Alvarez, P., and Cadaveira, F. (2004). Pre-
attentive detection of motion direction changes in normal aging. Neuroreport
15, 2633–2636. doi: 10.1097/00001756-200412030-00015

Maurer, D., Grand, I. R., and Mondloch, C. J. (2002). The many faces of configural
processing. Trends Cogn. Sci. 6, 255–260. doi: 10.1016/s1364-6613(02)
01903-4

Minear, M., and Park, D. C. (2004). A lifespan database of adult facial stimuli.
Behav. Res. Methods Instrum. Comput. 36, 630–633. doi: 10.3758/bf032
06543

Mukudi, P. B. L., and Hills, P. J. (2019). The combined influence of the own-
age, -genfer, and –ethnicity bias on face recognition. Acta Psychol. 194, 1–6.
doi: 10.1016/j.actpsy.2019.01.009

Neumann, M. F., End, E., Luttmann, S., Schweinberger, S. R., and Wiese, H. (2014).
The own-age bias in face memory is unrelated to differences in attention –
Evidence from event-related potentials. Cogn. Affect. Behav. Neurosci. 15, 180–
194. doi: 10.3758/s13415-014-0306-7

Park, S., Nguyen, B. N., and McKendrick, A. M. (2020). Ageing elevates peripheral
spatial suppression of motion regardless of divided attention. Ophthalmic
Physiol. Opt. 40, 117–127. doi: 10.1111/opo.12674

Pesciarelli, F., Sarlo, M., and Leo, I. (2011). The time course of implicit processing
of facial features: an event-related potential study. Neuropsychologia 49, 1154–
1161. doi: 10.1016/j.neuropsychologia.2011.02.003

Porter, G., Wright, A., Tales, A., and Gilchrist, I. D. (2012). Stimulus onsets and
distraction in younger and older adults. Psychol. Aging 27, 1111–1119. doi:
10.1037/a0028486

Randall, J. L., Tabernik, H. E., Aguilra, A. M., Anastasi, J. S., and Valk, K. V. (2012).
Effects of encoding task on the own-age face recognition bias. J. Gen. Psychol.
139, 55–67. doi: 10.1080/00221309.2012.657266

Rhodes, M. G., and Anastasi, J. S. (2012). The own-age bias in face recognition: a
meta-analytic and theoretical review. Psychol. Bull. 138, 146–174. doi: 10.1037/
a0025750

Rossion, B. (2009). Distinguishing the cause and consequence of face inversion: the
perceptual field hypothesis. Acta Psychol. (Amst.) 132, 300–312. doi: 10.1016/j.
actpsy.2009.08.002 Epub 2009 Sep 10.

Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., et al.
(2000). The N170 occipito-temporal component is delayed and enhanced to
inverted faces but not to inverted objects: an electrophysiological account of
face-specific processes in the human brain. Neuroreport 11, 69–74. doi: 10.
1097/00001756-200001170-00014
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Technology (AIST), Tsukuba, Japan

When a visual object changes its position along with certain sequential regularities,
the visual system rapidly and automatically forms a prediction regarding the future
position of the object based on the regularities. Such prediction can drastically
alter visual perception. A phenomenon called representational momentum (RM: a
predictive displacement of the perceived final position of a visual object along its
recent regular pattern) has provided extensive evidence for the predictive modulation
of visual perception. The purpose of the present study was to identify neural effects
that could explain individual differences in the strength of the predictive modulation of
visual perception as measured by RM. For this purpose, in two experiments with a
conventional RM paradigm where a bar was discretely presented in a regular rotation
manner (with a step of 18◦ in Experiment 1 and a step of 20◦ in Experiment 2), visual
evoked potentials (VEPs) in response to the regularly rotated bar were measured,
and correlations between the magnitudes of RM and VEPs were examined. The
results showed that the magnitudes of RM and central P2 were negatively correlated,
consistently in both experiments; participants who showed a smaller central P2 tended
to exhibit greater RM. Together with a previous proposal that central P2 would represent
delayed reactivation of lower visual areas around the striate and prestriate cortices
via reentrant feedback projections from higher areas, the present results suggest that
greater suppression of delayed reactivation of lower visual areas (as indicated by smaller
central P2) may underlie stronger predictive modulation of visual perception (as indicated
by greater RM).

Keywords: visual evoked potentials (VEPs), representational momentum, visual perception, prediction
suppression, central P2, individual difference

INTRODUCTION

Visual objects in the environment (e.g., a flying ball) dynamically change their positions.
However, when an object’s image hits an observer’s eyes, the observer cannot perceive the image
instantaneously; it takes about a tenth of a second after the image hits the eyes. Therefore, by the
time the observer has perceived the object at a certain position, its actual position has already
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changed. Despite this fundamental problem, an observer can
effortlessly interact with such objects in real time (e.g., by catching
a flying ball). A possible solution to the problem of how the
visual system can bridge the gap between perception and action
is to form a prediction about the future position of the object,
based on sequential regularities in the recent past (i.e., recent
trajectory of the ball) (Mackay, 1958; Freyd, 1992; Nijhawan,
1994; Hubbard, 1995, 2005).

A phenomenon known as representational momentum (RM:
Freyd and Finke, 1984, 1985) provides strong evidence for the
existence of such prediction based on sequential regularities in
the recent past and demonstrates that visual perception can
indeed be strongly modulated by the prediction. RM denotes
predictive displacement of the perceived final position of a
changing object. In a conventional RM paradigm developed by
Freyd and Finke (1984, 1985), participants observe a stimulus
sequence where a bar is discretely presented in a regular
rotation manner (denoted “inducing stimuli”: e.g., 10◦/30◦/50◦).
Participants are required to compare the orientation of the final
inducing stimulus (i.e., 50◦) to that of a subsequent bar (denoted
“probe”). It has been shown that participants report “same” with
higher probability when the probe is slightly shifted forward
along the regular direction of rotation (e.g., 52◦) than when it is
truly the same (50◦) or shifted backward (e.g., 48◦) (Freyd and
Finke, 1985). RM is thought to reflect predictive displacement of
the sensory representation of an object along its recent change
pattern (Freyd, 1992; Hubbard, 1995, 2005). RM can be observed
based on sequential regularities in position or orientation but also
in other visual features (Kelly and Freyd, 1987; Hayes and Freyd,
2002) and sequential regularities in auditory features (Freyd et al.,
1990), suggesting that the predictive displacement of sensory
representation would be a general phenomenon across visual
features and sensory modalities. Also, RM can occur without the
observer paying much attention to the object (Hayes and Freyd,
2002; for related findings, see Finke and Freyd, 1985), suggesting
that the predictive displacement of sensory representation can
occur in an automatic and obligatory manner.

Representational momentum is a robust phenomenon that
is stably observed across participants (Freyd and Finke, 1985).
However, there seem to be large individual differences in
the magnitude of RM (Finke et al., 1986; Verfaillie and
d’Ydewalle, 1991), which leads to the assumption that there
may be large individual differences in the strength of the
predictive modulation of visual perception. The purpose of the
present study was to identify neural effects that could explain
individual differences in the strength of predictive modulation
of visual perception as measured by RM. For this purpose, the
present study measured visual evoked potentials (VEPs) with a
conventional RM paradigm (Freyd and Finke, 1984, 1985). In
two experiments, a bar was discretely presented in a regular
rotation manner (i.e., inducing stimuli); with a step of 18◦ in
Experiment 1 (Figure 1) and 20◦ in Experiment 2 (Figure 2).
Participants were required to compare the orientation of the final
(i.e., tenth) inducing stimulus to that of a subsequent probe. VEPs
in response to inducing stimuli were measured, and correlations
were examined between the magnitudes of RM and VEPs: (1)
occipito-temporal P1 at around 110 ms, (2) frontal N1 at around

140 ms, (3) occipito-temporal N1 at around 170 ms, and (4)
central P2 at around 200 ms after stimulus onset (Clark et al.,
1995; Di Russo et al., 2002; Capilla et al., 2016).1

No previous study has examined the relationship between
the magnitudes of RM and VEPs in response to inducing
stimuli. However, based on a previous VEP finding on automatic
prediction based on sequential regularities (Kimura and Takeda,
2015), the neural effect that is most likely to correlate with RM
is central P2. To identify neural effects that specifically emerge
when the current position of an object successfully matches the
predicted position of the object based on sequential regularities,
Kimura and Takeda (2015) compared VEPs elicited by bars
that were discretely presented in a regular rotation manner
(e.g., 10◦/30◦/50◦/70◦/90◦. . ., where the upcoming orientation
of the bar could be predicted, as in the RM paradigm) to
VEPs elicited by the same bars that were discretely presented
in a random manner (e.g., 70◦/10◦/30◦/90◦/50◦. . ., where a
prediction of the upcoming orientation of the bar could not be
formed). It was found that central P2 at around 200 ms after
stimulus onset was selectively suppressed when the upcoming
orientation could be predicted compared to when a prediction
could not be formed. Contrary to central P2, no difference in
this comparison was found for occipito-temporal P1 at around
110 ms, frontal N1 at around 140 ms, and occipito-temporal N1
at around 170 ms; instead, occipito-temporal P1 and N1 (but not
frontal N1) were found to be suppressed only when bars were
presented in a repetitive manner (e.g., 10◦/10◦/10◦/10◦/10◦. . .)
compared to when bars were presented in a random manner
(e.g., 70◦/10◦/30◦/90◦/50◦. . .), suggesting that these P1 and N1
effects represent repetition suppression attributable to stimulus-
specific adaptation or neural refractoriness rather than prediction
suppression (cf. Todorovic and de Lange, 2012). Therefore, at
least when a regularly rotating bar was used as stimuli, the
suppression of central P2 is thought to be a unique neural effect
that could emerge when the current position of a visual object
successfully matches the predicted position of the object based
on sequential regularities.

The neural sources of central P2 at around 200 ms were
previously localized in lower visual areas around the striate and
prestriate cortices (Capilla et al., 2016); although the neural

1In general, VEPs time-locked to visual stimulus onset are comprised of (1)
occipital C1 that peaks at around 60 ms, (2) occipito-temporal P1 that peaks at
around 110 ms, (3) frontal N1 that peaks at around 140 ms, (4) occipito-temporal
N1 that peaks at around 170 ms, and (5) central P2 that peaks at around 200 ms
after stimulus onset (Clark et al., 1995; Di Russo et al., 2002; Capilla et al., 2016).
The main neural sources of these VEPs were localized in the visual areas and the
related areas belonging to the dorsal and ventral processing streams: (1) C1 in the
striate cortex (i.e., V1), (2) P1 in the dorsal and ventral extrastriate cortices (e.g.,
V3 and V4), (3) frontal N1 in the parieto-occipital cortex, (4) occipito-temporal N1
in the dorsal extrastriate cortex (e.g., V3), and (5) P2 in the striate and prestriate
cortices (i.e., V1 and V2) (Clark et al., 1995; Di Russo et al., 2002, 2003, 2008;
Capilla et al., 2016). Although tentative, occipital C1, occipito-temporal P1, and
frontal N1 may mainly represent early bottom-up activation, whereas occipito-
temporal N1 and central P2 may mainly represent delayed reactivation of visual
areas via reentrant feedback projections from higher areas (Di Russo et al., 2003,
2008; Capilla et al., 2016; for related findings, see Olson et al., 2001; Noesselt
et al., 2002). Note that occipital C1 was not analyzed in the present study, since
centrally presented visual stimuli (see Figures 1, 2) were not suitable to observe
C1; retinotopically specific single-quadrant stimulation is required to observe C1
(Clark et al., 1995).
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FIGURE 1 | Schematic illustration of the regular and catch trials in Experiment 1. A bar was rotated regularly with a step of 18◦.

FIGURE 2 | Schematic illustration of the regular and catch trials in Experiment 2. A bar was rotated regularly with a step of 20◦.

sources of P2 are still less well understood compared to those
of other VEPs, this finding appears to be consistent with a
non-human neuroimaging finding suggesting the involvement
of lower visual areas (i.e., monkey V2) in the P2 homolog
(Metha et al., 2000). The involvement of lower visual areas
in P2 is interesting, since the neural sources of temporally
earlier VEPs such as P1 at around 110 ms were localized in
higher visual areas including the dorsal and ventral extrastriate
cortices (Clark et al., 1995; Di Russo et al., 2002). To
explain this paradox, P2 has proposed to be a sign of
delayed reactivation of lower visual areas via reentrant feedback
projections from higher areas (Di Russo et al., 2003, 2008).
Based on these previous findings, prediction suppression of
central P2 (Kimura and Takeda, 2015) is best assumed to
represent reduced delayed reactivation of lower visual areas

around the striate and prestriate cortices. This assumption is
consistent with human neuroimaging findings that automatic
prediction based on sequential regularities resulted in suppressed
activation in lower visual areas including the striate cortex,
whereas activation in higher visual areas including the dorsal
extrastriate cortex was not affected (Alink et al., 2010) and
non-human neuroimaging findings that automatic prediction
based on sequential regularities resulted in markedly suppressed
activation in lower visual areas (i.e., monkey V2) rather than
higher visual areas (Vergnieux and Vogels, 2020; see also
Kaposvari et al., 2018).

Taken together, the present study expected that participants
who exhibited greater RM may show smaller central P2 in
response to inducing stimuli; in other words, the magnitudes of
RM and central P2 would show a negative correlation.
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EXPERIMENT 1

The experiment reported here was conducted with multiple
purposes, and included trials that were not related to the present
purpose (i.e., irregular trials; see Materials and Methods). Data
in the irregular trials have already been reported in another
paper (Kimura, 2018). Data reported in this paper have not been
reported elsewhere.

Materials and Methods
Participants
Thirty-five healthy adults (32 males, 3 females; mean age
22.5 years; age range 19–32 years) participated in this experiment.
All participants had normal or corrected-to-normal vision.
Thirty-three participants were right-handed and two were left-
handed. Written informed consent was obtained from each
participant after the nature of the study had been explained. The
experiment was approved by the Safety and Ethics committee
of the National Institute of Advanced Industrial Science and
Technology (AIST).

Stimuli and Procedure
The experiment was controlled by MATLAB (MathWorks) on
Mac OSX with the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). All visual stimuli were presented on a 17-inch cathode
ray tube display (Sony, Trinitron Multiscan G220) at a viewing
distance of about 57 cm.

The experiment consisted of three types of trials (i.e., regular,
irregular, and catch trials). Figure 1 shows an illustration of the
regular and catch trials; the irregular trials are not related to the
present purpose and therefore are not illustrated in Figure 1. The
regular trial was included to measure RM and the catch trial was
included to ensure that participants kept observing the stimulus
sequence. Each trial began with the onset of a gray fixation circle
(42.3 cd/m2; diameter of 0.3◦), which was continuously visible on
the display. At 1000 ms after fixation onset, a stimulus sequence
consisting of 10 presentations of a bar appeared. In the regular
trial, a gray-filled bar (9.2 cd/m2; width of 0.9◦ × height of 5.7◦)
was rotated regularly with a step of 18◦ (i.e., inducing stimuli).
In the catch trial, a gray-filled bar was rotated regularly, but at
any of the 10 positions, it was replaced with a gray-unfilled bar
(i.e., target stimuli). In all trials, each stimulus was presented for
250 ms and the inter-stimulus interval, where only the fixation
circle was presented, was 250 ms. Note that 10 presentations of
inducing stimuli would not necessarily be needed to obtain RM,
given that three, four, or at most five presentations of inducing
stimuli are common in RM studies. In the present study, 10
presentations were adopted to ensure that prediction had been
fully stabilized by the time probe was presented.

This stimulus sequence was followed by a probe. The
orientation of the probe was either the same as or slightly
different than that of the final (i.e., tenth) inducing stimulus
(i.e., −8◦, −6◦, −4◦, −2◦, 0◦, +2◦, +4◦, +6◦, or +8◦).
Here, the participants judged whether the orientations of the
final inducing stimulus and the probe were the same or
different, by pressing either the left or right response button.
Mapping of same/different judgments and left/right buttons

was fixed throughout the experiment for each participant and
counterbalanced across participants. The probe was presented
until the participant’s response.

The participant’s response was immediately followed by a
question display consisting of the words “Present” and “Absent.”
Here, the participants judged whether the target stimulus (i.e., a
gray-unfilled bar presented only in the catch trial) was presented
or not, by pressing either the left or right response button beside
the words on the display. The side on which the words were
presented was varied randomly across trials, with a constraint
that two possible arrangements (i.e., “Present” on the left and
“Absent” on the right, and vice versa) were equally presented
within an experiment. The question display was presented until
the participant’s response, which was immediately followed by a
blank screen for 2000 ms.

The experiment included 180 regular trials and 40 catch trials,
which were arranged in random order. In the 180 regular trials,
20 trial types, defined by the combination of 10 orientations of
the first inducing stimulus (i.e., from 5◦ to 167◦ with a step of
18◦) and two directions of regular rotation (i.e., clockwise and
counterclockwise), were presented in nine trials each. In these
180 trials, nine angular differences between the final inducing
stimulus and the probe (i.e., −8◦, −6◦, −4◦, −2◦, 0◦, +2◦,
+4◦,+6◦, and+8◦) were assigned with equal probabilities. Note
that the 10 orientations of the first inducing stimulus were used
to keep the physical attributes of inducing stimuli presented
at each of the 10 positions in a stimulus sequence on average
the same. That is, at each of 10 positions, 10 orientations were
presented 18 times each.

In the 40 catch trials, the same 20 trial types, defined by the
combination of 10 orientations of the first inducing stimulus
(i.e., from 5◦ to 167◦ with a step of 18◦) and two directions
of regular rotation (i.e., clockwise and counterclockwise), were
presented in two trials each. In these 40 trials, the target stimulus
was presented at each of 10 positions with equal probability. The
orientations of the final inducing stimulus and the probe were
always the same.

The participants performed the task while seated in a chair
in a sound-attenuated, dimly lit room. Before the start of the
experiment, the participants were given instructions about the
same/different judgment. They were instructed to judge whether
the orientations of the tenth stimulus and a subsequent probe
were the same or different, as accurately as possible. They were
also instructed to count stimuli so that the tenth stimulus could
be properly compared with the probe. The speed of their response
was not stressed. Here, they were explicitly informed that the
angular difference would be −8◦, −6◦, −4◦, −2◦, 0◦, +2◦,
+4◦, +6◦, or +8◦; this was intended to help the participants
understand that the angular difference would be quite small.
However, they were not informed about the ratio of “same”
and “different” trials. Information regarding the nine angular
differences might have led participants to expect the probability
of each angular difference to be about 11%. However, such
expectation is unlikely to significantly affect the magnitude of
RM, although it may affect the overall probability of making
a “same” response (Hubbard and Lange, 2010). Finally, it was
emphasized that they should make a “same” response only
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when they believed that the orientations were exactly the same
(Freyd and Finke, 1985).

Next, the participants were given instructions about the
present/absent judgment. They were instructed to judge whether
or not an unfilled stimulus was presented, as accurately as
possible. The speed of their response was not stressed. Here, they
were explicitly informed that the unfilled stimulus could appear
at any of 10 positions in the stimulus sequence. However, they
were not informed about the ratio of “present” and “absent” trials.
It was emphasized that they should keep observing the stimulus
sequence to perform this task adequately.

Finally, the participants were instructed to minimize any
eye movements and blinks when the stimulus sequence was
presented. After these instructions, the participants performed
20–40 practice trials, and then started the experiment.

Recordings
The electroencephalogram (EEG) was recorded with a digital
amplifier (Nihon-Kohden, Neurofax EEG1200) and silver-silver
chloride electrodes placed at 27 scalp sites (Fp1, Fp2, F7, F3, Fz,
F4, F8, FCz, T7, C3, Cz, C4, T8, CPz, P7, P3, Pz, P4, P8, PO7,
PO3, POz, PO4, PO8, O1, Oz, and O2 according to the extended
International 10–20 System). All electrodes were referenced to
the nose tip. To monitor blinks and eye movements, vertical and
horizontal electrooculograms (EOGs) were also recorded with
two electrodes above and below the right eye and two electrodes
at the right and left outer canthi of the eyes, respectively. The
ground electrode was attached to the forehead. The impedance
of all electrodes was kept below 5 k�. The EEG and EOG signals
were bandpass-filtered online at 0.016–300 Hz and digitized at a
sampling rate of 1000 Hz.

The digitized signals were then analyzed by MATLAB
(MathWorks) with EEGLAB toolbox (Delorme and Makeig,
2004) and ERPLAB Toolbox (Lopez-Calderon and Luck, 2014).
The EEG and EOG signals were bandpass-filtered using a non-
causal Butterworth infinite impulse response filter with half-
amplitude cutoffs at 0.1 and 30 Hz and a roll-off of 12 dB/octave.
The EEG and EOG signals time-locked to the onset of inducing
stimuli were extracted. The extracted epochs were 600 ms (i.e.,
from−100 to 500 ms relative to the onset of inducing stimuli). An
independent component analysis (Delorme and Makeig, 2004)
was performed to remove artifacts derived from blinks and eye
movements. The epochs were then baseline-corrected relative to
the initial 100-ms interval (i.e., from −100 to 0 ms relative to the
onset of inducing stimuli).

For each participant, the EEG signals in the regular trials
were averaged for four categories: i.e., inducing stimuli (1) at the
first position, (2) at the second, third, and fourth positions, (3)
at the fifth, sixth, and seventh positions, and (4) at the eighth,
ninth, and tenth positions. VEPs elicited by inducing stimuli
at the first position were separately averaged, in consideration
of their special morphologies reflecting initial-orienting reaction
(Kenemans et al., 1989). VEPs elicited by inducing stimuli at the
second–tenth positions were separated for three categories, to
explore the time course of the correlation of RM and VEPs, while
meeting ideal averaging numbers for VEPs (i.e., about 400 times,
Luck, 2005). Note that the physical attributes of the inducing

stimuli for these four position categories were on average kept
the same. Epochs during which the signal change exceeded ± 80
µV on any of the EEG or EOG electrodes were excluded from
averaging. As a result, the number of epochs averaged for the first,
second–fourth, fifth–seventh, and eighth–tenth positions was, on
average, 170.8 (SD = 10.2), 524.5 (20.9), 530.1 (14.7), and 532.8
(10.4), respectively.

Data Analysis
Magnitude of RM
For each participant, the percentages of “same” responses in the
regular trials were calculated for nine position categories defined
by the angular difference between the final inducing stimulus and
the probe and its relation to the direction of regular rotation
(i.e., backward 8◦, backward 6◦, backward 4◦, backward 2◦, same,
forward 2◦, forward 4◦, forward 6◦, and forward 8◦). Next,
for each participant, the magnitude of RM was estimated by a
standard formula for calculating the mean position of a probe
judged as “same” (Freyd and Jones, 1994; Hayes and Freyd, 2002;
Munger and Minchew, 2002). In this calculation, each “same”
response was weighted by the position of the probe, and the
average of these weighted “same” responses was estimated to be
the magnitude of RM.2 To confirm the occurrence of RM, the
measured values were compared to zero with a one-tailed t-test;
the statistical threshold was p < 0.05.

Target detection
For each participant, the percentage of “present” responses in the
catch trials (i.e., hit rate) and those of “absent” responses in the
regular trials (i.e., correct rejection rates) were calculated.

Magnitude of VEPs
For each participant, the magnitudes of VEPs elicited by inducing
stimuli in the regular trials were estimated by calculating
the mean amplitudes of the occipito-temporal P1, frontal N1,
occipito-temporal N1, and central P2 for the four position
categories (i.e., first, second–fourth, fifth–seventh, and eighth–
tenth positions). The time windows of these VEPs for the
second–fourth, fifth–seventh, and eighth–tenth positions were
determined to be the 40-ms windows centered on the peaks in
the grand-average VEPs in which the three position categories
were collapsed; this procedure was chosen to avoid possible biases
among the three position categories (Luck, 2014). As a result, the
time windows were determined as follows: within the 90–130 ms
time window at the PO8 electrode site for occipito-temporal P1,
within the 118–158 ms time window at the Fz electrode site for
frontal N1, within the 148–188 ms time window at the PO8
electrode site for occipito-temporal N1, and within the 178–
218 ms time window at the Cz electrode site for central P2

2In a certain participant, if the mean percentages of “same” response in the
backward 8◦, backward 6◦, backward 4◦, backward 2◦, same, forward 2◦, forward
4◦, forward 6◦, and forward 8◦conditions were 0, 9, 12, 53, 87, 90, 78, 45, and
12%, respectively, then the sum of the products of the percentage of “same”
responses and the distance of the probe from true-same was calculated (i.e.,
0∗(−8) + 9∗(−6) + 12∗(−4) + 53∗(−2) + 87∗(0) + 90∗(+2) + 78∗(+4) + 45∗
(+6) + 12∗(+8) = 650), and the obtained value (i.e., 650) was
divided by the sum of the percentages of the same responses (i.e.,
0 + 9 + 12 + 53 + 87 + 90 + 78 + 45 + 12 = 386). This resulted in the
magnitude of RM of 1.68◦.
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(Table 1). The time windows for the first position were separately
determined as the 40-ms windows centered on the peaks in the
grand-average VEPs for the first position. As a result, the time
windows were determined as follows: within the 94–134 ms time
window at the PO8 electrode site for occipito-temporal P1, within
the 119–159 ms time window at the Fz electrode site for frontal
N1, within the 150–190 ms time window at the PO8 electrode
site for occipito-temporal N1, and within the 212–252 ms time
window at the Cz electrode site for central P2 (Table 1).

Correlations between RM and VEPs
The correlation between the magnitudes of RM and VEPs
(i.e., occipito-temporal P1, frontal N1, occipito-temporal N1,
and central P2 for the four position categories) were assessed
by Spearman’s correlation analyses (two-tailed); the statistical
threshold was p < 0.05. Spearman’s correlation analysis was
chosen here, since the relationship between RM and VEPs was
assumed to be not necessarily linear.

Results
Figure 3A shows the mean (black line) and individual (gray lines)
percentages of “same” responses. Figure 3B shows the mean
(black line) and individual (gray lines) magnitudes of RM. The
individual magnitudes of RM ranged from 0.55◦ to 3.02◦. The
mean magnitude of RM was 1.86◦ (SD = 0.68). A one-tailed t-test
revealed a significant occurrence of RM [t(34) = 16.31, p < 0.001,
d = 2.76].

The mean hit rate in the catch trial was 95.1% (SD = 8.4).
The mean correct rejection rate in the regular trial was 98.9%
(SD = 1.1).

Figure 4A shows VEPs elicited by the inducing stimuli in the
regular trials for the first (red lines), second–fourth (blue lines),
fifth–seventh (green lines), and eighth–tenth positions (purple
lines). Figure 4B shows topographical maps of VEPs within the
time windows listed in Table 1. Typical waveforms consisting
of occipito-temporal P1, frontal N1, occipito-temporal N1, and
central P2 were observed. Figure 4C shows the mean (black
lines) and individual (gray lines) magnitudes of these VEPs,
calculated as the mean amplitude according to the time windows
and electrodes sites listed in Table 1.

Figure 5 shows the relationship between the magnitudes of
RM and VEPs (i.e., occipito-temporal P1, frontal N1, occipito-
temporal N1, and central P2 for the four position categories).
Spearman’s correlation analysis (two-tailed) revealed significant
negative correlations between the magnitudes of RM and central

TABLE 1 | Time windows for calculating mean amplitudes of VEPs in
Experiment 1.

Position 1 Positions 2–4, 5–7, and 8–10

Occipito-temporal P1 94–134 ms (PO8) 90–130 ms (PO8)

Frontal N1 119–159 ms (Fz) 118–158 ms (Fz)

Occipito-temporal N1 150–190 ms (PO8) 148–188 ms (PO8)

Central P2 212–252 ms (Cz) 178–218 ms (Cz)

P2 for the fifth–seventh (ρ = −0.35; p < 0.05) and eighth–tenth
positions (ρ =−0.39; p < 0.05).3

Discussion
The results regarding the same/different judgment showed that
RM robustly occurred in the regular trials. This is highly
consistent with previous RM findings (Freyd and Finke, 1984,
1985). The results regarding target detection showed that the
hit rates in the catch trial as well as the correct rejection rates
in the regular trial were high, ensuring that the participants
kept observing the stimulus sequence. The results regarding
VEPs showed that inducing stimuli elicited occipito-temporal
P1, frontal N1, occipito-temporal N1, and central P2 that were
comparable to those obtained with regularly rotated bars (Kimura
and Takeda, 2015). For the correlation between RM and VEPs, the
magnitude of RM was negatively correlated with the magnitude
of central P2; participants who showed a smaller P2 tended to
exhibit greater RM. This seems to be consistent with a previous
finding that the suppression of central P2 would be a neural effect
that would specifically emerge when the current and predicted
positions of an object successfully matched (Kimura and Takeda,
2015). In contrast to central P2, the magnitude of RM was not
correlated with the magnitude of occipito-temporal P1, frontal
N1, and occipito-temporal N1. Given a previous finding that
these VEPs were not sensitive to successful matching between the
current and predicted positions of a visual object (Kimura and
Takeda, 2015), the null correlation seems to be reasonable.

EXPERIMENT 2

To test the replicability and robustness of the negative correlation
between the magnitudes of RM and central P2, the same analyses
were performed on data obtained in another experiment where
a bar was regularly rotated with a different angular step (i.e.,
20◦; cf. 18◦ in Experiment 1). Similar to Experiment 1, the
experiment reported here was conducted with multiple purposes,
and included trials that were not related to the present purpose
(i.e., irregular trials; see Materials and Methods). Data in the
irregular condition will be reported elsewhere. Data reported in
this paper have not been reported elsewhere.

Materials and Methods
Participants
Thirty-seven healthy adults (26 males, 11 females; mean age
23.3 years; age range 20–33 years) participated in this experiment;
three participants had also participated in Experiment 1. All

3Given that VEPs for the first position showed a large and sustained occipito-
temporal positivity at around 200–400 ms (see Figures 4A,B), one may be
interested in the relationship between RM and the occipito-temporal positivity.
So, an exploratory analysis was made for the correlation between the magnitudes
of RM and the occipito-temporal positivity (mean amplitudes were calculated with
the time window of 240–280 ms at PO8 electrode). The results showed that the
magnitude of the positivity was not significantly correlated with the magnitude
of RM; the first (rho = 0.06, p = 0.74), second–forth (rho = 0.10, p = 0.57),
fifth–seventh (rho = 0.00, p = 0.99), and eighth–tenth positions (rho = −0.06,
p = 0.72).
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FIGURE 3 | (A) Mean (black) and individual (gray) percentages of “same” responses for the nine probe-orientation categories in the regular trials. Error bars indicate
SD. (B) Mean (black) and individual (gray) magnitudes of RM. Error bars indicate SD.

participants had normal or corrected-to-normal vision. Thirty-
six participants were right-handed and one was left-handed.
Written informed consent was obtained from each participant
after the nature of the study had been explained. The experiment
was approved by the Safety and Ethics committee of the National
Institute of Advanced Industrial Science and Technology (AIST).

Stimuli and Procedure
The stimuli and procedure were the same as those in Experiment
1, except for the following points. The experiment was comprised
of three types of trials (i.e., regular, irregular, and catch trials).
Figure 2 shows an illustration of the regular and catch trials.
In the regular trial, a gray-filled bar was rotated regularly
with a step of 20◦ (i.e., inducing stimuli). In the catch trial,
a gray-filled bar was rotated regularly, but at any of the
10 positions, it was replaced by a gray-unfilled bar (i.e.,
target stimuli).

The experiment included 288 regular trials and 36 catch
trials, which were arranged in random order. The direction
of regular rotation was fixed throughout the experiment for
each participant and counterbalanced across the participants;

for half of the participants (i.e., 18 participants), the direction
of regular rotation was clockwise, and for the other half of
the participants (i.e., 19 participants), the direction of regular
rotation was counterclockwise.

In the 288 regular trials, 36 trial types that were defined by 36
orientations of the first inducing stimulus (i.e., from 3◦ to 178◦

with a step of 5◦) were presented in eight trials each. In these
288 trials, nine angular differences between the final inducing
stimulus and the probe (i.e., −8◦, −6◦, −4◦, −2◦, 0◦, +2◦,
+4◦,+6◦, and+8◦) were assigned with equal probabilities. Note
that the 36 orientations of the first stimulus were used to keep
the physical attributes of inducing stimuli presented at each of
the 10 positions in a stimulus sequence on average the same.
Thus, at each of the 10 positions, 36 orientations were presented
eight times each.

In the 36 catch trials, the same 36 trial types that were defined
by 36 orientations of the first stimulus (i.e., from 3◦ to 178◦ with a
step of 5◦) were presented in one trial each. In these 36 trials, the
target stimulus was presented at each of 10 positions with almost
equal probability.

Frontiers in Human Neuroscience | www.frontiersin.org 7 August 2021 | Volume 15 | Article 73096284

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-730962 August 19, 2021 Time: 16:40 # 8

Kimura Prediction, VEP, and RM

FIGURE 4 | (A) VEPs elicited by inducing stimuli presented at the first position (red lines), second, third, and fourth positions (blue lines), fifth, sixth, and seventh
positions (green lines), and eighth, ninth, and tenth positions (purple lines) in the regular trials. (B) Topographical maps of VEPs. (C) Mean (black) and individual (gray)
magnitudes of VEPs. P1-ot: occipito-temporal P1, N1-f: frontal N1, N1-ot: occipito-temporal N1, P2-c: central P2. Error bars indicate SD.

Recordings
The recording parameters were the same as those in Experiment
1. As a result, the number of epochs averaged for the first,
second–fourth, fifth–seventh, and eighth–tenth positions was, on
average, 280.4 (SD = 12.1), 851.2 (29.8), 856.2 (21.1), and 857.8
(10.7), respectively.

Data Analysis
Magnitude of RM
The data analysis was the same as that in Experiment 1.

Target detection
The data analysis was the same as that in Experiment 1.

Magnitude of VEPs
The data analysis was the same as that in Experiment 1, except
for the time windows for calculating the mean amplitudes of
VEPs. The time windows of VEPs for the second–fourth, fifth–
seventh, and eighth–tenth positions were determined as follows:
within the 89–129 ms time window at the PO8 electrode site
for occipito-temporal P1, within the 111–151 ms time window
at the Fz electrode site for frontal N1, within the 146–186 ms
time window at the PO8 electrode site for occipito-temporal N1,

and within the 174–214 ms time window at the Cz electrode site
for central P2 (Table 2). The time windows of VEPs for the first
position were determined as follows: within the 100–140 ms time
window at the PO8 electrode site for occipito-temporal P1, within
the 114–154 ms time window at the Fz electrode site for frontal
N1, within the 151–191 ms time window at the PO8 electrode
site for occipito-temporal N1, and within the 200–240 ms time
window at the Cz electrode site for central P2 (Table 2).

Correlations between RM and VEPs
The analysis was the same as that in Experiment 1.

Results
Figure 6A shows the mean (black line) and individual (gray lines)
percentages of “same” responses. Figure 6B shows the mean
(black line) and individual (gray lines) magnitudes of RM. The
individual magnitudes of RM ranged from 0.07◦ to 3.65◦. The
mean magnitude of RM was 2.06◦ (SD = 0.80). A one-tailed t-test
revealed a significant occurrence of RM [t(36) = 15.73, p < 0.001,
d = 2.59].
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FIGURE 5 | Scatter plots of the relationships between the magnitudes of RM and VEPs. P1-ot: occipito-temporal P1, N1-f: frontal N1, N1-ot: occipito-temporal N1,
P2-c: central P2. The linear regression fits to the data are shown. *Indicates p < 0.05 by Spearman’s correlation analysis (two-tailed).

The mean hit rate in the catch trial was 94.7% (SD = 6.2).
The mean correct rejection rate in the regular trial was 98.6%
(SD = 1.1).

Figure 7A shows VEPs elicited by the inducing stimuli in the
regular trials for the first (red lines), second–fourth (blue lines),
fifth–seventh (green lines), and eighth–tenth positions (purple
lines). Figure 7B shows topographical maps of VEPs within the
time windows listed in Table 2. Figure 7C shows the mean
(black lines) and individual (gray lines) magnitudes of VEPs,
calculated as the mean amplitude according to the time windows
and electrodes sites listed in Table 2.

TABLE 2 | Time windows for calculating mean amplitudes of VEPs in
Experiment 2.

Position 1 Positions 2–4, 5–7, and 8–10

Occipito-temporal P1 100–140 ms (PO8) 89–129 ms (PO8)

Frontal N1 114–159 ms (Fz) 111–151 ms (Fz)

Occipito-temporal N1 151–191 ms (PO8) 146–186 ms (PO8)

Central P2 200–240 ms (Cz) 174–214 ms (Cz)

Figure 8 shows the relationship between the magnitudes
of RM and VEPs. Spearman’s correlation analysis (two-tailed)
revealed significant negative correlations between the magnitudes
of RM and central P2 for the second–fourth (ρ =−0.39; p< 0.05),
fifth–seventh (ρ = −0.40; p < 0.05), and eighth–tenth positions
(ρ =−0.54; p < 0.01), as well as a significant negative correlation
between the magnitudes of RM and occipito-temporal P1 for the
first position (ρ =−0.38; p < 0.05).4

Discussion
As in Experiment 1, RM robustly occurred in the regular trials,
and the inducing stimuli elicited occipito-temporal P1, frontal
N1, occipito-temporal N1, and central P2. The magnitude of
RM was again negatively correlated with the magnitude of

4As in Experiment 1, an exploratory analysis for the correlation between the
magnitudes of RM and the occipito-temporal positivity (mean amplitudes were
calculated with the time window of 240–280 ms at PO8 electrode) showed that the
magnitude of the positivity was not significantly correlated with the magnitude
of RM; the first (rho = 0.05, p = 0.76), second–forth (rho = 0.13, p = 0.46),
fifth–seventh (rho = 0.16, p = 0.34), and eighth–tenth positions (rho = 0.03,
p = 0.87).
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FIGURE 6 | (A) Mean (black) and individual (gray) percentages of “same” responses for the nine probe-orientation categories in the regular trials. Error bars indicate
SD. (B) Mean (black) and individual (gray) magnitudes of RM. Error bars indicate SD.

central P2; participants who showed a smaller P2 tended to
exhibit greater RM. Thus, the negative correlation between the
magnitudes of RM and central P2 observed in Experiment 1 was
clearly replicated in Experiment 2, ensuring the replicability and
robustness of the negative correlation between RM and central
P2. In addition to central P2, the magnitude of occipito-temporal
P1 for the first position was negatively correlated with the
magnitude of RM. However, given that such negative correlation
was not observed in Experiment 1 (rather, a tendency of an
opposite, positive correlation was observed in Experiment 1), no
conclusion could be drawn about this effect.

GENERAL DISCUSSION

In Experiments 1 and 2, the results regarding the same/different
judgment showed that RM clearly occurred in regular trials.
This is highly consistent with the previous findings with the
conventional RM paradigm with regular rotations of a bar (Freyd
and Finke, 1984, 1985) as well as with other types of changes
(Kelly and Freyd, 1987; Hayes and Freyd, 2002). The magnitude
of RM in Experiment 2 (mean of 2.06◦) was numerically greater

than that in Experiment 1 (mean of 1.86◦). This could be mainly
attributed to the step size of a regular rotations of a bar (i.e., 18◦
in Experiment 1 and 20◦ in Experiment 2), since the magnitude
of RM is proportional to the implied velocity of regular rotations
of a bar (Freyd and Finke, 1985; Finke et al., 1986).

In Experiments 1 and 2, the magnitude of RM was negatively
correlated with the magnitude of central P2 at around 200 ms
after bar onset; that is, participants who showed a smaller
P2 tended to exhibit greater RM. This is consistent with the
expectation based on a previous finding that the suppression
of central P2 is a neural effect that specifically emerges when
the current position of a visual object successfully matches the
predicted position of the object based on sequential regularities
(Kimura and Takeda, 2015). The negative correlations between
the magnitudes of RM and central P2 showed a similar time
course in Experiments 1 and 2. That is, the magnitudes of RM and
central P2 were not initially correlated at the first position, and
they started to be negatively correlated at later positions. These
results support the idea that the correlation would be associated
with the individual’s ability to automatically form a prediction
based on sequential regularities and contradict the idea that
the correlation between the magnitudes of RM and P2 merely
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FIGURE 7 | (A) VEPs elicited by inducing stimuli presented at the first position (red lines), second, third, and fourth positions (blue lines), fifth, sixth, and seventh
positions (green lines), and eighth, ninth, and tenth positions (purple lines) in the regular trials. (B) Topographical maps of VEPs. (C) Mean (black) and individual (gray)
magnitudes of VEPs. P1-ot: occipito-temporal P1, N1-f: frontal N1, N1-ot: occipito-temporal N1, P2-c: central P2. Error bars indicate SD.

reflects the individual’s inherent strength of neural activations
represented by P2.

Although the negative correlations between the magnitudes
of RM and central P2 were highly similar between Experiments
1 and 2, there were slight differences between Experiments 1
and 2. The negative correlation appeared earlier in Experiment 2
(i.e., the second–fourth positions) than in Experiment 1 (i.e., the
fifth–seventh positions). Also, the negative correlation between
the magnitudes of RM and central P2 was more robust (at least
in terms of the correlation coefficient) in Experiment 2 than in
Experiment 1. These differences would be mainly attributed to
two differences in the experimental design. First, they may be
attributed to the greater step size of the regular rotation of a bar in
Experiment 2 (i.e., 20◦) than in Experiment 1 (i.e., 18◦). Second,
they may be attributed to the arrangement of directions of regular
rotation. In Experiment 1, directions of regular rotation (i.e.,
clockwise and counterclockwise) were changed trial-by-trial in
a random manner; therefore, only after the second inducing
stimulus was presented, the participants could recognize whether
the current regular rotation was clockwise or counterclockwise
and could predict the orientation of the upcoming inducing

stimuli. In contrast, in Experiment 2, the direction of regular
rotation (i.e., clockwise or counterclockwise) was fixed for each
participant throughout the experiment; therefore, immediately
after the first inducing stimulus was presented, the participants
could predict the orientation of the upcoming inducing stimuli.

It appears difficult to attribute the negative correlation
between RM and central P2 to factors other than prediction.
For example, one might consider that the negative correlation
may be involved in visual attention to inducing stimuli. However,
if the negative correlation was involved in the degree of visual
attention, then significant correlations should have also been
observed between RM and occipito-temporal P1/N1, since
visual attention predominantly affects occipito-temporal P1/N1
(Hillyard and Anllo-Vento, 1998; Luck et al., 2000). The present
results of the almost null correlation between RM and P1/N1
are incongruent with this expectation. One might also consider
that the negative correlation may be associated with some
strategic processes. It has been shown that RM is primarily
determined by automatic predictive processes. However, due to
the essential requirements of the task (i.e., the same/different
judgment), RM may not be free from the effects of strategic
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FIGURE 8 | Scatter plots of the relationships between the magnitudes of RM and VEPs. P1-ot: occipito-temporal P1, N1-f: frontal N1, N1-ot: occipito-temporal N1,
P2-c: central P2. The linear regression fits to the data are shown. *Indicates p < 0.05 and **indicates p < 0.01 by Spearman’s correlation analysis (two-tailed).

processes such as “cognitive resistance” (i.e., to intentionally
stop the forward displacement of a sensory representation to
improve the same/different judgment; Finke et al., 1986) and
“opposite-acting compensation” (i.e., to strategically change the
judgment to compensate for a likely perceptual bias; Joordens
et al., 2004). Although such effects of strategic processes could
not be completely ruled out, given that the present negative
correlation was not limited to the eighth–tenth positions where
such strategic processes are expected to be operated, it seems
unlikely that the presented negative correlation was related to
such strategic processes.

Taken together, the present results suggest that the greater
sensory suppression as indicated by smaller central P2 underlies
stronger predictive modulation of visual perception as indicated
by greater RM. Given the previous findings that neural sources
of central P2 were localized around lower visual areas around
the striate and prestriate cortices (Capilla et al., 2016; see also
Metha et al., 2000) and P2 may be a sign of delayed reactivation
of lower visual areas via reentrant feedback projections from
higher areas (Di Russo et al., 2003, 2008; see also Olson
et al., 2001; Noesselt et al., 2002), the present results would
support the notion that the strength of prediction suppression
of delayed reactivation of lower visual areas determines the
strength of predictive modulation of visual perception. This

notion is consistent with that in a human neuroimaging
study which demonstrated that successful matching between
current visual inputs and predicted visual inputs based on
sequential regularities drives less neural activation in the
striate cortex, probably via feedback projections from higher
visual areas (Alink et al., 2010). From a broader perspective,
the present findings appear to be in line with previous
findings that the strength of delayed reactivation of lower
visual areas such as striate cortex via reentrant feedback
projections critically determines perceptual experience and
awareness (Lamme et al., 1998; Lamme and Roelfsema, 2000;
Tong, 2003; Pak et al., 2020) as well as the hierarchical predictive
coding framework which proposes that prior expectations about
an upcoming stimulus act as top-down signals that predict
the bottom-up input (Rao and Ballard, 1999; Friston, 2005;
Summerfield and de Lange, 2014).

The present findings should be treated with caution in three
respects. First, the present study used a simple stimulus (i.e., a
bar) that changed along with a simple regularity (i.e., rotation).
It seems possible that, when observing a more complex stimulus
(e.g., face) that changes along with a more complex regularity
(e.g., changes in facial features), the main loci of prediction
suppression might change (e.g., from lower visual areas to
higher areas such as face-responsible inferior temporal cortex,
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Haxby et al., 2000), and the prediction suppression in such higher
areas may mainly determine the predictive modulation of visual
perception. Second, the present study applied a conventional RM
paradigm (Freyd and Finke, 1984, 1985), but there are several
different RM paradigms such as those with a still photograph of
an object in motion (Freyd, 1983) or a smooth animated motion
of an object (Hubbard and Bharucha, 1988). To capture the
overall picture of the relationship between prediction suppression
based on sequential regularities and predictive modulation of
visual perception, the accumulation of studies with a variety of
paradigm should be required. Third, the present study did not
directly examine the neural sources of central P2. The precise
source localization was not a realistic option in the present study,
since central P2 was expected to be overlapped by temporally
and/or spatially adjacent VEPs. Furthermore, although a previous
study reported that the neural sources of central P2 were localized
in lower visual areas (Capilla et al., 2016), stimuli used in the
previous study (i.e., reversal of a checkerboard pattern) were
different from those used in the present study (i.e., discrete
presentation of a bar). In future studies, the direct examination of
the neural sources should be made with an optimal experimental
design by which the predictive suppression of central P2 can be
isolated from other neural activities (Kimura and Takeda, 2015).

Finally, this present finding may drive the fundamental
question of what factors determine the individual’s ability to
automatically form a prediction based on sequential regularities.
For example, previous RM studies showed that the magnitude of
RM can be modulated by domain-specific expertise (e.g., greater
RM for road scenes in experienced compared to inexperienced
automobile drivers), suggesting that prediction ability can be
improved with expertise (Blättler et al., 2010, 2011). As another
approach, a recent study sought clinical factors that determine
the magnitude of RM in terms of autistic and schizotypal traits,
although a strong factor could not be determined (Tulver et al.,
2019). The quest for critical factors that determine an individual’s

prediction abilities would be important for better understanding
the mechanisms of visual perception and for establishing possible
training/intervention methods to improve prediction abilities.

CONCLUSION

By measuring VEPs with a conventional RM paradigm, the
present study demonstrated the relationship between the strength
of predictive modulation of visual perception (as measured by the
magnitude of RM) and the strength of prediction suppression of
sensory response (as measured by the magnitude of central P2,
which is best assumed to represent delayed reactivation of lower
visual areas around striate and prestriate cortices via reentrant
feedback projections from higher areas).
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When the brain tries to acquire an elaborate model of the world, multisensory integration
should contribute to building predictions based on the various pieces of information,
and deviance detection should repeatedly update these predictions by detecting
“errors” from the actual sensory inputs. Accumulating evidence such as a hierarchical
organization of the deviance-detection system indicates that the deviance-detection
system can be interpreted in the predictive coding framework. Herein, we targeted
mismatch negativity (MMN) as a type of prediction-error signal and investigated the
relationship between multisensory integration and MMN. In particular, we studied
whether and how cross-modal information processing affected MMN in rodents. We
designed a new surface microelectrode array and simultaneously recorded visual and
auditory evoked potentials from the visual and auditory cortices of rats under anesthesia.
Then, we mapped MMNs for five types of deviant stimuli: single-modal deviants in
(i) the visual oddball and (ii) auditory oddball paradigms, eliciting single-modal MMN;
(iii) congruent audio-visual deviants, (iv) incongruent visual deviants, and (v) incongruent
auditory deviants in the audio-visual oddball paradigm, eliciting cross-modal MMN. First,
we demonstrated that visual MMN exhibited deviance detection properties and that the
first-generation focus of visual MMN was localized in the visual cortex, as previously
reported in human studies. Second, a comparison of MMN amplitudes revealed a non-
linear relationship between single-modal and cross-modal MMNs. Moreover, congruent
audio-visual MMN exhibited characteristics of both visual and auditory MMNs—its
latency was similar to that of auditory MMN, whereas local blockage of N-methyl-D-
aspartic acid receptors in the visual cortex diminished it as well as visual MMN. These
results indicate that cross-modal information processing affects MMN without involving
strong top-down effects, such as those of prior knowledge and attention. The present
study is the first electrophysiological evidence of cross-modal MMN in animal models,
and future studies on the neural mechanisms combining multisensory integration and
deviance detection are expected to provide electrophysiological evidence to confirm the
links between MMN and predictive coding theory.

Keywords: cross-modal information processing, deviance detection, mismatch negativity, microelectrode array,
sensory cortex
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INTRODUCTION

Prediction is an essential brain function required to understand
the surrounding environment correctly. According to many
theories, including Bayesian and Kahneman’s frameworks, the
brain is thought to build predictions from various types
of information and update these repeatedly by observing
“errors” to acquire an elaborate model of the external world
(Kahneman, 2011; Clark, 2013). In this prediction-building
process, multisensory integration is thought to play an important
role to obtain meaningful perceptual experiences by integrating
information from different sensory modalities (Tononi et al.,
1998; Alais et al., 2010). The latter “updating” process is thought
to be triggered by a “prediction error,” recognized by using
the deviance-detection system of the brain. A recent report
that prediction error is hierarchically represented as deviance-
detecting neural activities along the sensory pathway is in
accordance with the hierarchical predictive coding framework
(Friston, 2005; Stefanics et al., 2014). Additionally, previous
studies demonstrating that deviance-detecting activities reflect
experience and learning suggest that the deviance-detection
system is deeply involved in predictions mediated by internal
models of the brain, as the predictive coding framework
suggests (Menning et al., 2002; Shiramatsu and Takahashi,
2018). Therefore, combination of the multisensory integration
and deviance-detecting system contribute to the brain building,
maintaining, and renewing a model of the external environment.

Many studies have focused on the deviance detection system of
the brain, primarily because the leading candidate for its neural
correlates, that is, mismatch negativity (MMN), was discovered
relatively early. The first paradigm designed to observe MMN
was developed for the auditory domain—an infrequent or deviant
sound following a frequent or standard sound elicits auditory
MMN (aMMN) (Näätänen et al., 1978). Later, MMN was also
confirmed in the context of other sensory modalities (Kekoni
et al., 1997; Musall et al., 2017). Currently, visual MMN (vMMN)
is the second most prominent focus among MMN studies,
particularly in humans (Pazo-Alvarez et al., 2003). Many previous
studies have demonstrated that both aMMN and vMMN cannot
be fully explained by adaptation, and unpredictable deviations
from abstract rules can also elicit MMN (Czigler et al., 2002, 2006;
Pazo-Alvarez et al., 2004; Astikainen and Hietanen, 2009; Kimura
et al., 2009; Chang et al., 2010; Clifford et al., 2010; Stefanics and
Czigler, 2012; Czigler, 2014). This deviance-detection property
of MMN has stimulated a predictive coding framework that
considers MMN as a type of prediction-error signal (Friston,
2005; Garrido et al., 2008, 2009; Den Ouden et al., 2012). Together
with the fact that integration of visual and auditory information is
essential for object recognition, the elucidation of the relationship
between multisensory integration and MMN should enhance the
theoretical understanding of predictive coding.

Despite its importance, very few studies have investigated
how cross-modal information processing affects MMN. One
reason for this is that the primary brain areas focused on in
studies of MMN and multimodal integration are different. The
sensory cortex is the earliest source of MMN (Scherg et al.,
1989; Csépe et al., 1992; Tiitinen et al., 1993; Alho et al., 1996;

Berti and Schröger, 2001; Pincze et al., 2001; Czigler et al.,
2002; Shiramatsu et al., 2013), whereas the parietal and frontal
cortices are assumed to be essential for multisensory integration
(Calvert, 2001; Sereno and Huang, 2014). Another reason for
the paucity of these studies is the difficulty in the experimental
control of top-down effects, such as prior knowledge and
attention. Most human studies investigating the cross-modal
effect on MMN have utilized audio-visual illusions, such as
the McGurk–MacDonald illusion and the ventriloquist illusion,
which often depend on linguistic knowledge (Colin et al., 2002a,b;
Stekelenburg et al., 2004; Saint-Amour et al., 2007; Froyen et al.,
2008; Andres et al., 2011; Stekelenburg and Vroomen, 2012).
Additionally, it is difficult to exclude the influence of attention
on the cross-modal information processing when evaluating
these illusions using linguistic stimuli. However, notwithstanding
the difficulties involved, controlling these top-down effects is
important when attempting to clarify the “pre-attentive” cross-
modal effects on MMN.

To address this challenge, the present study used anesthetized
rats as the first animal model to be used in studying cross-
modal MMN. Accumulating evidence has indicated that both
aMMN and vMMN in rodents exhibit characteristics similar to
those in humans (Shiramatsu et al., 2013; Hamm and Yuste,
2016). Moreover, the top-down effects of prior knowledge and
attention can be minimized by using simple non-linguistic
stimuli and anesthesia, respectively. Thus, these controls would
help reveal the most primitive cross-modal effect on MMN. We
also developed a new microelectrode array to cover both the
visual and auditory cortices of rats for mapping vMMN, aMMN,
and audio-visual MMN. We first tested the deviance-detection
property of vMMN because it has not been demonstrated in rats.
We then investigated cross-modal effects on MMN by comparing
the amplitudes and latencies of the single-modal and audio-
visual MMNs. Lastly, we locally blocked N-methyl-D-aspartic
acid (NMDA) receptors in the visual cortex to investigate the
neural mechanisms of cross-modal MMN.

MATERIALS AND METHODS

This study was conducted in strict accordance with the
“Guiding Principles for the Care and Use of Animals in
the Field of Physiological Science” published by the Japanese
Physiological Society. The experimental protocol was approved
by the Committee on the Ethics of Animal Experiments at the
Graduate School of Information Science and Technology, the
University of Tokyo (Permit Number: JA20-2). All surgeries
were performed under isoflurane anesthesia, and all efforts
were made to minimize the suffering of animals. After the
experiments, the animals were euthanized with an overdose of
pentobarbital sodium (160 mg/kg, i.p.). The raw data supporting
the conclusions of this manuscript will be made available by the
authors, without undue reservation, to any qualified researcher.

Implantation of the Head-Fix Attachment
Eleven male Wistar rats (postnatal weeks 9–17; body weight,
260–360 g) were used for the experiments. The rats were
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first implanted with a custom-made head-fix attachment
(Figures 1A,B), which was used to fix them to the experimental
neural recording setup. Briefly, the animals were anesthetized
using isoflurane (Mylan Inc., PA, United States; 5% v/v in air
for induction and 2–3.5% for maintenance) and were held in a
stereotaxic apparatus (SR-50; Narishige Group, Tokyo, Japan).
Thereafter, a skin incision was made under local anesthesia using
xylocaine (1%, 0.2 ml; Aspen Japan, Tokyo, Japan) to expose
part of the skull. Five screws (diameter, 1 mm; length, 3 mm)
were anchored to the skull—two in the left parietal bone, two in
the frontal bone, and one in the interparietal bone (Figure 1B).
Wires were connected to two of the screws for use as the
reference and ground electrodes. Specifically, the screw in the
interparietal bone, in contact with the dura over the cerebellum,
was used as the ground electrode, and the frontal screw in
the left parietal bone, in contact with the dura over the left
somatosensory cortex, was used as the reference electrode (the
blue and red circles, respectively, in Figure 1B). Several previous
studies have reported auditory evoked potentials (AEPs) and
aMMN using a reference electrode on the somatosensory cortex
(Shiramatsu et al., 2013; Shiramatsu and Takahashi, 2018). The
screws were fixed to the skull using a dental adhesive (Super-
Bond C&B; Sun Medical Co., Ltd., Shiga, Japan), after which
the head-fix attachment was mounted and fixed on the skull
using dental resin (Unifast TRAD; GC Corporation, Tokyo,
Japan). The attachment was custom designed and 3D printed
using acrylonitrile butadiene styrene plastic. Part of the right
parietal and right temporal bones were covered using dental
silicone (DentSilicone-V; Shofu Inc., Kyoto, Japan) rather than
dental resin and sealed until we removed these bones at the
time of neural recording. After the implantation procedure, an
anti-inflammatory agent (Capisten; 5 mg/mL, 0.2 mL; Kissei
Pharmaceutical Co., Ltd., Nagano, Japan) and an antibiotic
(Bixillin; 25 mg/mL, 0.2 mL; Meiji Seika Pharma Co., Ltd., Tokyo,
Japan) were injected intramuscularly to avoid infection.

Neural Recording
More than 3 days after the implantation of the head-fix
attachment, the rats were anesthetized again using isoflurane (5%
v/v in air for induction and 1–3.5% for maintenance) and held in
place in the experimental setup for neural recording (Figure 1A).
The dental silicone was removed, and the right temporal muscle,
cranium, and dura overlying the visual and auditory cortices
were locally anesthetized using xylocaine (1%, 0.1–0.3 mL). The
exposed cortical surface was perfused with saline to prevent
desiccation, and the cisternal cerebrospinal fluid was drained to
minimize cerebral edema. A heating blanket was used to maintain
body temperature at approximately 37◦C. The respiration rate,
heart rate, and hind-paw withdrawal reflexes were monitored
throughout the experiment to ensure that an adequate and stable
level of anesthesia was maintained.

A surface microelectrode array (Figure 1C; TU218-008;
Unique Medical Co., Ltd., Tokyo, Japan) with 32 recording
sites simultaneously recorded visual evoked potentials (VEPs)
and AEPs from the visual and auditory cortices, respectively.
This microelectrode array covered an area of 5 mm × 7 mm,
with the recording sites in the upper left and bottom right

quadrants, covering the visual and auditory cortices, respectively.
The recording sites were made of platinum and placed between
two silicon rubber sheets at a center-to-center distance of 1 mm.
The diameter of the exposed surface of each recording site was
250 µm. Neural signals were obtained with an amplification gain
of 1,000, a digital filter bandpass of 0.3–500 Hz, and a sampling
frequency of 1 kHz (Cerebus Data Acquisition System; Blackrock
Microsystems LLC, Salt Lake City, UT, United States).

Visual and Acoustic Stimulation
Visual and acoustic stimuli were provided using MATLAB
(MathWorks, Natick, MA, United States) and Psychtoolbox.1 A
display monitor (LCM-T102AS; Logitec Corp., Tokyo, Japan)
was positioned 20 cm from the left eye of the animal, at an
axis of 60◦ left from the sagittal axis. A speaker (ST400 BLK;
JBL Professional, Northridge, CA, United States or DLS-108X;
Alpine Electronics Inc., Tokyo, Japan) was positioned 15 cm
in front of the animal. Acoustic stimuli were calibrated at the
pinna using a 1/4-inch microphone (4939; Brüel & Kjær, Nærum
Denmark) and a spectrum analyzer (CF-5210; Ono Sokki Co.,
Ltd., Yokohama, Japan). The stimulus level was presented in
terms of the sound pressure level in decibels with respect to
20 µPa [dB sound pressure level (SPL)]. The order of data
acquisition was randomized, although not completely.

First, we recorded flash-elicited VEPs and click-elicited AEPs
to demonstrate that the microelectrode array could separately
map the neural activities in the visual and auditory cortices.
A flash was a white circle with a 7.5-cm radius on a black
background for a duration of 400 ms, and a click was a
monophasic positive wave with a duration of 10 ms or 50 µs.
The inter-onset interval was 900 ms, and the stimuli were
separately presented 60 or 100 times. The amplitude of the
middle-latency response, i.e., visual P1 (vP1) or auditory P1
(aP1), was quantified as the maximum potential within 200 ms
from the onset of the stimulus.

Single-modal MMN (vMMN and aMMN) and cross-modal
MMN were then obtained using several oddball paradigms.
The visual test stimuli were white vertical bars (1.875-cm wide
and 10-cm high) against a black background, presented for a
duration of 400 ms. The bars appeared in two different horizontal
positions, 22.8◦ apart on the viewing angle (first and seventh
from the left in Figure 1D). The auditory test stimuli were tone
bursts (8 or 16 kHz, 60 dB SPL) for a duration of 400 ms,
including 5-ms rise/fall times. In the visual or auditory oddball
paradigm (Figures 1Ei,ii), the two white bars or two pure
tones served as either a frequent standard (p = 0.9) or a rare
deviant (p = 0.1). The inter-onset interval between stimuli was
900 ms. After we obtained 60 or 100 deviant responses, we
swapped the test position or test frequency of standard and
deviant stimuli and then delivered the second oddball session.
The grand-averaged deviant response was subtracted from the
standard response to the same stimuli, i.e., the position of the bar
and tone frequency and the MMN amplitude was quantified as
the maximum potential of this difference wave between 50 and
450 ms from the onset of the stimulus. The latency of MMN was

1http://psychtoolbox.org/
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FIGURE 1 | Experimental setup. (A) Schema of the experimental system. A custom-designed head-fix attachment implanted on the skull of each tested animal was
used to fix it to the experimental neural recording system. The animals were anesthetized using isoflurane, the right visual and auditory cortices were exposed, and
an electrode array was positioned onto the surface of the brain. Visual and auditory stimuli were presented from a display monitor facing an axis 60◦ left from the
sagittal axis and from a speaker in front of the rat, respectively. (B) The dotted lines indicate the boundaries of the skull. The five circles indicate where the screws
(diameter, 1 mm; length, 3 mm) were anchored. Two of these screws made electrical contact with the dura mater for use as the ground and reference electrodes
(indicated by the blue and red circles, respectively). The head-fix attachment was fixed on the skull using dental resin. For neural recording, we started drilling into the
skull from the point indicated by a black diamond (2-mm posterior and 1.5-mm lateral to the bregma) and removed a part of the right temporal skull (approximately
11 mm × 9 mm, dark gray color). (C) Magnified image of the surface microelectrode array with 32 recording sites. The recording sites in the upper left and bottom
right cover the visual and auditory cortices, respectively. (D) In the visual “many standards control” paradigm, white vertical bars (1.875-cm wide and 10-cm high) at
10 different horizontal positions were displayed on the monitor. Two of these positions (i.e., the first and seventh from the left) were also presented in the oddball
paradigm. (E) We tested five paradigms to record visual and auditory MMNs. The blue and red squares indicate visual and auditory stimuli, respectively. In (i) the
visual oddball and (ii) the auditory oddball paradigm, standard and deviant stimuli were randomly delivered at a 90 and 10% frequency, respectively. (iii) In the visual
control paradigm, 10 visual stimuli at different horizontal positions were presented randomly with the same probability as the deviant in the oddball paradigm, i.e.,
10%. We also tested two audio-visual oddball paradigms: (iv) in the congruent audio-visual oddball paradigm, visual and auditory deviant stimuli were always
presented together, while (v) in the incongruent audio-visual oddball paradigm, they were delivered independently. When the visual and auditory deviant stimuli were
presented together in the incongruent audio-visual oddball paradigm, we eliminated the corresponding responses from the analysis. We also performed a second
recording for the four oddball paradigms, in which we converted the standard and deviant stimuli to quantify MMN by comparing standard and deviant responses for
the same stimuli.
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also obtained as the post-stimulus time when the amplitude of the
MMN was quantified as the maximum potential difference.

To test whether vMMN in rats exhibited deviance detection
properties, VEPs were also investigated in the “many standards
control” paradigm (Figure 1Eiii). In this control paradigm,
white bars in 10 different horizontal positions, including two
stimuli used in the oddball paradigm, were presented randomly
(Figure 1D). The inter-onset interval was 900 ms. The probability
of appearance of each test stimulus was identical to that
of the deviant stimuli, i.e., 10%, and 60 or 100 control
responses were obtained.

To test cross-modal MMN, we delivered two types of cross-
modal oddball paradigms, i.e., the congruent and incongruent
audio-visual oddball paradigms (Figures 1Eiv,v). In these
paradigms, the inter-onset interval was same as that in the single-
modal oddball paradigms, i.e., 900 ms, and standard stimulus
was a combination of the bar at the first position from the left
(“left bar”) and the 8-kHz tone burst (“low tone”) in the first
oddball session, or the bar at the seventh position from the
left (“right bar”) and the 16-kHz tone burst (“high tone”) in
the second oddball session. In the congruent paradigm, visual
and auditory deviants were always presented together; therefore,
the deviant stimulus was a combination of “right bar” and
“high tone” in the first congruent oddball session. From this
paradigm, we obtained the amplitude and the latency of audio-
visual MMN (avMMN) in the same way as the single-modal
MMN. In the incongruent paradigm, visual and auditory deviants
were independently presented; therefore, the stimulus with visual
deviant was a combination of “right bar” and “low tone,” and the
stimulus with auditory deviant was a combination of “left bar”
and “high tone” in the first incongruent oddball session with the
standard stimuli of “left bar” and “low tone.” When the visual
and auditory deviants were unexpectedly delivered together in
the incongruent audio-visual oddball paradigm, we eliminated
the corresponding responses from the analysis. To quantify the
amplitude and latency of MMN in the incongruent oddball
paradigm, the grand-averaged deviant response was subtracted
from the standard response in the other session; specifically,
the visual-deviant response for “right bar” and “low tone” was
subtracted from the standard response for “right bar” and “high
tone.” Moreover, the auditory-deviant response for “left bar” and
“high tone” was subtracted from the same standard response. The
amplitude and latency of MMN were then obtained from the
same post-stimulus time as the single-modal MMN.

Administration of an NMDA Receptor
Antagonist
To investigate whether NMDA receptors in the visual cortex
mediate vMMN and cross-modal MMN, MMNs were also
measured following the direct administration of the NMDA
receptor agonist D-(-)-2-amino-5-phosphonopentanoic acid
(AP5) onto the surface of the visual cortex. Briefly, after the first
recording under the oddball paradigms and control paradigm,
we removed the microelectrode array and placed a 2% (20 g/L)
agarose gel sheet containing 100 µM AP5 onto the surface of
the visual cortex. The auditory cortex was covered with a piece

of cotton soaked in saline solution to prevent AP5 infiltration.
After 15 min, we removed the gel sheet and cotton, mounted the
surface array, and recorded MMNs under the auditory oddball,
visual oddball, and congruent audio-visual oddball paradigms.

Statistical Analysis
To confirm separate mapping from the visual and auditory
cortices, multiple comparisons between the putative regions
were conducted separately for vP1 and aP1 using the Kruskal-
Wallis test. For post hoc comparison, the Wilcoxon one-
sided signed-rank test with Bonferroni correction for three
comparisons was used.

To demonstrate adaptation for the repetitive standard stimuli,
we compared vP1 for the standard, deviant, and “many standards
control” VEPs using the Kruskal-Wallis test for multiple
comparisons and the Wilcoxon one-sided signed-rank test with
Bonferroni correction for three comparisons as a post hoc
test. Additionally, the Wilcoxon one-sided signed-rank test was
used to investigate the deviance-detection property of vMMN
by comparing the amplitude of negative deflections between
the subtraction of deviant responses from the standard or
control response.

To test the cross-modal effect on MMN, comparisons of MMN
amplitude were assessed. The Wilcoxon one-sided signed-rank
test was applied to compare (1) amplitude of vMMN in the
single-modal visual oddball and amplitude of MMN for the visual
deviance in the incongruent oddball, (2) amplitude of aMMN in
the single-modal auditory oddball and amplitude of MMN for the
auditory deviance in the incongruent oddball, and (3) amplitude
of avMMN in the congruent oddball and the summation of the
amplitude of vMMN and aMMN. Additionally, to reveal the
propagation of MMN, we compared the latency of each MMN
between the visual and auditory cortices.

Finally, to assess effect of the blockade of NMDA receptors
in the visual cortex, the Wilcoxon one-sided signed-rank test
was applied to compare the amplitude of each MMN before the
blockade with that after the blockade.

All statistical analyses were performed using MATLAB
(MathWorks).

RESULTS

Mapping of the Evoked Potentials in the
Visual and Auditory Cortices
Figure 2A shows the representative cortical mapping of flash-
elicited VEPs and click-elicited AEPs. Both VEPs and AEPs
exhibited clear positive potentials, i.e., vP1 and aP1, and aP1
exhibited shorter latencies than vP1. We quantified the amplitude
of these P1s as the maximum amplitude within 200 ms from the
onset of the stimulus, then mapped them. As shown in these maps
(Figure 2B), vP1 and aP1 had separate activation foci, which
seemed to be localized in the visual and auditory cortices, that
is, the upper and lower parts of the recording area, respectively.
Based on this observation, we putatively divided the recording
area into three regions: the visual cortex, including 15 or fewer
recording sites showing a vP1 amplitude larger than 10% of the
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FIGURE 2 | Mapping of the evoked potentials in the visual and auditory cortices. (A) Representative mapping of the waveform of a flash-elicited visual evoked
potential (VEP; blue lines) and click-elicited auditory evoked potential (AEP; red lines) recorded simultaneously from 32 recording sites. Each waveform is
approximately aligned in the spatial coordinates of the recording sites of the surface microelectrode array. Amplitudes of the visual P1 (vP1) and auditory P1 (aP1)
was quantified as the maximum amplitude within 200 ms from the onset of the stimulus. (B) Spatial distributions of (i) vP1 and (ii) aP1. The gray level at each grid
corresponds to the P1 amplitude at each recording site. The recording sites surrounded by blue or red lines were categorized as the putative visual cortex (VC) or
auditory cortex (AC), which showed a vP1 or aP1 amplitude larger than 10% of the maximum amplitude. The other recording sites were categorized as the outer
region. (C) Regional differences in (i) vP1 and (ii) aP1. Dots indicate the mean amplitudes of vP1 and aP1 among each putative region in individual animals (n = 12
animals). Asterisks indicate statistical significance in the post hoc analysis: ***p < 0.001 (Wilcoxon one-sided signed-rank test with Bonferroni correction for three
comparisons, following the Kruskal-Wallis test).

maximum amplitude among all the recording sites; the auditory
cortex, including 10 or fewer recording sites showing an aP1
amplitude larger than 10% of the maximum amplitude among
all recording sites; and the outer region, which encompassed the
remaining recording sites (Figure 2B). Consequently, the mean
amplitude of P1s in these areas was significantly different. The
multiple comparison and post hoc analyses showed that vP1 was
larger in the putative visual cortex (Figure 2Ci; Kruskal-Wallis
test, p = 5.6 × 10−6; post hoc Wilcoxon one-sided signed-
rank test with Bonferroni correction for three comparisons,
p = 0.00024 for visual cortex vs. auditory cortex, and visual
cortex vs. outer region, respectively), and that aP1 was larger in
the putative auditory cortex (Figure 2Cii; Kruskal-Wallis test,
p = 5.6 × 10−6; post hoc Wilcoxon one-sided signed-rank test
with Bonferroni correction for three comparisons, p = 0.00024
for auditory cortex vs. visual cortex, and auditory cortex vs.
outer region, respectively). These results suggest that the surface
microelectrode array could separately map the evoked responses
in these cortical regions. Thus, we continued to adopt these
putative visual and auditory regions in the subsequent analyses.

Deviance-Detecting Property of the
vMMN
We then mapped single-modal MMNs, i.e., vMMN and
aMMN, and tested whether vMMN exhibited deviance-detection

properties. Figure 3A shows the mapping of VEPs and AEPs
recorded in the visual oddball, visual many standards control,
and auditory oddball paradigms. Again, the first positive peaks,
i.e., vP1 and aP1, appeared only in the visual and auditory
cortices, respectively, and aP1 appeared earlier than vP1, as
described above (Figures 3B,C and Supplementary Figure 1).
In contrast, the deviant responses in both regions exhibited
a significant negative deflection with a longer latency than
each P1; in other words, vMMN appeared in the auditory
cortex, and aMMN appeared in the visual cortex, without
distinct P1s. In addition, as shown in Figures 3B-D, vMMN
appeared earlier in the visual cortex than the auditory cortex, and
aMMN appeared earlier in the auditory cortex than the visual
cortex, suggesting propagation of single-modal MMN toward
another sensory cortex.

Thereafter, the visual “many standards control” paradigm
was applied to test the deviance detection property of vMMN.
The control responses did not exhibit negative deflection as
seen in the deviant responses (Figures 3A-C). The results
also confirmed that the negative deflections in the deviant
responses were significantly larger than those in the standard
and control responses (Figure 3D). Additionally, comparison
of the amplitude of vP1, i.e., the maximum potential within
200 ms from the stimulus onset, demonstrated clear adaptation
in the standard responses (Figure 3Ei, Kruskal-Wallis test,
p = 0.0052; post hoc Wilcoxon one-sided signed-rank test with
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FIGURE 3 | Deviance detection properties of visual mismatch negativity (vMMN). (A) Representative mapping of visual evoked potential (VEP) recorded in the visual
oddball and control paradigms (top) and auditory evoked potential (AEP) recorded in the auditory oddball paradigm (bottom). The standard (black lines), deviant (bold
light gray lines), and the control (dark gray lines) responses were approximately aligned in the spatial coordinates of the recording sites of the surface microelectrode
array. (B,C) Representative time courses of evoked responses in the oddball paradigms. The traces represent VEPs (left) and AEPs (right) from indicated recording
sites (B) in the visual (#9) and (C) auditory cortices (#17). Prominent components of these traces, i.e., visual P1 (vP1), vMMN, auditory P1 (aP1), and auditory MMN
(aMMN) are pointed. The time course of stimulus presentation is indicated at the bottom of the inset. (D) Statistical confirmation of MMN as a negative deflection in
the deviant responses. The lines show significance level under the null hypothesis that deviant responses are larger than standard or control responses at a given
post-stimulus latency time (Wilcoxon one-sided rank-sum test with Bonferroni correction for 450 comparisons). The blue and red lines indicate significance levels for
comparison of deviant and standard responses, and the light blue and pink lines indicate those for comparison of deviant and control responses. The blue and light
blue lines indicate the recording sites in the visual cortex, and the red and pink lines indicate the recording sites in the auditory cortex. Horizontal broken lines
indicate p = 0.05. (E) The amplitude of (i) vP1 in the standard, deviant, and control responses, and (ii) the negative deflection or MMN quantified in the subtraction of
deviant responses from the standard or control responses. Dots indicate the mean amplitudes in the visual cortex of each animal and for each stimulus. Asterisks
indicate statistical significance in post hoc analysis: **p < 0.01; ***p < 0.001 (Wilcoxon one-sided signed-rank test with Bonferroni correction for three comparisons
following the Kruskal-Wallis test).

Bonferroni correction for three comparisons, p = 0.0016 for
standard vs. deviant responses, 0.00036 for standard vs. control
responses). Conversely, amplitude of the negative deflection, i.e.,
maximum of the difference wave between 50 and 450 ms from
the stimulus onset, did not differ irrespective of whether the
deviant response was subtracted from the standard response or
from the control response (Figure 3Eii, p = 0.63, Wilcoxon
one-sided signed-rank test). Thus, vMMN in rats exhibits

deviance-detection properties, as reported for aMMN in our
previous study (Shiramatsu et al., 2013).

Comparison Between Cross-Modal MMN
and Single-Modal MMN
Mapping of the cross-modal MMN revealed putative cross-modal
effects on deviance detection. In response to audio-visual deviant
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stimuli in the congruent oddball paradigm, early P1 appeared
in the auditory cortex, followed by a negative wave in both
the visual and auditory cortices (purple lines in Figures 4A,D
and Supplementary Figure 1). Relatively slow P1 in the visual
cortex, which is similar to vP1, was often absent; therefore, we
often obtained responses similar to those seen in the auditory
oddball paradigm. In the incongruent oddball paradigm, the
visual deviant and auditory deviant responses were similar to the
deviant responses obtained in the single-modal oddball paradigm
(light blue and pink lines in Figures 4B-D). There were distinct
P1 and earlier MMN in the same modality sensory area as
the deviance and late MMN in the other sensory areas. The
representative difference waves in all tested oddball paradigms

showed that the vMMN in the single-modal visual oddball
paradigm (blue lines in Figure 4E) and MMN in the incongruent
oddball paradigm (light blue lines) were similar and that the
aMMN in the single-modal auditory oddball paradigm (red lines)
and MMN in the incongruent oddball paradigm (pink lines) were
similar (Figure 4E). The latency in which a significant MMN
(p < 0.05 in the comparison between the deviant and standard
responses) was found was earlier in the auditory oddball, in the
congruent oddball, and auditory deviance in the incongruent
oddball than in the visual oddball and visual deviance in the
incongruent oddball.

We further investigated the cross-modal effect on MMN
amplitude using pooled data. A simple test of the cross-modal

FIGURE 4 | Mapping of the congruent and incongruent audio-visual mismatch negativity (avMMN). (A–C) Representative mapping of responses recorded (A) in the
congruent audio-visual oddball paradigm, where the auditory and visual deviant stimuli were always presented together (purple lines), and (B–C) in the incongruent
audio-visual oddball paradigm, where (B) the visual deviant (light blue lines) and (C) the auditory deviant (pink lines) were delivered independently. Both incongruent
oddball paradigm maps show the same standard (black lines) responses. (D) Responses in the congruent oddball (top) and the incongruent oddball (bottom)
paradigm from the indicated recording sites in the visual (left, #9) and auditory cortices (right, #17). The time course of stimulus presentation is indicated at the
bottom of the inset. (E) Difference waves obtained by subtracting the deviant responses from the standard responses in all tested oddball paradigms: visual oddball
(blue lines), auditory oddball (red lines), and congruent audio-visual oddball (purple lines). In the incongruent audio-visual oddball paradigm, the difference wave
between the standard, visual-deviant (light blue), and auditory-deviant responses (pink) are shown separately. The bars in the bottom inset represent time courses of
each MMN, i.e., the latencies when significant differences were found under the null hypothesis that deviant responses are larger than standard responses (Wilcoxon
one-sided rank-sum test with Bonferroni correction for 450 comparisons).
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effect is to compare MMN amplitude in the cross-modal
paradigm with MMN assumed to be elicited independently in
each sensory modality. If there is no cross-modal effect and
vMMN and aMMN are always elicited separately, then the
amplitude of the MMN for the visual or auditory deviance in
the incongruent oddball paradigm (light blue and pink dots in
Figure 5A) should be the same as the amplitude of the vMMN
or aMMN in the single-modal oddball paradigm (blue and red
dots), respectively. Moreover, the amplitude of the avMMN in the
congruent oddball paradigm (purple dots) may be the same as the
summation of the vMMN and aMMN in a single-modal oddball
paradigm (gray dots). We found evidence that did not support the
above hypothesis. The amplitudes of MMN in the incongruent
oddball were smaller than those in the single-modal oddball
paradigm in some cases, and the amplitudes of avMMN in the
congruent oddball were smaller than the summation of the MMN
amplitude in the single-modal oddball paradigm (Figure 5Ai:
p = 0.018, vMMN in single-modal oddball vs. MMN for visual
deviance in incongruent oddball; p = 7.7 × 10−5, aMMN
in single-modal oddball vs. MMN for auditory deviance in
incongruent oddball; p= 0.00014, avMMN in congruent oddball
vs. summation. Figure 5Aii: p= 0.00012, aMMN in single-modal
oddball vs. MMN for auditory deviance in incongruent oddball;
p = 0.0017, avMMN in congruent oddball vs. summation;
Wilcoxon one-sided signed-rank test), indicating a cross-modal
effect on deviance detection.

In analysis of the peak latency of MMN, it was obtained as
the post-stimulus time when the amplitude of the MMN was
quantified as the maximum and significant potential difference
between 50 and 450 ms from the stimulus onset. The latency
pattern of avMMN in the congruent oddball paradigm (purple
dots in Figure 5B) resembled closely with that of aMMN (red
dots) as compared to the latency pattern of vMMN (blue dots),
indicating the advantage of aMMN over vMMN. Comparison of
MMN latency between the visual and auditory cortices showed
two types of generation and propagation of MMN. First, vMMN
in the single-modal oddball and the MMN for visual deviance
in the incongruent oddball (blue and light blue dots) were
generated in the visual cortex and propagated with longer latency.
Second, aMMN in the single-modal oddball, the MMN for
auditory deviance in the incongruent oddball, and avMMN in
the congruent oddball (red dots, pink dots, and purple triangles)
were generated earlier in the auditory cortex and propagated to
the visual cortex (Figure 5B: p = 0.0020 and 0.00017, vMMN
and aMMN in the single-modal oddball paradigm; p = 0.019,
avMMN in the congruent oddball paradigm; p = 0.0017, MMN
for the auditory deviance in the incongruent oddball paradigm;
Wilcoxon one-sided signed-rank test). Pooling the data according
to the relative vertical distance from the border between the
visual and auditory regions made these two types of propagation
very clear (Figure 5C). The propagation time, i.e., the latency
difference between the areas was 80–130 ms from the visual
to the auditory area and 35–45 ms in the opposite direction.
Taken together, these results strongly suggested that visual
and auditory deviance detection did not work independently
under the cross-modal oddball paradigm. Additionally, cross-
modal MMN responding to single-modal deviances was mainly

mediated by the corresponding sensory area, whereas avMMN
responding to congruent deviance appeared to have a robust
source in the auditory area.

Pharmacological Effect of NMDA
Receptor Antagonist Administration in
the Visual Cortex on Each MMN
Finally, we tested whether NMDA receptor antagonist
administration attenuated single-modal vMMN and aMMN and
cross-modal avMMN in the congruent oddball paradigm. For
this analysis, data were included only when the deviant responses
that were obtained before placing the agarose gel sheet exhibited
a significant MMN. The antagonist caused significant reductions
in the mean amplitude of single-modal vMMN in both sensory
areas (Figure 6; p = 0.0012 and 0.025 for the visual and auditory
cortices, respectively; Wilcoxon one-sided signed-rank test) but
not of single-modal aMMN (p = 0.33 and 0.17 for the visual
and auditory cortices, respectively). These different changes
indicated that the agarose gel sheet allowed administration of
AP5 to the visual cortex.

Lastly, we investigated whether avMMN elicited in the
congruent oddball paradigm is mediated by the visual cortex. The
mean amplitude of avMMN in the visual cortex was significantly
reduced (p = 0.038, Wilcoxon one-sided signed-rank test). This
reduction in mean amplitude was not significant in the auditory
cortex (p = 0.056); however, the maximum amplitude in this
area was significantly reduced after application of the NMDA
antagonist (p = 0.027, data not shown). Taken together, these
results show that NMDA receptor blockade in the visual cortex
attenuated vMMN in the single-modal oddball paradigm and
avMMN in the congruent oddball paradigm.

DISCUSSION

In this study, we investigated whether and how cross-modal
information processing affects MMN in rodents. After using
a surface microelectrode array to map vMMN and aMMN,
we found that vMMN in rats exhibited characteristics similar
to those previously reported for aMMN—a negative deflection
following the P1 response, the deviance detection property,
generation from the corresponding sensory area, and dependence
on NMDA receptors in that area (Shiramatsu et al., 2013;
Shiramatsu and Takahashi, 2021). Furthermore, we recorded
three types of cross-modal MMN, that is, avMMN in the
congruent oddball paradigm and MMN for the visual and
auditory deviances in the incongruent oddball paradigm.
Mapping of the amplitudes and latencies of the tested MMNs
and administration of an NMDA blocker showed cross-modal
effects on MMN. To date, cross-modal audio-visual MMN
in rodents has not been reported. Our results emphasize the
importance of rodents as animal models for MMN study, and
future studies on the neural mechanisms combining multisensory
integration and deviance detection are expected to provide
electrophysiological evidence to confirm the links between MMN
and predictive coding theory.
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FIGURE 5 | Cross-modal effect on mismatch negativity (MMN) amplitude and latency. (A) Mean amplitude of MMN in (i) the visual and (ii) auditory cortices, quantified
in all tested paradigms. For comparison, the sum of vMMN and aMMN in the single-modal oddball paradigm is also shown (rightmost). (B) Comparison of mean
MMN latency in the putative visual cortex (VC) and the putative auditory cortex (AC). (C) Propagation of MMN. The median latency of MMN in each row of the
recording site was plotted with respect to the relative vertical position from the most ventral row of the putative visual cortex. In panels (A,B), dots indicate the mean
amplitudes of MMN in each putative region in individual animals. Asterisks indicate statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001 (Wilcoxon one-sided
signed-rank test).

Functional Similarity of vMMN Between
Rodents and Humans
This study demonstrated four functional characteristics of rat
vMMN that were comparable to those of human MMN:
morphological characteristics, the deviance detection property,
generation in the corresponding sensory area, and dependence
on NMDA receptors. First, vMMN appeared in the deviant
responses as a negative deflection following vP1 responses,
as reported in humans (Sams et al., 1985; Tiitinen et al.,
1994; Amenedo and Escera, 2000; Näätänen et al., 2007). The
peak latencies of vP1 and vMMN in the visual cortex were
approximately 90 and 110–400 ms, respectively (Figures 3A,B,
5B). These latencies were longer than those of the auditory
responses, i.e., aP1 at 20 ms and aMMN at 70–190 ms, as
reported in several physiological studies (Meredith et al., 1987;
Bell et al., 2006; Jaekl et al., 2014), yet the latencies of human
vMMN and aMMN are comparable, i.e., 120–300 ms (Berti and
Schröger, 2001; Czigler et al., 2002; Pazo-Alvarez et al., 2003;

Näätänen et al., 2007). One possible reason is the weak eyesight
of rats as nocturnal animals, which sometimes exhibits different
structures of the visual cortex compared to humans (Kondo
et al., 2016; Maruoka et al., 2017). Our supplemental results
indicated that vMMN was not sensitive to the magnitude of
deviance (Supplementary Figure 2; there was no increase in
the amplitude of vMMN for more distant deviants), which also
supports the possibility of rats having different visual deviance
detection from that of humans. Another possibility is that the
visual stimuli used in this study induced weak activation in the
rat visual cortex or its deviance detection system (Alho et al.,
1992; Czigler et al., 2002; Pazo-Alvarez et al., 2003). A previous
mice study reported vMMN in a similar time course with humans
(Hamm and Yuste, 2016), using full-field square-wave gratings,
which might cause different activation from one vertical bar used
in the present study.

Second, despite the long latency, vMMN in rats exhibited
a deviance detection property as well as human vMMN
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FIGURE 6 | Pharmacological effects of administration of an N-methyl-D-aspartic acid (NMDA) antagonist (AP5) in the visual cortex on mismatch negativity (MMN).
Mean amplitude of MMN in (A) the visual and (B) auditory cortices before and after administration of AP5 to the visual cortex. Dots indicate the mean MMN
amplitudes in each putative region in individual animals. Asterisks indicate statistical significance: *p < 0.05; **p < 0.01 (Wilcoxon one-sided signed-rank test).

(Czigler et al., 2002, 2006; Pazo-Alvarez et al., 2004; Kimura et al.,
2009). It has been claimed that both vMMN and aMMN in
humans represent deviance detection and are not mere effects
of adaptation, because they are also elicited by complex changes,
such as a violation of categorization or sequential rules (Czigler
et al., 2006; Astikainen and Hietanen, 2009; Chang et al.,
2010; Clifford et al., 2010; Stefanics and Czigler, 2012; Czigler,
2014). The present study applied a previously designed control
paradigm and distinguished the deviance detection property in
the vMMN from adaptation. To date, this is the first evidence of
the deviance detection property in vMMN in rats, following the
previous reports in rabbits (Astikainen et al., 2000) and in mice
(Hamm and Yuste, 2016).

Third, the present mapping technique across the two sensory
cortices revealed that the MMN for the deviance in one sensory
modality first appeared in the corresponding sensory cortex,
consistent with several electroencephalography studies (Scherg
et al., 1989; Csépe et al., 1992; Tiitinen et al., 1993; Alho
et al., 1996; Berti and Schröger, 2001; Czigler et al., 2002).
However, because of the low spatial resolution of the present
microelectrode array, we could not identify the precise MMN-
generating subregion in the visual cortex. It is expected that
the higher-order visual area, i.e., the secondary visual area
(V2L), or both the primary and higher-order visual areas,
are involved, considering that aMMN is generated from the
secondary auditory cortex in cats (Pincze et al., 2001) and spreads
toward the belt area in rats (Shiramatsu et al., 2013).

Lastly, the present study also demonstrated that single-
modal MMN is mainly mediated by NMDA receptors
in the corresponding sensory cortex, indicating the role
of NMDA receptors in the MMN generation process.
Accumulating evidence from both clinical and animal
studies has shown that NMDA receptors mediate aMMN
(Kreitschmann-Andermahr et al., 2001; Umbricht et al., 2002;
Tikhonravov et al., 2010; Shiramatsu et al., 2013), and that
aberrant NMDA receptor function diminish vMMN (Shelley
et al., 1991; Baldeweg et al., 2004; Urban et al., 2008; Farkas et al.,
2015). To date, however, no previous study has directly shown
the decrease in vMMN caused by the NMDA receptor blockade,

or the effect of limited, local infusion of an NMDA receptor
antagonist. The present invasive recording in the rodents allowed
us to demonstrate that the blocker that was locally infused into
the visual area reduced vMMN in the visual and auditory areas,
while aMMN remained unaffected in both areas (Figure 6).
These results indicate that NMDA receptors contribute to the
neural process of deviance detection in a modality-specific
manner. However, these receptors might not directly mediate
the negative deflection itself. Taken together with a recent
report that another neuromodulator, i.e., somatostatin, worked
with a similar time-course of MMN (Hamm and Yuste, 2016),
the deviance detection process should be divided into several
sub-steps, with NMDA receptors contributing to the early steps,
such as the construction of prediction. Future studies using local
application of blockers or genetically engineered animals could
identify the step-by-step role of each neuromodulator in the
MMN generation process.

Cross-Modal Effects on MMN in Rodents
The present study demonstrated cross-modal effects in the
MMN elicited by three types of deviant stimuli, that is,
congruent (or paired) audio-visual deviant and incongruent (or
independent) visual and auditory deviant stimuli (Figure 1E).
Cross-modal effects on the avMMN in the congruent oddball
were demonstrated by three characteristics: the latencies similar
to aMMN, dependence on the NMDA receptors in the visual
area, and the non-linear relationship of its amplitude. First, the
shorter latency of the avMMN in the auditory area (Figures 5B,C)
indicates that some parts of the neural substrates of single-
modal aMMN may also mediate avMMN. Second, after the
local blockade of the NMDA receptor in the visual area,
amplitudes of the avMMN and single-modal vMMN decreased,
while that of the single-modal aMMN remained unchanged
(Figure 6). This result pharmacologically demonstrated the
contribution of the deviance detection system in the visual area
to avMMN mediation. Lastly, the amplitude of the avMMN was
not comparable to the summation of single-modal vMMN and
aMMN, supporting a cross-modal effect on MMN (Figure 5A).
When the deviant detection system manages double deviants
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independently, i.e., sound frequency and intensity, the amplitude
of MMN shows a linear relationship, i.e., summation of the
MMNs for corresponding single deviants (Paavilainen et al., 2001;
Wolff and Schröger, 2001). Taken together with the previous
report that multi-modal interactions between the deviance
detection systems also exhibited non-linear MMN for double-
deviants (Butler et al., 2012), the present results demonstrated
cross-modal interaction between visual and auditory systems on
avMMN in the congruent oddball paradigm.

In the incongruent oddball paradigm, smaller MMNs than
the corresponding single-modal oddball paradigm also indicated
cross-modal effect (Figure 5A). For this non-linear relationship,
there were two possible mechanisms. When both modalities were
considered together, the probability of deviants was twice (20%)
of that of the single-modal oddball paradigm (10%), which could
elicit a smaller MMN (Sato et al., 2000; Sabri and Campbell,
2001; Näätänen et al., 2007). The second possibility is that
the impact of the deviance was different in the incongruent
oddball paradigm due to the multimodal feature integration—
when the paired stimuli were perceived as one audio-visual
object, the change in the single-modal characteristic should be
a “weak deviant,” possibly eliciting small MMN. Considering
that even unconscious animal subjects can produce MMN based
on empirically acquired information (Shiramatsu and Takahashi,
2018), the different impacts of deviance under multimodal
feature integration should also affect MMN. In both cases, it can
be assumed that the deviance detection functions in the visual
and auditory systems were not independent but rather interacted
with each other.

To date, audio-visual MMNs have been obtained in humans
using experimental designs that highlight top-down effects, such
as the McGurk-MacDonald illusion or pairs of specific languages,
or language-replicated sounds with letters or speaking faces
(Colin et al., 2002a,b; Saint-Amour et al., 2007; Froyen et al.,
2008; Andres et al., 2011; Stekelenburg and Vroomen, 2012). Both
stimuli need some knowledge of the corresponding language
or the habituation process to integrate the appropriate auditory
and visual pairs, emphasizing empirically acquired top-down
effects on these MMNs. A few studies have used non-linguistic
stimuli and demonstrated cross-modal effects on congruent
avMMN and incongruent vMMN and aMMN (Stekelenburg
et al., 2004; Horvath et al., 2013). However, one of the main
interests was the ventriloquist illusion (Stekelenburg et al., 2004)
and to demonstrate that MMN reflects our illusory perception;
therefore, the detailed interpretation of the results differs from
that in the present study. We believe that, to distinguish between
top-down and bottom-up effects on audio-visual MMN for
linguistic stimuli, further investigation of MMN in humans and
animal models using simple stimuli, such as those employed in
this study, will be beneficial.

Possible Neural Mechanisms of the
Cross-Modal Effect on MMN
The present cross-modal MMN can be modified in various
processing stages, i.e., the bottom-up, corticocortical, and
top-down pathways (Cappe et al., 2011). Several subcortical

nuclei and thalamocortical projection in the auditory ascending
pathway exhibit sensitivity to visual inputs and vice versa
(Budinger et al., 2006; Alvarado et al., 2007; Porter et al.,
2007; Henschke et al., 2015; Kimura, 2020). These subcortical
nuclei are sensitive to oddball paradigm and often exhibit
strong stimulus-specific adaptation (Escera and Malmierca, 2014;
Shiramatsu et al., 2016a; Parras et al., 2017; Takahashi et al.,
2020); therefore, they can convey cross-modal information about
repetitive inputs to cortical areas. Direct crosstalk between
sensory cortices can also affect ongoing predictions and deviance
detection (Falchier et al., 2002, 2010; Rockland and Ojima,
2003; Clavagnier et al., 2004; Budinger et al., 2006). Lastly, top-
down information about cross-modal integration is expected to
influence cortical sensory processing. The functional areas for
sensory integration are widely distributed in the brain, i.e., the
prefrontal and parietal cortices (Romanski, 2007; Sereno and
Huang, 2014). Top-down projections from these associative areas
often terminate in higher sensory regions, which are putative
foci of MMN generation (Alho et al., 1996; Romanski et al.,
1999; Pincze et al., 2001; Shiramatsu et al., 2013). A previous
study reported that damage to the prefrontal cortex affected
MMN in the auditory cortex, which supports the hypothesis that
such top-down projections contribute to the generation of cross-
modal MMN to some extent (Alain et al., 1998). Thus, we can
expect further advancements in microscale electrophysiological
and pharmacological techniques in animal models to reveal the
precise neural mechanisms underlying both cross-modal MMN
and pre-attentive sensory integration.

As a new phenomenon that could be the subject of
future investigation in cross-modal animal MMN, we found
interregional propagation of MMN between the visual and
auditory cortices (Figure 5C). However, the present study could
not clarify whether this phenomenon was similar to stimulus-
induced traveling waves or transmitted signals, such as the late
frontal sources of human aMMN (Rinne et al., 2000). Traveling
waves are characterized in multichannel recordings and mainly
mediated by long-range horizontal fibers of intracortical axons,
spreading within the superficial layers of the cortex (Muller
et al., 2018). Involvement of the superficial layers can explain
why robust propagation was only found in MMN but not
P1—MMN is thought to reflect neural components in the
superficial layers, while P1 mainly reflects synaptic current to
cortical layer 4 (Javitt et al., 1996; Lee et al., 2004; Fishman
and Steinschneider, 2012). Moreover, smooth surface of the rat
cortex might emphasize such horizontal spread. The speed of this
propagation was reported to be 0.1–0.8 m/s, which is not vastly
different from the present results, i.e., 0.02–0.06 m/s (Figure 5C;
vMMN and aMMN required 80–130 and 35–45 ms, respectively,
for an approximately 2-mm propagation). Another possibility is
that MMN in one sensory area is transmitted to another area,
where it elicits a new MMN-like deflection. In this scenario,
the variation in MMN latency between sensory areas should be
more significant than within a sensory area, as seen in our study
(Figure 5C). The asymmetrical transfer rate between visual-to-
auditory and auditory-to-visual propagation also supports this
possibility. As the poor spatial resolution of the current recording
system prevented detailed mapping of latency, we cannot reach
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any definitive conclusions. However, in both scenarios, the
propagation of MMN may provide cross-modal modulation in
other sensory cortices by altering neuronal excitability.

Methodological Considerations
Although the present study succeeded in simultaneous recording
from the visual and auditory cortices of rats, there were certain
limitations in the context of the comprehensive recording.
First, it was often difficult to expose the entire visual cortex
surgically. In such cases, the ventral and anterior parts of
the visual-related area, which is assumed to include higher-
order subregions (i.e., the V2L) than the primary subregion
of the visual cortex, was used for recording. Second, due to
the design of the microelectrode array, we often failed to
cover the higher-order auditory cortex, that is, the ventral
auditory subfield (Takahashi et al., 2004, 2005; Shiramatsu
et al., 2016b,c). Since our focus was on the global trends
between the two sensory cortices, we preferentially covered
the boundaries of these areas rather than the more distant
subregions. Therefore, we could not categorize the primary
and higher-order subregions of these cortices and failed to
reveal different cortical maps between P1 and MMN, as in our
previous report (Pincze et al., 2001; Shiramatsu et al., 2013).
Third, the large inter-electrode distance of 1 mm prevented
us from identifying the precise audio-visual border, which
made propagation velocities ambiguous. In the future, using a
microelectrode array with a higher density of recording sites and
a larger coverage area toward the outer boundary of the targeted
sensory areas will provide more detailed electrophysiological
evidence to elucidate the cross-modal interaction under audio-
visual oddball sequences.

In the analysis for the incongruent oddball paradigm,
the standard and deviant responses were not derived from
the identical audio-visual stimuli (see section “Materials and
Methods”). Although the compared standard and deviant
stimulus should be identical, its influence on the present result
is thought to be small from two perspectives. First, the standard
responses did not show distinct deflection in the latency of
MMN (Figures 3, 4); therefore, subtraction of the standard
responses (almost zero potential) from the deviant responses
would not affect the quantified amplitude of MMNs. Second, for
the quantification of MMN, we chose the standard and deviant
responses so that the stimuli of the deviant modality would
be the same. The deviant stimuli would strongly stimulate the
sensory system and trigger MMN, supported by the distinct
P1 in the modality of deviance (Figure 4D); therefore, this
subtraction was reasonable in the absence of an identical
standard response.

Future Directions
The present study provided evidence of cross-modal effects on
animal MMN, which had not been described previously and
which will inform future research in this area. Accumulating
evidence indicates that MMN in animal models, particularly
in rodents, could be homologous to human MMN. We also
believe that future studies on rodent MMN will contribute
to the elucidation of neural mechanisms underlying aberrant

information processing in specific psychological disorders. We
previously demonstrated that aMMN in rats reflects salience
processing, based on individual experience, inspired by a “naive”
asymmetry of the amplitude of aMMN between upward and
downward changes (Shiramatsu and Takahashi, 2018). In the
present study, vMMN also exhibited similar asymmetry between
forward and backward shifts of the stimulus (Supplementary
Figure 2 shows that forwarding changes elicited larger vMMNs
than backward changes). This result suggests that vMMN in
rats, as in human vMMN, also represents empirical salience
(Sulykos et al., 2015). Taken together with the links between the
small aMMN and aberrant salience processing in patients with
schizophrenia (Baldeweg et al., 2004; Nelson et al., 2014), the
present results raise the possibility that such aberrant salience
processing can also develop in the visual domain, which could
stimulate and inform further investigations into the general
neural substrates of specific psychological disorders.
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Electrophysiological sensory deviance detection signals, such as the mismatch
negativity (MMN), have been interpreted from the predictive coding framework as
manifestations of prediction error (PE). From a frequentist perspective of the classic
oddball paradigm, deviant stimuli are unexpected because of their low probability.
However, the amount of PE elicited by a stimulus can be dissociated from its probability
of occurrence: when the observer cannot make confident predictions, any event holds
little surprise value, no matter how improbable. Here we tested the hypothesis that
the magnitude of the neural response elicited to an improbable sound (D) would scale
with the precision of the prediction derived from the repetition of another sound (S), by
manipulating repetition stability. We recorded the Electroencephalogram (EEG) from 20
participants while passively listening to 4 types of isochronous pure tone sequences
differing in the probability of the S tone (880 Hz) while holding constant the probability of
the D tone [1,046 Hz; p(D) = 1/11]: Oddball [p(S) = 10/11]; High confidence (7/11);
Low confidence (4/11); and Random (1/11). Tones of 9 different frequencies were
equiprobably presented as fillers [p(S) + p(D) + p(F) = 1]. Using a mass-univariate
non-parametric, cluster-based correlation analysis controlling for multiple comparisons,
we found that the amplitude of the deviant-elicited ERP became more negative with
increasing S probability, in a time-electrode window consistent with the MMN (ca. 120–
200 ms; frontal), suggesting that the strength of a PE elicited to an improbable event
indeed increases with the precision of the predictive model.

Keywords: uncertainty, precision, prediction error, mismatch negativity (MMN), deviance detection, predictability,
oddball
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INTRODUCTION

According to current models that view the brain as a Bayesian
inference system, our experience of the world stems from internal
representations of the statistical regularities of the sensory
input. These internal representations embody our experience
and prior knowledge about the world, and the associated
expectations. Based on these representations, internal forward
models continuously make predictions regarding the sensory
input (Friston, 2010). Predictions are compared with incoming
sensory information and prediction error (PE) is used to adjust
the internal representations. This comparison process and the
ensuing generation of PE signals is also referred to as sensory
deviance detection, and it is reflected in electrophysiological
responses, most notably in the mismatch negativity (MMN;
Garrido et al., 2009). Today, deviance detection is widely accepted
as a general principle of brain function (Friston, 2010; Escera and
Malmierca, 2014; Malmierca et al., 2014).

An aspect of this process which is much less well-established
in the deviance detection literature is the proposal that it is
flexibly adjusted depending on the estimated precision of the
sensory signals, or in other words, the confidence that can
be placed in the current internal models and the predictions
derived from them. Specifically, it is proposed that the gain
of the PE signals is modulated (“precision-weighted”) by their
expected precision, thereby adjusting the impact that the PE has
in terms of updating the internal representations (Feldman and
Friston, 2010; Schröger et al., 2015). This is critical for the proper
formation and updating of predictive models under different
contexts and levels of noise, avoiding issues like overfitting, and
allowing a dynamic adjustment of the balance between the weight
placed on priors and the weight placed on sensory evidence when
interpreting sensory input. Precision-weighting of the gain of the
PE signal is also proposed to be the mechanism through which
attention operates to modulate sensory responses (Feldman and
Friston, 2010). Moreover, it has been proposed that dysfunctional
precision-weighting might be a critical factor in schizophrenia
and autism, in which the balance between the weight placed on
priors and evidence would be skewed toward the priors in the
former and toward the evidence in the latter (Adams et al., 2013;
Lawson et al., 2014, 2017). Thus, the concept of precision or
confidence appears to be a central aspect of generating and using
internal models, crucial in determining our experience through
its influence on perception and attention.

Nevertheless, the concept of confidence or precision is
somewhat elusive and has been rarely operationalized in a clear
way in deviance detection studies. So far, it seems unclear
how to measure confidence and investigate it with a simple
paradigm that is also applicable to clinical settings. The aim of
this report is to propose a simple manipulation that taps into
precision or confidence based on the most common design to
investigate deviance detection, the oddball paradigm, allowing
us to investigate the hypothesis that sensory deviance detection
signals are precision weighted.

In the typical oddball paradigm used to study deviance
detection, two stimuli are presented with differing probabilities;
an infrequent “deviant” stimulus is interspersed among the

repeating presentation of the frequent “standard” stimulus. When
the electrophysiological responses elicited by the deviant are
compared to those elicited by the standard, a negative deflection
can be observed on the difference waveform in the 100-200 ms
latency range: the mismatch negativity (MMN; Näätänen, 1992).
Thus, the MMN signals the detection of a change in the sensory
stream. Since the discovery of the MMN, thousands of studies
have used variations of the oddball paradigm, applying the MMN
to study a wide range of issues in basic and clinical research,
proving to be a powerful tool to study brain function (Näätänen
et al., 2007, 2011, 2012). For the MMN to continue to be so
useful, our understanding of the underlying MMN-generating
process and significance must continue to be updated and evolve
(Winkler, 2007).

Indeed, there has been a substantial progression on the
explanatory theories regarding the type of computation indexed
by the MMN-generating process. Initially, the sensory memory
trace hypothesis proposed that each incoming stimulus is
compared with the trace of the preceding stimuli stored in
sensory memory and that MMN is elicited when the incoming
stimulus differs (Näätänen, 1992). An alternative explanation
proposed that the MMN is the result of the differential
state of refractoriness or adaptation of the neural populations
responding to the standard and deviant stimulus, with the
standard population being more refractory due to the high rate
of responses to the repeating standard, and thus eliciting a
diminished response (“release from refractoriness,” Näätänen,
1990, 1992), or “N1 adaptation hypothesis” (Jääskeläinen et al.,
2004; May and Tiitinen, 2010) compared to the deviant.
Currently, it is generally acknowledged that refractoriness
differences underlie part of the effects measured in most of
the classic deviance detection studies unless this aspect is
properly controlled (Näätänen et al., 2005; Escera and Malmierca,
2014). Nevertheless, the predominant view is that there exists a
unique deviance detection process indexed beyond refractoriness
differences (the “true” MMN). Building up on this idea, the
sensory memory trace hypothesis evolved into considering the
trace against which each incoming stimulus is compared more
of an abstract representation of a regularity, rather than a
literal trace of the standard stimulus. The idea of regularity
representations facilitated a transition from memory-based to
prediction-based explanations, proposing that the comparison
is not to a memory trace, but rather to a prediction generated
on the basis of the regularity. Perhaps the currently best
accepted view of the MMN is the model adjustment hypothesis,
which also highlights the predictive model, proposing that the
MMN-generating process has a direct role in the building
of the predictive internal representation itself, rather than
simply signaling deviance detection (Winkler and Czigler, 1998;
Winkler, 2007). In this view, the MMN reflects the updating of
the internal representation on the basis of how well the incoming
stimuli match the predictions generated by the predictive model.
However, while these last models stress the predictive aspect, they
did not define how specifically the predictive representation is
formed and applied. More recently, MMN has been interpreted
from the predictive coding perspective as a manifestation of PE
(Garrido et al., 2009; Wacongne et al., 2011; Lieder et al., 2013;
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Schröger et al., 2015; Stefanics et al., 2018), placing the MMN-
generating process within a wider conceptualization of the
brain as a Bayesian inference system (Knill and Pouget, 2004;
Friston, 2010) and thus providing a detailed explanation of the
computations involved in the underlying inference process.

The different MMN models emphasize different aspects when
it comes to understanding exactly what the deviance in deviance
detection is, and thus outlining the factors that might influence
MMN elicitation and amplitude. From a rather simple frequentist
perspective of the classic oddball paradigm, the deviance
associated with an event relates to its improbability, given a
prediction of the occurrence of all possible events. Thus, in this
view, the differential processing of deviant stimuli is determined
exclusively by their low probability. This interpretation fits well
with the N1-adaptation hypothesis, in which the effects would
be due solely to differential base rate probability of the standard
and deviant. However, from a Bayesian perspective PE (and thus
MMN) reflects a violation of expectations, and can be related
in a straightforward manner to the concept of Bayesian surprise
(Ostwald et al., 2012). Bayesian surprise quantifies how incoming
data affects an observer, by measuring the difference between the
observer’s beliefs before and after receiving the new data. New
data that is difficult to integrate into the current explanatory
model (i.e., the observer’s beliefs) requires that significant changes
are made to the model, thus yielding a high value of Bayesian
surprise (Itti and Baldi, 2009). This perspective dissociates the
amount of PE (surprise) elicited by a stimulus from its probability
of occurrence, and also fits well with the model adjustment
hypothesis of MMN (Winkler, 2007). The Bayesian perspective
on surprise also stresses the importance of the observer’s beliefs:
when the observer cannot make confident predictions, any event
holds little surprise value, no matter how improbable it is by itself.

In predictive coding models of brain function, confidence
in the predictions derived from the internal model is tied
to the concept of precision. Predictive coding proposes that
the prediction error signal is weighted by an estimate of its
expected precision, which inversely relates to the prediction
error’s variability (Feldman and Friston, 2010). This precision-
weighting mechanism allows adjusting the relative weights of
prior beliefs and sensory evidence in the inference process
considering contextual factors, such as the amount of noise. Thus,
the magnitude of sensory deviance detection signals elicited
by a highly improbable deviant stimulus should reflect the
confidence (precision), such that it should be down-weighted
when contextual factors lead to highly variable signals. In other
words, a highly improbable event will elicit less surprise when
the situation does not allow constructing an internal model that
reliably predicts the stimulation.

In sum, modern perspectives on the MMN-generating process
place the concept of confidence or precision as a central
parameter in the elicitation of MMN. However, until quite
recently, among the myriad of studies on MMN there have
been surprisingly very few that directly addressed this aspect.
Nevertheless, classic MMN literature has shown that the MMN
is modulated by factors that reflect the clarity or the certainty
of a change (Fitzgerald and Todd, 2020). First, MMN will only
be elicited to deviants presented with a probability of 0.30 or

below (Kujala et al., 2007), and MMN amplitude increases with
decreasing probabilities of the deviant (Näätänen, 1990, 1992).
It is well-established that the MMN is larger for deviants that
are more physically different (Winkler et al., 1992; Tiitinen
et al., 1994; Amenedo and Escera, 2000; Daikhin and Ahissar,
2012), differ in more dimensions (Schröger and Wolff, 1998) or
are more discriminable (Sams et al., 1985) from the standard
(Näätänen, 1990, 1992). Much less research has focused on
exploring the impact of the way the regularity is presented, that
is, the characteristics of the standards rather than the deviants.
Nevertheless, there is evidence indicating that the stability or
strength of the regularity, or the amount of evidence gathered
to support it, affects MMN amplitude. MMN increases after a
greater number of repetitions of the standard (Baldeweg et al.,
2004; Costa-Faidella et al., 2011a,b), after a longer period of
stable regularity (Todd et al., 2011) or when the rate of standard
repetitions is higher (with shorter ISIs; Pekkonen et al., 1995).
Importantly, not only the amount of evidence collected for the
regularity but also the clarity of this evidence plays a role. In this
sense, factors that diminish the information extracted from the
standard attenuate MMN (e.g., backward masking, Winkler and
Näätänen, 1992), and introducing some variability in the specific
characteristics of the repeating standard stimulus also decreases
the amplitude of the MMN (Winkler et al., 1990).

All in all, although there is evidence indicating that confidence
or precision may play an important role in the MMN-generating
process, a simple dedicated paradigm is lacking that would allow
to measure the effects of precision understanding the MMN
as an index of a Bayesian inference process. Such a paradigm
should allow isolating confidence without being confounded by
refractoriness, which is tied to the deviant probability. Moreover,
a clear operational definition of confidence applied to the
oddball paradigm is missing to facilitate research in this aspect
and hopefully lead to a better understanding of the MMN-
generating process.

To investigate the influence of precision in sensory deviance
detection signals, we propose a new oddball paradigm in which
we vary the confidence on the model (inferred from the regularity
established by the repetition of the standard stimulus), by
manipulating the stability of the standard stimulus, while holding
the deviant probability constant. To isolate effects of precision
not confounded by refractoriness differences, we focus on the
analysis of the deviant stimuli, which should elicit a precision-
weighted PE signal reflecting the deviance detection process.
If the MMN reflects the probability of the deviant stimulus,
responses to the deviant should not differ between conditions.
On the contrary, if it is a prediction error signal weighted by the
confidence given by the overall variability of the stimulation, we
would expect the amplitude of the deviant responses to be graded
by the probability of the standard tone.

MATERIALS AND METHODS

Participants
Twenty-five healthy volunteers with no self-reported history
of neurological, psychiatric, or hearing impairment and with
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normal or corrected-to-normal visual acuity participated in
the experiment. From this sample, five participants had to be
excluded due to problems during the recording session (N = 2)
or large artifacts in the Electroencephalogram (EEG) signal
(N = 3), resulting in a final sample of 20 participants included
in the study (mean age: 34.5 years; age range: 21–55 years; 8
males; all right-handed). All volunteers gave written informed
consent in accordance with the guidelines of the Clinical
Research Commission of the Hospital Universitari Institut Pere
Mata and the Ethics Committee of the Institut d’Investigació
Sanitària Pere Virgili before their participation and after the
procedures were explained to them. The study conformed
to the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and was approved by the Clinical
Research Commission of the Hospital Universitari Institut Pere
Mata, the Drug Research Ethics Committee of the Institut
d’Investigació Sanitària Pere Virgili and the Bioethics Committee
of the University of Barcelona. Recordings were performed at the
Hospital Universitari Institut Pere Mata.

Auditory Stimuli
Eleven pure tones (44.1 kHz sampling rate; 50 ms duration;
5 ms hanning windowed rise/fall ramps) of different frequencies
corresponding to musical notes, from A4 as the lowest pitch and
Eb7 as the highest, spaced in steps of 3 semitones (440; 523.25;
622.25; 739.99; 880; 1046.5; 1244.51; 1479.98; 1760; 2093; and
2489.02 Hz), were generated with Matlab (R2020a; Mathworks)
and delivered binaurally via Sony MDR-ZX110 headphones at
70 dB SPL using Psychtoolbox-3 functions implemented in
Matlab environment [Psychophysics Toolbox Version 3 (PTB-3)]
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

Sound Sequences
Auditory stimuli were arranged in four separate sequences
(see Figure 1A), each containing 1650 pure tones delivered
randomly at 333 ms SOA. Each sequence constituted one
experimental block (i.e., one condition; ca. 9 min duration).
Sequences differed mainly in the probability of appearance
of the 880 Hz tone [from now on termed Standard (S)]:
Oddball, p(S) = 10/11; High confidence, p(S) = 7/11; Low
confidence, p(S) = 4/11 and Random (no tone repetition
allowed), p(S) = 1/11. The probability of appearance of the
1046.5 Hz tone [from now on termed Deviant (D)] was kept at
p(D) = 1/11 in all sequences. The remaining nine tones were
presented as equiprobable fillers (from 440 to 2489.02 Hz, spaced
in 3 semitone steps, excluding the D and S tones) with a combined
probability of appearance of p(fillers) = 1−[p(S) + p(D)]. Each
sequence was created by concatenating 150 microsequences of
11 tones (150∗11 = 1650), generated according to the required
characteristics. If a microsequence started with the same tone as
that appearing at the previous microsequence ending (except for
the S tone in the Oddball, High confidence and Low confidence
sequences), a different microsequence was generated to avoid
repetition. Albeit acknowledging that the S/D terms may not be
appropriate for a sequence such as the Random one, in which
all 11 tones are presented equiprobably, we decided to follow
the traditional terminology of human auditory ERP studies on

deviance detection (Näätänen, 1992; Näätänen et al., 2007) for
consistency with past literature, readability, and because it reflects
best our experimental manipulation of interest: the parametric
variation of S probability.

Procedure
During the EEG recording session, participants sat in a
comfortable chair in a sound-attenuated room and listened
passively to the four sound sequences, delivered in random order,
while reading a book (or a magazine or newspaper) of their own
choosing. The total duration of the recording session was 40 min
approximately (4 blocks × 9 min + pauses), plus EEG recording
preparation (around 20 min).

EEG Recording and Preprocessing
EEG was continuously recorded from 16 Ag/AgCl electrodes and
digitized at a sampling rate of 500 Hz by a BrainVision V-AMP
amplifier (Brain Products, Germany) using the BrainVision
Recorder version 1.21.0303 (Brain Products, Germany)
acquisition software. Eleven electrodes were mounted in a
nylon cap (EasyCap, Germany) at standard locations according
to the international 10-20 system (Fp1, Fp2, F3, Fz, F4, T3, C3,
Cz, C4, T4, Pz); additionally, two electrodes were positioned over
the left and the right mastoids (M1 and M2, respectively), and
three electrodes were used to record the electrooculogram [one
placed below the left eye (VEOG); the remaining two placed at
the outer canthi of the eyes (HEOG)]. The ground electrode was
placed at AFz and the common reference electrode at the tip of
the nose. All impedances were kept below 5 k� during the whole
recording session.

Data preprocessing was performed offline using EEGlab
v2021.0 software (Delorme and Makeig, 2004) running on Matlab
R2020a. Data were bandpass filtered between 1 and 40 Hz
(Kaiser window; β = 5.65; transition bandwidth = 0.5 Hz).
Periods contaminated by non-stereotyped muscle artifacts
were rejected by visual inspection. Independent component
analysis decomposition was applied using the SOBI algorithm
(Belouchrani and Cichocki, 2000). Independent components
related to blinks, horizontal eye movements and heart rate,
identified on the basis of their scalp topography and time course
(Jung et al., 2000), were removed. After eliminating VEOG and
HEOG channels from the set, artifact corrected data were cut
in epochs from −0.1 to 0.3 s, time-locked to each auditory
stimulus onset, and baseline corrected from −0.1 to 0 s. Epochs
containing improbable data 3 SD above or below the mean
probability distribution of values across all epochs were excluded
(EEGlab’s function pop_jointprob.m). Epochs corresponding to
the D tone and the closest preceding S tone were selected for
further analyses. Across participants, the mean (and SD) of the
number of included trials per condition was: Oddball, D tone,
134.4 trials (7.2), S tone, 135.3 trials (5.7); High confidence, D
tone, 135.9 trials (5.6), S tone, 136.3 trials (5.2); Low confidence,
D tone, 133.95 trials (9.7), S tone, 133.4 trials (6.5); Random, D
tone, 135.45 trials (4.7), S tone, 135.4 trials (5.7). No significant
differences were found between the number of trials used in each
condition (D tone: Kruskal-Wallis test, χ2 = 0.5, p > 0.5, df = 3;
S tone: Kruskal-Wallis test, χ2 = 2.35, p > 0.1, df = 3). Data
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FIGURE 1 | (A) Experimental design. (B) ERP waveforms from Fz electrode evoked to D stimuli in the Oddball (odd; dark red), High confidence (high; orange), Low
confidence (low; cyan) and Random (rand; dark blue) conditions. Correlation values (Pearson’s r) between S tone probability and D tone ERP amplitudes at each
time point are plotted in a dotted black line. The gray shaded area marks the temporal extent of the significant cluster of correlation values (122–202 ms). (C) P50,
N1 and MMN/P2 scalp potential distribution maps per condition separately. (D) Boxplot series illustrating the distribution of mean amplitude ERP values extracted
from Fz around the maximum correlation peak (170 ms) in our sample of participants, separately per condition. The boxplots represent the median value (middle
line), the interquartile range (full box) and the extreme values (whiskers; outliers are plotted as separate dots). Significance of post hoc tests: ****p < 0.001;
*p < 0.05. (E) Time-electrode evolution of Pearson’s r-values. The gray shaded area marks the temporal extent (122–202 ms) of the significant (***p < 0.005) cluster
of correlation values, while the white dots (electrodes) denote its spatial extent.

was then converted to fieldtrip format (Oostenveld et al., 2011),
epochs were averaged separately per participant, tone type and
condition and the resulting ERPs were lowpass filtered at 25 Hz
with a zero-phase forward and reverse 6th order Butterworth
IIR filter (hamming window). Difference waves (DW) were
computed by subtracting, per participant and condition, the S
tone ERP from the D tone ERP.

EEG Analyses
To investigate the influence of precision on deviance detection
signals, we focused on the analysis of the D stimulus under
different levels of precision, with the hypothesis that ERP

amplitudes to the D tone would be modulated by the
probability of the S tone. We computed a correlation analysis
(Pearson’s correlation) introducing the probability of the S
tone as the independent variable (i.e., predictor; 10/11, 7/11,
4/11, 1/11 corresponding to the Oddball, High confidence,
Low confidence and Random conditions, respectively) and
the ERP amplitudes to the D tone (in the 4 experimental
conditions) as the dependent variable. In order to overcome
the problem of multiple comparisons over electrodes (n = 13)
and time points (from −0.1 to 0.3 s; 200-time points at
500 Hz sampling rate), a mass-univariate, two-dimensional (time,
electrode) cluster-based correlation analysis was conducted,
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performed using a non-parametric randomization procedure
(Maris and Oostenveld, 2007; in Fieldtrip, ft_timelockstatistics
function with the options cfg.statistic = “correlationT” and
cfg.type = “Pearson”). Neighboring electrodes were defined by the
distance separating each other in a 2D projection of the montage,
centering a 2.5 cm radius circle at each electrode and selecting
those electrodes falling within. A minimum of two nearby
electrodes was set per cluster. Correlation coefficient T-statistics
were then computed at each time point and electrode (two-tailed)
with the non-parametric Monte Carlo method. The Monte Carlo
significance probability (p-value) was determined by calculating
the proportion of 2D samples from 20,000 random partitions of
the data that resulted in a larger test statistic than those on the
observed test statistic. Then, clusters were created by grouping
adjacent 2D points exceeding a significance level set to 0.05. The
weighted cluster mass (Hayasaka and Nichols, 2004) was taken
as the cluster-level statistic. The significance probability of the
clusters was assessed with the described non-parametric Monte
Carlo method. Values of p < 0.05, corrected for two-tailed tests,
were considered significant. For each significant cluster we report
its temporal spread, cluster statistic and p-value. To facilitate
comparability of our results to previous MMN deviance detection
studies, we complemented the analyses performed on D stimuli,
analyzing the modulation caused by the probability of the S tone
on the S tone ERP itself and on the D-S DW, following exactly the
same statistical approach. However, note that differences in the S
responses between conditions do not only reflect differences in
precision, but also differences in refractoriness or adaptation as
the manipulation of precision entails the manipulation of the S
stimulus repetition rate. Therefore, we base our conclusions on
the analysis of the D stimuli, whose probability was held constant
across conditions.

RESULTS

Grand-average (N = 20) ERP waveforms evoked to the D tone
(1046.5 Hz; probability of appearance in the sequence = 1/11)
in the Random, Low confidence, High confidence and Oddball
conditions, extracted from a frontocentral electrode (Fz),
are illustrated in Figure 1B. As expected, the tone evoked
prototypical P50 (ca. 50 ms) and N1 (ca. 100 ms) auditory
ERP components in all conditions. A gradient in the ERP
amplitude, becoming more negative with increasing S tone
(880 Hz) probability across conditions (1/11, 4/11, 7/11 and
10/11 for the Random, Low confidence, High confidence and
Oddball conditions, respectively), can be appreciated between
ca. 120 and 200 ms, a time range consistent with that of
MMN/P2 auditory ERPs. The scalp potential distribution maps
of these ERP components are plotted in Figure 1C for each
condition separately.

A mass-univariate correlation analysis between the probability
of the S in the different experimental conditions (independent
variable) and the amplitude of the ERP to the D tone (dependent
variable), corrected for multiple comparisons in time and space
(i.e., number of electrodes) using a cluster-based approach,
yielded a significant fronto-central negative cluster between

122 ms and 202 ms (wcm = −247.48; p < 0.005; see Figure 1E),
peaking at Fz electrode at 170 ms (Pearson’s r = −0.43; see
Figure 1B), corroborating the observation that D tone ERP
amplitudes become more negative as S probability increases. This
result was supported by a further confirmatory non-parametric
statistical analysis on the mean ERP amplitudes at Fz extracted
from each subject in a 160 to 180 ms time window (20 ms around
the correlation peak; Kruskal-Wallis test, χ2 = 16.59, p < 0.001,
df = 3; see Figure 1D). Post hoc tests corrected for multiple
comparisons (Tuckey-Kramer) revealed that D ERP amplitudes
at Fz during that time range were significantly more negative in
the Oddball condition than in the Random (p < 0.001) and in the
Low confidence (p < 0.05) conditions.

In order to evaluate the modulation that increasing a tone
probability has on the activity evoked to that tone itself, the
activity evoked to the S tones was submitted to the very same
analysis. Grand-average ERP waveforms evoked to the S tone
(880 Hz) in the Random, Low confidence, High confidence
and Oddball conditions, extracted from Fz, are illustrated in
Figure 2A. A gradient in the N1 amplitude (ca. 110 ms) can
be observed, becoming less negative with increasing probability,
as well as a reduced P50 (ca. 45 ms) in the Oddball condition
as compared to the rest. The scalp potential distribution maps
of these ERP components are plotted in Figure 2B for each
condition separately.

However, these observations were not supported by statistical
analyses, as the mass-univariate correlation analysis performed
between the probability of the S in the different experimental
conditions (independent variable) and the amplitude of the
ERP to the S tone (dependent variable), corrected for multiple
comparisons in time and space (i.e., number of electrodes) using
a cluster-based approach, yielded no significant clusters.

For completeness, we submitted the DW ERPs (D ERP
– S ERP) to the same analysis. Grand-average DW ERPs in
the Random, Low confidence, High confidence and Oddball
conditions, extracted from Fz, are illustrated in Figure 3A. As
expected from the activity patterns elicited to the D and S tones,
the DWs exhibit an increase in positivity around the P50 time
range (ca. 40 ms) with increasing S tone probability, as well
as a prominent MMN (ca. 140 ms) in the Oddball condition.
The negativity at the MMN time range gradually increases with
increasing S tone probability. The scalp potential distribution
maps of both DW peaks are plotted in Figure 3B for each
condition separately.

The mass-univariate correlation analysis between the
probability of the S in the different experimental conditions
(independent variable) and the amplitude of the DW ERP
(dependent variable), corrected for multiple comparisons in
time and space (i.e., number of electrodes) using a cluster-based
approach, yielded a significant central-frontocentral positive
cluster between −6 ms and 58 ms (wcm = 166.71; p < 0.01;
see Figure 3D), peaking at Fz electrode at 38 ms (Pearson’s
r = 0.43; see Figure 3A), and a significant frontocentral
negative cluster between 108 ms and 190 ms (wcm = −234.54;
p < 0.005; see Figure 3D), peaking at Fz electrode at 142 ms
(Pearson’s r = −0.42; see Figure 3A). These results corroborate
the observations that DWs increase in positivity at the P50
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FIGURE 2 | (A) ERP waveforms from Fz electrode evoked to S stimuli in the Oddball (odd; dark red), High confidence (high; orange), Low confidence (low; cyan) and
Random (rand; dark blue) conditions. Correlation values (Pearson’s r) between S tone probability and S tone ERP amplitudes at each time point are plotted in a
dotted black line. (B) P50, N1, and P2 scalp potential distribution maps per condition separately.

FIGURE 3 | (A) Difference waveforms (D ERP—S ERP) from Fz electrode in the Oddball (odd; dark red), High confidence (high; orange), Low confidence (low; cyan)
and Random (rand; dark blue) conditions. Correlation values (Pearson’s r) between S tone probability and DW ERP amplitudes at each time point are plotted in a
dotted black line. The gray shaded areas mark the temporal extent of the significant clusters of correlation values (–6–58 ms; 108 to 190 ms). (B) P50 and MMN time
range scalp potential distribution maps per condition separately. (C) Boxplot series illustrating the distribution of DW mean amplitude values extracted from Fz
around the maximum correlation peaks (38 ms; 142 ms) in our sample of participants, separately per condition and P50/MMN time ranges. The boxplots represent
the median value (middle line), the interquartile range (full box) and the extreme values (whiskers; outliers are plotted as separate dots). Significance of post hoc tests:
***p < 0.005. (D) Time-electrode evolution of Pearson’s r-values. The gray shaded areas mark the temporal extent (–6–58 ms; 108–190 ms) of the significant
(***p ≤ 0.005) clusters of correlation values, while the white dots (electrodes) denote their spatial extent.
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time range and increase in negativity at the MMN time range
with increasing S tone probability. Further confirmatory
non-parametric statistical analyses on the mean DW amplitudes
at Fz extracted from each subject confirmed these findings: P50
time range, 33–43 ms time window (10 ms around the correlation
positive peak), Kruskal-Wallis test, χ2 = 15.49, p < 0.005, df = 3;
see Figure 3C; MMN time range, 132–152 ms time window
(20 ms around the correlation negative peak), Kruskal-Wallis
test, χ2 = 14.26, p < 0.005, df = 3; see Figure 3C. Post hoc tests
corrected for multiple comparisons (Tuckey-Kramer) revealed
that DW ERP amplitudes at Fz during the P50 time range were
significantly more positive in the Oddball condition than in the
Random (p < 0.005) and in the Low confidence (p < 0.005)
conditions. DW amplitudes during the MMN time range were
significantly more negative in the Oddball condition than in the
Random (p < 0.005) condition.

DISCUSSION

Predictive coding models propose that sensory event-related
brain potentials reflect the transmission of precision-weighted PE
from lower to higher areas of the sensory hierarchy. According
to this view, electrophysiological deviance detection signals like
the MMN reflect the greater amount of PE elicited by the deviant
(mispredicted) compared to the standard (predicted) stimuli
(Friston, 2005; Garrido et al., 2009). Moreover, the gain of the PE
is adjusted on the basis of an estimation of its precision, whereby
more variable (uncertain) contexts lead to lower confidence and
down-weighted PE signals compared to more stable (certain)
contexts. To test whether the amplitude of sensory evoked
responses reflecting PE varies as a function of uncertainty, we
recorded ERPs elicited by 1046.5 Hz tones presented with p = 0.1
and manipulated the degree of variability of the rest of the
sounds of the sequence, which were always drawn from a pool
of 10 tones ranging between 440 and 2489.02 Hz. We found
that the amplitude of the sensory response evoked by a low
probability sound correlates linearly with the variability of the
sound sequence in which it is embedded. Specifically, the lower
the variability, the more negative the evoked response recorded
over frontocentral electrodes between 122 and 202 ms. This
gradual increase in negativity in the D tone ERP resulted in an
MMN response in the D-S difference waves which decreased
linearly with decreasing S tone probability. These results provide
strong support for the idea that evoked potentials in the time
range of the MMN reflect precision-weighted PE.

Traditionally, the MMN has been considered to be automatic
and tied to sensory memory, thus operating on short time scales
(< 30 s, Winkler et al., 2002) and reflecting local probability
statistics (Fitzgerald and Todd, 2020). However, evidence has
accumulated indicating that MMN is influenced by higher-
order factors such as prior experience, foreknowledge through
instruction (Frost et al., 2018), first impression biases (Todd et al.,
2011, 2013) and attention (Auksztulewicz and Friston, 2015).
These findings challenge the classic views on the computations
underlying the MMN, centered on relatively simple mechanisms
of deviance detection and regularity extraction, and push toward

a broader conceptualization of the MMN as an index of more
sophisticated learning processes in a world of sensory uncertainty
in which precision plays a key role (Mathys et al., 2011;
Fitzgerald and Todd, 2020).

In order to better understand the processes indexed by the
MMN, here we have proposed a paradigm studying the impact
of precision on sensory deviance detection focusing on the
analysis of the D stimulus responses. We have chosen the term
precision to refer to our manipulated variable. However, different
terms relating to this idea (precision, confidence, uncertainty,
variability, signal-to-noise ratio, predictability, context, second-
order predictions, etc.) are used somewhat interchangeably in
the literature, each stressing slightly different aspects. In general,
they all relate to the hypothesis that, to cope with the many
factors that limit the reliability of sensory information about the
world, the brain encodes information probabilistically, in the
form of probability distributions (“Bayesian coding hypothesis,”
Knill and Pouget, 2004). These distributions represent all possible
values of any parameter, along with the associated probabilities
for each value. Uncertainty typically refers to the width of the
belief (or subjective probability) distribution (Ma and Jazayeri,
2014), and its inverse is the precision (Feldman and Friston,
2010). Thus, broader distributions (more variance) correspond
to greater uncertainty and lower precision. Precision is also often
defined as second-order predictions, or the predictions of context
(Koelsch et al., 2019; Auksztulewicz and Friston, 2016), referring
to contextual factors that influence predictability. That is, besides
making a (first-order) prediction on content, the brain would
make a (second-order) prediction, based on context, on how
predictable an event is, or in other words, how likely it is that
the content prediction will be correct (confidence). Therefore,
uncertainty can also be defined as a measure of unpredictability
or expected surprise (Feldman and Friston, 2010).

Altogether, the degree of variability (unpredictability) stands
out as a crucial factor modulating sensory deviance detection, but
variability can take myriad different forms. Indeed, different types
of uncertainty have been proposed to drive different modulatory
processes (Yu and Dayan, 2005), and, in principle, precision
can refer to the belief distribution (the model), the predictions
derived from it, the PE, or the stimulation itself. Logically, these
are interrelated, as, for example, more variable contexts will lead
to more uncertain predictions (Mathys et al., 2011). Nevertheless,
both the precision of the prediction and the precision of the PE
need to be considered to estimate the net effect of the sensory
input on each observation (Kwisthout et al., 2017). In fact, the
precision-weighted PE can be viewed as a Student’s t-statistic,
where to assess the significance of the difference between two
distributions (the prediction and the observation) the difference
in means (PE) is divided by its standard error (inverse variance
or precision) (Feldman and Friston, 2010).

Hence, the question remains, what exactly does precision
refer to? What types of variability or uncertainty specifically
influence the magnitude of a deviance detection signal like
the MMN? Given the multiple perspectives on how to define
confidence, it seems necessary to empirically explore different
types of manipulations to understand the significance of
precision for the MMN.
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The degree of predictability has been manipulated in many
different ways in deviance detection studies. First of all, the very
definition of the MMN as a deviance detection signal implies that
it depends on predictability: only when the stimulation contains
some type of statistical regularity that can be violated will there be
the possibility to elicit an MMN. In fact, presenting the deviant
sounds with the same probability embedded in a sequence of
random (unpredictable) sounds (our Random condition) is an
established control to isolate the MMN (Schröger and Wolff,
1996; Ruhnau et al., 2012). Indeed, Hsu et al. (2015) showed
that relative to predicted stimuli, mispredicted stimuli (deviants
violating the established regularity) elicited enhanced negative
responses while unpredicted stimuli (presented in the absence of
a rule) elicit attenuated responses.

Thus, the question is rather whether, when there is a statistical
rule to be violated, the amplitude of the deviance detection
signals depends on the degree of predictability. Previous studies
have manipulated the strength of the rule by manipulating the
number of consecutive repetitions of the standard presented
immediately before the deviant (Baldeweg et al., 2004; Haenschel
et al., 2005; Costa-Faidella et al., 2011a,b), or more generally
the degree of repetitiveness of the sequence (Quiroga-Martinez
et al., 2019, 2020) reporting greater MMN amplitudes with
increased repetition. However, one concern with these types
of studies is whether the effects observed reflect a modulation
of the deviance detection process, or whether they reflect
refractoriness differences.

The strength of the rule can also be weakened by
introducing small variations in the characteristics of the repeating
standard stimulus. Winkler et al. (1990) varied sound intensity
across standard stimulus exemplars. In different blocks, the
“substandards” covered a wider or narrower range of intensity
values around a common mean. MMN elicited by intensity
deviants decreased as the range of variation in the standard
increased. In a similar design, Daikhin and Ahissar (2012)
found that jittering the standard frequency reduced responses
to frequency deviants, but only when the deviance magnitude
was small. Importantly, in both these studies the deviants were
defined by being outside the range of variation of the standard,
thus adaptation differences could play a role in these effects as
well, and the standard was always varied, thus no repetition rule
was established.

We have proposed a parametric manipulation based on the
stability of the standard stimulus, akin to a manipulation of
signal-to-noise ratio, directly manipulating the strength of the
rule (the rule being the standard tone and the noise being the
rest of the tones). Aiming to investigate the effects of precision
on the “true” MMN, or the part of the MMN which is due to
predictive processes and not local adaptation or refractoriness
mechanisms (i.e., repetition effects), we focused on the analysis of
the responses to deviant stimuli with identical probability across
the different standard stability conditions (a similar strategy to
using a random control, Schröger and Wolff, 1996; Ruhnau et al.,
2012). The results show a clear gradation of the D response with
a time-course and scalp distribution compatible with the MMN.
However, the MMN is typically extracted calculating the D-S
difference wave, canceling out sensory responses and isolating

the deviance detection signal. Therefore, the response elicited by
the D stimulus cannot directly be considered an MMN. Both
modulations of the D stimulus and the S stimulus responses
affect the canonical MMN signal. In classic paradigms, ideally,
the S and D responses are extracted from different conditions
in a block design, so that they are elicited by the same physical
stimulus under the two different roles. In our paradigm, the S
and D tones are different physical stimuli. However, the mode
of presentation of the D stimulus in our Random condition
is identical to how the control S stimulus is presented in the
well-established “many standards” or random control condition,
used in previous studies to isolate the “true” MMN (Schröger
and Wolff, 1996; Ruhnau et al., 2012). Therefore, the difference
between the D ERP in the Oddball and the Random conditions
is indeed the MMN response, and we can observe a clear gradual
modulation of this response across the levels of our parametric
precision manipulation.

Nevertheless, to provide a complete picture and for ease of
comparison to the previous literature, we also analyzed the S
stimulus responses, and found no significant correlation between
the S tone ERP and the parametric precision manipulation. While
this finding suggests that precision affects only the D and not the
S responses, it should be interpreted with caution, as precision
effects on the S responses might have been compensated with
refractoriness effects, given the manipulation of the S stimulus
probability across precision conditions. Thus, albeit precision can
of course affect both S and D responses, and both effects would
impact the MMN signal, practical issues regarding the design of
the paradigm make it quite difficult to study both these aspects at
the same time. Here we have focused on the investigation of the
effects of precision on the deviance detection signal per se, which
is elicited by the D, not the S stimulus, and contributes directly to
the canonical MMN response.

In any case, again to facilitate comparison to previous studies,
we also report the classic D-S difference waves, where the
MMN can be clearly identified in the Oddball and the High
confidence conditions, as expected. The modulations observed
on the MMN response isolated in this way show the same pattern
as the modulation observed on the D tone ERP in the MMN
time window, with an additional earlier significant modulation
affecting the P50 response. Again, given that the difference waves
reflect both modulation of the S tone and the D tone ERPs and
that the S tone ERP is also affected by refractoriness differences,
this result should be interpreted with caution, and we prefer
to refrain from making any firm conclusions based on the
difference wave ERPs.

Thus, we have based our conclusions on the analysis of
the D tone ERPs which had a fixed probability throughout
the experiment. Despite their fixed probability, it could be
argued that co-adaptation from nearby frequency channels
could modulate deviant responses differentially across conditions
(Jääskeläinen et al., 2004; May and Tiitinen, 2010; for a
review of animal and human studies on stimulus-specific
adaptation, see Escera and Malmierca, 2014). However, our
results are inconsistent with this hypothesis, as co-adaptation
in nearby frequency channels should render the responses to
the deviant in the oddball condition smaller than in the rest of
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experimental conditions. Instead, previous studies have shown
that neuronal responses scale with the spectral distribution of
auditory stimulation, a finding showing a dynamic variation
in stimulus-specific adaptation, interpreted as adaptation to
stimulus statistics (Herrmann et al., 2013, 2014). Indeed, several
findings indicate that alphabet size (Winkler et al., 1992; Barascud
et al., 2016; Auksztulewicz et al., 2017; Quiroga-Martinez et al.,
2019, 2020) or the width of the distribution (Garrido et al., 2013;
Larsen et al., 2020) of the stimulation sequence are reflected
on neural signals, supporting the idea that variability in the
stimulation (inverse precision) plays a role in the modulation
of deviance detection. In our study, decreasing the confidence
(from oddball to random) increases the spectral variability of
the stimulation (i.e., tones of different frequencies become more
probable), without broadening the spectral range of the sequence.
As the low probability stimulus (D) falls at the center of the
mean log spectral distribution of the stimulation (1046.5 Hz),
the better the model representing the spectral distribution, the
more reduced neural responses would be expected (Daikhin and
Ahissar, 2012; Garrido et al., 2013) as the D tone becomes a
prototype exemplar of the rule. Thus, encoding the distribution
of stimulation features, such as tone frequency, could stand as
a possible mechanism underlying precision-weighting of PE in
variable contexts.

An interesting question is whether variability in one feature
affects only deviance detection processes with respect to that
feature, or whether reduced model confidence down-weights
PE signals arising from violations of any of the stimulation
parameters. Here, we have directly manipulated the predictability
of the stimulus feature in which the deviant differs from
the standard. However, confidence can also be manipulated
varying the number of features that are predictable. Some
findings suggest that variability in one feature does not affect
deviance detection with regards to other features (Quiroga-
Martinez et al., 2019, 2020). However, there is also evidence that
manipulating the variability in one feature affects the detection
of deviations in a second (stable) feature (Winkler et al., 1990).
Notably, introducing temporal uncertainty (variability) reduces
repetition suppression (Costa-Faidella et al., 2011a) and impairs
the ability to detect new rules (Sohoglu and Chait, 2016).
Thus, future studies using our paradigm could explore how
the spectral variability manipulation across confidence levels
affects responses to deviations in other features (e.g., duration or
intensity deviants).

The strategies discussed so far modulated precision
manipulating always low-level features of the stimulation;
that is, physical differences between standards and deviants.
However, predictability can also be increased by imposing
additional higher-level rules or constraints. When participants
are informed about the rules, the MMN is modulated (Frost et al.,
2018; but see Koelsch et al., 2019 for an opposing argument).
Moreover, stimuli that violate a local rule elicit smaller PE signals
if they at the same time conform to a global rule (Sussman
et al., 1998; Wacongne et al., 2011). It should be noted that
manipulating predictability by imposing a higher order rule, is
not the same as directly making the single existing rule more
or less noisy. Nevertheless, these studies show that information
from different levels of the representation hierarchy is integrated

and top-down information from higher levels seems to be able to
readjust precision at lower levels. Similarly, recent studies have
shown that the MMN is affected by the rule stability estimated
over time scales that must necessarily involve higher-order
structures. In these studies, volatility is manipulated having
the standard and deviant change roles more or less rapidly
throughout the stimulation sequence, showing that MMN is
larger during more stable stimulation stretches (Todd et al., 2011,
2013; Dzafic et al., 2020).

All in all, studies manipulating predictability in one way or
another have shown that deviance detection signals are higher in
less variable (more predicable) conditions. However, in general,
the studies discussed above made comparisons between certain
vs. uncertain conditions, but did not show a gradation of different
levels of uncertainty. Thus, it is interesting to understand whether
deviance detection is a process that varies parametrically with
precision whenever precision is manipulated through the degree
of regularity. Alternatively, there could be an “all-or-none”
turning point when a given predictive model of the stimulation
is accepted as valid, and only from that point on is the system
actually using it to make predictions. For example, in a study
investigating the effects of deviance magnitude, Horváth et al.
(2008) gradually manipulated the frequency distance between
deviant and standard and argued that the “true” MMN (when
adaptation is controlled) is categorical, an all-or-none process.
We performed a gradual manipulation of the rule strength
across 4 levels of uncertainty, and found that responses to
the deviant scale with rule precision, pointing to a continuous
process. Nevertheless, at a descriptive level, we also observed
a possible qualitative change between the oddball and the high
precision conditions. Topographically, the process that varied
parametrically with precision was centrally distributed. However,
careful observation of the topographies of the oddball condition
suggests the presence of an overimposed frontocentral negativity
in this condition only, that is already not observable in the high
confidence condition. This change in topography could reflect
the activation of frontal generators (Deouell, 2007), suggesting
that highly precise PEs may reach higher hierarchical levels
before they can be silenced. The presence or absence of filler
tones might also represent an important qualitative change in
the stimulation leading to different strategies in the deviance
detection process. Nevertheless, on the classic D-S difference
waves, a clear MMN response can be observed both for the
Oddball and the High confidence conditions, while no MMN
is elicited in the Random condition, as expected from previous
studies, and the signal elicited by the Low confidence condition
lies somewhere in between. This indeed seems to suggest that the
signal reflects a continuous rather than an all or none underlying
process, however, additional research is needed to clarify this
point. Specifically, it could be interesting to add more confidence
steps to the design to further evaluate the gradation of the
responses, and to extend the electrode montage to be able to
perform a reliable source analysis, or use a technique with a
higher spatial resolution, that would allow dissociating multiple
hypothetical contributing sources.

In conclusion, in our paradigm, we have tapped into
precision by manipulating pitch predictability gradually, going
from random frequencies within a limited range, to a strong
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(low-level) repetition rule. However, contrary to other studies
that have manipulated repetitiveness, we focus on the response
to D sounds of equal probability, thereby avoiding adaptation
confounds. In our study, decreasing repetitiveness of the S rule
means increasing spectral variability, similarly to alphabet size or
distribution width manipulations, but critically our D stimulus
falls on the center of the distribution and the range of values
was equal across conditions, manipulating only the repetitiveness
of the S within this range. We show that gradually lowering
the precision of the pitch rule, gradually weakens responses
to pitch deviants. The results support the view that sensory
responses to the D sound are a manifestation of precision-
weighted PE, in the context of a Bayesian inference process.
However, as we have reviewed, there are various ways to define
precision and manipulate it at multiple levels. Further research
is needed to clarify whether all these effects reflect the same
underlying process or not.

With this paradigm, we hope to demonstrate a viable,
gradual manipulation of precision in the investigation of
prediction and prediction errors in the auditory modality,
which addresses the “true” MMN controlling for adaptation.
Experimental manipulations tapping onto precision can be
powerful tools to explore predictive processing and learning
and their dysfunctions, and can be used to test the hypothesis
of aberrant precision-weighting in schizophrenia and autism
(Adams et al., 2013; Lawson et al., 2014, 2017; Haarsma et al.,
2020). We believe our paradigm can shed some light on the
concept of precision and the precision-weighting of prediction
error signals in the Bayesian inference process, contributing to
continuously advance the understanding of the MMN-generating
process toward a broader conceptualization of the MMN as
a signal of sophisticated learning processes in a world of
sensory uncertainty.
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In everyday life, predictable sensory stimuli are generally not ecologically informative.
By contrast, novel or unexpected stimuli signal ecologically salient changes in the
environment. This idea forms the basis of the predictive coding hypothesis: efficient
sensory encoding minimizes neural activity associated with predictable backgrounds
and emphasizes detection of changes in the environment. In real life, the brain must
resolve multiple unexpected sensory events occurring over different time scales. The
local/global deviant experimental paradigm examines auditory predictive coding over
multiple time scales. For short-term novelty [hundreds of milliseconds; local deviance
(LD)], sequences of identical sounds (/xxxxx/) are interspersed with sequences that
contain deviants (/xxxxy/). Long-term novelty [several seconds; global deviance (GD)]
is created using either (a) frequent /xxxxx/ and infrequent /xxxxy/ sequences, or (b)
frequent /xxxxy/ and infrequent /xxxxx/ sequences. In scenario (a), there is both an
LD and a GD effect (LDGD, “double surprise”). In (b), the global deviant is a local
standard, i.e., sequence of identical sounds (LSGD). Cortical responses reflecting
LD and GD originate in different brain areas, have a different time course, and are
differentially sensitive to general anesthesia. Neural processes underlying LD and GD
have been shown to interact, reflecting overlapping networks subserving the detection
of novel auditory stimuli. This study examined these interactions using intracranial
electroencephalography in neurosurgical patients. Subjects performed a GD target
detection task before and during induction of anesthesia with propofol. Recordings were
made from the auditory cortex, surrounding auditory-related and prefrontal cortex in
awake, sedated, and unresponsive states. High gamma activity was used to measure
the neural basis of local-by-global novelty interactions. Positive interaction was defined
as a greater response to the double surprise LDGD condition compared to LSGD.
Negative interaction was defined as a weaker response to LDGD. Positive interaction
was more frequent than negative interaction and was primarily found in auditory cortex.
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Negative interaction typically occurred in prefrontal cortex and was more sensitive to
general anesthesia. Temporo-parietal auditory-related areas exhibited both types of
interaction. These interactions may have relevance in a clinical setting as biomarkers
of conscious perception in the assessment of depth of anesthesia and disorders
of consciousness.

Keywords: auditory cortex, consciousness, general anesthesia, high gamma, iEEG, local/global deviant,
predictive coding, propofol

INTRODUCTION

In everyday life, sensory stimuli that are predictable are not
very ecologically informative. Accordingly, neural activity elicited
by such stimuli is dampened (reviewed in Nelken, 2014; Pérez-
González and Malmierca, 2014). Unexpected stimuli stand out
against the background of predictable stimuli. The novelty of
the unexpected stimuli represents changes in the environment
that may be ecologically salient. These unexpected sounds
elicit larger neural responses in auditory processing networks
compared to those elicited by the background (reviewed in
Grimm and Escera, 2012).

The considerations noted above form the foundation for the
predictive coding hypothesis for sensory processing. Expectations
based on past sensory events generate feedback predictions
within higher order cortical regions. Prediction signals are
transmitted back to sensory cortices, resulting in diminished
responses to the predicted stimuli (Mumford, 1992; Bastos
et al., 2012). When sensory inputs violate these predictions,
feedforward error signals are carried via ascending sensory
pathways to higher order areas, and the dynamic model of the
environment is updated. Predictive coding leads to metabolically
efficient sensory processing, wherein resources are preserved
and allocated to identify potentially important new information
associated with changes in the environment.

Predictive coding in the auditory domain can be studied
by presenting a background of frequent, predictable sounds
(“standards”) and introducing infrequent, unpredictable sounds
(“deviants”) against this background. Deviant stimuli are
expected to elicit enhanced neural responses compared to those
evoked by the standard stimuli. The difference between the two
neural responses constitutes a deviance effect.

In real-life situations, the brain does not process one
prediction violation at a time. Instead, it must resolve layers of
novel sensory events that occur over multiple time scales. In
the auditory domain, the local/global deviant (LGD) paradigm
(Bekinschtein et al., 2009) is a useful experimental tool to examine
predictive coding mechanisms over two distinct time scales.
In this paradigm, short-term novelty occurs over hundreds of
milliseconds and is exemplified by presenting repetitive sounds,
such as the vowel /A/, and infrequently introducing a different
sound, e.g., the vowel /i/ (Figures 1A,B). This short-term novelty
is termed local deviance (LD).

The LGD paradigm also allows for investigation of novelty
over longer time scales. For example, within a block of stimuli,
repetition of a sequence of five identical vowels (e.g., /AAAAA/)
can be paired with occasional presentation of a sequence wherein

the final vowel is replaced with another (e.g., /AAAAi/). This
leads to both the short-term novelty (LD) effect and a deviance
effect over a longer time scale that is based on the change
of the overall pattern of the five-vowel sequences, termed
global deviance (GD).

In this example, there is both an LD and a GD effect when
five identical vowels are replaced by an occasional sequence of
five vowels with the last one different from the first four (“double
surprise”). GD can also occur when the frequent sequence
contains a local deviant, e.g., /AAAAi/, and is occasionally
replaced by a quintuple of five identical stimuli /AAAAA/. Here,
GD is not associated with LD, but instead is represented by a
globally unexpected local standard.

Local deviance and GD effects can be measured using
non-invasive methods such as electroencephalography (EEG)
and magnetoencephalography (MEG) as differences between
responses to standard and deviant stimuli (Bekinschtein et al.,
2009; Recasens et al., 2014a,b). Results of source analysis of these
responses suggest that different brain regions encode auditory
novelty with distinct temporal profiles of neural activation
(Recasens et al., 2014a,b). While EEG and MEG provide
the necessary temporal resolution to identify neural activity
associated with LD and GD, their spatial resolution is insufficient
to resolve detailed patterns of activity within the auditory cortical
hierarchy (Bekinschtein et al., 2009; Wacongne et al., 2011;
Strauss et al., 2015).

Intracranial electroencephalography (iEEG) provides both
the high spatial and temporal resolution needed to identify
the neural correlates of novelty detection. Studies using iEEG
have refined results of non-invasive studies by demonstrating
that auditory novelty detection in an LGD paradigm engages
multiple cortical regions at distinct time scales (King et al.,
2013; El Karoui et al., 2015; Nourski et al., 2018a). The LD
effect is associated with feedforward information flow from core
(primary) auditory cortex to non-core auditory and auditory-
related regions. By contrast, the GD effect appears to originate
in posterior superior temporal gyrus (STG) and surrounding
auditory-related areas, with subsequent propagation forward
to prefrontal cortex and backward to core auditory cortex
(Nourski et al., 2018a).

Recent non-invasive studies found evidence for interactions
between LD and GD effects, suggesting that these two forms of
deviance detection are not fully independent modes of auditory
novelty processing (Shirazibeheshti et al., 2018; Kompus et al.,
2020; Witon et al., 2020). Local-by-global (L×G) interactions can
be measured by comparing responses to four stimulus conditions:
LSGS, LSGD, LDGS and LDGD. Here, L and G denote local
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FIGURE 1 | Local/global deviant (LGD) experimental paradigm.
(A) Waveforms of the two vowels/A/and/i/used to construct the experimental
stimuli. (B) Schematic of the four experimental stimuli. (C) Stimulus
sequences. (D) Comparisons between responses to specific stimulus types to
characterize LD and GD effects and L × G interactions. Note that in subject
R413, a slightly modified paradigm was used, where each sequence included
110 stimuli. The 10-trial habituation sequence was followed by 80 GS and 20
GD test trials in this subject. GD, global deviant; GS, global standard; LD,
local deviant; LS, local standard. Modified from Nourski et al. (2018a).

and global time scale, and S and D denote standard and deviant
stimuli, respectively. Positive interaction is defined as a greater
response to the double surprise LDGD condition compared to
LSGD. Negative interaction is defined as a weaker response to the
double surprise condition relative to LSGD.

Local-by-global interactions have been hypothesized to
represent information flow between cortical networks that
subserve short- and long-term novelty detection (Witon et al.,
2020). Non-invasive studies have shown that neural responses
to GD stimuli can be enhanced when these stimuli include
LD (Wacongne et al., 2011; Shirazibeheshti et al., 2018). It
is hypothesized that this increased response is based on the
presence of a feedforward error signal provided by LD. Likewise,
in the LSGD condition, the absence of this feedforward LD
error signal can be expected to yield a diminished response to
the LSGD stimulus.

A key consideration of auditory novelty detection is its
modulation by arousal state. Within the predictive coding
framework, the ongoing comparison of predictions and
sensory observations is a fundamental feature of conscious
sensory processing. Anesthetic-induced sedation and loss of
consciousness (LOC) disrupt auditory predictive coding (Uhrig
et al., 2016; Nourski et al., 2018b; Sanders et al., 2021). During
anesthesia induced by propofol, LD effects are preserved within
the auditory cortex when the subjects are unconscious, while
GD effects are suppressed when subjects are sedated but still
conscious (Nourski et al., 2018b).

The present work is the first iEEG study to investigate L × G
interactions using the LGD paradigm. The goals of the study
were four-fold: (1) Clarify the timing of positive and negative
L × G interactions; (2) Identify the brain structures where
these interactions occur; (3) Examine how these interactions are
modulated during induction of general anesthesia with propofol;
and (4) Differentiate attention- and task-related phenomena
from those due to changes in arousal state.

These goals were addressed by using an active behavioral
task which provided several advantages over a passive-listening
setting. In a passive paradigm, absence of L × G interactions
might simply be a function of inattention to the sound
stimuli. Prevalence of high gamma GD effects is greater in an
active paradigm compared to passive listening (Nourski et al.,
2021b). Thus, it can be expected that L × G interactions
would also be more prominent in an active task. Further,
presence or loss of behavioral responses can serve as an
additional criterion for defining the state of arousal. Finally,
relating physiology and behavior helps identify neural activity
contributing to task performance as opposed to less relevant
neurophysiologic responses.

Cortical activity was measured in the high gamma iEEG band
(70–150 Hz). High gamma is a surrogate of action potential firing
in small neuronal populations. It provides a finer-grain spatial
resolution compared to scalp EEG and intracranially recorded
averaged evoked potentials (Steinschneider et al., 2008; Crone
et al., 2011). In the present study, the gradual induction of general
anesthesia allowed for a critically important comparison between
sedated and unconscious states. Findings pertaining to sedation
and unconsciousness may have translational relevance for the
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TABLE 1 | Subject demographics and electrode coverage.

Subject1 Age Sex2 Number of recording sites per ROI Seizure focus

Auditory cortex Auditory-related Prefrontal Other Total

HGPM STP STG

R369 30 M 8 15 17 79 39 54 212 R medial temporal

L372 34 M 6 12 25 51 34 49 177 L temporal pole

R376 48 F 7 10 18 76 30 52 193 R medial temporal

R394 24 M 8 2 0 6 2 7 25 R medial temporal

R399 22 F 3 6 21 46 47 60 183 R temporal

L400 59 F 4 7 3 25 54 65 158 L medial temporal

R413 21 M 8 12 25 81 45 52 223 R medial temporal

Total number of recording sites 44 64 109 364 251 339 1171

1Letter prefix of the subject code denotes the side of electrode implantation over auditory cortex and the side of seizure focus (L = left; R = right).
2F = female; M = male.

assessment of other altered states of arousal including sleep,
delirium, and coma.

MATERIALS AND METHODS

Subjects
Study subjects were seven adult neurosurgical patients (three
female, four male, age 21–59 years old, median age 30 years
old) with medically refractory epilepsy. The patients had been
implanted with intracranial electrodes to identify resectable
seizure foci. Subjects’ age, sex, electrode coverage, and seizure
focus data are presented in Table 1. All subjects were native
English speakers; all except one were right-handed and had left
language dominance as determined by Wada tests (subject R413
was left-handed and right hemisphere-dominant).

All subjects underwent audiometric evaluation before the
study, and none was found to have hearing deficits or word
recognition scores sufficient to affect the findings presented
in this study. Cognitive function, as determined by standard
neuropsychological assessments, was in the average range in all
subjects. Subject R394 had previously undergone a resection of a
cavernoma in the anterior medial temporal lobe. The resection
had spared cortex corresponding to all the brain regions of
interests (ROIs) (see below) except for planum polare (PP). This
subject had normal hearing and cognitive abilities and thus was
included in the study.

The subjects were tapered off their antiepileptic drugs during
the chronic monitoring and had their medication regimens
reinstated to varying degrees at the end of the monitoring period,
prior to the electrode removal and seizure focus resection surgery.

Stimuli and Procedure
Experiments were conducted in the operating room immediately
prior to and during induction of general anesthesia for electrode
removal and seizure focus resection surgery. The experiments
were part of a series of studies on auditory novelty detection and
resting state connectivity across task conditions and arousal states
(Nourski et al., 2018a,b, 2021b,c; Banks et al., 2020). Auditory

stimuli were quintuples of vowels /A/ and /i/, presented in an
LGD paradigm (Bekinschtein et al., 2009; Nourski et al., 2018a;
Figure 1). The vowels were edited (duration 100 ms) from the
steady-state vocalic portions of consonant-vowel stimuli /hAd/
and /hid/, spoken by a female (fundamental frequency 232 and
233 Hz, respectively) (Hillenbrand et al., 1995). The vowels
were normalized to the same root-mean-square amplitude and
gated with 5 ms on/off ramps (Figure 1A). On each trial, four
identical vowels, separated by 50 ms intervals, were presented,
followed by either the same or different fifth vowel (Figure 1B).
This within-quintuple difference constituted short term (local)
deviance: /AAAAA/ and /iiiii/ were LS stimuli, while /AAAAi/ and
/iiiiA/ were LD.

The stimuli were presented in blocks of four sequences,
with the order of the sequences randomized across blocks
(Figure 1C). In all subjects except R413, each sequence began
with a recorded instruction that defined the task and the
target (GD) stimulus to the subject, e.g., for Sequence 1:
“This time, press the button when you hear this sound:
/AAAAi/. Once again, press the button when you hear this
sound: /AAAAi/.” The instruction was followed by a habituation
sequence of 10 trials that established the GS condition (e.g.,
/AAAAA/ for Sequence 1), and then by 72 GS and 18 GD
test trials, presented in a pseudorandom order. The difference
in presentation frequency constituted the long term (global)
deviance, and the identity of the GD stimulus changed across
the four sequences within each block (Figure 1D). Note that
the infrequent (GD) trials could have either five identical
vowels (LSGD) or a different fifth vowel (LDGD). Likewise,
the frequent (GS) trials either had the fifth vowel same or
different as the first four (LSGS and LSGD, respectively).
The intertrial interval varied within a Gaussian distribution
(onset-to-onset mean 1500 ms, standard deviation 10 ms) to
reduce heterodyning in the recordings secondary to the 60 Hz
power line noise.

In subject R413, a simplified protocol was used, where instead
of a recorded instruction, the task was explained beforehand to
the subject by the researcher as follows: “Press the button every
time you hear the sound sequence change.” In this subject, each
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10-trial habituation sequence was followed by 80 GS and 20 GD
test trials. The duration of each experimental block was 11 min
in all subjects.

Stimuli were presented by a TDT RZ2 processor (Tucker-
Davis Technologies, Alachua, FL, United States) and delivered
at a comfortable level (60–65 dB SPL) diotically via insert
earphones (ER4B, Etymotic Research) enclosed in custom-fit
earmolds. The subjects were instructed to operate the response
button with the hand ipsilateral to the hemisphere from which
recordings were made. This was done to minimize contributions
to recorded neural responses from activity reflecting motor
planning and execution, and somatosensory responses associated
with the button press.

Each experiment included three or four 11-min blocks. The
first block was presented immediately before administration of
propofol. Following the completion of the first block, infusion
of propofol was initiated at a rate of 50 µg/kg/min (Alaris
pump, BD, Maplewood, MO, United States). Propofol was the
sole sedative drug administered to the patients during the
experimental period. The time course of induction of sedation
followed by general anesthesia is shown for each subject in
Figure 2. In all subjects except R413, the rate of infusion was
increased every 10 min by 25 µg/kg/min, following the approach
previously used by Nourski et al. (2017,2018b,2021b) and Banks
et al. (2020). The duration of the infusion was 50 min with a
maximum rate of 150 µg/kg/min. Three auditory stimuli blocks

were presented during the 50 min. In subject R413, a simplified
protocol was used, wherein the rate of infusion was 50 µg/kg/min
for 20 min, followed by an increase to 150 µg/kg/min for another
20 min. An auditory stimulus block was presented during the
final 11 min of each of these two 20-min periods. The infusions
were supervised by an attending anesthesiologist using standard
respiratory and hemodynamic monitoring. None of the infusions
had to be interrupted or terminated for the patients’ safety.

The depth of sedation was evaluated before and after each
block using the Observer’s Assessment of Alertness/Sedation
(OAA/S) scale, the gold standard in assessing alertness in the
clinical setting (Chernik et al., 1990). Responsiveness (calling the
subject’s name), speech (asking the subject to repeat the sentence,
“The quick brown fox jumps over the lazy dog”), facial expression
(the degree of facial relaxation), and eyes (the subject’s ability to
focus and ptosis) were all assessed and scored on a scale from 1
to 5. The composite OAA/S score, ranging from 5 (“alert”) to 1
(“deep sleep”), was defined as the lowest level indicated by any of
the four assessment categories.

For the purposes of analyses, three arousal states were
defined in each subject: awake (W; before administration of
propofol), sedated (S) and unresponsive (U). The letter “W” is
used throughout the manuscript instead of “A” for “awake” to
avoid the possibility of the abbreviated “A” being interpreted
as “Anesthesia.” The transition from OAA/S = 3 (“responsive
to loud or repeated command”) to OAA/S = 2 (“unresponsive

FIGURE 2 | Induction of general anesthesia. Observer’s Assessment of Alertness/Sedation (OAA/S) scores (crosses) and electroencephalographic (EEG) sedation
indices are plotted as functions of time. EEG-based sedation indices were response entropy [RE] in subject R369 and bispectral index (BIS) in all other subjects
(open squares and circles, respectively). Rectangles denote 11-min LGD experimental blocks; letter labels indicate the three arousal states (W: awake, S: sedated,
U: unresponsive). Propofol infusion rates are shown underneath each plot.
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in the absence of mild prodding or shaking”) (Chernik et al.,
1990) was used as the threshold between sedation and LOC.
LOC was thus approximated as the loss of responsiveness
(Vanluchene et al., 2004; Nourski et al., 2018b; Banks et al.,
2020). The depth of sedation was additionally assessed using
EEG parameters: response entropy (RE) (E-ENTROPY module;
Datex-Ohmeda, Madison, WI, United States) (Viertiö-Oja et al.,
2004) in subject R369 and bispectral index (BIS) (BIS Complete 4-
Channel Monitor; Medtronic, Fridley, MN, United States) (Gan
et al., 1997) in all other subjects. The EEG parameters were
recorded continuously throughout each experiment and were
manually logged on a minute-by-minute basis.

Recording
Intracranial electrophysiological recordings were made using
depth and subdural electrodes (Ad-Tech Medical, Oak Creek,
WI, United States) implanted to identify potentially resectable
seizure foci (Nagahama et al., 2018b). Electrode implantation,
recording, and iEEG data analysis have been previously
described in detail (Nourski and Howard, 2015). Depth electrode
arrays (8–12 cylindrical macro contacts spaced 5 mm apart)
targeting the superior temporal plane (STP) including Heschl’s
gyrus, were stereotactically implanted along the anterolateral-to-
posteromedial axis of the gyrus. Depth electrodes which targeted
insular cortex provided additional coverage of posteromedial
portion of Heschl’s gyrus (HGPM), planum temporale (PT),
and PP. This configuration was clinically warranted, as it
bracketed the suspected temporal lobe seizure foci for their
accurate assessment (Nagahama et al., 2018a). Subdural strip
and grid electrode arrays consisted of platinum-iridium disc
contacts (2.3 mm exposed diameter, 5–10 mm contact-to-
contact distance) embedded in a silicone membrane. They were
implanted over lateral and ventral cerebral surfaces. A subgaleal
electrode was used as a reference.

Reconstruction of the anatomical locations of implanted
electrode contacts in individual subjects and their mapping
onto a standardized set of coordinates was performed using
FreeSurfer image analysis suite (Version 5.3; Martinos Center
for Biomedical Imaging, Harvard, MA, United States) and
in-house software. Subjects underwent T1-weighted whole-
brain structural 3T magnetic resonance imaging (MRI) scans
(resolution 1.0 mm) before electrode implantation and MRI and
computerized tomography (CT) scans (resolution 1.0 mm) after
implantation. Locations of the electrode contacts were obtained
from post-implantation MRI and CT scans and projected onto
pre-operative MRI scans using non-linear three-dimensional
thin-plate spline morphing and intraoperative photography.
The locations were then transformed into standard Montreal
Neurological Institute (MNI) coordinates using linear co-
registration to the MNI152 T1 average brain, as implemented in
FMRIB Software library (Version 5.0; FMRIB Analysis Group,
Oxford, United Kingdom). For recording sites in the left
hemisphere, MNI x-axis coordinates (xMNI) were multiplied by
(−1) to map them onto the right-hemisphere common space.

The locations of recording sites were projected onto the right
lateral hemispheric surface, STP, ventral and mesial views of
the FreeSurfer average template brain (Figure 3). The electrode

FIGURE 3 | Electrode coverage in all seven subjects. Locations of recording
sites, color-coded according to the ROI, are plotted in MNI coordinate space
and projected onto the right hemisphere of the Freesurfer average template
brain for spatial reference. Left hemisphere MNI x-axis coordinates (xMNI ) were
multiplied by –1 to map them onto the right-hemisphere common space.
Projection is shown on the lateral, top-down (STP), ventral and mesial views
(top to bottom). Recording sites over orbital, transverse frontopolar, inferior
temporal gyrus and temporal pole are shown in both the lateral and the ventral
view. Sites in fusiform, lingual, parahippocampal gyrus and gyrus rectus are
shown in both the ventral and medial view. Sites in the hippocampus (n = 13),
amygdala (n = 12), frontal operculum (n = 5), parietal operculum (n = 3),
substantia innominata (n = 5), putamen (n = 1), and uncus (n = 1) are not
shown. HGPM, posteromedial portion of Heschl’s gyrus; STP, superior
temporal plane; STG, superior temporal gyrus.

coverage in all subjects is summarized in Table 1. The following
ROIs were identified, spanning the hierarchy of auditory cortical
processing (a modification of the scheme used previously in
Nourski et al., 2018a,b, 2021a,c; Banks et al., 2020):

(1) Core auditory cortex in the posteromedial portion of
Heschl’s gyrus (HGPM; n = 44 sites).

(2) Non-core auditory cortex in the STP (n = 64), including the
anterolateral portion of Heschl’s gyrus (HGAL; n = 25), PT
(n = 21), and PP (n = 18).

Frontiers in Human Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 737230126

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-737230 September 27, 2021 Time: 16:13 # 7

Nourski et al. Local-by-Global Interactions

(3) Non-core auditory cortex on the STG (n = 109), including
its posterior (n = 72) and middle (n = 37) portions.

(4) Temporo-parietal auditory-related cortex (n = 364),
including the posterior insula (n = 8), anterior STG (n = 17),
superior temporal sulcus (upper bank, STSU: n = 12;
lower bank, STSL: n = 19), and middle temporal (MTG;
n = 187), supramarginal (SMG; n = 65), and angular (AG;
n = 56) gyri.

(5) Prefrontal cortex (n = 251), including the inferior (IFG;
n = 55), middle (MFG; n = 80), and superior (SFG; n = 15)
frontal gyri, orbital (OG; n = 76) and transverse frontopolar
gyri (TFG; n = 19), and anterior cingulate cortex (n = 6).

An additional 339 recording sites provided coverage of other
brain areas, including the inferior temporal gyrus (ITG) (n = 62),
temporal pole (n = 58), precentral (n = 44), postcentral (n = 30),
parahippocampal (n = 21), fusiform gyrus (n = 20), gyrus rectus
(n = 20), premotor cortex (n = 14), hippocampus (n = 13),
amygdala (n = 12), anterior insula (n = 8), middle occipital gyrus
(n = 6), superior parietal lobule (n = 6), frontal operculum (n = 5),
substantia innominata (n = 5), cingulate gyrus (n = 4), parietal
operculum (n = 3), lingual gyrus (n = 2), inferior occipital gyrus
(n = 2), cuneus (n = 2), putamen (n = 1), and uncus (n = 1).

Assignment of recording sites to ROIs was based on
anatomical reconstructions of electrode locations in each subject.
For subdural arrays, it was informed by automatic parcelation
of cortical gyri as implemented in the FreeSurfer image analysis
suite (Destrieux et al., 2010, 2017). Heschl’s gyrus was subdivided
into HGPM and HGAL. The boundary between the two was
defined physiologically based on the presence of phase-locked
responses to click train stimuli and short-latency components
in averaged evoked potentials. These features are characteristic
of HGPM and are absent in HGAL (Brugge et al., 2009). STG
was subdivided into posterior and middle non-core auditory
cortex portions, and auditory-related anterior portion using the
transverse temporal sulcus and ascending ramus of the Sylvian
fissure as macroanatomical boundaries. For depth electrodes,
ROI assignment was informed by MRI sections along sagittal,
coronal, and axial planes. The insula was subdivided into the
auditory-related posterior portion and anterior insular cortex
(Zhang et al., 2019). Within cingulate gyrus, anterior cingulate
cortex (as identified by automatic parcelation in FreeSurfer) was
considered a prefrontal area and thus examined separately from
the rest of cingulate cortex. Recording sites identified as seizure
onset zones or those characterized by excessive noise, as well
as depth electrode contacts located outside cortical gray matter,
were excluded from analyses and thus are not listed in Table 1.

Behavioral (button presses) and iEEG data were recorded
using the TDT RZ2 processor; iEEG data were amplified, filtered
(0.7–800 Hz bandpass, 12 dB/octave rolloff) and digitized at a
sampling rate of 2034.5 Hz.

Data Analysis
Analysis of data was performed using software written in
MATLAB R2020a (MathWorks, Natick, MA, United States).
Behavioral performance in the target detection task was
characterized as accuracy (hit rate, i.e., the percentage of correctly

detected target stimuli), sensitivity (d’ = Zhit-Zfalse alarm, where
Z is the inverse of the cumulative distribution function of the
normal distribution) and reaction times (RTs). These metrics
were computed separately for LDGD and LSGD trials in each
awake and sedated block. Only button presses that occurred
between the onset of the 5th vowel and the onset of the 1st
vowel of the following trial were considered hits. Button presses
that overlapped with the next non-target trial were considered
false alarms. The behavioral results thus likely somewhat
underestimated target detection rates and biased the RTs toward
faster responses. Hit rates and d’ values were compared between
LDGD and LSGD trials across subjects using one-tailed Wilcoxon
signed rank tests. RTs were compared between LDGD and LSGD
trials using Wilcoxon rank sum tests. P-values were corrected
for multiple comparisons using the false discovery rate (FDR)
approach (Benjamini and Hochberg, 1995).

Analysis of iEEG data focused on power in high gamma band
(70–150 Hz). Data were downsampled to 1000 Hz, denoised
using demodulated band transform approach (Kovach and
Gander, 2016) and bandpass-filtered (300th order finite impulse
response filter, 70–150 Hz passband). Voltage deflections of the
high gamma band-filtered signal that exceeded five standard
deviations from the across-block mean for each recording site
were considered artifacts. Trials that contained such deflections
were excluded from further analysis. The high gamma signal
was then squared and smoothed using a 50 ms running average
window to obtain high gamma power. Power (µV2) was used
rather than voltage or dB-transformed event-related band power
because response waveforms must be non-negative signals for the
sign of the L× G interaction to be interpretable.

Responses were averaged across LSGS, LDGS, LSGD, and
LDGD test trials separately (see Figure 1D, bottom row). L × G
interactions were calculated as the difference of the differences of
high gamma responses to the four stimulus types, i.e.,:

L × G = (LDGD − LSGD) − (LDGS − LSGS)

Local-by-global interaction waveforms were baseline-
corrected by subtracting the mean value over the 600 ms prior to
the onset of the 5th vowel.

The statistical significance of L×G interactions was examined
within the time interval between 0 and 800 ms following
the onset of the 5th vowel. Significance was established using
a non-parametric cluster-based permutation test (Maris and
Oostenveld, 2007; Nourski et al., 2018a). The test statistic was
based on grouping adjacent time points that exhibited L × G
interactions. The cluster statistic for each recording site and
experimental block was obtained by first computing t-values
across all time points. At each time point, t-values were compared
to a threshold value (the 1st percentile tail of the two-tailed
T-distribution). Clusters were defined as consecutive time points
for which the t-values exceeded the threshold, and the cluster-
level statistic was computed as the sum of the t-values within
each cluster. The p-values were calculated using permutation
tests in which 10,000 random trial partitions were shuffled
with respect to the four trial labels. Cluster-level statistics were
calculated, and the largest cluster-level statistic was identified for
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each partition. Monte Carlo p-values were calculated for each
cluster based on the 10,000-sample distribution set of the test
statistics. Interactions were considered significant at p < 0.05.
Recording sites with at least one significant positive or negative
L × G interaction cluster were considered as exhibiting the
corresponding interaction type.

The spatial distribution of L × D interactions across
the lateral hemispheric surface and the STP was visualized
by plotting locations of sites characterized by significant
positive or negative interactions in the MNI coordinate
space and projecting them onto the right hemisphere of the
FreeSurfer average template brain. ROIs were characterized
in terms of the prevalence of positive and negative L × G
interactions in each of the three arousal states. Prevalence
was defined as the percentage of sites exhibiting a significant
interaction in each arousal state. The onset latency of L × G
interactions was defined as the beginning of the first significant
cluster and calculated separately for positive and negative
interactions. Onset latencies of positive interactions in the
awake state were compared between HGPM, STP, STG,
and auditory-related cortex using the Kruskal–Wallis test.
For positive interaction, comparison of onset latencies in
these ROIs between awake and sedated states was done
using the Wilcoxon rank sum test. Likewise, for negative
interaction, comparison of onset latencies between auditory-
related and prefrontal cortex in the awake state was done
using the Wilcoxon rank sum test. The overall time course
of positive and negative interactions was visualized by
plotting T-scores, averaged across sites that exhibited

significant interactions, as functions of time after the
5th vowel onset.

RESULTS

Task Performance
All seven subjects performed the GD target detection task
to varying degrees, as measured by hit rates, d’ and RTs,
during awake and sedated experimental blocks. The “double
surprise” LDGD condition typically provided an advantage
for the performance of the GD detection task compared to
the LSGD target condition (Figure 4). In the awake state,
the LDGD condition was associated with higher hit rates
in six out of seven subjects (Figure 4A, top panel), though
this improvement did not reach significance (p = 0.055).
Sensitivity (d’) for LDGD target trials was higher than for
LSGD trials in five subjects (Figure 4A, middle panel), and the
improvement was statistically significant (p = 0.016). Finally,
the LDGD condition was associated with significantly faster
behavioral responses in four subjects (R369: 1RT = 263 ms,
p < 0.0001; R376: 1RT = 130 ms, p = 0.00192; R394:
1RT = 216 ms, p < 0.0001; L400: 1RT = 174 ms, p = 0.00249)
(Figure 4A, bottom panel). Across all hit trials and subjects,
the grand median RTs for LDGD and LSGD 420 and
516 ms, respectively.

Sedation with sub-hypnotic doses of propofol led to a
deterioration of task performance (Figure 4B). Subjects R376
and R399 only had one and zero correct hit responses to LDGD

FIGURE 4 | Global deviance (GD) target detection task performance in the awake (A) and sedated (B) states. Summary of data from seven subjects. Hit rates (%
correctly detected target stimuli), sensitivity (d’) and RTs are plotted in the top, middle, and bottom panels, respectively. In the sedated state, subject R399 did not
have correct hit responses to LDGD targets, and subjects L400 and R413 did not have correct hit responses to either LSGD or LDGD targets.
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FIGURE 5 | L × G interactions during the induction of general anesthesia in a representative subject with right hemisphere electrode coverage (R369). (A) Lateral
view of the right hemispheric surface and top-down view of the STP depicting electrode coverage. Colors represent different ROIs, circles represent recording sites.
Larger white circles denote the locations of five representative recording sites (a–e). (B) High gamma responses to the final vowel of the LGD quintuplet stimulus
recorded from the exemplary sites (a–e, left to right) and L × G interactions in awake, sedated, and unresponsive states (W, S, U; top to bottom). Across-trial
average high gamma power envelopes are shown separately for the four stimulus conditions (LSGS, LDGS, LSGD, and LDGD; cyan, teal, magenta, and purple,
respectively). Black lines denote L × G interaction time course, baseline-corrected by subtracting mean value over the 600 ms prior to the onset of the 5th vowel.
Vertical scale bars correspond to 2 µV2. Significant (p < 0.05) positive and negative L × G interaction clusters are shown as red and blue bars, respectively. RT
distributions for LSGD and LDGD target stimuli are shown as magenta and purple violin plots, respectively. In each violin plot, a white circle denotes the median, a
vertical line denotes the mean, a bar denotes Q1 and Q3, and whiskers show the range of lower and higher adjacent values (i.e., values within 1.5 interquartile
ranges below Q1 or above Q3, respectively).

targets, respectively. Subjects L400 and L413 only had false alarm
responses to both types of GD targets in the sedated state. None
of the remaining three subjects exhibited a significant difference
in RTs between LSGD and LDGD target trials. Sedation with
propofol thus appeared to decrease the advantageous behavioral
effect of “double surprise” provided by the LDGD condition in
the awake state.

Electrophysiological Signatures of
Local-by-Global Interactions
The use of subdural and depth arrays allowed for a
comprehensive assessment of responses from multiple cortical
regions comprising the auditory processing hierarchy. This
assessment is exemplified by data from subject R369, who
displayed the best task performance of all subjects (Figure 5).
Coverage of the right hemispheric convexity by subdural
electrode arrays is depicted along with a top-down view
of the STP which illustrates the placement of depth arrays
(Figure 5A). High gamma responses and L × G interactions at
selected sites during awake (W), sedated (S), and unresponsive
(U) states are shown in Figure 5B. As the main effects
of LD and GD have been reported elsewhere (Nourski
et al., 2018a,b), analyses presented below will focus solely
on L× G interactions.

In subject R369, the awake state featured a positive L × G
interaction within core auditory cortex (HGPM), surrounding
auditory cortical areas (HGAL, lateral STG) and in auditory-
related cortex (MTG) (Figure 5B, top row). Significant positive
interaction (denoted by red bars in Figure 5B) emerged
within 100 ms and peaked between 200 and 300 ms after
the onset of the 5th vowel. By contrast, the IFG site was
characterized by a negative L × G interaction, wherein LSGD
stimuli elicited larger responses than LDGD beyond LD effect
(blue bar in Figure 5B). This interaction developed later
than the positive L × G interaction, emerging at around
200 ms after the 5th vowel onset in this example. The onset
of both types of L × G interactions preceded the subjects’
behavioral responses to the respective trials (see violin plots
in Figure 5B). Sedation with propofol was associated with
attenuation of L × G interactions. In the example shown in
Figure 5B (middle row), the STG site was the only site that
maintained a significant positive L × G interaction, while
the negative interaction in the IFG site was absent. L × G
interactions were abolished in the unresponsive state (see
Figure 5B, bottom row).

Positive and negative L × G interactions were present
in both hemispheres, as exemplified by data obtained
from the left hemisphere in subject L372 (Figure 6). This
subject exhibited below-average hit rates in the task and

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 737230129

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-737230 September 27, 2021 Time: 16:13 # 10

Nourski et al. Local-by-Global Interactions

FIGURE 6 | L × G interactions during induction of general anesthesia in a representative subject with left hemisphere electrode coverage (L372). See caption of
Figure 5 for detail.

no significant RT difference between LSGD and LDGD.
In the awake state, positive L × G interaction occurred
in core, non-core auditory, and auditory-related cortex,
and negative L × G interaction was identified in the IFG.
As seen in the previous example, L × G interactions
were strongly modulated by propofol. In the sedated and
unresponsive state, there were no significant interactions
except for a positive L × G interaction at the HGAL site in
the sedated state.

The two examples above demonstrate positive and
negative L × G interactions in both language-dominant
and non-dominant hemisphere and in both above-
and below-average task performers. Positive interaction
preceded negative interaction and occurred at earlier
stages within the cortical processing hierarchy. At all
examined stages of cortical auditory processing, sedation
with propofol strongly diminished these physiologic
interactions, which were further attenuated in the
unresponsive state.

Spatial Distribution and Time Course of
Local-by-Global Interactions
The spatial distribution of L × G interactions across all subjects
in the three states of arousal is summarized in Figure 7. The
data were plotted in the MNI coordinate space and projected
onto the right hemisphere of the FreeSurfer average template
brain to allow for pooling of data from multiple subjects.
Marked differences were present in the spatial distribution of
positive and negative interactions. Only positive interaction
was identified in the STP in the awake state. The auditory
cortex on the lateral STG generally exhibited positive interaction
whereas the surrounding auditory-related cortex exhibited both

positive and negative interactions. Negative interaction was
more common than positive in prefrontal cortex. In the three
sites that featured both positive and negative interactions (a
posterior STG and an MTG site in the awake state, and
another posterior STG site in the sedated state), positive
interaction preceded negative one. Increasing sedation by the
administration of escalating doses of the propofol infusion led
to a progressive decrease in the number of sites exhibiting
L × G interactions. Eventually, when the unresponsive state was
achieved, very few sites with significant interactions remained in
the studied brain regions.

The distributions of L × G effects were examined with
respect to responses to the vowel stimuli, LD and GD effects, as
reported for this subject cohort in previous studies (Figure 3B
in Nourski et al., 2021c and Figure 4 in Nourski et al., 2018b).
In the awake state, sites that were responsive to the vowel
stimuli yet exhibited no significant L × G interactions of either
type, clustered in HGPM and PT. With sedation, there was an
increased incidence of sites throughout the STP (except PP) and
on the lateral STG. When the subjects became unresponsive,
the prevalence of both types of L × G interaction markedly
diminished compared to prevalence of responses to vowel stimuli
both in the STP and on the lateral STG. Sites that exhibited a
significant LD effect without a significant L× G interaction were
present in all three studied arousal states, and their distribution
(STP and lateral STG) was relatively consistent across the three
states. Finally, sites that exhibited a significant GD effect without
a significant L × G interaction mostly clustered in posterior
auditory-related and prefrontal areas. With sedation, only a few
such sites remained, reflecting a sharp decline in the prevalence
of GD effect with sedation. In the unresponsive state, there
were no sites that exhibited a significant GD effect and no
L× G interaction.
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FIGURE 7 | The topography of L × G interactions across states of arousal. A summary of data from seven subjects, plotted in the MNI coordinate space and
projected onto the right hemisphere of the FreeSurfer average template brain for spatial reference. Top-down views of the right superior temporal plane are plotted
underneath side views of the right lateral hemispheric convexity and aligned along the yMNI axis. Sites that exhibited positive and negative L × G interactions are
depicted by red and blue symbols, respectively. Note that some sites in ventral prefrontal cortex (IFG and OG) appear over anterior STG when projected onto the
template brain. Sites in the STSU and STSL are projected onto the lateral hemispheric convexity and thus appear to be over either STG or MTG.

The distribution of L × G interactions across ROIs,
their onset latency and overall time course are examined
in Figure 8. Overall, negative interaction was seen far less
frequently than positive, as reflected in the different y-scales
in Figure 8A. In the awake state, the prevalence of positive
interaction was the highest in the canonical auditory cortex
with prevalence in HGPM, STP, and STG of 45.5, 29.7, and
42.2%, respectively (Figure 8A, left panel). An intermediate
response pattern with both positive and negative interactions
was observed in the auditory-related cortex. The prevalence of
negative interaction was greatest in the prefrontal and auditory-
related cortex (5.58 and 5.49%, respectively) (Figure 8A, right
panel). Sedation and loss of responsiveness were associated
with a progressive decline in the prevalence of both types
of interactions.

In the awake state, onset latencies of positive interaction
were comparable between HGPM, STP, STG, and auditory-
related cortex (median values 115, 108, 128, and 120 ms,
respectively; p = 0.210, Kruskal–Wallis test) (Figure 8B,
left panel). There was a significant increase in the onset
latency of the positive L × G interaction between the
awake and sedated states (median latencies 117 and 159 ms,
respectively; p = 0.000893, Wilcoxon rank sum test) within the
auditory and auditory-related cortex. Onset latencies of negative
interaction were much longer than of positive interaction,
with median values in auditory-related and prefrontal cortex
of 441 and 335 ms, respectively. However, the difference
between onset latencies in the two ROIs did not reach
statistical significance in this limited data set (p = 0.100,
Wilcoxon rank sum test) (Figure 8B, right panel). As even
fewer sites exhibited this interaction in the sedated state
(7 and 3 sites in auditory-related and prefrontal cortex,

respectively), statistical inferences regarding latency were not
feasible in this case.

The overall time course of positive and negative
interactions is depicted in Figure 8C. The time course of
both types of interactions was similar across the canonical
auditory and auditory-related cortex in the awake and
sedated states. This paralleled the similar onset latencies
of positive interaction in these regions. The positive
interaction peaked at around 200 ms and extended to
around 400 ms after the onset of the final vowel. Negative
interaction in auditory-related and prefrontal cortex had a
slower time course.

Outside of core auditory cortex, there was variability in
the prevalence of L × G interactions across subdivisions
within each ROI (Table 2). Within the STP, PT exhibited
the greatest prevalence of positive L × G interaction
in the awake state (52.4%); negative interaction was
not observed at all. By contrast, L × G interactions
were virtually absent in PP. There was a progressive
decrease in the prevalence of positive interaction from the
posterior to middle to anterior STG (51.4, 24.3, and 5.88%,
respectively). Negative interaction was very infrequent in all
three subdivisions.

A marked difference in the prevalence of positive and negative
interactions occurred outside of auditory cortex. The prevalence
of positive and negative interactions in the awake state was
similar in the three subdivisions of auditory-related cortex with
extensive electrode coverage (MTG, SMG, and AG). This increase
in prevalence of negative interaction culminated in the IFG.
Of 55 sites in the IFG, where 2 (3.64%) sites showed positive
interaction while 6 (10.9%, a two-fold increase compared to
overall prevalence within prefrontal cortex) exhibited negative
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FIGURE 8 | Regional distribution and time course of L × G interactions. Summary of data from seven subjects. Colors represent ROIs, differently shaded bars and
symbols represent measurements made in awake (W), sedated (S), and unresponsive (U) state (dark, medium, and light bar shading, respectively). (A) Percentages
of sites with significant positive and negative L × G interactions (left and right panel, respectively). Numbers above bars indicate numbers of sites with significant
L × G interactions. Note different y-scales in the left and right panel. (B) Onset latencies of positive and negative L × G interactions (left and right panel, respectively).
In each violin plot, a white circle denotes the median, a horizontal line denotes the mean, a bar denotes Q1 and Q3, and whiskers show the range of lower and
higher adjacent values (i.e., values within 1.5 interquartile ranges below Q1 or above Q3, respectively). The latency distributions for negative L × G interaction are
only shown for the awake state, as very few sites exhibited this interaction in the sedated state (7 and 3 sites in auditory-related and prefrontal cortex, respectively),
making statistical inferences impractical. (C) Time course of L × G interactions. T-scores averaged across sites that exhibited significant interactions are plotted as
functions of time after the 5th vowel onset. In panels (B,C), positive L × G interaction in prefrontal cortex and negative L × G interaction in canonical auditory cortex
(HGPM, STP, and STG) are not shown due to their paucity in the respective regions.

interaction. None of the 34 recording sites in the SFG and
TFG had either type of interaction. The highest percentage
of interactions in other areas examined was in the precentral
gyrus. Here, 8 out of 44 sites (18.2%) showed a positive
interaction, while only one site displayed negative interaction in
the awake state.

The regional distribution of L × G interactions presented
in detail in Table 2 is graphically summarized in Figure 9.
Here, ROIs are color-coded based on the prevalence of positive
and negative interactions in the awake state. Caution must be
exercised when extrapolating the prevalence of these interactions
in each ROI. First, it should not be assumed that interactions
are homogenously distributed throughout each ROI, especially
outside canonical auditory cortex (cf. Figure 7). Second,
the prevalence was calculated based on limited sample sizes
in several of the ROIs (cf. Table 2). Thus, this graphical
summary warrants conservative interpretation. Still, it is evident
that positive L × G interaction primarily occurred in the
auditory cortex on the STP, lateral STG (except rostral areas
PP and STGA), and precentral gyrus. By contrast, negative
interaction primarily occurred within the IFG, and became
progressively less prevalent at more dorsal and rostral prefrontal

areas. Finally, multiple auditory-related ROIs exhibited both
types of interaction.

DISCUSSION

Summary of Findings
The present study extends previous findings of auditory novelty
processing (Nourski et al., 2018a,b, 2021b,c) by specifically
examining neural responses that reflect interactions of LD
and GD in the LGD paradigm. Identifying where and when
these interactions occur provides insight into how the brain
manages to simultaneously analyze multiple levels of novelty,
as encountered in typical sound environments. Changes
in these interactions may be relevant for understanding
altered auditory novelty detection in states of reduced
arousal. These considerations elevate L × G interactions
from a purely experimental observation to a biologically
relevant phenomenon.

The main finding of this study is that different brain regions
are associated with positive and negative L × G interactions
(see Figure 9). Positive interaction occurs in the canonical
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TABLE 2 | Numbers and percentages of sites with significant positive and negative L × G interactions across arousal states.

ROI ntotal Positive L × G interaction Negative L × G interaction

W S U W S U

n % n % n % n % n % n %

HGPM 44 20 45.5 8 18.2 0 0 0 0 0 0 0 0

STP 64 19 29.7 11 17.2 0 0 0 0 3 4.69 0 0

HGAL 25 7 28 5 20 0 0 0 0 1 4 0 0

PT 21 11 52.4 5 23.8 0 0 0 0 0 0 0 0

PP 18 1 5.56 1 5.56 0 0 0 0 2 11.1 0 0

STG 109 46 42.2 27 24.8 4 3.67 1 0.972 2 1.83 0 0

Posterior STG 72 37 51.4 19 26.4 2 2.78 1 1.39 2 3.78 0 0

Middle STG 37 9 24.3 8 21.6 2 5.41 0 0 0 0 0 0

Auditory-related 364 30 8.24 13 3.57 1 0.275 20 5.49 7 1.92 5 1.37

Anterior STG 17 1 5.88 0 0 0 0 1 5.88 0 0 0 0

STSU 12 4 33.3 0 0 0 0 3 25 0 0 0 0

STSL 19 4 21.1 1 5.26 0 0 1 5.26 0 0 0 0

MTG 187 9 4.81 4 2.14 1 0.535 9 4.81 3 1.6 2 1.07

SMG 65 6 9.23 4 6.15 0 0 3 4.62 3 4.62 1 1.54

AG 56 5 8.93 3 5.36 0 0 3 5.36 1 1.79 2 3.57

Prefrontal 251 5 1.99 2 0.797 1 0.398 14 5.58 3 1.2 3 1.2

IFG 55 2 3.64 0 0 0 0 6 10.9 2 3.63 1 1.82

MFG 80 1 1.25 1 1.25 0 0 4 5 1 1.25 2 2.5

SFG 15 0 0 0 0 0 0 0 0 0 0 0 0

OG 76 1 1.32 1 1.32 1 1.32 3 3.95 0 0 0 0

TFG 19 0 0 0 0 0 0 0 0 0 0 0 0

Other 339 21 6.19 3 0.885 3 0.885 7 2.06 19 5.6 2 0.59

Inferior temporal g. 62 3 4.84 1 1.61 0 0 0 0 5 8.06 1 1.61

Temporal pole 58 2 3.45 1 1.72 0 0 0 0 2 3.45 0 0

Precentral g. 44 8 18.2 0 0 0 0 1 2.27 3 6.82 0 0

Postcentral g. 30 1 3.33 0 0 0 0 1 3.33 2 6.67 0 0

Parahippocampal g. 21 0 0 0 0 0 0 1 4.76 1 4.76 0 0

Fusiform g. 20 1 5 0 0 1 5 0 0 1 5 0 0

G. rectus 20 0 0 0 0 0 0 0 0 3 15 0 0

Premotor cortex 14 1 7.14 0 0 1 7.14 0 0 0 0 1 7.14

Hippocampus 13 0 0 0 0 0 0 1 7.69 0 0 0 0

Amygdala 12 0 0 0 0 0 0 0 0 0 0 0 0

ROI subdivisions that had electrode coverage of <10 sites are not shown.
AG, angular gyrus; g., gyrus; HGAL, anterolateral Heschl’s gyrus; HGPM, posteromedial Heschl’s gyrus; IFG, inferior frontal gyrus; L × G, local-by-global; MFG, middle
frontal gyrus; MTG, middle temporal gyrus; OG, orbital gyrus; PP, planum polare; PT, planum temporale; ROI, region of interest; S, sedated; SFG, superior frontal gyrus;
SMG, supramarginal gyrus; STSL, lower bank of the superior temporal sulcus; STSU, upper bank of the superior temporal sulcus; STG, superior temporal gyrus; TFG,
transverse frontopolar gyrus; U, unresponsive; W, awake.

auditory cortex and, to a lesser degree, in the precentral
gyrus (areas shaded in red in Figure 9). Negative interaction
primarily occurs in the prefrontal cortex, more specifically in
IFG (shaded blue in Figure 9) and, to a lesser extent, MFG
and OG. Auditory-related areas are associated with both types
of interaction (shaded purple in Figure 9). Behaviorally, GD
is more salient when paired with the feedforward error signal
associated with LD (“double surprise”). This is manifested as an
enhancement in performance on the GD target detection task.
By contrast, GD is less salient when where is no feedforward
error signal. Paradoxically, the LSGD condition, which produces
smaller responses in auditory cortex, can elicit larger responses

in higher-order cortical regions particularly within prefrontal
cortex. The physiologic profile for the LSGD combination
is characterized by longer onset latencies and parallels the
greater task difficulty as measured by lower hit rates and
d’, and longer RTs.

Relationship to the Literature
In the original report introducing the LGD paradigm, no
interactions were observed between LD and GD effects as
measured by event-related potentials (Bekinschtein et al., 2009).
This negative result has been subsequently attributed due
to a non-standard method used to measure the interactions
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FIGURE 9 | Schematic of regional distribution of L × G interactions in the
awake state. ROIs are color-coded according to prevalence of positive and
negative interactions. For ROIs where only a single site exhibited a significant
interaction (PP, STGA, PostCG, and PMC), prevalence estimates are not
shown. See text and Table 2 for details. AG, angular gyrus; HGAL,
anterolateral Heschl’s gyrus; HGPM, posteromedial Heschl’s gyrus; IFG,
inferior frontal gyrus; L × G, local-by-global; MFG, middle frontal gyrus; MTG,
middle temporal gyrus; OG, orbital gyrus; PMC, premotor cortex; PP, planum
polare; PreCG, precentral gyrus; PostCG, postcentral gyrus; PT, planum
temporale; ROI, region of interest; SFG, superior frontal gyrus; SMG,
supramarginal gyrus; STSL, STSU, lower and upper bank of the superior
temporal sulcus, respectively; STGA, STGM, STGP, posterior, middle, and
anterior superior temporal gyrus, respectively; TFG, transverse frontopolar
gyrus; TP, temporal pole.

(Shirazibeheshti et al., 2018). An additional factor could be the
use of the event-related potential as a response metric instead
of a rectified signal (e.g., EEG power) (cf. Witon et al., 2020).
The current study provides direct evidence for positive and
negative L × G interactions by measuring high gamma power
in iEEG recordings. The focus on high gamma activity was
motivated by its high spatial specificity (Crone et al., 2011) and
its interpretation as a surrogate for action potential firing within
neuronal populations (Steinschneider et al., 2008).

A theoretical framework that accounts for the interactive
component of the LGD paradigm has been proposed by Witon
et al. (2020). In this framework, three phases of auditory
novelty processing are envisioned. The early phase (100–
150 ms) is characterized by detection of LD in the auditory
cortex and includes the pre-attentive component of stimulus-
specific adaptation (SSA) (Ulanovsky et al., 2003; Fishman
and Steinschneider, 2012). The late phase (400–600 ms) is
characterized by conscious attention-dependent detection of GD
that is carried out by higher-order areas such as the IFG (Nourski
et al., 2018a). Finally, the intermediate phase (250–350 ms)
is postulated to represent bidirectional information exchange
between the auditory cortex and IFG that underlies L × G
interactions (Witon et al., 2020). Positive interaction as measured
by intracranially recorded high gamma activity emerges earlier
than that detected by the scalp EEG study of Witon et al. (2020)
but otherwise overlaps with the intermediate processing phase.

This interaction localizes to multiple areas within the auditory
cortex and extends into adjacent auditory-related areas.

The onset latencies of responses to sound tend to increase
along the auditory hierarchy, with the shortest latencies being in
the core auditory cortex in HGPM (Nourski et al., 2014). This
progressive increase in latency has been interpreted to reflect
feedforward information flow from lower to higher auditory
cortical regions (Nourski et al., 2021a). LD effects follow this
feedforward latency pattern (Nourski et al., 2018a). Interestingly,
this sequential increase in latency was not observed when
examining positive L × G interaction along the auditory cortical
hierarchy. Onset latencies of this interaction were similar across
the auditory and auditory-related cortex. The reasons for this
similarity in latency are unclear. It may be necessary to examine
effective connectivity patterns to address this issue.

This iEEG study confirms the existence of a negative
L × G interaction within the inferior frontal cortex, as first
demonstrated by Witon et al. (2020) using scalp-recorded EEG.
In the current study using iEEG, negative interaction was also
observed in other areas of prefrontal cortex (MFG, OG). Another
novel finding of his study was the prominence of negative
interaction in auditory-related cortex (see Table 2). This effect
was widespread and occurred in areas strongly associated with
canonical auditory cortex (e.g., STSU) as well as higher-order
associative regions (e.g., AG).

Unfortunately, onset latency data were not adequate to
address whether the origin of negative interaction was within
the prefrontal cortex and if this interaction was then transmitted
to the auditory-related cortex via feedback connections. The
median and mean latencies were shorter in the prefrontal
compared to auditory-related cortex. However, the overall
distributions of onset latencies were not significantly different
between the two ROIs (at p = 0.10). Given the relative
paucity of negative interaction, this question will have to be
addressed by a future study employing a larger cohort of
subjects with comprehensive electrode coverage of the relevant
cortical regions.

Effects of Propofol-Induced Sedation
and Unresponsiveness
The principal effect of propofol is the attenuation of L × G
interactions, with a greater effect on negative interaction.
This effect is consistent with the previously reported
results obtained during recovery from propofol-induced
sedation (Shirazibeheshti et al., 2018; Witon et al., 2020).
The use of a novel slow induction protocol in the present
study allowed for a comparison between the sedated and
unresponsive states. Both positive and negative interactions
were attenuated by propofol upon sedation and were essentially
abolished upon LOC.

Previous work has shown loss of GD effects (measured
by combining LSGD and LDGD trials) at subhypnotic doses
of propofol when subjects were sedated, but still responsive
(Nourski et al., 2018b). This study indicates that extension
of the LGD paradigm into the clinical realm using scalp-
recorded data could focus on the positive L × G interaction. By
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contrast, given the greater sensitivity of the negative interaction
to subhypnotic doses of propofol, negative interaction would
likely be of a more limited utility in assessing pathologic states
of consciousness.

Mechanisms of Novelty Detection and
Local-by-Global Interactions Across the
Auditory Processing Hierarchy
Local deviance effects measured in the LGD paradigm are closely
related to mismatch negativity (MMN) (Näätänen and Alho,
1995). Two mechanisms have been proposed as contributing to
MMN (and, by proxy, to the LD effect). These are (1) SSA,
which refers to the attenuation of responses to the repetition
of the same stimuli (Fishman, 2014); and (2) A higher-level
process that reflects stored neuronal memory of acoustic patterns
which have been established by repeated sounds (Näätänen
et al., 2005). SSA is present in the ascending auditory pathways
(Malmierca et al., 2009; Antunes et al., 2010; Richardson et al.,
2013) and the primary auditory cortex (Ulanovsky et al., 2003;
Farley et al., 2010; Fishman and Steinschneider, 2012). It can
occur in the anesthetized state (Duque and Malmierca, 2015) and
operates even when a single token stimulus precedes a subsequent
token. To identify acoustic patterns made up of multiple tokens,
deviance detection must occur over longer temporal intervals
(Ulanovsky et al., 2004). The regions surrounding primary
auditory cortex have been shown to operate over progressively
longer temporal intervals and thus conform to this requirement
(Sharpee et al., 2011).

The finding that LSGD stimuli elicited larger responses than
to LDGD in higher-order brain areas, but not auditory cortex,
was unexpected given that the fifth vowel is the same as the first
four. It would be expected that SSA would lead to a diminished
response to the fifth vowel in the LSGD condition. Therefore, the
larger responses to LSGD stimuli must be based on additional
mechanisms beyond SSA.

Global deviance effects result from integration of sensory
inputs over longer temporal intervals than that required for
LD detection. The mechanisms for GD detection likely engage
broader cortical networks of auditory working memory and
parallel that seen in the multiscale processing of human speech.
For example, a study that examined processing of narrated
stories at the word, sentence, and paragraph level identified
brain regions associated with the processing of speech over
these respective temporal scales (Lerner et al., 2011). There
was a progressive activation of ever-higher level auditory and
auditory-related cortical regions which paralleled the processing
of speech at the three levels of increasing complexity. The highest
degree of activation involved in processing at the paragraph level
occurred in prefrontal and parietal networks. In a similar manner,
GD effects also require integration of information over long
temporal windows and engage prefrontal and parietal regions
(Nourski et al., 2018a, 2021b). Outside the canonical auditory
cortex, regions in the auditory processing hierarchy operate
over the progressively longer time scales required to detect
long-term novelty within sound patterns (Ulloa et al., 2008;
Farbood et al., 2015).

Caveats and Limitations
A key concern regarding iEEG studies carried out in
neurosurgical patients with epilepsy is that the experimental
subjects are not entirely representative of a healthy population.
With regards to the present study, consistent effects were
observed across subjects despite differences in seizure disorder
histories, antiepileptic medication regimens, and the location
of seizure foci. Importantly, the findings of the present study
are comparable to results obtained previously in healthy
subjects using the same experimental paradigm and similar
analyses of non-invasive recordings (Shirazibeheshti et al., 2018;
Witon et al., 2020).

The variability of the effects of propofol in individual subjects
represents a caveat specific to this investigation. Although the
time course of the induction of general anesthesia varied across
subjects, the arousal states were not defined by a specific dose
or plasma concentration of propofol. Instead, arousal states were
defined using the OAA/S, which is considered the gold standard
for assessing awareness in the clinical setting (Chernik et al., 1990;
Vanluchene et al., 2004).

Finally, for several reasons, the nature of the study precluded
formal assessment of possible relationships between task
performance and the electrophysiological L × G interaction
profiles. First, L × G interaction–the neural response metric
considered in the present study–is defined as the difference
of differences between averaged responses to the four types of
stimuli, i.e., (LDGD−LSGD)−(LDGS−LSGS). This complicates
identification of relationships between behavioral performance
and this particular facet of neural activity on a single-trial
level. The relatively small subject sample (seven participants)
with variable electrode coverage and the overall relatively low
prevalence of significant L × G interactions also limited our
ability to directly assess the relationship between physiology
and behavior. Continuing this experimental paradigm in
additional subjects will be required to formally address this
important question.

Future Directions and Clinical
Implications
Key future experiments will include examining LGD effects
during sedation and unresponsiveness induced by different
anesthetic drugs with different cellular mechanisms of action. In
addition to the studies that use anesthetics to probe LGD effects
and their interactions, future work will examine the systems-
level mechanisms of LGD detection during stages of natural
sleep. The translational relevance of this work will be enhanced
by combining intracranial and scalp-recorded activity to relate
changes in scalp-recorded potentials to their intracranial sources.
This will be important to improve prognostic accuracy in patients
with disorders of consciousness (e.g., delirium and coma) which
are a major problem in current neurologic practice.
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When multiple sound sources are present at the same time, auditory perception is
often challenged with disentangling the resulting mixture and focusing attention on the
target source. It has been repeatedly demonstrated that background (distractor) sound
sources are easier to ignore when their spectrotemporal signature is predictable. Prior
evidence suggests that this ability to exploit predictability for foreground-background
segregation degrades with age. On a theoretical level, this has been related with an
impairment in elderly adults’ capabilities to detect certain types of sensory deviance
in unattended sound sequences. Yet the link between those two capacities, deviance
detection and predictability-based sound source segregation, has not been empirically
demonstrated. Here we report on a combined behavioral-EEG study investigating the
ability of elderly listeners (60–75 years of age) to use predictability as a cue for sound
source segregation, as well as their sensory deviance detection capacities. Listeners
performed a detection task on a target stream that can only be solved when a
concurrent distractor stream is successfully ignored. We contrast two conditions whose
distractor streams differ in their predictability. The ability to benefit from predictability
was operationalized as performance difference between the two conditions. Results
show that elderly listeners can use predictability for sound source segregation at group
level, yet with a high degree of inter-individual variation in this ability. In a further,
passive-listening control condition, we measured correlates of deviance detection in
the event-related brain potential (ERP) elicited by occasional deviations from the same
spectrotemporal pattern as used for the predictable distractor sequence during the
behavioral task. ERP results confirmed neural signatures of deviance detection in terms
of mismatch negativity (MMN) at group level. Correlation analyses at single-subject
level provide no evidence for the hypothesis that deviance detection ability (measured
by MMN amplitude) is related to the ability to benefit from predictability for sound
source segregation. These results are discussed in the frameworks of sensory deviance
detection and predictive coding.

Keywords: auditory scene analysis, foreground-background separation, predictive coding, elderly listeners,
temporal processing, Electroencephalography (EEG), mismatch negativity (MMN)
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INTRODUCTION

Hearing is a daily life challenge as the auditory system needs
to disentangle the incoming sound mixture into meaningful
streams by linking sounds belonging to one source together,
and separating sounds belonging to different sources (Bregman,
1990). Sound segregation ability and the ability to track a
particular sound source (e.g., a speaker) across time in a
concurrent acoustic mixture is crucial to follow the target
stream while ignoring background noise (e.g., other speakers,
cafeteria noise). In most listeners, these auditory processes work
surprisingly smoothly. The prevailing theoretical framework
for explaining the ease with which listening in such complex
environments works, is predictive coding (Friston, 2005; Winkler
et al., 2009; Kanai et al., 2015). The core idea is that sound
sources tend to behave regularly (predictably) over time, and
once the brain has formed a predictive model for the emission
pattern of a given sound source, this source can be tracked
over time and separated from other sources without effort
(Bendixen, 2014; Schröger et al., 2014; Winkler and Schröger,
2015), and even without attention (Sussman et al., 1999, 2007).
As simple and elegant as this explanation seems, recent work has
pointed toward some unresolved issues related to the predictive-
coding account of auditory perception (Denham and Winkler,
2017; Heilbron and Chait, 2018). Both reviews reiterate the
concern that detecting the predictability of a sound source does
not imply forming actual predictions about this sound source,
and that the underlying neural mechanisms are not entirely
clear. Furthermore, the evidence for the brain’s capacity to
detect the predictability of a sound source often comes from
indirect measures, using the logic of occasionally violating the
otherwise predictable pattern and measuring whether the brain
responds to this violation (deviation) in a specific way (Schröger,
2007). Whether detecting a predictability violation (i.e., sensory
deviance detection) and sensory prediction are indeed related, is
notoriously difficult to demonstrate (Denham and Winkler, 2017;
Heilbron and Chait, 2018).

In the current study, we set out to find a link between detecting
predictability violations and using auditory predictability for
sound source segregation. We addressed this question by
exploiting inter-individual variability in those two capabilities,
asking whether listeners whose auditory system detects deviants
more readily (as evidenced by corresponding brain responses)
can also use predictability more easily for segregating sound
sources from one another (as evidenced by listening success
in a challenging task with auditory background interference).
We chose a sample of listeners aged 60–75 years, for two
main reasons. First, we expect to find more inter-individual
variability in this sample than in young individuals (Alain
et al., 2006), which increases the statistical power for finding
a relation between deviance detection and predictability-based
source segregation if there is such a relation. Second, previous
studies have pointed toward a need for explaining elderly
listeners’ apparent deficits in complex sensory deviance detection
(Getzmann and Näätänen, 2015; Rimmele et al., 2015) as well
as in predictability-based source segregation (Rimmele et al.,
2012a). Accordingly, providing evidence for such a relation

would contribute to a better understanding of elderly listeners’
difficulties with complex acoustic scenes (Alain et al., 2006).

To study predictability-based source segregation, we
capitalized on prior work showing that spectrotemporal
regularities support auditory stream segregation (Bendixen et al.,
2010; Andreou et al., 2011; Sohoglu and Chait, 2016; Aman et al.,
2021). Specifically, it is easier to segregate interleaved auditory
streams when one or all of them contain spectrotemporal
regularities (patterns). This has been demonstrated when the
stream carrying the regularities is relevant to the listeners’
task (Rimmele et al., 2012a; Aman et al., 2021) and also when
the listener tries to ignore this stream (Andreou et al., 2011;
Rimmele et al., 2012a). Evidence on whether this capacity to
use regularities for stream segregation is preserved in elderly
listeners is controversial: On the one hand, Rimmele et al. (2012a)
suggest that elderly listeners can make use of predictability-based
stream segregation when the stream carrying the regularity is
task-relevant (see their Exp. 1), but not—at least not for all forms
of regularity—when the regular stream is task-irrelevant and
needs to be ignored (see their Exp. 2). Specifically, they found
an age-related impairment in using an isochronous regularity
in a background sound stream for ignoring this stream while
performing a difficult foreground listening task. Rimmele et al.
(2012a) interpret their findings in a predictive-coding framework
by suggesting that spectrotemporal regularities stabilize auditory
stream segregation and that the different levels of task relevance
lead to different mechanisms of processing the regularities.
On the other hand, de Kerangal et al. (2021) recently showed
that the ability to track sources in an acoustic scene based
on their regularities is largely preserved in elderly listeners.
In their study, all streams were task-relevant, and the specific
listening task was different from the one used by Rimmele
et al. (2012a). The current study closely followed the task and
design of Rimmele et al. (2012a) to assess whether elderly
listeners’ impairment in using background regularities for stream
segregation can be replicated.

Besides this replication attempt, a key aspect of the current
study—as denoted above—was to relate each individual listener’s
capability to use background regularities for stream segregation
with their ability to extract such regularities. Regularity extraction
was measured indirectly via the elicitation of specific brain
responses by regularity violations. The key indicator was
the mismatch negativity (MMN) component of the event-
related brain potential (ERP) extracted from the participant’s
electroencephalogram (EEG). The MMN is a component elicited
by sensory events that violate some previously established
regularity (Näätänen et al., 1978; for reviews, see e.g., Näätänen
et al., 2007; Garrido et al., 2009; Fitzgerald and Todd, 2020).
MMN can thus be used as an indirect indicator of regularity
extraction (Schröger, 2005). It is elicited even without attention to
the stimuli carrying the regularities and violations (e.g., Näätänen
et al., 1993; Winkler et al., 2005). MMN is elicited by violations
of simple rules (such as repetition of stimulus properties), but
also of more abstract regularities such as certain patterns in
which sounds are arranged (Zachau et al., 2005; for a review
see Paavilainen, 2013). The MMN component is characterized
by a frontocentral negativity with polarity inversion at the
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mastoids when using nose reference (Näätänen et al., 2001, 2005).
Numerous studies have investigated MMN in elderly listeners,
and many of them have found that its amplitude is attenuated
and its peak latency is prolonged with aging (Alain and Woods,
1999; Cooper et al., 2006; Näätänen et al., 2011; Rimmele et al.,
2012b; Cheng et al., 2013; Bartha-Doering et al., 2015; Getzmann
and Näätänen, 2015).

To the best of our knowledge, no study has yet investigated
whether MMN elicited by auditory regularity violations in
elderly listeners shows a systematic relation with their ability
to use regularities for stream segregation. We used the same
spectrotemporal pattern as Rimmele et al. (2012a) to measure
both auditory processes in the same listeners. We expected a
significant correlation between MMN amplitude (as a proxy
of auditory regularity extraction) and behavioral benefit from
regular vs. random background sounds (as a proxy of regularity-
based stream segregation). Finding such a correlation would
strengthen the notion that extracting predictability and using
predictability for decomposing acoustic mixtures are closely
related processes, and would inform predictive-coding accounts
of auditory perception.

MATERIALS AND METHODS

Participants
30 volunteers aged 60–75 years participated in the study (17
female, 13 male; 29 right-handed, 1 left-handed; mean age
67.8 years, SD 4.1 years). All participants’ behavioral data were
analyzed. Due to substantial artifacts in the EEG, two participants’
data were excluded from ERP data analysis (both participants
were female; mean age of the remaining sample: 68.1 years, SD
4.1 years). The study was approved by the Ethics Committee of
the University of Oldenburg. According to the Declaration of
Helsinki, each participant gave written informed consent prior
to the beginning of the experiment after all procedures had been
explained. Participants received a modest financial compensation
(8 €/h) for their participation.

Experimental Stimuli and Apparatus
Sounds were created with Matlab (R2012b) and the stimulus
delivery was controlled using the Psychophysics Toolbox
extension for Matlab (Psychtoolbox 3.0.10). Instructions, visual
cues during the training phase and the movie were presented
on a wall-mounted TFT monitor. A Soundblaster X-Fi Audio
interface was used to generate the audio signals. It was connected
to a Tucker-Davis attenuator in bypass mode, which in turn
was connected to a Denon PMA 510AE amplifier. Sounds were
delivered via a pair of Cambridge Audio S30 speakers, positioned
approximately 1.5 m away from the participant on both sides
of the TFT monitor in the experimental room. Participants
sat comfortably inside an electrically and acoustically shielded
chamber while performing the experimental tasks.

Stream Segregation Part (Active Task)
Following Rimmele et al. (2012a), the behavioral task was set
up such that two auditory streams were interleaved and that

listeners had to perform a task (intensity deviant detection) in
one of them (the “A” stream), while the other one (the “B”
stream) interfered with the task. This interference was caused by
random intensity variation in the “B” stream, which obscured
the intensity regularity in the “A” stream and thus impeded
deviance detection as long as tones from the “A” and “B”
stream were perceptually integrated. Accurate task performance
thus required perceptual segregation of streams A and B; in
turn, task performance gives an indirect measure of stream
segregation (see Micheyl and Oxenham, 2010; Andreou et al.,
2011; Rimmele et al., 2012a; for the same measurement logic).
Specifically, the stimulus set consisted of short sinusoidal tones
with a duration of 60 ms, including 5 ms half-raised cosine on-
and offset ramps. The stimuli had three different frequencies:
370 Hz (“low”), 440 Hz (“mid”), and 554 Hz (“high”), presented in
rapid succession such that they can be interpreted as concurring
streams “A” (high tones) and “B” (low and mid tones, see
Figure 1). The task-relevant stream A was presented with a
level of 60 dB(C-weighted) for standards, while the level of
rare intensity deviants (10% of the stimuli in stream A) was
increased by 10 dB. Deviants were randomly placed with the
restriction of 1,500 ms minimum distance between any two
deviants. The stimulus onset of the tones in stream A was pseudo-
randomized and therefore unpredictable. The stimuli in stream
A were presented with 80% occurrence probability uniformly
distributed between any two tones of stream B, always leaving
at least 15 ms silence between all tones to avoid simultaneous
presentation. The task-irrelevant stream B consisted of mid
and low tones, whose spectrotemporal predictability varied with
the experimental condition. Level of tones in stream B varied
randomly in both conditions (55–75 dB(C) in 1 dB steps). This
value range was chosen to interfere with the deviant detection
task as soon as stream segregation would fail. In the predictable
condition, stream B followed an isochronous low-low-mid order
with a constant SOA of 283 ms. In the random condition, stimuli
in stream B were not presented in a spectrotemporal pattern;
instead, the SOA was randomly chosen from three discrete values
(160, 270, or 420 ms), and tone frequencies were randomly
chosen from the different frequency values (370 or 440 Hz). Mean
SOA was equal to the predictable condition, and the proportion
of different frequency values was also kept identical to the
predictable condition (i.e., twice as many low tones as mid tones).

In both conditions, participants were instructed to indicate
intensity deviants (targets) in stream A with a mouse click. To
control for laterality effects, half of the participants answered with
the index finger of the right hand, the other half answered with
the index finger of the left hand. The total number of deviant
tones per condition (predictable or random) was 255, distributed
to three blocks per condition. Each block had a duration of
approximately 5 min. In the six blocks, the two conditions were
presented in an alternating scheme, with the starting condition
counterbalanced across participants.

Regularity Extraction Part (Passive-Listening Task)
In the regularity extraction part, only stream B (low and mid
tones) of the predictable condition from the stream segregation
part was presented. Instead of the standard low-low-mid triplet,
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FIGURE 1 | Schematic illustration of the stimulus paradigm. In the first experimental part, participants were instructed to detect intensity deviants (probability in
sequence 10%, deviants are 10 dB higher in level than standards) in a high-frequency stream A (red rectangles). The task-irrelevant stream B (blue rectangles) was
presented in either an isochronous (SOA 283 ms) and therefore predictable low-low-mid pattern (A) or random in the chosen SOA (160, 270, or 420 ms) and
frequency (either low or mid, B). The second experimental part was a passive listening condition in which just the B stream was presented (isochronous, SOA
283 ms) containing standard low-low-mid triplets which were rarely interrupted by a deviant low-mid-mid triplet with probability of 17% (C). SPL levels in stream B
across all conditions (A–C) varied between 55 and 75 dB illustrated by different blue hues.

a rule-breaking low-mid-mid triplet was interspersed with 17%
probability. These deviant triplets were expected to elicit an
MMN. During the passive-listening part, participants watched
an emotionally neutral excerpt of a muted documentary. The
measurement lasted 15 min, without breaks, including 180
deviant low-mid-mid triplets.

Procedure
Before the main experiment started, participants completed a
four-level training procedure with increasing difficulty. In level
1, only the task-relevant stream A was presented, and visual
support was given (a white square indicating the occurrence of a
deviant tone). In level 2, stream A was presented alone without
visual aid. In level 3, both streams (A and B) were presented
with visual support for the deviant tone in stream A. In level 4,
both streams were presented without visual aid; the procedure
was thus identical to the experimental blocks. The training blocks
lasted 1 min each and could be repeated if necessary (level
4 was always repeated at least once). Training was finished
when performance reached a stable level and the participant
had notably understood the task. After EEG preparation, one
additional training block (level 4) was presented to refresh the
knowledge of the task.

The main experiment consisted of two parts with EEG
recordings throughout. First, participants completed the

behavioral experiment (stream segregation part). Second, they
were presented with the stimuli of the regularity extraction part
while watching the silent documentary. After removing the EEG
cap, the pure-tone audiogram (via Siemens Unity II audiometer
and Sennheiser HAD-200 headphones) was measured at octave
frequencies between 125 Hz and 8 kHz for both ears. To measure
speech-in-noise comprehension, the Oldenburg Sentence Test
(OLSA,1 Wagener et al., 1999b) was administered, using the
adaptive procedure at a noise level of 65 dB SPL (presented with
calibrated Siemens CD 310 F free field speakers). In addition,
participants filled questionnaires on demographic variables, and
they completed the Mehrfachwahl-Wortschatz-Intelligenztest
(MWT-B, Lehrl, 1977) as a short screening for verbal intelligence.

The whole experimental session lasted between 2.5 and 3.5 h,
including all tests and tasks, electrode application and removal as
well as breaks for the participants.

Electroencephalogram Recording
EEG data were continuously recorded using a BrainAmp
amplifier system (BrainProducts, Gilching, Germany) with
passive Ag/AgCl electrodes from 96 scalp positions using
an infracerebral electrode cap with an equidistant electrode
layout (Easycap, Herrsching, Germany). The horizontal

1https://www.hoertech.de/en/devices/olsa.html
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electrooculogram (EOG) was measured with electrodes placed at
the outer canthi of the left and right eye. The vertical EOG was
obtained from separate electrodes placed below the left and right
eye and from two electrodes above the eyes that were inserted in
the electrode cap. The reference electrode was placed at the tip
of the nose. EEG and EOG signals were amplified and recorded
with a sampling rate of 500 Hz, applying an analog filter with
250 Hz low pass and 0.0159 Hz high pass (time constant 10 s).

Data Analysis
Hearing Tests
To calculate an aggregate measure for the peripheral hearing
status, the average of the measured thresholds in the audiogram
from 0.125 to 8 kHz across both ears was calculated (average
hearing loss, AHL). To measure speech comprehension, the
OLSA result yields the signal-to-noise ratio at which 50% of
the speech material is still understood (50% speech recognition
threshold in dB SNR). Pearson correlation coefficients were
calculated for correlations between age and AHL (Figure 2A), age
and OLSA (Figure 2B), as well as AHL and OLSA (Figure 2C).

Behavioral Data
During the stream segregation part, participants’ responses and
response times were recorded. Using signal detection theory,
the sensitivity index d’ was calculated separately for the two

conditions (predictable, random). The d’ calculation was adapted
to account for the rapid stimulus presentation (Bendixen and
Andersen, 2013). Specifically, if two consecutive button presses
occurred within less than 50 ms from one another, the second
one was marked as an accidental key press, and only the first one
was counted for the analysis. All responses that occurred within
0.1–1.2 s after a target (intensity deviant onset) were counted
as hits. Note that response windows between two targets never
overlapped due to the minimal distance between two deviant
stimuli of 1.5 s. All remaining button presses (i.e., those that
were not counted as hits or accidental presses) were classified as
false alarms. The proportion of hits was calculated by dividing
the number of hits by the number of targets. The proportion of
false alarms was adapted to the rapid stimulus presentation in
the following way (Bendixen and Andersen, 2013): Conceptually,
the experimental block duration was separated into response
windows of 1.1 s duration (the defined response window for
targets), and the number of false alarms was divided by the
number of such windows in which false alarms could occur (i.e.,
without response windows for targets; for detailed methods see
Bendixen and Andersen, 2013). Afterward the sensitivity index
was calculated [d’ = z(pHits)—z(pFA)] with z transformation by
the inverse of the normal cumulative distribution function. To
solve the problem that 100 or 0% hits or false alarms would result
in plus or minus infinity, all proportion values were transformed

FIGURE 2 | Scatterplots for characterizing the participant sample. (A) Correlation of age and peripheral hearing status, (B) correlation of age and speech-in-noise
comprehension, (C) correlation of the hearing tests with one another, (D) correlation of age and deviance detection measured by MMN at frontocentral electrode
position (E02, black dots) and common mastoids (CM, green dots). Note that only 28 participants were included for the latter correlation (see text for details).
Significantly positive correlations indicate that higher age is associated with higher average hearing loss (A, p = 0.02) and with worse speech-in-noise
comprehension (B, p < 0.01). Moreover, higher average hearing loss is associated with worse speech-in-noise comprehension (C, p < 0.01). A significant negative
correlation between MMN amplitude and age only for CM shows less positive amplitudes with increasing age (D, green line, p < 0.01).
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by adding 0.5 to the individual hit and false alarm numbers
and dividing the resulting score by the number of target or
false alarm intervals adding one interval (Hautus, 1995). Due to
this transformation and the finite number of targets and non-
target intervals, a maximum d’ sensitivity score of 6.01 would be
achieved with perfect performance in each condition.

Sensitivity indices d’ were statistically analyzed by two-tailed
t-tests against zero separately for each conditions (predictable,
random, see Figure 3A). They were compared between the
two conditions with a paired-sample two-tailed t-test. To
quantify a possible advantage (i.e., higher d’ score) in the
predictable relative to the random condition, the benefit 1d’
was calculated, subtracting d’ of the random condition from d’
of the predictable condition. To analyze correlations between
benefit and possible contributing factors like age, regularity
extraction ability (measured by MMN), peripheral hearing status
(AHL), and speech-in-noise comprehension (OLSA), Pearson
correlation coefficients were calculated.

Reaction times were calculated separately for each condition
in the stream segregation part (Figure 3B) and compared against
each other with a paired-sample two-tailed t-test.

Electroencephalogram Pre-processing
Data analysis was carried out with Matlab R2020b (The
MathWorks Inc., Natick, United States) and the toolbox
EEGLAB (Delorme and Makeig, 2004) version 14.1.1b. EEG data
were decomposed into independent components (independent
component analysis, ICA) with the extended Infomax algorithm
(Bell and Sejnowski, 1995). Prior to and only for the purpose of
ICA, data were high-pass filtered with a Kaiser-windowed sinc
finite impulse response (FIR) filter (cutoff frequency: 1 Hz, filter
order: 9056, Kaiser β: 5.65326, transition bandwidth: 0.2 Hz,
maximal passband ripple: −60 dB), and artificial consecutive
epochs of 1 s length containing non-stereotypical artifacts
(as identified by eeglab’s rejkurt and jointprob functions with
thresholds of 3 STD) were rejected. The independent components
were saved in an untreated dataset (i.e., without the 1-Hz
filter and the epoch rejection), and artifact-related component
activity comprising eye movements, eye blinks, cardiac signals,
muscle noise, and line noise were identified according to
independent judgments by two of the authors (CN, AB).
Subsequently, EEG data were filtered with a 0.1–30 Hz bandpass
FIR filter (Kaiser-windowed, filter order: 9056, Kaiser β: 5.65326,

FIGURE 3 | Individual performance in the target detection task. (A) Performance for each participant (N = 30) as measured by sensitivity d’ for predictable (black
bars) and random conditions (gray bars). (B) Mean reaction times to detected targets in the task-relevant stream for each participant in both conditions (notation as
in A). Error bars indicate the standard error in each condition within the participant. Data in both panels is sorted by performance in the predictable condition.
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transition bandwidth 0.2 Hz, passband ripple: −60 dB). In some
participants, few channels (maximum 3) with high amounts of
residual artifact were replaced by using spherical interpolation.
Epochs of 950 ms duration, including a 100 ms pre-stimulus
interval used for baseline correction, were extracted from −100
to 850 ms relative to stimulus onset of the second stimulus in
the low-low-mid standard triplet or the second tone in the low-
mid-mid deviant triplet. With 850 ms post-stimulus, the epochs
comprised exactly three tones. Epochs with amplitude changes
exceeding 100 µV on any channel were rejected from further
analysis. This left two participants with less than 70% artifact-free
epochs; the corresponding datasets were excluded from further
ERP analysis (see above). The remaining datasets showed an
average data loss of 7.0% in the passive listening condition,
with 621–878 remaining epochs per participant (Mean = 817,
SD = 59) for standard triplets, and 129–180 remaining epochs
(Mean = 167, SD = 13) for deviant triplets.

Event-Related Brain Potentials
Data from the remaining 28 participants were used to form
grand-average ERPs per stimulus type (standard or deviant

triplet) in the regularity extraction part of the experiment.
Difference waves were calculated by subtracting the average
ERP for each participant elicited by standard stimuli from
that elicited by deviant stimuli. The difference wave of the
grand-average ERP was examined at the frontocentral electrode
E02, which is located on the midline between Fz and FCz
(Figure 4A), and at the average of the mastoids (common
mastoids, CM, Figure 4B). These are typical locations to quantify
the auditory MMN component (Näätänen et al., 2007). The
difference wave was tested for statistically significant deviations
from zero by means of a sample-wise running t-test throughout
the whole epoch window (i.e., from 0 to 850 ms), correcting
for multiple comparisons via the false discovery rate (FDR,
Benjamini and Hochberg, 1995). After confirming a significant
frontocentral negativity with this procedure, the negativity was
further characterized by using the average voltage in a latency
range from 428 to 496 ms after the onset of the second tone
in the triplet. This latency range was chosen to start with the
first sample of the longest number of consecutively significant
samples at E02 in the FDR-thresholded running t-test (428 ms),
to cover the frontocentral peak in the grand-average difference

FIGURE 4 | ERP results. (A) Grand-average ERPs at frontocentral electrode position E02 across all included participants (N = 28) elicited by standard (solid black
line) and deviant triplets (dashed black line) as well as their difference wave (red line). Gray rectangles above denote the tones. Timepoint 0 refers to the onset of the
second tone in low-low-mid (standard) or low-mid-mid triplet (deviant). Blue/red markings under the ERPs indicate significant negative/positive deviation of the
difference wave from zero as determined in running t-test with FDR-correction of the alpha level. Faint blue/red markings show significant negative/positive deviation
with alpha level p < 0.05 (without correction). The gray vertical rectangle highlights the chosen time window (428–496 ms) around the peak of the negativity in the
difference wave. (B) Grand-average ERPs at common mastoids (CM) across all included participants (N = 28). All markings, rectangles and lines have the same
meaning as in (A). (C) Topography of the difference wave in the chosen time window (428–496 ms), showing a frontocentral negativity with polarity inversion at the
mastoids. The white dot indicates the location of E02 used for the ERP plot in (A). Bold black dots show channel locations of left and right mastoid (both were
averaged for ERP plot in B).
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wave (462 ms), and to extend symmetrically to the other side
of the peak (496 ms). It should be noted that peak-picking
procedures are being criticized for their circularity (“double
dipping”) (Kriegeskorte et al., 2009; Luck and Gaspelin, 2017). In
the current case, we chose the latency range (428–496 ms) after
having determined that a significant negativity was elicited for
every data sample in that range, and we used it for individual
MMN amplitude quantification and for studying the scalp
topography (Figure 4C).

RESULTS

Hearing Status and Verbal Intelligence
Average hearing loss (AHL) values across all frequencies ranged
from 4.64 to 33.93 dB (Mean = 19.88 dB, SD = 9.14 dB),
indicating wide variance from participants with almost normal
thresholds to participants with considerable peripheral hearing
loss. A significant correlation between AHL and age was observed
(r = 0.43, p = 0.02, N = 30; see Figure 2A), indicating
that peripheral hearing ability decreased with increasing age
within our sample spanning 15 years of age. To exclude a
confounding effect of hearing status on task performance, AHL
in the frequency range in which the experimental stimuli were
presented (370–554 Hz) was specifically examined. As a proxy,
AHL values for 250 and 500 Hz were averaged, yielding a mean
AHL of 5.42 dB (SD = 6.83 dB, range −7.5 to 20 dB). This
indicates relatively preserved hearing at the frequencies of the
auditory stimuli.

OLSA results ranged from −6.6 to −2.5 dB SNR
(Mean = −5.36 dB SNR, SD = 0.93 dB SNR). This suggests
a mild to moderate impairment in understanding speech in noise
relative to the expected average threshold of young normal-
hearing subjects at −7.1 dB SNR (Wagener et al., 1999a). Note
that numerically lower—more negative—values indicate better
performance. Speech-in-noise thresholds were significantly
worse (i.e., less negative) with increasing age (r = 0.52, p < 0.01,
N = 30; Figure 2B). Moreover, AHL correlated significantly with
speech-in-noise comprehension (r = 0.49, p < 0.01, N = 30;
Figure 2C).

All participants scored at or well above the population average
on the verbal intelligence test MWT-B (verbal IQ range 97–145,
mean IQ: 127), which rules out occurrences of major cognitive
decline in the sample.

Behavioral Data: Performance and
Predictability-Based Performance
Benefit
Performance as evaluated by the sensitivity index d’ scores ranged
from −0.10 to 4.62 in the predictable condition (Mean = 2.69,
SD = 1.52) and from 0 to 4.48 in the random condition
(Mean = 2.35, SD = 1.33). The variation across participants
was large (see Figure 3A), with some participants performing
very well (note that performance without misses and false
alarms would lead to a d’ maximum of 6.01) and other
participants with d’ near zero failing to handle the target

detection task above chance level. On average, performance
in both conditions was significantly above chance [predictable
condition: t(29) = 9.69, p< 0.001; random condition: t(29) = 9.66,
p < 0.001].

Performance in the predictable condition was significantly
better than in the random condition, t(29) = 3.39,
p < 0.01. This implies that at group level, participants
can benefit from the spectrotemporal regularity in the
task-irrelevant background for performing the foreground
task. At single-subject level, not all participants showed
the same amount of benefit (or a benefit at all): 1d’
values ranged from −0.62 to 2.08 (Mean = 0.34,
SD = 0.54).

Mean reaction times (see Figure 3B) to detected targets
in the task-relevant stream did not differ between conditions
[t(29) = −1.25, p = 0.22; predictable condition: Mean = 0.49 s,
SD = 0.08 s; random condition: Mean = 0.50 s, SD = 0.08 s].

Event-Related Brain Potential Data:
Deviance Detection
FDR-corrected running t-tests of the difference wave (deviant
minus standard) at the frontocentral electrode position E02
show significant negative and positive deflections in several time
ranges, of which the longest one was taken for further statistical
analysis (see Figure 4A). It consists in a pronounced negativity
in a late time range, starting from 428 ms after the onset of
pattern-violating second tone (low-mid-mid instead of low-low-
mid). The topography of this late component (measured from
428 to 496 ms) shows a frontocentral negativity with inversed
polarity at the mastoids (Figures 4B,C), which is consistent with a
generator of this component in auditory cortex (Näätänen et al.,
2007). The negativity was identified as an MMN (see below for
discussion). Individual MMN amplitudes at the frontocentral
electrode location E02 in the time window 428–496 ms varied
widely from −2.62 to 1.15 µV (Mean = −0.77 µV, SD = 0.87
µV; mean amplitude was significantly negative at group level:
t(27) = −4.65, p < 0.001). No significant correlation between
frontocentral MMN amplitude and age was found (r = −0.32,
p = 0.10, N = 28, black dots in Figure 2D). Individual
MMN amplitudes at common mastoids (CM) varied in the
chosen time window from −1.03 to 2.40 µV (Mean = 0.47
µV, SD = 0.66 µV; mean amplitude was significantly positive
at group level: t(27) = 3.78, p < 0.001). MMN amplitudes
at common mastoids were found to significantly correlate
with age (r = −0.54, p < 0.01, N = 28, green dots in
Figure 2D), with less positive MMN amplitudes associated
with increasing age. The correlations between MMN amplitude
and age at E02 and CM do not qualitatively change when
controlling for AHL.

Correlations Between
Predictability-Based Performance
Benefit, Deviance Detection, and
Auxiliary Data
Correlation analyses were carried out in search of underlying
factors for the wide variation in the predictability-based
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FIGURE 5 | Scatterplots of correlations with benefit. (A) Correlation between benefit 1d’ and mean MMN amplitude at frontocentral electrode position E02 (black
dots) and common mastoids (CM, green dots; note that just 28 participants were included for both correlations), (B) between benefit 1d’ and average hearing loss
(AHL), (C) between benefit 1d’ and speech-in-noise comprehension, and (D) between benefit 1d’ and age. No significant correlations with benefit 1d’ were found.

performance benefit (1d’). No significant correlation was
observed between 1d’ (as a measure of predictability-based
performance benefit) and MMN amplitude (as a measure of
deviance detection capacities) at E02, r = 0.23, p = 0.25, N = 28
(Figure 5A, black dots) and CM, r = 0.22, p = 0.26, N = 28
(Figure 5A, green dots). There was also no correlation between
benefit and AHL (r = −0.10, p = 0.61, N = 30, Figure 5B) nor
between benefit and speech-in-noise comprehension (r = 0.08,
p = 0.68, N = 30, Figure 5C).

Examining the correlation of benefit and age suggests that
there could be a trend toward lower benefit with increasing
age (r = −0.33, p = 0.07; Figure 5D), though it does not
meet the conventional alpha level of 5% (and much less a
Bonferroni-corrected alpha level of 1% to compensate for the
five correlation coefficients computed for benefit). This numerical
association of benefit and age could reflect a spurious trend,
or it could indicate a real effect measured with too low power
given the relatively small sample size (N = 30). To separate
between these two possibilities, we retrieved the data of all 16
participants (mean age = 65.9 years, SD = 4.0 years) from the
elderly group of Experiment 2 by Rimmele et al. (2012a). The

current experimental design is highly similar to Experiment 2
of Rimmele et al. (2012a), thus their data were re-analyzed in
terms of 1d’ benefit as in the current study by subtracting
d’ in the random condition from d’ in their isochronous
condition (corresponding to the predictable condition here).
A joint correlation analysis based on data from both studies
(Figure 6) revealed no significant correlation between age and
benefit (r = −0.14, p = 0.34, N = 46), which suggests that the trend
in the current experimental data was indeed spurious.

Further Control Analyses
Importantly, Rimmele et al. (2012a) had found no significant
benefit for elderly participants in the isochronous condition
(Mean d’ = 2.55, SD = 0.70) relative to the random condition
(Mean d’ = 2.41, SD = 0.74). In order to identify reasons for
the apparent discrepancy with the current result, a post hoc
independent-samples t-test was performed to compare the 1d’
results from Rimmele et al. (2012a) with the current data. 1d’
was numerically higher in the current study (Mean = 0.34,
SD = 0.54) than in the previous study (Mean = 0.13, SD = 0.32),
but this difference was not statistically significant [t(44) = 1.38,
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FIGURE 6 | Post hoc joint analysis of two independent participant samples. Scatterplot of the relation between age and benefit 1d’ for performance in the
predictable/isochronous minus random condition. Each dot refers to one individual data point (black dots: current study, gray squares: Exp. 2 in Rimmele et al.,
2012a). Solid line indicates correlation in the current study (r = –0.33, p = 0.07, N = 30), dotted line indicates correlation in the combined data (r = –0.14, p = 0.34,
N = 46).

p = 0.17]. Again, a joint analysis of both datasets showed that 1d’
is significantly different from zero across both groups of elderly
participants [Mean = 0.27, SD = 0.48, t(45) = 3.71, p < 0.001].

The lack of significant correlation of behavioral benefit (1d’)
with any other measured variable (Figure 5) led us to examine the
robustness of 1d’ measurement, to rule out that measurement
error underlies the absence of correlation. We assessed the
robustness of the measurement by calculating 1d’ separately
for each consecutive pair of blocks (i.e., subtracting d’ in the
first random block from d’ in the first predictable block, etc.)2

and determining Cronbach’s alpha of the three 1d’ estimates.
Across our 30 listeners, Cronbach’s alpha was modest (0.31).
Examination of the individual data showed that one single
listener exhibited excessive variation between blocks3 whereas
all others’ data were much more consistent. Excluding this one
listener’s data increased Cronbach’s alpha to a moderate level of
0.58. Given that 1d’ is a difference score, 0.58 is an acceptable
value, and it is considerably higher than the observed correlation
of 1d’ with any other measured variable.

2Note that this assignment is to some degree arbitrary since the blocks were not
administered in a paired manner.
3We verified in a post hoc analysis that this listener’s data (with its inconsistent
estimates of the 1d’ effect) did not affect the other analyses in any way. None of
the correlations reported in the manuscript changed qualitatively when excluding
this listener’s data.

DISCUSSION

The current study was designed to measure elderly listeners’
abilities to extract an auditory spectrotemporal regularity (as
evidenced by MMN responses to regularity violations) and to
use the same regularity for stream segregation (as evidenced by
enhanced listening performance in a foreground stream when
the regularity is embedded in the to-be-ignored background).
We expected to find a correlation between MMN amplitude
(regularity extraction) and behavioral benefit (regularity-based
stream segregation). In contrast to our hypothesis, we did
not observe such a correlation, although both abilities were
clearly present at group level and inter-individual variability was
substantial in both of them. The two abilities and the absence of
their association are discussed in turn below.

Pattern Regularity Extraction in Elderly
Listeners
To study whether elderly listeners can extract spectrotemporal
patterns, we used MMN as an indirect measure of regularity
extraction (Schröger, 2005). The “low-mid-mid” deviations from
the “low-low-mid” pattern indeed elicited a significant ERP
component whose topography is consistent with the auditory
MMN component (Näätänen et al., 2001, 2005). The time-range
of the MMN component was relatively late, with its peak at
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462 ms relative to the onset of the deviant event (second tone
in the triplet). MMN usually occurs at about 100–250 ms after
deviation onset (Näätänen et al., 2007; Garrido et al., 2009).
One possible reason for the late MMN is that the three stimuli
of the tone pattern are perceptually bound into an auditory
object and that the comparison of the sensory input with the
expected template (whose mismatch leads to MMN) takes place
after the last tone of the triplet. Relative to this third tone, the
observed peak latency is 179 ms, which is well in line with
the usual MMN latency (Näätänen et al., 2007; Garrido et al.,
2009). Alternatively, an embedded regularity may be encoded
in different ways (Horváth et al., 2001), not only in the form
of a global pattern regularity (“low-low-mid is continuously
repeated”) but also in the form of a local transitional regularity
(“a mid-tone is always followed by a low tone”). This transitional
regularity is not violated until the third tone of the triplet, which
explains the occurrence of a late MMN as well. Other alternatives
are that the late negativity reflects the typical prolongation of
MMN latency in elderly listeners (Cooper et al., 2006; Näätänen
et al., 2011; Getzmann and Näätänen, 2015), or that this negativity
is not the typical MMN but the late discriminative negativity
(LDN) following MMN, which has been described mainly for
children (e.g., Cheour et al., 2001), but also for adults when
abstract regularities are employed (Zachau et al., 2005; Bendixen
et al., 2012). Altogether, we conclude that the negativity peaking
at 462 ms reflects an automatic violation detection process, in
which the deviant triplet violates the formed prediction about
the sensory input and the predictive model needs to be updated
(Winkler and Czigler, 1998).

One may object that comparing ERPs to standard (low-low-
mid) and deviant triplets (low-mid-mid) is not ideal due to the
physical difference in the second tone (low vs. mid tone). In fact,
a significant early difference between standard and deviant ERP
traces emerged in the latency range of the N1 component at about
120 ms after onset of the physically different tone (see Figure 4A).
To differentiate whether this N1 enhancement for the deviant
triplet was due to the physical difference or reflects an early sign
of “true” deviance detection (Näätänen et al., 2005), it would
have been more advantageous to swap the role of deviant and
standard triplets half-way during the passive listening condition.
Yet although this has been a standard recommendation in
auditory MMN research for many years, recent work on the so-
called “primacy bias” (Todd et al., 2011, 2013, 2014; Fitzgerald
and Todd, 2018) has established that swapping standard and
deviant comes with significant reductions in the overall size of the
MMN component. This is because a “lasting first impression” of
stimulus probabilities and significance has been formed, reducing
the MMN elicited by the deviant that was first experienced as
a standard (Todd et al., 2011, 2013, 2014; Fitzgerald and Todd,
2018). Such higher-order effects (signifying predictive coding at
different timescales) would reduce overall MMN amplitude and
might introduce another source of inter-individual variability.
This might have interacted with the aim to quantify pattern
MMN on an individual basis in the current study. Importantly,
even if the early (120 ms) negativity elicited by deviant relative
to standard triplets was confounded by physical difference, it is
highly unlikely that this translated to the negativity at 462 ms

analyzed here, because the third tone in standard and deviant
triplets was physically identical and the early modulation was
much smaller than the late MMN.

To sum up, the ERP data from passive listening suggest
that—at group level—elderly listeners extracted the pattern
regularity and detected deviations from it. Finding this ability at
group level is consistent with prior work on pattern regularity
extraction in elderly listeners (Alain and Woods, 1999; Näätänen
et al., 2011; Rimmele et al., 2012b; Getzmann and Näätänen,
2015). The respective abilities of the individual listeners (as
quantified by MMN amplitude) showed a high amount of
variation, which was later used to address the question of
a possible direct relation with the ability of regularity-based
stream segregation.

Note that evidence in favor of pattern regularity extraction in
elderly listeners does not imply that this ability is fully preserved
in elderly listeners: this conclusion would require comparison
with a young-listener control group. Such a control group was not
included in the current study because our focus was on examining
differences within a group of elderly listeners (60–75 years), not
on drawing comparisons across wide age ranges (∼25 years
vs. ∼65 years, as in many other studies). Previous studies
comparing widely different age groups have consistently found
smaller frontocentral MMN amplitudes in elderly as compared
to young listeners (Alain and Woods, 1999; Näätänen et al.,
2011; Rimmele et al., 2012b; Getzmann and Näätänen, 2015).
The fact that we did not find a correlation between frontocentral
MMN amplitude and age in the current study (Figure 2D, black
dots) does not contradict those prior observations, as one would
expect the chronological age to play a more minor role in a
sample spanning 15 years (60–75 years) than in samples spanning
40 years of age and more.

Indeed, the correlation between polarity-reversed MMN
amplitude at the common mastoids and age was significant
in our sample (Figure 2D, green dots). This might indicate
that elderly listeners show impairments in the supratemporal
but not frontal MMN generators for deviations of our pattern
regularity (Giard et al., 1990; Opitz et al., 2002; Näätänen
et al., 2007), or it may reflect a shift in the orientation of
the superior temporal gyrus dipole (Deouell, 2007). Since our
frontocentral MMN amplitude numerically shows an almost
parallel trajectory with age as the mastoid MMN amplitude
(Figure 2D: both tend to become less positive/more negative
with age), the latter explanation seems more likely (see Baldeweg
et al., 1999, for a similar observation where frontal MMN increase
is paralleled by mastoid MMN decrease, though not in the
context of aging). More specifically, it seems plausible that a
change in orientation of the superior temporal gyrus dipole
reduces MMN amplitudes at mastoid electrodes and increases
MMN amplitudes at frontocentral electrodes at the same time.
In contrast, a change in strength of the superior temporal gyrus
dipole would reduce MMN amplitude at both electrode sites,
and one would have to assume a parallel increase in strength
of the frontal MMN source to account for the observation that
MMN decreases with age at the mastoids while it tends to
increase with age at frontocentral electrodes. While this would
be a less parsimonious explanation, the current data should
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not be over-interpreted regarding this issue, especially since the
association of age and frontocentral MMN amplitude was not
significant by conventional criteria. It is likewise difficult to
relate this observation to other MMN studies investigating aging
effects by comparing young and elderly listeners, because many
studies report frontocentral MMN amplitudes that are directly
referenced to the mastoid electrodes, or do not report mastoid
data at all. Further studies examining possible dissociations
between temporal and frontal MMN generators with age are
required, especially in the context of pattern regularities.

Regularity-Based Stream Segregation in
Elderly Listeners
In the active-listening part of the current study, elderly
listeners showed better foreground task performance when a
task-irrelevant background stream carried a spectrotemporal
regularity than when it did not. This is in line with the predictive-
coding account of auditory stream segregation (Winkler et al.,
2009, 2012). It is consistent with prior work on regularity-based
stream segregation in young listeners (Andreou et al., 2011;
Rimmele et al., 2012a), and informative with respect to previously
conflicting results on whether this translates to elderly listeners:
While de Kerangal et al. (2021) showed that the ability to track
sources in an acoustic scene based on their regularities is largely
preserved in elderly listeners, Rimmele et al. (2012a) had found
an impairment of elderly listeners in regularity-based stream
segregation. Since the current study closely followed the task
and design of Rimmele et al. (2012a), we can now exclude task
differences to underlie the different findings. The discrepancy
of the current results with those of Rimmele et al. (2012a) is
most likely due to issues of statistical power, with only 16 elderly
listeners taking part in the previous study, compared to 30 elderly
listeners in the current one. Alternatively, a procedural difference
lies in the more comprehensive task training in the current study,
from which the elderly may have benefitted. Post hoc analyses
showed that the size of the behavioral benefit from regularity-
based stream segregation in the two studies was not significantly
different (though numerically higher in the current study), and
that the behavioral benefit was significant when jointly analyzing
both datasets. This underlines the necessity of replication studies
with sufficient statistical power (Maxwell et al., 2015).

The fact that regularity-based stream segregation (i.e.,
behavioral benefit) does not correlate with peripheral hearing
status (Figure 5B) nor with speech-in-noise comprehension
(Figure 5C) is consistent with the findings from de Kerangal
et al. (2021) who likewise found no such relations. This similar
pattern of results in both studies is important on a theoretical
level because it implies that the investigated regularity-based
processing of complex acoustic scenes cannot trivially be
explained by physical confounds in the stimulus setup (which
might, e.g., put listeners with better peripheral hearing at
an advantage). Instead, regularity-based processing of complex
acoustic scenes appears to capture an independent ability,
which is important to further investigate. The predictive-coding
framework (Friston, 2005; Friston and Kiebel, 2009; Kanai et al.,
2015; Denham and Winkler, 2017; Heilbron and Chait, 2018)

provides an important theoretical basis for characterizing this
ability, and in turn for developing a full understanding of
auditory scene analysis and mitigating possible deficits thereof.

We conclude that elderly listeners can benefit from regularity-
based stream segregation, but it is not known yet whether they
can benefit to the same extent as young listeners. Answering
the latter question would require taking measurements from a
group of young listeners for comparison, which—as discussed
for pattern regularity extraction above—was not in the focus of
the current study. In view of the modified conclusion about the
general ability of elderly listeners to perform regularity-based
stream segregation, it seems warranted to verify the age group
difference in this ability reported by Rimmele et al. (2012a) in an
independent replication study. Similar to the ability for pattern
regularity extraction, the ability for regularity-based stream
segregation did not correlate with chronological age (Figures 5D,
6). Again, this does not rule out the existence of an age effect
when comparing groups with a wider age range, as one would
expect chronological age to dominate the results more when
spanning a wider range. In any case, the observed strong inter-
individual differences in the capacity to benefit from background
regularity (both in the current and in the previous study) warrant
further examination.

Relations Between Pattern Regularity
Extraction and Regularity-Based Stream
Segregation
The key hypothesis of the current study was that listeners whose
auditory system detects deviants more readily (as evidenced
by MMN during passive listening) can also use predictability
more easily for segregating sound sources from one another
(as evidenced by regularity benefits in the active-listening
task). This was expected to show up as a correlation between
MMN amplitude and behavioral benefit. However, no such
correlation was observed (Figure 5A). Since the inter-individual
variation in both measures was high (see Figure 5A), the
failure to find a correlation cannot be explained by floor or
ceiling effects, or lack of variance. We must consider the
possibility that part of the variation in the single-participant
values reflects measurement error rather than true differences
in the underlying ability. However, regarding MMN amplitudes,
excessive measurement error seems unlikely given the significant
correlation of individual mastoid MMN with age. Regarding
behavioral benefit, robustness of the measurement was quantified
by a Cronbach’s alpha of 0.58, which is considerably higher
than the observed correlation of 1d’ benefit with any other
measured variable.

To put potential concerns about measurement error further
into perspective, it is important to note that well-established
findings on auditory aging were replicated in the current
study, even within the narrow age range (spanning 15 years)
relative to studies comparing participants across different age
groups (young vs. elderly). Specifically, we found that higher
chronological age was accompanied by a decline in peripheral
hearing ability (Figure 2A), which is consistent with prior
work (e.g., Gates and Mills, 2005; Glyde et al., 2013). Increasing
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hearing thresholds challenge locating, detecting, discriminating,
and comprehending sounds especially in complex acoustic
environments, resulting in impaired speech comprehension
(for a review see Pichora-Fuller and Souza, 2003; Martin and
Jerger, 2005). In accordance with this, we confirmed that
higher chronological age is accompanied by worse speech-
in-noise comprehension (Figure 2B). The relation between
peripheral hearing status and speech-in-noise comprehension,
though significant, is far from being deterministic (Figure 2C).
This underlines the partial independence of peripheral and
central auditory processes (Plomp, 1978; Pichora-Fuller
and Souza, 2003; Alain et al., 2006; Peelle and Wingfield,
2016). In any case, replication of these established findings
in the current study rules out the possibility that severe
measurement error masked inter-individual differences of
relevant auditory abilities.

Other factors may help to understand the absence of a
significant correlation between MMN amplitude and behavioral
benefit. Before drawing premature conclusions on a putative
dissociation between regularity extraction and regularity-based
stream segregation, we should consider whether the two variables
are valid indicators of the processes they are assumed to reflect.
MMN is an indirect measure of regularity extraction (Schröger,
2005), though a dissociation between deviance detection and
regularity extraction is unlikely under all current theoretical and
modeling frameworks (Näätänen et al., 2007; Garrido et al., 2009;
Fishman, 2014; Fitzgerald and Todd, 2020). A more imminent
question is whether MMN amplitude gives a valid assessment
of the strength or probability of deviance detection, or whether
other processes may confound this measurement. Specifically,
since we measured regularity extraction via MMN in a separate,
passive-listening condition, MMN amplitude differences between
participants may reflect different levels of attention to the
sound stream while watching the silent documentary. Though
attention effects on the MMN itself are small (Sussman, 2007),
overlapping components such as the N2b (Novak et al., 1990)
may confound the measurement and thereby artificially enhance
the measured MMN amplitude. In fact, those participants who
do not successfully disregard the irrelevant sound stream while
focusing their attention on the video, might actually be those
who also have trouble disregarding the task-irrelevant low-low-
mid sound stream while focusing their attention on the task-
relevant (A) stream. It may be the case that their negativity
in the MMN latency range is counter-intuitively larger than
those of many others because they fail to ignore the sound
stream. This would be consistent with findings from cognitive
aging in a wider sense, showing that the ability to inhibit
task-irrelevant stimuli decreases with age across modalities and
task types (e.g., Weeks and Hasher, 2018; Gaál et al., 2020).
Interindividual differences in the ability to ignore task-irrelevant
information (“resist interference”) would be one explanation why
no consistent relation between MMN amplitude and benefit was
found at group level. Future studies should mitigate this concern
by measuring regularity extraction and deviant detection ability
while participants’ auditory attention is more strongly controlled.
It would also be advantageous to measure both abilities with the
presence of the “A” sound stream.

Similarly, it could be questioned whether the behavioral
benefit is a valid indicator of regularity-based stream segregation
in every individual case. The underlying assumption is that more
success in segregating the streams automatically translates into
higher task performance. Yet this neglects the possibility that
some participants may have trouble focusing their attention
on the correct stream even when they succeed in segregating
the streams (Gaeta et al., 2001; Healey et al., 2008; Horváth
et al., 2009; Passow et al., 2012). Denham and Winkler (2017)
summarize similarly conflicting results in their review article,
stemming from the fact “that predictable sequences attract
attention while also being easier to suppress.” They go on to
conclude that “the presence of both tendencies may allow the
influence of predictability to be easily modulated according
to intrinsic preferences, attentional set and task demands”
(Denham and Winkler, 2017). This consideration addresses
contradictory findings across different studies, but it is well
conceivable that it also applies within one study: In the current
case, intrinsic preferences of individual participants may have
obscured a systematic relation at group level. Therefore, an
independent measurement of participants’ ability to focus on a
given stream, and also to perform the task without the existence
of a background stream, is needed to yield further insights into
the involved processes. This would also tap more into related
cognitive processes such as resistance toward interference, going
beyond the very general cognitive screening in terms of verbal
intelligence in the current study.

CONCLUSION

In conclusion, due to a lack of an association between MMN
amplitude and behavioral benefit we cannot provide support for
the theoretical notion that extracting predictability and using
predictability for decomposing acoustic mixtures are closely
related processes. However, our observations do not rule out
the possibility that such a relation may exist. Further studies are
needed to rule out alternative explanations and to characterize
the involved processes in more detail. The fact that elderly
participants are successful in auditory regularity extraction and
regularity-based stream segregation at group level, and that
substantial inter-individual variation can be captured in these
abilities with the present paradigm, provides a promising basis
for further explorations into the involved processes.
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The Brain Tracks Multiple Predictions
About the Auditory Scene
Kelin M. Brace and Elyse S. Sussman*

Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States

The predictable rhythmic structure is important to most ecologically relevant sounds
for humans, such as is found in the rhythm of speech or music. This study addressed
the question of how rhythmic predictions are maintained in the auditory system when
there are multiple perceptual interpretations occurring simultaneously and emanating
from the same sound source. We recorded the electroencephalogram (EEG) while
presenting participants with a tone sequence that had two different tone feature patterns,
one based on the sequential rhythmic variation in tone duration and the other on
sequential rhythmic variation in tone intensity. Participants were presented with the
same sound sequences and were instructed to listen for the intensity pattern (ignore
fluctuations in duration) and press a response key to detected pattern deviants (attend
intensity pattern task); to listen to the duration pattern (ignore fluctuations in intensity)
and make a button press to duration pattern deviants (attend duration pattern task),
and to watch a movie and ignore the sounds presented to their ears (attend visual
task). Both intensity and duration patterns occurred predictably 85% of the time,
thus the key question involved evaluating how the brain treated the irrelevant feature
patterns (standards and deviants) while performing an auditory or visual task. We
expected that task-based feature patterns would have a more robust brain response
to attended standards and deviants than the unattended feature patterns. Instead, we
found that the neural entrainment to the rhythm of the standard attended patterns
had similar power to the standard of the unattended feature patterns. In addition, the
infrequent pattern deviants elicited the event-related brain potential called the mismatch
negativity component (MMN). The MMN elicited by task-based feature pattern deviants
had a similar amplitude to MMNs elicited by unattended pattern deviants that were
unattended because they were not the target pattern or because the participant
ignored the sounds and watched a movie. Thus, these results demonstrate that
the brain tracks multiple predictions about the complexities in sound streams and
can automatically track and detect deviations with respect to these predictions. This
capability would be useful for switching attention rapidly among multiple objects in a busy
auditory scene.

Keywords: auditory attention, task switching, pattern detection, mismatch negativity (MMN), event-related
potentials (ERPs), neural entrainment
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INTRODUCTION

It has long been appreciated that the excitability of the cortex
oscillates in a rhythmic fashion (Bishop, 1932). Attention is
adaptive, capable of following the fluctuations in the rhythmic
structure of speech and music in a dynamic fashion (Large and
Jones, 1999). Although many different oscillatory bands have
been implicated in neuronal processing, this study focused on
lower frequency oscillations, particularly related to attention.
These low frequency oscillations are inherently present in the
brain. The alignment of low frequency oscillations to external
stimuli has been posited as a possible method of attentional
selection (Lakatos et al., 2008; Schroeder and Lakatos, 2009).

The brain’s response to sound stimulation can reflect
the rhythmic structure and is thought to be a mechanism
of selective attention (Lakatos et al., 2008; Schroeder and
Lakatos, 2009; Calderone et al., 2014). Moreover, entrainment
to stimulus presentation rate is positively correlated with
behavioral detection (Large and Jones, 1999; Elhilali et al.,
2009; Xiang et al., 2010), and expectation of rhythm has been
shown to improve behavioral performance (Dowling et al.,
1987). There is evidence of primate primary auditory cortical
entraining to rhythmic stimuli after the stimuli have ended,
indicating that these are not just evoked responses (Lakatos
et al., 2013). Amplitude modulation of sounds is also reflected
in the cortical response (Draganova et al., 2002). Attention
to a target rhythm within a masking sequence can enhance
neural entrainment to the target, originating from the auditory
cortex. Performance on a target task is correlated with the
strength of neural entrainment (Elhilali et al., 2009). Selective
entrainment occurs more strongly to the attended rhythm when
multiple possible rhythms are present (Costa-Faidella et al.,
2017).

In the current study, we recorded an electroencephalogram
(EEG) to investigate how the brain entrains to the rhythm of
sounds when there aremultiple possible rhythmic interpretations
that can be extracted from a single sound stream. Specifically,
we tested how attention drives entrainment to the two different
rhythms by using a switching paradigm that requires a different
task goal associated with each distinct rhythm perception.

To further assess processing associated with rhythmic
perception, we used two dependent measures of the event-
related brain potentials (ERPs), the mismatch negativity
(MMN), and the P3b components that reflect processing of
the deviant. The MMN, which is generated within auditory
cortices (Tiitinen et al., 1993), provides an ideal tool for
simultaneously assessing the brain’s response to the attended
and the unattended sound rhythms in the sequence (Sussman
et al., 2014). Thus, MMN elicitation can be used to assess the
representation of different rhythmic regularities maintained in
auditory memory (Moldwin et al., 2017). The MMN system
represents pattern regularities in a sequence of sounds (the
‘‘standard’’; Sussman, 2007) and indexes detection of the
violation of those regularities (the ‘‘deviant’’; Schröger et al.,
1992; Sussman et al., 1998, 2014; Picton et al., 2000; Näätänen
et al., 2001; Takegata et al., 2001; Winkler et al., 2003;
Sussman, 2007; Paavilainen, 2013; Pannese et al., 2015). The

P3b component was used to evaluate task-related performance.
The P3b component is associated with volitional control and
its amplitude and latency are affected by task difficulty in
dual task situations (Norman and Bobrow, 1975; Isreal et al.,
1980; Kok, 2001). For example, task interference is associated
with the elicitation of smaller P3b amplitude and longer
P3b latency. Thus, the P3b component can be used together
with behavioral indices of performance to assess cognitive
demands.

The overarching goal of the current study was to gain a better
understanding of complex sound perception by investigating the
way in which sounds are represented in auditory memory during
task performance when multiple rhythmic interpretations can
be perceived from one sound stream. The current experiment
incorporated elements of a task-switching paradigm along
with manipulation of rhythmic attention. The paradigm was
inspired by the methodology used in Costa-Faidella et al. (2017).
The sound sequences contained two non-overlapping rhythms
created by patterns in different tone features, a tone intensity
pattern and a tone duration pattern. The task focused on
detecting a pattern deviant in the respective feature (intensity
pattern deviant or duration pattern deviant). The targets were
unique deviants within the intensity and duration patterns to
elicit MMN based on its respective standard pattern. In this
way, we were able to assess both the brain representation of
the standard rhythms by examining neural entrainment to the
rhythm of the standard and deviant detection by examining
elicitation of the MMN. We predicted that when participants
performed repeated trials of the same task, there would be
evidence of strong neural entrainment to the target rhythm,
and an MMN elicited by the attended pattern deviants. We
further predicted that the entrainment to the unattended,
irrelevant rhythm (intensity pattern when attending duration,
and duration pattern when attending intensity) would be
attenuated or absent, which would likely preclude the MMN
response. Additionally, because it was a switching paradigm,
we expected some behavioral switch cost (e.g., lower hit rate
or longer response time) when participants alternated between
tasks. Finally, because we set up a competition between stimulus-
driven rhythmic perceptions, we expected that there may be
neural evidence of competition between the tasks.

MATERIALS AND METHODS

Participants
Twenty-four adults aged 22–41 years (median age 27.5, 11 males)
were included in this study. All participants passed a hearing
screening (25 dBHL or better for 500, 1,000, 2,000, and 4,000 Hz)
and had no self-reported history of psychiatric or neurologic
disorder. The study was carried out in accordance with the
Code of Ethics of the World Medical Association (Declaration
of Helsinki). Written consent was obtained from all participants
after the study was explained to them. The protocol and informed
consent documents were approved by the Institutional Review
Board at Albert Einstein College of Medicine, Bronx, NY where
the study was conducted.
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FIGURE 1 | Experimental protocol. (A) Schematic of the overall stimulus paradigm. The X-axis shows the timing in milliseconds and the Y-axis shows the frequency
separation in semitones (ST). The rectangles represent the tones. The fill represents intensity, with black representing louder intensity tones and the white softer
intensity tones, and the width of the rectangle represents tone duration. Both intensity and duration patterns were presented randomly within the stimulus blocks and
are demarcated with the rhythm of each denoted. The global rhythm of the tones in the sequence was 4.54 Hz. (B) Intensity task. Only the intensity rhythm is
displayed. The standard 4-tone intensity pattern was loud-soft-soft-loud, and had a rhythm of 1.51 Hz. The task was to keep the standard pattern in mind and press
the response key when the pattern deviant (loud-soft-loud-loud) was detected. Thus, the button press was time-locked to the 3rd tone of the pattern where a louder
tone came when a softer tone was expected. The frequency of the tones is displayed on the y-axis. The tone duration changes were irrelevant to the intensity task.
(C) Duration Task. Only the duration rhythm is displayed. The standard 8-tone duration pattern was short-short-short-short-long-long-long-long, and had a rhythm of
1.13 Hz. The task was to keep the standard pattern in mind and press the response key when the pattern deviant (long-long-long-long-long-long) was detected.
Thus, the button press was time-locked to the 5th long tone of the deviant pattern where a shorter tone was expected. The frequency of the tones is displayed on
the y-axis. The tone intensity changes were irrelevant during the duration task. (D) Protocol schematic. A visual cue the words “intensity task” or “duration task”
(depicted in time as a black rectangle) was presented on the screen for 1 s instructing participants what task to do. Sounds were presented randomly between
15–20 s, comprising one trial. Six trials of “intensity task” or “duration task” were presented randomly throughout each of the 20 blocks.

Stimuli
A graphical representation of the sound sequence is shown in
Figure 1. Stimuli consisted of pure tones presented binaurally
through insert earphones with a constant stimulus onset
asynchrony (SOA) of 220 ms. Every sequence consisted
of a repeating four-tone frequency pattern in a set order
440 Hz—466.16 Hz—493.88 Hz—466.16 Hz (Figure 1A).
There was one semitone separation between each successive
tone, facilitating perceptual integration (Bregman, 1990).

Eight tones created the duration pattern (Figure 1B), with
four longer duration tones (200 ms each) followed by
four shorter tones (100 ms each). Three tones created the
intensity pattern (Figure 1C), one loud tone (85 dBA)
followed by two soft tones (70 dBA; calibrated with a
Brüel and Kjærr sound level meter with an artificial
ear). The resulting sequence from superimposing these
patterns was perceptually ambiguous, with listeners able to
hear either the rhythm of the intensity pattern (1.45 Hz)
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or the rhythm of the duration pattern (1.13 Hz). There
were 12 total individual tones used in the sequences that
accounted for all possible combinations of frequency
(low/middle/high), duration (long/short), and intensity
(loud/soft).

Randomly occurring violations in both the intensity and
duration patterns (deviants) occurred for 15% of intensity
pattern triplets, the standard loud-soft-soft pattern was replaced
with loud-soft-loud (Figure 1B); and 15% of duration patterns,
the standard long-long-long-long-short-short-short-short pattern
was replaced with long-long-long-long-long-long-short-short
(Figure 1C). The infrequent deviants served as targets during
one half of the experiment and irrelevant deviants in the other
half.

Procedures
The two conditions, Attend Visual condition and Attend
Auditory were conducted on two separate days. Participants
were alternately assigned to start with one of the conditions
and completed the other condition when they returned to the
laboratory approximately 2 weeks later. In the Attend Visual
condition, participants passively listened to the sound sequences
while watching a closed-captionedmovie (chosen from our video
library). Ten 6-min sound sequences were presented, with each
sequence having 1,458 stimuli (72 intensity deviants, 54 duration
deviants).

In the Attend Auditory condition, participants listened to the
sounds to identify the intensity and duration patterns and their
deviants. The same set of sound sequences were used in both
the Attend Visual condition and the Attend Auditory conditions
but in a differently randomized order (20 sound sequences in
all). A brief practice session was provided prior to the recording
session. Participants were instructed about what sound patterns
to listen for and were shown a visual depiction of the target
patterns. Participants were then presented with a graded series
of sound sequences to acquaint them with the task. First, they
were presented with either the intensity or the duration pattern
by itself (practicing one feature at a time with the order alternated
across participants) and were instructed to identify the repeating
pattern and press a response key when they heard violations
to the pattern. Second, they were presented with the intensity
or duration pattern along with the frequency modulation and
asked to do the same task. Then, finally, they had the intensity,
frequency, and duration modulations present and were told to
focus on their target feature pattern (intensity or duration) and
perform the same task they had been doing and ignore any other
tone variations. After successfully training for one pattern feature
task, they trained for the alternative task. 60% correct was used
as the criterion used for both the intensity and the duration
tasks to proceed to the EEG recording session. Two participants
were excluded prior to data collection based on this practice
criterion.

During the EEG recording, 20 differently randomized
sequences were presented, each sequence having six trials of
15–20 s in length. Every trial was preceded by a visual stimulus
that stayed on the monitor for 1 s to indicate which task
intensity or duration patterns were to be performed on the

next trial (Figure 1D). Only one of the tasks was performed
for the duration of each trial. The total silent time between
trials, including the visual stimulus, was 1.85 s. The time
constant for decay of streaming bias is 1.42 s (Beauvois
and Meddis, 1997). Thus, streaming bias persisted between
trials. The tasks were split 50–50% among the trials so that
on half of the trials participants performed the intensity
task and half of the trials the duration pattern task. Task
switching was also randomized so that half of the trials were
‘‘switching’’ trials (going from intensity task to duration task
and vice versa) and half were ‘‘repeat’’ trials (repeating the
same task as the previous trial). These two contingencies
were orthogonal; thus one-quarter of trials were duration task
switched (Duration Switch), one quarter were duration task
repeated (Duration Repeat), one quarter were intensity task
switched (Intensity Switch), and one quarter were intensity task
repeated (Intensity Repeat). Regardless of which instruction was
given, intensity and duration deviants were present in all trials, so
participants needed to isolate and attend to one feature pattern
(the targets) and ignore the distracting feature pattern (non-
targets).

Participants sat in a comfortable chair in a sound-attenuated
booth. The duration of one session, of which there were
two occurring on separate days, was approximately 2 h,
which included consenting, hearing screen, cap placement, task
practice, task performance, and breaks.

Data Analysis
Behavioral Responses
Target responses were calculated for Intensity and Duration
deviants separately within a ‘‘switch’’ trial and a ‘‘repeat’’ trial for
the four trial types: Duration Switch, Duration Repeat, Intensity
Switch, and Intensity Repeat. A button press was considered
correct when it fell within 100–900 ms from target onset.
Reaction time (RT) was calculated as the mean RT of the correct
responses. Hit rate (HR) was calculated as the number of correct
button presses divided by the total number of target stimuli. A
false alarm was considered a button press to a non-target deviant.
The false alarm rate (FAR) was calculated as the number of
button presses made within the response window for non-target
deviants divided by the total number of non-target deviants.
There was no overlap in the response windows. HR, RT, and FAR
were reported separately for each trial type.

To evaluate task-switching effects, which are generally
observed very soon after the switch, we separately analyzed the
HR and RT to the first target in each of the trials from the
remaining targets.

EEG Recording and Data Reduction
Continuous EEG was recorded using a 32-channel electrode cap
with the 10–20 international electrode placement system. An
electrode placed at the base of the nose was used as the reference
and the P09 electrode was used as the ground. Impedances
were below 5 k�. EEG and EOG were sampled at a rate of
500 Hz using a bandpass filter of 0.05–100 Hz and a gain of
1,000 (Neuroscan Synamps amplifier, Compumedics Corp, El
Paso, Texas). ERPs were extracted from the continuous EEG
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files. After applying a 0.1–30 Hz bandpass filter (using a finite
impulse response filter with zero phase shift and a roll-off slope
of 24 dB/octave), EEG data for each subject were separated
into 700 ms epochs, including a 100-ms pre-stimulus interval.
Ocular artifact correction was performed for an individual when
excessive blinking resulted in the exclusion of more than 20%
of trials. For three participants who had excessive eye-blink
activity, ocular artifact reduction was conducted to perform the
correction using Neuroscan EDIT software. This Singular Value
Decomposition transform method is used to identify the blink
component. From the continuous EEG, a file is created that
reflects the spatial distribution of the blink and then used to
remove the blink. The blink-corrected data were then baseline-
corrected across the whole epoch (the mean was subtracted at
each point across the epoch). After baseline correction, artifact
rejection criteria were set to ±75 mV. On average, 87% of all
trials were included in the analysis. Condition-matched deviant
epochs and standard epochs were grouped accordingly then
baseline corrected to the pre-stimulus period and averaged
to create individual mean waveforms. Deviant epochs that
contained a correct button press were marked as ‘‘Correct’’
and averaged together, incorrect responses were omitted from
this averaged waveform. Individual mean averages were then
averaged to create grand-mean waveforms. The grand-mean
standard waveform was subtracted from the grand-mean deviant
waveform from the same condition, yielding a grand-mean
difference waveform used to identify ERP components. The
mean latency of the MMN component in each condition was
determined using the Neuroscan program to find the maxima
between 100–300 ms at the left mastoid (LM) electrode in
the grand mean difference waveform. LM was used to avoid
overlap of attention components. The unattended deviants, both
duration and intensity, showed a clear double peak, and both of
these peaks were quantified. For the P3b component, the maxima
were determined between 300–600 ms at the Pz electrode.
The peak latency of each ERP component in the grand mean
waveform was used as the center to obtain a 50 ms interval
used to assess the amplitude of the MMN component and a
60 ms window to obtain the mean for each individual for the P3b
component. MMN area was quantified as the area between the
Fz electrode and the averaged mastoid electrodes [(LM + RM)/2]
and P3b was quantified as the area under the Pz electrode.

To perform the frequency analysis to visualize the
entrainment to the rhythm, regions around targets were
removed from the continuous file (100 ms pre and 1,000 ms
after) to remove contributions from target response and motor
activity. A high pass filter at 0.5 Hz was used. Eyeblink correction
was performed using Neuroscan LDR. Matching trials were
concatenated and fast FFT was performed on the resultant
continuous file. Frequency power was measured at the target
rhythms (1.13 Hz for duration pattern and 1.45 Hz for intensity
pattern) and the stimulus presentation rate (4.45 Hz and 9.10 Hz
for the 1st harmonic). The normalized power was determined by
dividing the power at a given frequency by the average power of
the surrounding frequencies ±1 Hz, excluding the other target
frequency (i.e., the average surround power for the 1.13 Hz
frequency did not include 1.45 Hz and vice versa).

Statistical Analyses
Behavioral Analyses
For HR and RT, separate repeated measures analysis of
variance (rmANOVA) was performed with factors of task
(Intensity/Duration), switching (switch/repeat), and primacy
(first target/other targets). FAR was calculated using a two-way
rmANOVA with factors of task and switching.

ERP Component Analyses
The first analysis determined the significant presence of the
MMN and P3b components using a one-sided, one sample t-test
to confirm that the amplitude was significantly greater than zero.
The second analysis then compared the amplitude/latency of the
ERP components across stimulus types and conditions. Attend
Auditory condition: A four-way rmANOVAwas used to compare
the amplitude of the MMN with factors deviant type (Intensity
vs. Duration), peak (First peak vs. Second peak), attention
(attended vs. unattended), and switching (task switch vs. task
repeat). ‘‘Attended’’ refers to MMNs elicited by the target stimuli
and ‘‘unattended’’ refers to MMNs elicited by the non-target
deviants. A second analysis was used to compare the unattended
mean amplitude of the MMNs elicited by non-tartgets in the
Attend Auditory condition to themean amplitudeMMNs elicited
by deviants in the Attend Visual condition. A rmANOVA
with factors of deviant type (Intensity/Duration), peak (First
peak/Second peak), and trial type (Switch, Repeat, Attend Visual)
was calculated.

P3b amplitude was compared using factors of task type
(Intensity/Duration,) switching (task switch/task repeat), and
electrode (Fz/Cz/Pz). Normal neural entrainment was analyzed
with rmANOVA with factors of task type (Intensity/Duration)
switching (task switch/task repeat), and rhythm (duration
rhythm/intensity rhythm/stimulus rhythm/harmonic rhythm).
A second analysis for neural entrainment was performed
to compare the Attend Auditory conditions to the Attend
Visual condition using rmANOVA with factors of conditions
(Duration Switch/Duration Repeat/Intensity Switch/Intensity
Repeat/Attend Visual) and rhythm(duration rhythm/intensity
rhythm/stimulus rhythm/harmonic rhythm).

For all ANOVA calculations, where data violated the
assumption of sphericity, degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity. Corrected p
values are reported. For post hoc analyses, Tukey HSD for
repeated measures was conducted on pairwise contrasts only
when there were significant main effects or interactions. All
statistical analyses were performed using Statistica software
(Statsoft, Inc., Tulsa, OK, USA).

RESULTS

Behavior
Table 1 and Figure 2 display the behavioral results.

Hit Rate
There was a main effect of the order on HR, with the first target
of a block having a higher HR than the average of the rest of the
targets (F(1,23) = 7.23, p = 0.01, η2p = 0.24). There was a main
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TABLE 1 | Behavioral data.

Task Hit rate Reaction time (ms) FAR

First target Other targets First target Other targets All targets

Duration/Switch 0.78 (0.15) 0.76 (0.17) 532 (86) 543 (81) 0.020 (0.040)
Duration/Repeat 0.71 (0.20) 0.71 (0.20) 563 (82) 554 (79) 0.016 (0.023)
Intensity/Switch 0.86 (0.13) 0.83 (0.14) 449 (69) 470 (71) 0.027 (0.034)
Intensity/Repeat 0.85 (0.13) 0.82 (0.15) 453 (77) 473 (82) 0.021 (0.030)

Standard deviation is shown in parenthesis. ms, milliseconds; FAR, false alarm rate.

FIGURE 2 | Behavioral results. Hit Rate (HR; top graph) and Reaction Time (RT; bottom graph) are displayed for all stimulus types. Each black circle represents one
individual. The upper whisker denotes the upper limit, the lower whisker denotes the lower limit, the upper bar represents the 3rd quartile, the middle bar represents
the median, and the lower bar represents the 1st quartile. Each column shows a different stimulus type, indicating whether it was the Duration or the Intensity task
and whether the trial was a Switch trial (the previous trial was the other task) or a Repeat trial (the same task repeated). The left columns 1–4 display the mean data
of the first target of the trials and the right columns 5–8 display the mean of the remaining targets in the trials.

effect of task on HR, with a higher HR for the Intensity Task
(F(1,23) = 8.71, p < 0.01, η2p = 0.27). Additionally, there was a
main effect of switching, with switch trials having higher HR
than repeat trials (F(1,23) = 7.23, p = 0.01, η2p = 0.24). There was

no interaction between order and task (F(1,23) = 0.66, p = 0.42),
between order and switching (F(1,23) = 0.89, p = 0.36), between
task and switching (F(1,23) = 3.29, p = 0.08), or between order,
task, and switching (F(1,23) = 1.84, p = 0.19).
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Reaction Time
There was a main effect of order on RT (F(1,23) = 13.13,
p < 0.01, η2p = 0.36) with the first target of the block
having a shorter RT. There was also a main effect of task
(F(1,23) = 45.58, p < 0.01, η2p = 0.65), due to the shorter
RT to intensity pattern targets than Duration pattern targets.
Additionally, there was a main effect of switching (F(1,23) = 11.9,
p < 0.01, η2p = 0.34), with switch trials having a shorter
RT than repeat trials. There was an interaction between
order and task (F(1,23) = 14.59, p < 0.01, η2p = 0.39). Post
hoc calculation showed First Target-Duration>First Target-
Intensity (p < 0.01), First Target-Duration> Later Targets-
Intensity (p < 0.01) Later Targets-Duration>First Target-
Intensity (p < 0.01), Later Targets-Intensity>First Target-
Intensity (p < 0.01). This showed participants have a faster
response to the first target for the intensity task when compared
to later targets, but this does not hold true for the duration
task. There was an interaction between, order and switching
(F(1,23) = 5.03, p = 0.03, η2p = 0.18). Post hoc calculation
showed First Target-Repeat>First Target-Switch (p < 0.01),
Later Targets-Switch>First Target-Switch (p < 0.01), Later
Targets-Repeat>First Target-Switch (p < 0.01). Participants
had the fastest response time to the first target after a task
switch when compared to other target types. There was no
interaction between task and switching (F(1,23) = 3.55, p = 0.07).
There was a three-way interaction between order, task, and
switching (F(1,23) = 5.23, p = 0.03, η2p = 0.19). Post hoc analysis
showed First Target-Duration-Repeat>First Target-Duration-
Switch (p < 0.01), First Target-Duration-Switch>First Target-
Intensity-Switch (p < 0.01), First Target-Duration-Switch>First
Target-Intensity-Repeat (p < 0.01), Later Targets-Duration-
Repeat>First Target-Duration-Switch (p < 0.01), First Target-
Duration-Switch>Later Targets-Duration-Repeat (p< 0.01).

False Alarm Rate
False alam rate (FAR) did not differ as a function of the task being
performed or whether it was a switch or repeat trial. There was
no main effect of task (F(1,23) = 1.44, p = 0.24), no main effect of
switching (F(1,23) = 3.73, p = 0.07), and no interaction between
task and switching (F(1,23) < 1, p = 0.90).

Event Related Brain Potentials
MMN
Table 2, Figures 3 and 4 display the MMN results. MMNs
were elicited by the first two tones of the intensity and
duration deviant patterns for both attended (Figure 3 labeled

with arrows) and unattended (Figure 4, labeled with arrows)
pattern deviants (determined by one-sample t-tests all p< 0.05).
For example, when long-long-long-long-short-short-short-short
pattern was replaced with long-long-long-long-long-long-short-
short, detection of the deviant could occur at the 5th long
tone but both of the longer duration tones were deviant
within the 8-tone pattern. The second deviant tone of the
unattended duration pattern when the intensity task was being
performed was the only second deviant that did not elicit
MMN (p = 0.13).

In the Attend Auditory Condition, the MMN amplitude
elicited by intensity pattern deviants was larger than duration
pattern deviants (main effect of deviant type, F(1,23) = 32.27, p <
0.01, η2p = 0.79). MMN amplitude was larger for the attended
compared to the unattended tone pattern features (main effect
of attention, F(1,23) = 5.19, p = 0.03, η2p = 0.18). MMNs elicited
by the first two tones did not differ in amplitude (no main
effect of the peak, F(1,23) = 0.05, p = 0.82, η2p < 0.01), nor did
it matter if it was a switch or repeat trial (no main effect of
switching, F(1,23) = 0.64, p = 0.43, η2p = 0.02). There was an
interaction between peak and switching (F(1,23) = 7.27, p = 0.01,
η2p = 0.24). Post hoc calculations showed that this was due to
the MMN to the second tone of the pattern being larger in
the switch trials than the second peak of the repeat trials (p =
0.05). There was a significant three-way interaction between
deviant type, peak, and attention (F(1,23) = 13.72, p < 0.01, η2p =
0.37). Post hoc calculations showed that Duration-First Peak-
Attended< Intensity-First Peak-Attended (p< 0.01), Duration-
First Peak-Attended < Intensity-Second Peak-Attended (p =
0.01), Duration-First Peak-Attended < Intensity-Second Peak-
Unattended (p < 0.01). There was a three-way interaction
between deviant type, peak, and switching (F(1,23) = 8.30, p <
0.01, η2p = 0.27). Post hoc analysis showed that the intensity
MMN elicited by the second tone of the deviant pattern when
it was a switch task was smaller in amplitude than the other
intensity MMN peaks. There were no interactions between
deviant type and peak (F(1,23) < 1, p = 0.44), between deviant
type and attention (F(1,23) = 0.99, p = 0.33), between peak
and attention (F(1,23) = 2.48, p = 0.13) between deviant type
and switching (F(1,23) = 2.07, p = 0.16), between attention
and switching (F(1,23) = 0.68, p = 0.42), between deviant type,
attention, and switching (F(1,23) = 0.27, p = 0.61), between peak,
attention, and switching (F(1,23) = 3.68, p = 0.07), or between
deviant type, peak, attention, and switching (F(1,23) = 1.29,
p = 0.27).

TABLE 2 | ERP amplitudes.

Condition Task MMN component P3b component

Dur 1 Dur 2 Int 1 Int 2 Duration Intensity

Attend/Auditory Duration/Switch −0.72 (1.28) −1.11 (1.57) 1.35 (1.19) −2.43 (1.61) 6.68 (3.70) –
Attend/Auditory Duration/Repeat −0.90 (0.92) −1.34 (0.19) −1.63 (1.23) −1.53 (1.08) 6.01 (3.55) –
Attend/Auditory Intensity/Switch −0.49 (0.83) −0.45 (0.84) −2.35 (1.47) −1.87 (2.36) – 3.10 (2.71)
Attend/Auditory Intensity/Repeat −0.47 (0.81) −0.33 (1.03) −2.29 (1.13) −1.48 (2.57) – 3.77 (2.73)
Attend/Visual Watching movie −0.59 (0.52) −0.66 (0.67) −1.05 (1.06) −1.96 (0.94) – –

Standard deviation is shown in parentheses. Dur1, duration pattern deviant first peak; Dur2, duration pattern deviant second peak; Int1, intensity pattern deviant first peak; Int2, intensity
pattern deviant second peak; – no ERP component elicited.
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FIGURE 3 | Event-related potentials for target pattern deviants. Difference waveforms (deviant-minus-standard) are displayed for duration (top row) and intensity
(bottom row) targets. Responses to the target during Switch trials are shown in the left column and responses to the targets during Repeat trials are shown in the
right column. Responses recorded from Fz (dark blue solid line), the left mastoid (LM; light blue solid line), and Pz (red solid line) are overlain to demarcate both the
mismatch negativity component (MMN) response and the P3b components. Significant components are denoted with an arrow and labeled. Two successive MMNs
were elicited by two successive tones within the pattern deviants.

When all of the sounds were unattended, in the Attend
Visual condition, as compared to when they were unattended
in the Attend Auditory condition, intensity deviants elicited
a larger amplitude MMN than duration deviants (the main
effect of deviant type, F(1,23) = 47.82, p < 0.01, η2p = 0.68).
The MMN elicited by the second tone of the pattern was
larger in amplitude than the first (main effect of the peak,
F(1,23) = 6.79, p = 0.02, η2p = 0.23). Unattended MMNs did
not differ in amplitude as a function of whether auditory or
visual was attended. There was no main effect of condition
(F(1,46) = 0.64, p = 0.53). There was a significant interaction
between deviant type and peak (F(1,23) = 8.60, p < 0.01,
η2p = 0.27). Post hoc showed Duration-First Peak < Intensity-
First Peak (p < 0.01), Duration-First Peak < Intensity-
Second Peak (p < 0.01), Duration-Second Peak < Intensity-
First Peak (p < 0.01), Duration-Second Peak < Intensity-
Second Peak (p < 0.01), and Intensity-First Peak < Intensity-
Second Peak (p < 0.01). There was also an interaction
between peak and condition (F(1,46) = 8.30, p < 0.01,
η2p = 0.26). Post hoc calculation revealed that the 2nd
MMN peak in the Attend Intensity and Attend Visual
conditions were larger in amplitude than the MMNs in
Attend Duration. There was no interaction between deviant
type and condition (F(1,46) = 1.97, p = 0.15). There was a
three-way interaction between deviant type, peak, and condition
(F(1,46) = 13.72, p < 0.01, η2p = 0.37). Post hoc calculations

showed that the intensity MMN at the first peak was smaller
in the Attend Visual condition than all of the other MMN
peaks.

P3b Component
P3b amplitude was largest when performing the duration task
(main effect of task, F(1,23) = 24.67, p < 0.01, η2p = 0.52). There
was a significant main effect of electrode (F(1,46) = 65.77, p< 0.01,
η2p = 0.74). Post hoc calculation showed Fz < Cz (p < 0.01) and
Fz < Pz (p < 0.01). Amplitude did not differ between switching
and repeat trials (no main effect of switching, F(1,23) = 0.18,
p = 0.07,). There was a significant interaction between deviant
type and switching (F(1,23) = 6.15, p = 0.02, η2p = 0.21).
Post hoc calculations showed that Duration Repeat<Duration
Switch (p < 0.01), Intensity Repeat < Duration Repeat
(p < 0.01), Intensity Switch < Duration Repeat (p < 0.01),
Intensity Repeat < Duration Switch (p < 0.01), and Intensity
Switch < Duration Switch (p < 0.01). There was a significant
interaction between deviant type and electrode (F(1,46) = 15.5,
p< 0.01, η2p = 0.40). Post hoc calculations show that the duration
deviant P3b amplitude was larger than intensity deviant P3b at Cz
and Pz electrodes, with no difference in amplitude between them
at Fz. There was no interactions between switching and electrode
(F(1,46) = 1.16, p = 0.32, η2p = 0.05), and or between deviant type,
switching, and electrode (F(1,23) < 1, p = 0.67).
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FIGURE 4 | Event-related potentials for non-target (unattended) pattern deviants. Difference waveforms (deviant-minus-standard) are displayed for duration (top
row) and intensity (bottom row) non-targets. Responses to the non-targets during the Attend Auditory conditions: Repeat trials are shown in the left column and
Switch trials are shown in the middle column, and responses to the non-targets in the Attend-Visual condition are displayed in the right column. The dark blue solid
line displays the waveform recorded from the Fz electrode with the waveform at LM (light blue dashed line) overlain. Significant MMN components are denoted with
an arrow pointed at LM and labeled. Two successive MMNs were elicited by two successive tones within the non-target pattern deviants, similarly as for the targets
shown in Figure 3.

FIGURE 5 | Rhythmic entrainment. Rhythmic entrainment responses to the standard patterns are shown as the normalized neural response from the Cz electrode
(y-axis), calculated as the square of the power of target frequency divided by the square of the average power in the surrounding 1 Hz frequency bin (excluding other
target frequencies). Error bars display the standard deviation. Along the x-axis, the blue rectangles represent each task trial type (DS, duration switch trial; DR,
duration repeat trial; IS, intensity switch trial; IR, intensity repeat trial; AV, attend visual stimuli). The sub x-axis is separated by duration rhythm (1.13 Hz), intensity
rhythm (1.45), overall stimulus rate (4.45 Hz), and the first harmonic of the stimulus rate (9.10 Hz). The direction of attention had no effect on the strength of the
responses. Attended rhythms in the Attend Auditory condition were not distinguished from unattended rhythms in the Attend Auditory condition.
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Rhythmic Entrainment
Figure 5 shows the normalized neural responses to rhythmic
entrainment. The raw data are presented in Supplementary
Figure 1 (Supplementary Material). Neural responses did not
differ as a function of the task performed (no main effect
of task (F(1,23) = 0.10, p = 0.75). Repeat trials had greater
normalized power than switching trials (main effect of switching
F(1,23) = 5.97, p = 0.02, η2p = 0.21). There was also a main effect of
rhythm, with the global stimulus rate and first harmonic (4.55 Hz
and 9.10 Hz) both having greater power than the power of an
individual feature pattern (1.14 Hz or 1.45 Hz; F(3,69) = 45.55,
p < 0.01, η2p = 0.66). There was no interaction between task and
switching (F(1,23) < 1, p = 0.41), no interaction between task and
rhythm (F(3,69) < 1, p = 0.41), no interaction between switching
and rhythm(F(3,69) < 1, p = 0.74), and no three-way interaction
between task, switching, and rhythm (F(3,69) = 1.08, p = 0.036).

There was a significant effect of condition (F(4,92) = 35.54,
p < 0.01, η2p = 0.61). Power was greater in the Attend Auditory
than Attend Visual condition. There was also a main effect
of rhythm (F(3,69) = 61.45, p < 0.01, η2p = 0.73) with greater
power to the global rhythm than either of the individual
feature rhythms and interaction between condition and rhythm
(F(12,276) = 6.67, p < 0.01, η2p = 0.22). The power in the global
rhythms (4.55 Hz and 9.10 Hz) was greater when the auditory
stimuli were attended, greater in the Attend Auditory than
Attend Visual.

DISCUSSION

The current study varied rhythmic attention to two
non-overlapping tone feature patterns to investigate how
memory would represent sound patterns when multiple
rhythmic interpretations could be perceived from a single sound
stream. Although we expected that attending to one rhythm
to perform a task would dampen the brain’s response to the
alternate rhythm, we found this not to be true. Evidence from
neural entrainment to the target rhythm (the standard pattern)
and by MMN elicited to pattern violations (deviance detection)
demonstrated that both intensity and duration rhythms
were maintained in memory irrespective of the direction of
attention. The normalized power to the attended rhythm was
not differentiated from the unattended rhythm and MMNs were
elicited by pattern violations in the attended and unattended
rhythms. Thus, attention to one pattern did not modulate the
representation of the unattended, distracting pattern. Both
patterns were tracked simultaneously in memory despite task
goals.

Attention Effects and Multitasking
The presence of MMN, elicited by both of the pattern deviants,
indicates that both feature patterns were distinctly represented
in working memory. There were no amplitude differences
in the MMN elicited in the Attend Auditory condition by
attended targets and unattended auditory pattern deviants, and
the Attend Visual condition to unattended deviants for both
feature patterns. TheMMNamplitude was larger for the intensity
pattern deviants, suggesting the intensity task was either easier

or more physically discriminable than the duration pattern
deviants (Näätänen and Alho, 1995). Based on research with
bistable visual stimuli, one might expect that maintaining one
feature pattern to perform a task could suppress representation
of the other feature pattern, to minimize task interference.
However, that did not appear to be the case. Performing one
task did not result in suppression of the alternative percept as
MMNs were elicited by both attended feature pattern targets
and by unattended feature pattern deviants. These results
differ from our previous study (Costa-Faidella et al., 2017)
that used a similar paradigm and found enhanced power to
the attended rhythm compared to the unattended rhythm.
However, there were some distinct differences that may explain
the difference in our results. First, the Costa-Faidella et al.
(2017) study did not use a switching paradigm, participants
performed the same task in blocks of 12 trials before switching to
another task. Second, the task did not involve pattern detection.
Participants counted the number of stimuli occurring in the
block. Finally, there were no pattern violations in the attended
or unattended patterns. Selective entrainment was calculated
based on tracking the attended pattern. Thus, one explanation
for finding representation of both feature patterns (without
enhancement of the attended) is that this was a switching
task with participants alternating randomly 50–50% between
doing the intensity pattern and duration pattern tasks within
each stimulus block. As such, both percepts had to be ‘‘active’’
to efficiently perform the tasks when the unexpected visual
cue instructed which pattern to attend to and detect deviants.
Another explanation is that the pattern deviants themselves
may have evoked some attentional (passive) awareness to the
unattended pattern, which may have negated any enhancement
to the attended. That is, the brain was multitasking between
attended and unattended pattern deviance detection (Miller et al.,
2015; Sussman, 2017; Symonds et al., 2020; Brace and Sussman,
2021).

One of the goals was to evaluate how attention modified
sound representations of the standards and deviants. Thus, in
addition to analyzing the brain response to the unattended
standard and unattended deviant patterns when attention
was directed to one of the two, we also recorded the
brain response when attention was directed to watching a
movie and neither pattern was attended, the sounds were
irrelevant to the task. We expected to find a difference
between the unattended feature patterns when comparing
the Attend Auditory and Attend Visual conditions. However,
this was not the case. Having no task with the sounds
did not dampen the response to the unattended sounds
compared to when one sound feature was attended, and
one sound feature unattended. This indicates that attention
to the sounds is not necessary for the two feature patterns
to be simultaneously tracked and represented in working
memory. MMNs of similar amplitudes and latencies were
elicited by both of the unattended feature pattern deviants and
entrainment to the individual rhythms was maintained in the
Attend Visual condition. However, some further exploration
may clarify the difference between having fluctuation in
frequency, duration, and intensity occur simultaneously or
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sequentially. In this experiment, we varied frequency, duration,
and intensity parameters in sequential patterns of sounds. In
realistic scenarios sounds sometimes vary simultaneously along
multiple dimensions such as envelope, location, and other
spectral components. Future studies may address how the
auditory system tracks sequential vs. simultaneous variations of
the auditory features.

Neural Entrainment
We were initially surprised to find no task-dependent
enhancement of the target rhythm frequencies based on
previous studies (Mesgarani and Chang, 2012; Costa-Faidella
et al., 2017). The relative power to the individual feature
rhythms did not differ for any of the attentional manipulations
and there was no enhancement or suppression based on
switch and repeat trials. It was clear through the rhythmic
entrainment to the standard patterns, however, that there was
maintenance of both simultaneously. This maintenance of
the standard for both feature patterns is consistent with the
MMN results of the study, with MMN amplitudes elicited
by pattern deviants similarly to both patterns regardless of
task demands. From this perspective, it is not surprising that
both standard rhythms were similarly represented with equal
power, unrelated to task demands. That is, finding entrainment
to the rhythm of both standard patterns is consistent with
finding MMNs elicited by attended and unattended pattern
deviants.

Switch vs. Repeat Trials
HR was higher and RT shorter to the first target of the trial
and higher after a task switch compared to the first target of the
repeated trial. This is somewhat surprising on the surface based
on task switching paradigms that commonly report a switching
cost, lower HR, and longer RT, to the first trials after a task
switch. However, our paradigm has not previously been used
before and there are some differences that may distinguish the
type of attention needed for preparing to perform one task or
the other. A cue is provided to initiate the task that is then
repeated through several trials before another cue is presented
to either repeat or switch the task set. Thus, vigilance at the
beginning of the trial may be greater when switching task is set
than when repeating. This may explain why the initial trial of
the repeat blocks showed a performance ‘‘cost.’’ The readiness
may have been biased toward switching tasks whenever a visual
cue was presented and maintaining the task set may have taken
more adjustment time. Another possibility is that because it is
a bistable stimulus sequence, one sequence can be perceived in
two different ways depending on what you focus on, maintaining
one of the two possible percepts may take more effort if there is
a propensity for spontaneous switching during the presentation
of a seconds-long sequence. In this view, switching tasks would
be easier to do than maintaining the previous task because
maintaining one perceptual organization involves overcoming
the propensity to switch to the other percept. This might have
resulted in a longer RT or more missed trials for repeat trials.
Performing the same task repeatedly with bistable stimuli may be

more difficult than switching between the two percepts when the
stimuli are ambiguous (Denham et al., 2013).

Another explanation addresses the difference in processing
between the cue and the task (Allport and Wylie, 1999; Grange
andHoughton, 2010). For the current paradigm, the time interval
from the visual cue to the first target may be long enough that
there is no interference between processing the cue and the
time it takes participants to switch task sets. The silent period
between trials may also have facilitated the ease of switching
tasks. Additionally, the P3b amplitude did not distinguish switch
vs. repeat trials, which may be consistent with the distinction
between these phases, with no task interference. The P3b
amplitude differed between tasks, with a smaller P3b amplitude
for the intensity task, consistent with the interpretation that the
intensity task was easier than the duration task and thus required
less effort to perform (Kok, 2001).

CONCLUSION

The most critical finding of this experiment, shown by evidence
from the standard and the deviant patterns, was that multiple,
independent sound feature patterns (duration and intensity)
were processed simultaneously despite the deployment of
attention to task switching, task repeating, or watching a movie.
The two neural indices that demonstrated this were: (1) neural
entrainment to the standard patterns; and (2) the MMN
components elicited by pattern deviants. Neural representations
were similarly robust despite the direction of attention or task
load. Normalized power to the rhythm of the standard attended
feature patterns was similar to the rhythm of the standard
unattended feature patterns. Additionally, the MMN was elicited
by task-based feature pattern deviants with a similar amplitude
as MMNs elicited by unattended feature patterns that were
unattended because they were not the target pattern or because
the participant ignored the sounds and watched a movie. Thus,
the present data demonstrate a high level of adaptability and
flexibility of the auditory system to navigate complex scenes
when there are competing sound events. Results suggest a type
of ‘‘multitasking’’ of the auditory system between attended and
unattended sounds. That is, attending to one sound event does
not negate representation of other sound events. This ability
to track both attended and unattended regularities may be a
crucial process involved in task-switching in complex sound
environments.
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Self-generated auditory input is perceived less loudly than the same sounds generated
externally. The existence of this phenomenon, called Sensory Attenuation (SA), has been
studied for decades and is often explained by motor-based forward models. Recent
developments in the research of SA, however, challenge these models. We review the
current state of knowledge regarding theoretical implications about the significance
of Sensory Attenuation and its role in human behavior and functioning. Focusing
on behavioral and electrophysiological results in the auditory domain, we provide an
overview of the characteristics and limitations of existing SA paradigms and highlight the
problem of isolating SA from other predictive mechanisms. Finally, we explore different
hypotheses attempting to explain heterogeneous empirical findings, and the impact of
the Predictive Coding Framework in this research area.

Keywords: sensory attenuation, predictive processing, temporal control, temporal prediction, identity prediction,
sense of agency (SoA)

INTRODUCTION

Sensory Attenuation (SA) describes the phenomenon that self-initiated sensory input is perceived
with a lesser intensity than the same sensations generated externally (Hughes et al., 2013a; Pyasik
et al., 2021). While many of us might have caught ourselves not noticing repeatedly clicking
a ballpoint pen or tipping on the table, we perceive those sounds as noisy and intrusive when
generated by another person (Klaffehn et al., 2019). The ability to differentiate one’s own action-
related auditory signals from externally generated sounds not only aids movement coordination
but can also inform us of potential threats (Myers et al., 2020).

For the scope of this review, we will focus on two major approaches that have been brought
forward in order to explain SA following self-initiated action. Classical forward models of SA
(Blakemore et al., 1999, 2002; Synofzik et al., 2008) propose that for self-initiated actions, the
designated structures of the motor system are in constant exchange with each other, not only
generating motor commands but also creating efference copies of these commands. These
efference copies allow the brain to predict the resulting changes in sensory inputs caused by
the intended behavior and subsequently subtract predicted from actual changes in sensory
inputs, canceling out the sensory consequences of self-initiated behavior (Bays et al., 2008). The
proposed main function of SA in these models is to anticipate and cancel the sensory effects
of movement (Miall and Wolpert, 1996), thereby enabling the differentiation of self-initiated
from externally caused changes in sensory inputs. Depending on the specific implementation
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of forwardmodels, this information is subsequently used tomake
attributional judgments and facilitate a sense of agency (e.g.,
Synofzik et al., 2008). However, in recent years this view of SA
has been challenged by applications of the broader theory of
predictive processing.

PREDICTIVE PROCESSING

Predictive processing suggests that, not only for self-generated
action but in general, we constantly make use of prior
information in order to generate predictions about upcoming
changes in sensory input in the form of a generative model
(Friston et al., 2016). Possible deviations in actual sensory
evidence from the predicted inputs (prediction errors) are
used to update the current model and inform predictions
in subsequent processing. This continuous Bayesian updating
scheme enables inference of hidden states causing changes in the
environment by comparing changes in predicted with actually
detected sensory inputs, providing the basis for intero- as well
as exteroception (Seth et al., 2012). During this process, the
brain is constantly aiming at maximizing model evidence (i.e., to
increase the utility of the predictive model) by minimizing
prediction error and surprise. Further, the principle of active
inference within predictive processing states that motor behavior
plays an important role in achieving this (Parr et al., 2021).
Self-initiated action herein serves the purpose of altering one’s
physical surroundings so that received sensory inputs match
the predicted ones, thereby minimizing prediction errors. By
informing involved systems about the desired state, predictions
are the driving force for resulting self-initiated movements.
Beforehand, however, there is a crucial time interval wherein
the predicted outcome and the actual sensory input are yet
to match. During this period, the signals stemming from
self-initiated behavior are attenuated, signaling that these stimuli
stem from self-actions (Aru, 2019). SA specifically would arise
from lowering the precision of anticipated sensory events, being
equivalent to drawing away attentional resources from these
inputs (Brown et al., 2013).

The differences in the two portrayed explanatory frameworks
may seem negligible when trying to explain everyday phenomena
of sensory attenuation, but they bear important implications
for the explanation of partially conflicting results in scientific
research on SA. It is important to note that the two models
make different assumptions over the function of SA in auditory
perception. In forward models, SA enables the differentiation
between externally and internally caused sensory signals.
Information from motor regions in the brain is, therefore,
a necessary condition for SA in forward models, since all
self-generated auditory signals will be caused by motor activity.
However, in predictive processing, motor information is only the
expected precision (i.e., predictability) of a stimulus rendering
it valuable in further processing (Friston, 2013). Therefore,
predictive processing would imply attenuation of all anticipated
sensory stimuli, independent of whether a self-initiated motor
response was the perceived cause. Note, however, that an
internally planned motor response is an especially reliable source
of information rendering its anticipated auditory consequences

unusually precise, thus facilitating SA. It follows that SA would
be present in all expected stimuli but especially pronounced in
expected self-generated ones.

In contrast to forward models, predictive coding does not
conceive SA as a result of reafference cancellation. Rather,
attenuation of expected signals is a logical conclusion from
the imperative to minimize surprise and allocate attention and
processing resources to unexpected stimuli since those are most
effective in model updating. Importantly, this framework stresses
the usefulness of predictive information on self-generated
movements in creating a sense of agency (Kahl and Kopp, 2018).
It does, however, not imply that sensory attenuation would
necessarily follow from this. Looking at forward models, on
the other hand, it is not apparent why self-generated signals
should be attenuated, rather than amplified or distorted in
any other fashion, since the predictive signal mainly serves
the function of enabling differentiation between self and other.
SA alone is likely insufficient in providing this information
since an attenuated self-generated stimulus is subjectively hardly
distinguishable from the same externally produced stimulus
presented with less intensity (Burin et al., 2017). Alternatively, in
order to differentiate between self and other generated stimuli,
the perceptual systems could rely on a sense of otherness, as
is present when hearing ones’ own voice on tape, rather than
attenuated processing.

In what follows, we will try to further disentangle the
specific implications of both explanatory approaches and identify
the strengths and weaknesses by comparing their potential to
explain several recent empirical findings. Note that reasons for
contradicting results might also stem from the wide variety of
methods used, as well as from the lack of a single coherent
theoretical framework.

STUDYING SENSORY ATTENUATION IN
THE AUDITORY DOMAIN

Typical setups in behavioral SA research consist of a two-phase
comparison task that either contains an externally triggered
stimulus or a self-initiated stimulus (Figure 1). This stimulus is
then compared to a consecutive second, often identical, stimulus.
For the auditory domain, the participants usually produce
a sound by keypress. Consecutively, the identical stimulus
reappears without the participant’s action, i.e., generated by
a computer or another person. Thereafter, participants must
compare or rate the volume of self-initiated vs. externally
generated stimuli (Reznik et al., 2015). Participants then typically
rate the self-initiated sound significantly lower in volume,
compared to the externally generated signal (Reznik et al., 2015;
Myers et al., 2020). Attenuation effects are not only studied
using subjectivemeasurements of perception but also in neuronal
recordings of early stimulus-evoked brain activity. Studies using
Electroencephalogram (EEG) or magnetoencephalogram (MEG)
for example do not have to rely upon delayed behavioral
responses reporting subjective attenuation effects that potentially
are subject to post perceptual judgment biases, but in principle
offer real time measures of auditory perception. They also
provide further benefit in that they offer a measure of SA in
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no-report paradigms, in which participants are asked to passively
perceive a (potentially cued) sound-isolating SA from effects of
motor planning and execution. In EEG studies that nevertheless
do involve a self-initiated action, ERPs are typically corrected
for motor behavior components. Such studies have revealed a
reduction in amplitude of auditory event-related potentials (ERP;
N1 and P2) when initiating endogenous sounds, such as speaking
or blowing air, compared to externally generated auditory stimuli
(Ford et al., 2007; Mifsud and Whitford, 2017).

CONFOUNDS OF TEMPORALITY

There are mainly two temporal mechanisms influencing the
effect of SA: temporal predictability and temporal control.
Temporal predictability describes the ability to predict the point
in time at which a sensory event will occur. Temporal control,
on the other hand, defines the ability to control the time
of the stimulus onset through one’s own behavior (Hughes
et al., 2013a). When contrasting different explanatory models
for SA, empirically disentangling the respective contributions of
temporal predictability and control to SA becomes an especially
important tool. Predictive processing considers the predictability
of a stimulus central to its potential to elicit attenuated
processing, and while direct control over stimulus appearance
certainly should enhance predictability, it is not conceived as
a mandatory requirement for SA. Forwards models, however,
posit self-initiated motor behavior as a necessary requirement for
SA, while making no assumptions over the role of predictability
alone.

One effective tool to manipulate temporal predictability is
delaying the onset of the stimulus. Several studies have shown
attenuated N1 components despite (randomized) stimulus onset
delays of up to 1,000 ms, suggesting that SA is not dependent on
temporal predictability alone (Lange, 2011; van Elk et al., 2014;
Klaffehn et al., 2019).

Recent studies tried to further disentangle the individual
contributions of temporal control and temporal predictability
to SA. Kaiser and Schütz-Bosbach (2018) demonstrated that
significant attenuation of N1 to an auditory stimulus takes place
when it is highly predictable but not self-generated and only
passively perceived. They further show that N1 is not attenuated
but elevated for trials in which participants were asked to
press a button in reaction to a cue (thereby self-initiating the
tone) compared to when they were asked to passively perceive
the same cue. This not only stresses the relative importance
of predictability compared to self-initiation for SA but also
illustrates the shortcomings of forward models to explain SA
when no motor behavior takes place. However, Klaffehn et al.
(2019) found only a small influence of temporal predictability
(manipulated by a 750 ms progress bar leading up to the
stimulus) on P2 but not N1 amplitudes. Looking only at
self-initiated actions, N1 showed strong attenuation effects to
tones that were played immediately compared to when they
were temporally delayed (750 ms) and preceded by a progress
bar. Moreover, by implementing cued trials (visual stimuli
indicating the timing of auditory stimulus onset) and uncued
trials (random visual stimuli unrelated to auditory stimulus onset

or action), Harrison et al. (2021) could isolate the effects of
temporal predictability and temporal control and found that both
mechanisms do independently contribute to attenuation. Note
that in this study, temporal control had the usual facilitating
effect on SA in the P2, but looking at the N1 effect patterns
were reversed with higher temporal control leading to reduced
attenuation of the ERP. The authors summarize that taken
together, both factors (temporal predictability and temporal
control) do not sufficiently explain the observed overall effect
size of SA. These findings thus further highlight the rather
strong relative importance of self-initiation on SA, potentially
surpassing its contribution to the temporal predictability of a
stimulus alone. Establishment and replication of the finding
that self-initiation contributes more to SA than facilitating
the (temporal) predictability of a stimulus would question the
inherent logic of predictive processing models.

CONFOUNDS OF IDENTITY PREDICTION

Identity prediction describes the ability to predict the identity
of the stimulus, based on self-initiated behavior (motor-based
identity prediction) or other cues (non-motor-based identity
prediction; Hughes et al., 2013a). Consistent with motor-based
and prediction-based models, several studies show that motor
identity prediction regulates SA (Hughes et al., 2013a). As
for factors of temporal predictability, the question of whether
and how non-motor-based identity prediction significantly
contributes to SA can help us evaluate the utility of forward
models. Since in those models prediction of subsequent changes
of sensory inputs is solely based onmotor-based efference copies,
non-motor-based identity prediction should not contribute to
SA. In predictive processing theories, not only self-generated
action but also external information gathered across all sensory
domains contributes to the prediction of subsequent sensory
inputs, rendering identity prediction a useful mechanism
contributing to SA (Talsma, 2015).

By studying the effect of self-initiated action on SA
in trials of varying stimulus qualities, several experiments
show significantly enhanced SA for motor identity prediction.
Hughes et al. (2013b), for example, taught participants specific
action-sound combinations and found significantly stronger
N1 attenuation for stimuli that were coherent with previously
learned contingencies, compared to non-coherent action-sound
combinations. Baess et al. (2008) compared trials where the
pitch of self-initiated sounds was constant (1,000 Hz), and
thus predictable, with trials where the pitch was randomized
(400–1,990 Hz), and thus unpredictable for participants. When
the identity of the sound could be predicted, SA was significantly
increased, compared to when it was not. The effect could further
be isolated from self-generation of the stimulus in a passive
listening paradigm, where identity could only be predicted on the
basis of the previous tones (non-motor-based identity prediction;
Lange, 2009). This poses a challenge to classical (or, auxiliary)
forward models of SA, according to which predictions are solely
based on efference copies of motor commands (Pickering and
Clark, 2014). According to alternative specifications of forward
models, however, SA is not simply a reflection of the efference
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FIGURE 1 | A typical experimental setup examining sensory attenuation in the auditory paradigm. In active trials, participants have to self-initiate a sound (e.g.,
through a button press) and compare its volume to an externally generated sound. In passive trials, both sounds are generated externally. Adapted from Reznik et al.
(2015). Copyright (2015) by Reznik et al.

copy. Specifically, the prediction of sensory outcomes in these
models can be based on efference copies as well as on learned
sensory associations (Pickering and Clark, 2014).

Dogge et al. (2019b), however, could only find a weak
influence of identity prediction on SA, and no difference in
influence between motor and non-motor identity prediction in
forced choice tasks measuring different ERPs. Taken together,
it seems that identity prediction, in general, can enhance SA,
but cannot solely account for it. Further, motor-based identity
predictions alone cannot account for the majority of the SA
results (Horváth, 2015; Dogge et al., 2019b).

ATTENTION VS. PREDICTION

If SA relies entirely onmotor-based prediction, attention towards
a specific stimulus, which cannot be predicted, should not
alter the overall effect of SA (Wiese, 2016). Indeed, several
studies investigating attention-based explanations of SA suggest
that attention effects may not be sufficient in explaining
attenuation of self-generated actions and that both effects might
be additive rather than intertwined with each other (Saupe et al.,
2013). No significant differences in auditory ERP attenuation
were found if attention was allocated towards non-auditory
sensory input, motor behavior, or auditory stimuli (Timm
et al., 2013; Neszmélyi and Horváth, 2021). However, other
studies could show that attention increases sensory processing
in SA paradigms, even outweighing the effects of SA in certain
cases. In a sound detection task, Cao and Gross (2015) asked
participants to attend to a specific target sound. Although
there were no differences between the presented tones with
regard to temporal predictability, attention towards a specific
sound led to less SA, compared to the other tones. It is,
however, difficult to disentangle the respective contributions of
attention and prediction to SA, since attention generally should
facilitate predictive abilities (Alink and Blank, 2021). While
both mechanisms, attention and prediction, are thought to aid
perception, their relationship is still up to debate (Schröger et al.,
2015).

While prediction has been shown to decrease N1 and
P1 components in auditory perception thus attenuating early
auditory perception, attention was found to increase the
perception of sensory inputs (Lange, 2013; Schröger et al., 2015).
The heterogeneity of SA results, and the issues of temporality and
identity prediction, might stem from difficulties in isolating these

opposing mechanisms (Lange, 2013). But how do prediction
and attention interact? Several studies show that attention to
stimuli often results in elevated ERPs (N1 and P2) to those
stimuli. However, if participants are instructed to execute a
certain movement (e.g., a keypress), attention might be mainly
allocated towards that action, drawing away attentional resources
from subsequent perceptual processing. In auditory tasks, in
which participants are instructed to solely listen and not to move,
attention can be distributed fully towards the stimulus (Horváth,
2015). The heterogeneity of SA study results might thus stem
from differences in attention orienting, depending on the study’s
design.

In a series of recent experiments, participants were instructed
to press a button in a virtual environment during an auditory
forced choice task. This allowed the researchers to detach
tactile feedback from motor behavior (Fritz et al., 2021). Results
suggest that SA for auditory stimuli only occurs if attention is
oriented towards a different stimulus (e.g., tactile input deriving
from the preceding movement), and away from the auditory
modality. In a sound detection task by Reznik et al. (2015),
the influence of sound intensity on SA was examined. Their
study showed that for self-initiated tones with high intensity, the
volume was attenuated. However, for self-initiated tones with
low intensity, the volume was enhanced, suggesting that, for
sounds with near-threshold volume, attention may be drawn
towards these stimuli. Similar phenomena can also be observed
in studies examining learned behavior. If certain action-stimulus
combinations are learned, its perception of the stimulus is easier
to predict. Therefore, attention can be oriented elsewhere. In
an auditory forced choice task measuring EEG, Dogge et al.
(2019b) could only observe attenuation of self-triggered stimuli
if the connection between action and effect was trained properly
beforehand, during a sufficient acquisition phase.

Attenuating expected stimuli at least partly dependent on
the altered allocation of attention is also hypothesized in some
predictive processing approaches to SA (Chennu et al., 2016;
Wiese, 2016; Dogge et al., 2019a). According to predictive
coding, attention is conceived as synaptic gain control, thereby
regulating the precision of prediction errors at all levels of
cortical processing (Chennu et al., 2016). Prediction on the other
hand is thought of as top-down information flow including
specific contents as well as precision, mediating the response
of lower processing levels to incoming sensory evidence. These
two processes would therefore be naturally interdependent,
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considering that prediction can influence synaptic gain at
lower processing levels to specific inputs. Note, however, that
additional mechanisms have been brought forward describing
how prediction could lead to SA, other thanmodulating attention
(Schröger et al., 2015; Alink and Blank, 2021).

SENSE OF AGENCY

Another mechanism possibly influencing SA is the Sense
of Agency (SoA). It describes the individual’s awareness of
control over self-initiated actions (Jeannerod, 2003). The efficient
differentiation between internally and externally generated
changes of sensory inputs might be a crucial component for
the development of a coherent SoA. With disturbed agency
being one of the explanations for schizophrenia symptoms,
neurophysiological studies compared attenuation effects between
healthy individuals and patients with diagnosed schizophrenia.
They found reduced N1 attenuation for self-initiated behavior in
schizophrenic patients (Ford and Mathalon, 2012).

A widely accepted connection between SA and SoA, however,
has not been established yet. While SA appears to take place in
low-level processing and in the first 200 ms after stimulus onset,
SoA requires a higher and potentially later level of processing
(Dewey and Knoblich, 2014; Wolpe and Rowe, 2014; Wen et al.,
2019). Moreover, differences in study results might be explained
by the difficulty of measuring SoA (Haggard and Chambon,
2012).

In a study by Timm et al. (2016), SoA was manipulated by
altering learned delays for certain action-sound combinations.
During an acquisition phase, participants learned that, after
button press, the sound succeeds following a fixed delay (e.g.,
200 ms). The test phase included trials with shortened delays
(e.g., 0 ms), causing participants to perceive that the sound
preceded their action, resulting in a lack of agency. Results
showed that N1 attenuation for self-initiated sounds is not
dependent on agency judgments. However, P2 attenuation
appears to correlate with participants’ SoA. Other observations
underline the difficulty of placing SoA into motor-based forward
models. Weiss et al. (2011) compared perceived subjective
loudness of self- vs. other-initiated tones, and subdivided
the trials into ‘‘interactive’’ and ‘‘individual’’ trials: interactive
(1. self-generated, but other-initiated; 2. other-generated, but
self-initiated) and individual (3. self-initiated and generated;
4. other-initiated and generated). During the interactive trials,
the participants interacted with the experimenter (through taps
on the shoulder) to trigger the stimuli. During the individual
trials, there was no interaction between the participants and
the experimenter. Significant differences in SA were found
between all conditions including SoA (self-generated, but other
initiated; other-generated, but self-initiated; self-initiated and
generated) and the condition not containing SoA (other-
initiated and generated), suggesting that having an SoA over
specific actions affects perception. Interestingly, attenuation
was strongest in the condition in which the button press
was self-generated but other-initiated. This suggests that
while SoA can influence SA, it might not be the only
mechanism responsible for attenuation effects. Rather, it

appears that an additional source informing us about incoming
information (e.g., another person tapping us on our shoulder)
helps us to successfully predict sensory input (Weiss et al.,
2011).

Other studies showed that, although sounds were always
generated by the participants themselves, there were differences
in SA depending on their belief in agency. Desantis et al. (2012),
for example, could show that framing participants into believing
that another person triggered the stimuli had an influence on SA,
although the sounds were always triggered by the participants
themselves. Participants rated the volume of sounds they believed
to be self-initiated as lower than the sounds they believed to be
externally generated. Borhani et al. (2017) let the participants
decide in which pitch range (low or high) the sound stimulus
should appear, and showed that the belief of free choice alone
can alter SA. These studies underpin the effects of SoA on SA,
which are difficult to explain by motor-based forward models. If
the motor command, and thus its efference copy, stays the same
throughout all trials, there should not be differences in SA based
on differences in SoA alone, according to forward models. While
motor-based forward models mainly suggest SoA to be formed
after stimulus onset, several studies could show that SoA can be
influenced by mechanisms prior to action outcomes, like motor
intention, the belief of agency, and free choice over designated
action effects (Haggard and Chambon, 2012). As stated above,
predictive processing additionally emphasizes the importance of
predictive information for creating SoA (Kahl and Kopp, 2018).
In line with the studies discussed above, this framework also
omits the necessity that SA develops as a consequence of SoA,
or vice versa (Burin et al., 2017). Rather, attenuation of expected
signals may be the result of the imperative to reduce surprise and
therefore reduced allocation of attention to predicted stimuli.

SUMMARY

Focusing on auditory studies, this review summarized recent
developments in SA research and discussed the strengths and
weaknesses of twomajor theoretical frameworks, forwardmodels
and predictive processing. Results of current studies examining
the confounding effects of temporality indicate that while
temporal predictability and control indeed influence attenuation
effects, other mechanisms must be included to explain SA
(Kaiser and Schütz-Bosbach, 2018; Harrison et al., 2021). Studies
investigating the role of identity prediction could show SA
based on learned associations rather than motor- vs. externally-
generated behavior (Schröger et al., 2015; Dogge et al., 2019b).
These results suggest SA to be a result of attention orienting
based on the prediction that is not necessarily dependent upon
motor behavior (Schröger et al., 2015; Chennu et al., 2016;Wiese,
2016; Dogge et al., 2019a). Bymanipulating attention orientation,
multiple studies showed that, while self-initiated motor behavior
is a reliable predictor, it does not necessarily lead to SA. Similarly,
several studies observed the importance of cues prior to and after
stimulus onset for the sense of agency and stated its impact on,
but not its necessity for the development of SA.

Classical forward models depend on motor commands to
predict and subsequently attenuate sensory inputs, thereby

Frontiers in Human Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 704668170

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kiepe et al. Auditory Sensory Attenuation

giving the agent the possibility to differentiate between self-
and other generated stimuli, and thus facilitating a sense of
agency. These models cannot account for several phenomena
of SA that were observed independent from motor behavior,
the strong role of attention in SA, as well as the influence
of agency beliefs on SA prior to stimulus onset. Predictive
processing, on the other hand, states that we constantly make
use of prior information, either self- or externally-generated,
in order to create predictions about upcoming changes in
sensory input in the form of a generative model (Friston
et al., 2016). In this framework, only the predictability of a
stimulus should determine its potential to elicit SA. This partially
contradicts a consistent finding throughout the literature, namely
that even when a stimulus is reliably predicted by external
cues, self-generation of a motor behavior does still individually
contribute a significant part to SA effects. Although self-initiated
action serves as a reliable predictor for generating inferences,
further research is needed to elucidate its central role in SA,
leaving room for new explanatory hybrid models (Dogge et al.,

2019a). Such models combine the existence of an efference-
copy-based forward model with a global predictive mechanism.
The forward model in this approach is still based only on
motor action, potentially providing more efficient processing
of contingencies that are especially reliable since they are
self-initiated as well as deeply learned and reinforced over a
time course of years, such as the production and perception
of one’s own voice. The global predictive mechanism on
the other hand would provide a more flexible and adaptive
tool in order to anticipate newly learned contingencies in
an ever-changing environment. Further studies testing the
assumption of differential processing of motor and non-motor-
based predictive information is certainly needed to elucidate the
utility of such hybrid models.
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Account of Mismatch Negativity
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An unpredictable stimulus elicits a stronger event-related response than a high-
probability stimulus. This differential in response magnitude is termed the mismatch
negativity (MMN). Over the past decade, it has become increasingly popular to explain
the MMN terms of predictive coding, a proposed general principle for the way the
brain realizes Bayesian inference when it interprets sensory information. This perspective
article is a reminder that the issue of MMN generation is far from settled, and that an
alternative model in terms of adaptation continues to lurk in the wings. The adaptation
model has been discounted because of the unrealistic and simplistic fashion in which it
tends to be set up. Here, simulations of auditory cortex incorporating a modern version
of the adaptation model are presented. These show that locally operating short-term
synaptic depression accounts both for adaptation due to stimulus repetition and for
MMN responses. This happens even in cases where adaptation has been ruled out
as an explanation of the MMN (e.g., in the stimulus omission paradigm and the multi-
standard control paradigm). Simulation models that would demonstrate the viability of
predictive coding in a similarly multifaceted way are currently missing from the literature,
and the reason for this is discussed in light of the current results.

Keywords: adaptation, auditory cortex, mismatch negativity, MMN, N1, predictive coding, stimulus omission

INTRODUCTION

Change detection in the brain is studied by using the oddball paradigm where sporadically
presented deviant stimuli are mixed in among often-repeating standard stimuli. The brain tends to
respond weakly to standards and vigorously to deviants. In event-related potential (ERP) and field
(ERF) measurements, the mismatch negativity (MMN) is defined as the difference in the respective
responses elicited by deviants and standards. Despite the simplicity of this technical definition,
there is nothing simple nor self-evident about the MMN. This is because it reflects two fundamental
aspects of brain function: the flair for representing the world in terms of patterns, and the ability
to pick out pattern-breaking events that carry the promise of salience. Butler (1968) originally
described the differential between the standard and deviant N1 (“V”) responses and explained in
terms of neuronal habituation which selectively suppresses those neurons tuned to the standard.
Näätänen et al. (1978) named this differential the MMN and suggested that it reflects the operation
of sensory memory. Näätänen (1990, 1992) proposed a model of two-tier processing where the
adherence of the stimulus to a repeating pattern is evaluated in a dedicated MMN generator,
and where the suppression of the N1 happens in a separate generator which registers stimulus
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onsets. A rival explanation, the so-called adaptation model, is
similar to Butler’s interpretation and suggests that suppressive
effects within auditory cortex can account for the MMN and that
the MMN is part of a modulated N1 response (May et al., 1999,
2015; Jääskeläinen et al., 2004; May and Tiitinen, 2010; Fishman,
2014). It is unclear what the physiological mechanisms of cortical
adaptation/suppression are, but a likely candidate is short-term
synaptic depression, STSD (Wehr and Zador, 2003, 2005). This
has decay times up to several seconds, which coincides with the
time constants of stimulus-specific adaptation (SSA) measured
intracortically (Ulanovsky et al., 2003, 2004).

The MMN has edged its way toward mainstream
neuroscience, helped along by its new-found role as a prime
specimen of predictive coding (PC). This posits that perception
is essentially an inference problem which the brain solves by
constructing “generative models” to explain the causes of the
sensory input (Rao and Ballard, 1999; Friston, 2005, 2010; Bastos
et al., 2012). Such models sit at the top of the brain’s processing
hierarchy and generate prediction signals that are passed down
the hierarchy. At each level, these signals attempt to match the
sensory signals making their way up the hierarchy. When this
matching occurs, the successful prediction signal suppresses
the sensory signal. If there is a mismatch between the two, the
sensory signal remains unsuppressed and continues its upwards
journey. Therefore, sensory responses inform the system that
a prediction error has occurred and that the generative model
needs updating. Perception is a process where error signals nudge
generative models into forms which minimise the prediction
error, thereby offering the best explanation of the sensory input.
In this framework, the repetition suppression of the N1 response
to the standard is due to a dampening of the sensory signal by a
successful prediction signal (Auksztulewicz and Friston, 2016)
and the MMN to the deviant is a prediction error signal (Garrido
et al., 2009; Wacongne et al., 2012; Chennu et al., 2013; Lieder
et al., 2013a,b; Rentzsch et al., 2015; Carbajal and Malmierca,
2018; Fong et al., 2020).

The rise of PC as an explanation of the MMN has been
heralded by a number of studies which point to evidence in favour
of PC and against the adaptation model (e.g., Wacongne et al.,
2012; Lieder et al., 2013a; Fitzgerald and Todd, 2020). Here, we
revisit this issue and consider the viability of PC obliquely: I
present the modern version of the adaptation model and a variety
of simulations which produce MMN responses, including some
that might pose a challenge for PC.

THE ADAPTATION MODEL COMES IN
VANILLA AND CHOCOLATE

There are two varieties of adaptation model. Its most common
form is also the traditional and most simplistic one. It builds on
the premise that neurons that are repetitively stimulated become
less responsive. The traditional model takes a unit-centric view
by extrapolating this behaviour to event-related responses. The
MMN is explained by the populations tuned to the standard being
more adapted than those tuned to the deviant. The response
to the stimulus is then a bottom-up process where the sensory

signal drives the neural population to respond with a magnitude
that depends on the adaptation level. Further, it is assumed that
adaptation on both the unit and the population level depends
on one aspect only: the time series of the specific stimulus to
which the population is tuned. Thus, other stimuli used in the
paradigm do not affect the responsiveness of the population. This
traditional adaptation model is unconvincing (Fitzgerald and
Todd, 2020): It can’t explain the mismatch response to stimulus
omissions (Yabe et al., 1997, 1998), because the responses of
the model require a sensory signal. Also, it fails to explain the
MMN to unexpected stimulus repetitions (Wacongne et al., 2012)
because stimulus repetition supposedly always leads to more
adaptation and a weaker response.

The traditional adaptation model can be operationalised
to produce predictions of evoked responses. For example,
Lieder et al. (2013a) formulated the adaptation hypothesis as
exponentially adapting and recovering frequency channels and
found that the experimental data favoured a model based on
PC. Moreover, this idea of isolated adapting frequency channels
is the basis for the multi-standard control paradigm (Schröger
and Wolff, 1996; Jacobsen and Schröger, 2001). Here, the oddball
condition is complemented by a control condition where the
standards are replaced by several different stimuli equiprobable
with the deviant. Because the presentation rate of the deviant
is identical across the two conditions, the level of adaptation,
according to the traditional adaptation model, should also be
identical. Therefore, if the response to the deviant is stronger
in the oddball condition than in the multi-standards control
condition, this is taken as unequivocal proof that adaptation
cannot explain the MMN, and that the MMN must therefore
reflect something more. The multi-standard control condition
has produced plenty of evidence that apparently refutes the
adaptation model (for a review, see May and Tiitinen, 2010). It
has recently become popular in animal electrophysiology where
it is used for demonstrating that mismatch responses cannot be
explained in terms of stimulus-specific adaptation (e.g., Harms
et al., 2014; Kurkela et al., 2018) and that PC is therefore a more
likely explanation (e.g., Parras et al., 2017).

There is a modern version of the adaptation model which
bears but passing resemblance to its traditional counterpart. The
acorn for this was planted by May et al. (1999) who argued
that the frequency MMN can be explained as a modulated
N1 response being generated on tonotopic maps with post-
stimulus inhibition. The study used a computational model of
auditory cortex where individual microcolumns interact with
each other through lateral connections. This departure from
the traditional adaptation model yielded a prediction, verified
in EEG measurements, that the peak latency of the response
to the deviant should have a non-monotonic dependence on
the standard-deviance separation. This idea of modeling the
auditory cortex as a system of interacting units (rather than
isolated channels) was further developed by May and Tiitinen
(2010) in their treatise on the adaptation model. These authors
noted that the results which initially might appear to falsify
the adaptation model are in fact consistent with this model.
For example, the activity associated with the response to the
standard has a different spatial distribution than the activity
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underlying the MMN, (e.g., Rinne et al., 1999). Findings such
as these have been used as evidence against the adaptation
model as they appear to show that the generators of the MMN
are separate from those of the N1 (for a review, see Näätänen
et al., 2005). However, the adaptation model offers a simpler
explanation in terms of variations in stimulus selectivity across
cortical fields. For example, a field with broadly tuned neurons
will respond similarly to the standard and deviant while, at
the same time, a field with sharply tuned neurons will show
stronger activation to the deviant. The spatial distribution of the
responses elicited by the standard and deviant will therefore differ
without implying the existence of a dedicated MMN generator
(see sections 6.2 and 6.3 of May and Tiitinen, 2010). Further,
one of the themes put forward by May and Tiitinen was that
synaptic depression operating in the interconnected system of
auditory cortex makes the system’s responses highly context-
dependent. This dependence shows up as MMN responses of
various kinds as well as stimulus selectivity on the single-
unit level. Staying on this theme, May and Tiitinen (2013)
introduced a computational model that structurally copies the
gross anatomy of the auditory cortex and where the synapses
are modulated by STSD. Simulations showed that this system
performs temporal binding, with individual columns exhibiting
combination sensitivity similar to that found in monkey auditory
cortex (Rauschecker, 1997). This sensitivity was found to be
caused by the combination of STSD and the serial core-belt-
parabelt structure of auditory cortex. In further simulations (May
et al., 2015), the model replicated single-unit forward masking
and SSA (Ulanovsky et al., 2003, 2004) as well as forward
facilitation (Brosch et al., 1999; Brosch and Schreiner, 2000).
Further, the model reproduced repetition suppression of the N1
(Lü et al., 1992) as well as several types of MMN. These were the
frequency MMN (Tiitinen et al., 1994), MMN to “abstract” sound
features (Korzyukov et al., 2003), and the MMN to small changes
in complex tone sequences (Näätänen et al., 1993), where the
latter two types are classed as evidence for “primitive intelligence”
of auditory cortex (Näätänen et al., 2001). The success of the
model in being able to recreate such a wide variety of phenomena
was found to be a consequence of STSD. Removing STSD also
abolished SSA, masking, facilitation, combination sensitivity, N1
adaptation, and the MMN.

THE ADAPTATION MODEL IN ACTION:
SIMULATION METHODS

Original simulations of the modern version of the adaptation
model were carried out to demonstrate that it reproduces
those types of MMN which previously have been taken as
evidence against the adaptation hypothesis. Importantly, these
MMN responses, both empirically observed and simulated, might
pose a challenge for the PC model as currently formulated.
The model here is a modification of that of auditory cortex
introduced in May and Tiitinen (2013) and May et al. (2015).
It has a hierarchical structure with feedforward and feedback
connections between cortical fields. However, the resemblance
to PC stops here, there being no separate prediction and error

units. Instead, as shown in Figure 1A, the dynamical unit of the
model is a simplified description of the cortical column. Within
each column, the excitatory and inhibitory neurons are treated
as lumped populations described by mean-field state variables
u(t) and v(t), respectively. These variables correspond to the
membrane potential, and they are transformed into the mean
firing rate through g(x) = 1[x –θ]tanh[2(x – θ)/3], where θ = 0.05
is the threshold for firing and 1[.] is the Heaviside step function.

As depicted in Figure 1B, there are 208 cortical columns
arranged into three core fields, eight belt fields, and two
parabelt fields, with 16 columns per field (see Hackett et al.,
2014). In addition, there is a 16-unit field where the excitatory
populations represent the medial geniculate nucleus (MGN)
of the thalamus and the inhibitory populations represent the
surrounding thalamic reticular nucleus (for details, see Hajizadeh
et al., 2019). There are therefore a total of 224 units. Fields
are connected topographically to each other according to the
anatomical results of Hackett et al. (2014). The signal progresses
along the feedforward connections by first entering the MGN
which then targets the three core fields, and these project to
the surrounding belt fields, which in turn are connected to the
two parabelt fields. These forward connections are reciprocated
by feedback connections. Anatomically neighbouring fields are
strongly interconnected while obliquely situated fields have fewer
interconnections. The rostral parabelt field is interconnected with
the anterior belt fields, and the caudal parabelt field connects with
the posterior belt fields.

As illustrated in Figure 1C, the connectivity between the
fields is expressed in the way the populations of excitatory
neurons are connected to each other according to the 224 × 224
weight matrix Wee. The connections from the excitatory to
the inhibitory neuron populations are defined by Wie, and the
reciprocal connections are given by Wei. All column-to-column
connections, both within and across fields, are assumed to be
excitatory. The inhibitory populations make only local, short-
range connections within the cortical column. Lateral inhibition
across columns within a field is mediated by the excitatory
population of each column exciting the inhibitory populations of
neighbouring columns. The state equations are:

τmu̇ (t) = −u (t) + WeeQ (t) · g [u (t)]

−WeiQ (t) · g [u (t)] + iaff (t) , (1)

τmv̇ (t) = −v (t)Wieg [u (t)] , (2)

where u(t) and v(t) are vectors (224 × 1) of the state variables
u and v, respectively, and τm = 30 ms is the membrane time
constant. The term iaff(t) represents afferent sensory input. This
input is tonotopically organised into 16 frequency channels
(cf = 1. . .16) which represent the activity of the inferior colliculus.
This targets the MGN field through topographically organised
connections so that each unit essentially represents a frequency
channel. Because the various fields are topographically connected
to each other, the cortical columns exhibit tonotopic organization
in their responses, with the tuning curves becoming broader as
one moves from MGN toward the parabelt. Q expresses STSD
which drives adaptation. It is a diagonal 224 × 224 matrix where
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FIGURE 1 | A computational model of auditory cortex as a modern version of
the adaptation model. (A) The basic functional unit of the model is the cortical
column. This comprises a lumped description of the excitatory (e) and
inhibitory (i) neuron populations. The e-population connects back to itself via
feedback connections described in the weight matrix Wee. It also excites the
excitatory populations of other columns. Lateral inhibition occurs through the
e-population driving the i-population of neighbouring columns. (B) There are
208 cortical columns organised into three core fields (R, RT, AI), eight belt
fields (AL, RTL, RTM, RN, MM, CM, CL, ML), and two parabelt fields (RPB,
CPB). Neighbouring fields are strongly interconnected, as indicated by the
arrows. The connections from RPB to RTM and RM as well as those from
CPB to RM, MM, and CM are not shown. Abbreviation key: A – anterior
(except for AI, primary auditory cortex), R – rostral, C – caudal, M – medial, L –
lateral, T – temporal, PB – parabelt. (C) The weight matrices Wee (blue) and
Wie (red) are overlayed. Wie mediates lateral inhibition within each field.
Long-range connections are found in Wee only. Feedforward connections are
below the diagonal, and feedback connections are above it.

the diagonal elements are described by the 224-element vector
q(t) of synaptic efficacies:

q̇ (t) = −
q (t) g [u (t)]

τo
+

1− q (t)
τrec

, (3)

where the first r.h.s. term describes the fast onset of STSD and
the second term encapsulates the slow recovery. Note that STSD
is assumed to depend on the presynaptic firing rate only, and
therefore all the connections originating from the same column
are modulated by the same element of q (hence q is a 224-
element vector). There are two time constants: τ o is the onset
time constant (100 ms in cortex, 20 ms in MGN), and τ rec is the
time constant of recovery. The recovery time constant was treated
as a free variable, justified by N1 recovery being highly subject-
specific (Lü et al., 1992; Ioannides et al., 2003). The respective
values of τ rec across Experiments 1–5 described below were: [1.2,
1.2, 1.2, 1.7, 1.4] s.

The MEG signal is to a large extent generated by dendritic
current flowing in the apical dendrites of cortical pyramidal
neurons (Hämäläinen et al., 1993). In the model, the MEG is
approximated by spatially summing the excitatory input currents
to the excitatory neuron populations, that is, the second term
on the r.h.s. of Eq. 1 (for a detailed description, see Hajizadeh
et al., 2019). In the summation, the contribution from each
connection is weighted according to connection type, with the
weights being [−2,1,1] for feedforward, feedback, and intra-field
connections, respectively.

Five experiments were carried out with the following oddball
stimulation:

Experiment 1 – Standard stimuli (duration 50 ms, frequency
channel cf = 7) were presented with a stimulus onset interval
(SOI) of 100 ms and omitted with 10% probability (parameters
from Yabe et al., 1998). Each stimulus omission was treated as the
deviant when calculating the ERF.

Experiment 2 – The standard stimulation was a series of tones
(duration 50 ms, SOI 500 ms) which alternated in cf frequency
between 6 and 9. Occasionally, the tone with cf = 6 was repeated
(p = 5%). Comparisons were made between the ERF response
elicited by the cf = 6 tone in these two cases.

Experiment 3 – In the “global deviance” setup, two types of
stimuli were used: a sequence of five identical tones (“xxxxX”;
duration 50 ms, SOA 150 ms, cf = 5) and a sequence “xxxxY”
that was otherwise the same as xxxxX except that the fifth tone
(cf = 12) differed in frequency from the first four tones and
was therefore a “local” deviant. These stimuli were presented in
two conditions: one where xxxxY was the standard (p = 75%)
and xxxxX was the “global” deviant (p = 15%), and one where
these roles were reversed. In addition, the blocks contained
occasional four-tone sequences (p = 10%). The sequences
were separated by silent 850-ms periods. The parameters are
from Wacongne et al. (2011).

Experiment 4 – Standards (cf = 9, p = 90%) and deviants
(cf = 10, p = 10%) were presented in the oddball paradigm (tone
duration 50 ms, SOI = 500 ms). In a separate multi-standard
control condition, the standards were randomly replaced with
equiprobable tones of different frequencies (cf = 4. . .13,
p = 10% for each).

Frontiers in Human Neuroscience | www.frontiersin.org 4 November 2021 | Volume 15 | Article 721574176

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-721574 November 18, 2021 Time: 11:1 # 5

May Adaptation Challenges Predictive Coding

Experiment 5 – Standards (cf = 6, p = 80%) and deviants
(cf = 9, p = 20%) were presented as a series of anisochronous
stimuli (duration 300 ms). The silent interval between
consecutive tones varied randomly between 200 and 1,000 ms
(flat distribution). The parameters are from Schwartze et al.
(2011).

In all experiments, simulations comprised at least 400
presentations per condition. The responses to standards and
deviants were averaged separately. The resulting ERFs were
baseline-corrected (100 ms) and highpass filtered at 1 Hz.

THE ADAPTATION MODEL IN ACTION:
SIMULATION RESULTS

Simulation results shown in Figure 2 demonstrate that the
modern version of the adaptation model reproduces those types
of MMN which previously have been taken as evidence against
the adaptation hypothesis.

Experiment 1 – The omission MMN is shown in Figure 2A.
Due to the fast stimulus presentation rate, the standards
(blue curve) produce no discernible responses. The occasional
omission elicits a prominent response (red) which, apart from a
late peak latency, resembles the observations of Yabe et al. (1998).

Experiment 2 – Tones alternating in frequency served as the
standard stimulation. Occasionally alteration was replaced by
stimulus repetition. As shown in Figure 2B, this results in a
stimulus repetition MMN, as was found in simulations of the PC
model of Wacongne et al. (2012).

Experiment 3 – Two types of sequences served as stimuli:
five identical tones (xxxxX), and four identical tones followed
by a “local” frequency deviant (xxxxY). Figure 2C shows the
responses to the xxxxX sequence in two conditions: (1) It was the
“global” standard stimulus, representing an expected repetition
of the fifth tone. (2) It was the global deviant stimulus among
xxxxY standards, therefore constituting an unexpected stimulus
repetition. The global unexpectedness of the stimulus causes a
late, “higher-order” MMN response, as observed by Wacongne
et al. (2011).

Experiment 4 – Figure 2D shows the results where the multi-
standard control condition was utilised. The deviant in the
oddball condition elicits a larger response (red) than it does in
the control condition (black). This is surprising given that we are
viewing the behaviour of the adaptation model.

Experiment 5 – Figure 2E shows the results due to
oddball stimulation. The frequency deviants (red) elicit stronger
responses than the standards (blue). The twist here is that the
presentation of the stimuli is anisochronous, with the stimulus
onset intervals (SOIs) being random.

To summarise, the adaptation model produces a wide variety
of MMNs which have been used as arguments against the
adaptation hypothesis (Experiments 1–4). It is beyond the
current scope to explore in detail what is generating the MMN
in each experiment. As explained in May et al. (2015), SSA
on the single-unit level is only part of the explanation, with
tuning to stimulus features also playing a major role. Omission
responses (Experiment 1) are to be expected as resonance

effects, given that interacting excitatory and inhibitory neural
populations are dynamically equivalent to driven oscillators with
damping (May and Tiitinen, 2001; Hajizadeh et al., 2019, 2021).
In addition, the omission response could be enhanced or even
caused by high-pass filtering acting on the sudden, omission-
related drop in the sustained activity which is elicited by fast-rate
stimulation (May and Tiitinen, 2010). As for the multi-standard
control results, these arise from the cortical columns being
interconnected rather than acting as isolated frequency channels.
Therefore, the response of each column depends not only on
the stimulation rate (which would be required for the multi-
standard control condition to be valid), but it is also modulated
by lateral connections and the pattern of synaptic depression over
the entire network, as established by the previous stimulation
(May and Tiitinen, 2010). This means, for example, that columns
that respond selectively to the standard-deviant combinations in
the oddball condition respond less vigorously when this pattern
is no longer dominant in the multi-standard condition, where
the deviant is preceded by multiple different stimuli (May, 2017).
This issue will be addressed in more detail in a separate paper.

ADAPTATION, PREDICTIVE CODING, OR
A BIT OF BOTH?

It is time to reconsider what we mean by the adaptation
model of MMN. The traditional model posits that adaptation is
merely the repetition suppression of individual isolated neural
populations. This version is really just a straw man that we should
abandon because the brain does not contain isolated populations.
A modern, updated adaptation model can be encapsulated thus:
There is no process, mechanism, cortical area, or set of pathways
that is dedicated to MMN generation, functionally separate from
the rest of auditory cortex. Instead, the physiological mechanism
that causes repetition suppression of neural responses (e.g., of
the N1), is the same as that which makes the MMN happen.
The candidate for this mechanism is STSD, which on its own
might seem low-level because it causes transient weakening
of synaptic connections. However, the effect of these synaptic
modulations on the system level is profound. This is because
synaptic depression happens in the context of an intricately
interconnected, hierarchically organised network containing
both excitation and inhibition. The stimulation at any one time
point leaves, via STSD, a slowly decaying, highly malleable
imprint on the functional structure of auditory cortex, that is, on
the multitude of synaptic strengths by which the auditory cortex
neurons are connected to each other. This functional structure
keeps evolving and, at any time point, represents a weighted
integration of all the stimulation that has occurred in a time
window stretching seconds into the past. Temporarily weakened
excitatory connections thus contribute to an attenuated response
if they belong to an excitatory feedback loop triggered by the
incoming stimulation, but they can contribute to an enhanced
response if the activated circuit drives inhibition. The response
of a neuron in auditory cortex thus intertwines the effect
of the stimulus with the effect of the stimulation history
and in this way is specific to both stimulus and history.
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FIGURE 2 | Simulation results. (A) Standard stimuli presented at a fast rate (blue curve) elicit no discernible response, whereas the occasional stimulus omission (red
curve) results in a prominent MMN. (B) Occasionally repeating a tone (red) in a sequence of alternating tones (blue) results in an MMN. (C) The blue curve is the
response to a sequence xxxxX of five tones presented as a global standard, and the red curve is the response elicited by the same xxxxX as an infrequent global
deviant. When the sequence is a global deviant, the ending of the sequence elicits a much stronger response than when it is a global standard. Zero time indicates
the onset of the fifth tone. (D) In the classic oddball paradigm, frequency deviants (red) elicit a stronger response than the standards (blue). The response to the
deviants is also stronger than the response elicited by the same deviants when these are presented as part of a random sequence of tones, in the so-called
multi-standard control condition (black). (E) Standards (blue) and deviants (red) were presented as a series of anisochronous stimuli where the SOI varied randomly.

Therefore, repetition suppression is only one of many possible
consequences of synaptic depression. These consequences show
up as context sensitivity and, perhaps counterintuitively, as
forward enhancement, depending on stimulation history (see

May and Tiitinen, 2013; May et al., 2015). While STSD is a root
cause of MMN, it plays a far wider role, enabling the gamut of
other dependencies on stimulation history. Thus, there is nothing
low-level about adaptation: while it is detected by using stimulus
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repetition – the simplest and the most boring of stimulation
paradigms – it reflects a fundamental mechanism whereby the
auditory cortex is able to keep track of the past in a way which
informs the way it responds to the present.

The version of the adaptation model used here has a
hierarchical structure in terms of the core, belt, and parabelt,
and in the above simulations, the feedback connections are
all excitatory. However, in contrast to the PC model, there is
no requirement for the feedback to be exclusively inhibitory,
and neither does it have to be exclusively excitatory; in either
case (not shown here), the model of auditory cortex is able to
generate MMN responses. The model suggests that the functional
significance of the hierarchical structure of the auditory cortex
lies in the way it modulates temporal binding. Namely, simulation
results suggest that the time window over which combination
sensitive responses occur increases as one moves up the core-
belt-parabelt hierarchy (May and Tiitinen, 2013; May et al., 2015;
Westö et al., 2016).

“Adaptation model” is somewhat of a misnomer because the
object of modelling is not the MMN but, rather, the auditory
cortex. Indeed, other modelling studies have similarly linked
STSD in auditory cortex to SSA (Mill et al., 2011; Yarden and
Nelken, 2017; Kudela et al., 2018) and to combination sensitivity
(Lee and Buonomano, 2012; Goudar and Buonomano, 2015).
Also, the current auditory cortex model is by no means complete.
It lacks input from, for example, the inferior frontal cortex (IFC),
which is known to contribute to the MMN response generated
in auditory cortex (e.g., Rinne et al., 2005; Tse et al., 2018; Lui
et al., 2021). The simulations can be taken as a demonstration that
the “local” processing happening in auditory cortex is sufficient
for the generation of MMN. There is no need to postulate a
top-down generative model outside auditory cortex. However,
it is still perfectly possible, even within the AM framework,
that IFC and other areas have a modulatory role in shaping
the MMN. Further, although mimicking the gross anatomy of
auditory cortex, the model is an extremely simplified description,
and it lacks, for example, long-term dynamics such as Hebbian
learning. Nevertheless, it is noteworthy that such a simple model
can mimic the behaviour of auditory cortex in so many ways and
levels of observation.

Can PC claim similar success? Certainly, the results from
Experiments 1–3 can be explained in terms of PC, as was done
in the modelling work of Wacongne et al. (2012). However,
explaining the omission MMN (Experiments 1 and 3) is not
straightforward because there is no sensory signal for the
prediction signal to suppress. Why, then, would there be an
error signal? Wacongne and colleagues suggested that in this
case, the MMN could reflect the activity of the prediction signal
itself. This explanation is problematic because this signal should
then be visible also when the prediction is successful, so that
we would measure MMNs to standards too. Instead, as in the
above simulation, the observed omission response tends to be
more prominent than the responses to the standards (Yabe et al.,
1997, 1998). Further, how does the generative model at the top of
the hierarchy actually emerge? On this question, PC accounts are
abstract and conceptual. For example, Wacongne and colleagues

implemented the generative model as a set of delay lines which
keep the stimulus-elicited signal in memory for precisely the
right time so that the signal can then be recycled back as a top-
down inhibitory prediction signal that coincides with the next
stimulus. Noting that this delay-line scheme is unrealistic, the
authors speculated that the generative model might in fact be
due to parts of cortex acting like an echo state network. This
is fair, and it will probably be a tremendous task to construct
a mechanistic explanation of how the brain creates, on the fly,
generative models to attempt to fit whatever the world is throwing
at it. Even though the brain could be adept at doing this, given
its pattern generating abilities, the generative model nevertheless
currently plays the role of deus ex machina in PC theory. The
existence of the generative model enthroned atop the hierarchy
is assumed rather than explained. Research has concentrated on
testing whether sensory responses are compatible with the PC
view, and it remains unaccounted for how the past evidence is
actually transformed into a projection of what the future most
likely holds. One exception is the study by Friston and Kiebel
(2009) where the generative model was a pair of Lorenz attractors
offering an abundance of priors which could recover the hidden
state of similar attractors driving the input. The input in this case
was simulated bird song, which has a precise frequency and time
structure. Thus, the requirement for the generative model was
the ability to provide prediction signals with the right intricate
timing. But how would such a precise system fare when the input
arrives at random times, such as in Experiment 5 and in the
MMN experiment of Schwartze et al. (2011)? This consideration
is different from the one concerning precision weighting of the
error signal. Rather, it concerns what form the actual generative
model should take. By what mechanism would the generative
model know when to employ temporal precision and when
not to? Further, with repetitive stimulation, the N1 amplitude
depends strongly on SOI: the rate of growth is strongest for
shortest SOIs (<1 s) before levelling off with longer SOIs. This
behaviour is easily replicated by the adaptation model (May et al.,
2015). From a PC perspective, one would need to explain why
the performance of the generative model deteriorates the fastest
when modelling the regularity should be the easiest.

The physiological evidence for PC is mixed, and the theory
has been criticized for being difficult to falsify (Walsh et al.,
2020) – something the adaptation model also suffers from.
There is thin evidence for the proposed separateness of neurons
representing predictions and prediction errors (Heilbron and
Chait, 2018) and it is unclear how PC might correlate with
perception (Denham and Winkler, 2020). Therefore, while
Bayesian inference seems to be a computational principle of
the brain, the actual implementation of it is uncertain, with PC
being one among many candidates (Rescorla, 2021). Perhaps
a reformulated version of Bayesian inference incorporating the
adaptation model might be worth considering. The pattern of
STSD could be seen as a posterior model for sensory stimuli,
though of course not a generative one. A separate version of the
model will exist on each level of the hierarchy, updating itself
based on local information. In this view, the MMN can still be
seen as an error signal, but one perhaps targeting a generative
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model on the highest level of attention and action selection.
It is possible that the brain uses local adaptation and PC in
tandem but for different purposes: One the one hand, adaptation
might be central to bottom-up change detection which drives
involuntary attention shifts and is expressed in the MMN. On
the other hand, PC might be the top-down mechanism which
suppresses task-irrelevant signals in auditory cortex according to
a generative model. This model would selectively describe those
signals that need to be filtered out and this selection would be a
function of the attentional set rather than just signal probability.
Evidence for this kind of top-down, attention-related inhibition
of sensory processing can be found in the visual system in the case
of visual marking (Watson and Humphreys, 1997; Braithwaite
and Humphreys, 2003, 2007), and it could be present in the
auditory system also.

CONCLUSION

It is too early to discard the adaptation model as an explanation
of deviance detection as revealed in the MMN. Its modern
version is able to reproduce a wide variety of MMN responses as
well as intracortical results. PC as currently formulated provides
a mostly conceptual explanation, and therefore it is difficult
to contrast the relative successes of these models. Whilst the
adaptation model is incomplete and it lacks the normative
power and elegance of predictive coding, there are challenges

ahead before the PC can match the adaptation model on a
mechanistic level.
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Recent computational models of perception conceptualize auditory oddball responses
as signatures of a (Bayesian) learning process, in line with the influential view of the
mismatch negativity (MMN) as a prediction error signal. Novel MMN experimental
paradigms have put an emphasis on neurophysiological effects of manipulating
regularity and predictability in sound sequences. This raises the question of the
contextual adaptation of the learning process itself, which on the computational
side speaks to the mechanisms of gain-modulated (or precision-weighted) prediction
error. In this study using electrocorticographic (ECoG) signals, we manipulated the
predictability of oddball sound sequences with two objectives: (i) Uncovering the
computational process underlying trial-by-trial variations of the cortical responses.
The fluctuations between trials, generally ignored by approaches based on averaged
evoked responses, should reflect the learning involved. We used a general linear model
(GLM) and Bayesian Model Reduction (BMR) to assess the respective contributions of
experimental manipulations and learning mechanisms under probabilistic assumptions.
(ii) To validate and expand on previous findings regarding the effect of changes
in predictability using simultaneous EEG-MEG recordings. Our trial-by-trial analysis
revealed only a few stimulus-responsive sensors but the measured effects appear
to be consistent over subjects in both time and space. In time, they occur at the
typical latency of the MMN (between 100 and 250 ms post-stimulus). In space,
we found a dissociation between time-independent effects in more anterior temporal
locations and time-dependent (learning) effects in more posterior locations. However,
we could not observe any clear and reliable effect of our manipulation of predictability
modulation onto the above learning process. Overall, these findings clearly demonstrate
the potential of trial-to-trial modeling to unravel perceptual learning processes and their
neurophysiological counterparts.

Keywords: single-trial analysis, predictive coding, mismatch negativity, Bayesian learning, general linear model,
Bayesian model reduction
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INTRODUCTION

Recent computational models of perception address sound
processing in oddball paradigms as the learning of regularities
that pertain to the repetition of an acoustic pattern (typically
a single tone in the basic form of oddball sequences, i.e.,
the standard stimuli). The corollary that follows is then to
view mismatch responses elicited by unexpected deviant sounds
as indexing surprise processing. In particular, the Mismatch
Negativity (MMN; Näätänen et al., 1978) has been suggested
to reflect a prediction error (Friston, 2005). This model of the
MMN leverages on complex underlying (Bayesian) computations
that raise the practical question of their neuronal implementation
(Knill and Pouget, 2004). Deciphering these processes is a topic of
intense research, both at the physiological (Garrido et al., 2009b;
Auksztulewicz and Friston, 2016; Carbajal and Malmierca, 2018)
and cognitive (Winkler, 2007; Heilbron and Chait, 2018) levels.

An important aspect that computational models of perception
have put forward is the influence of the acoustic context
onto sound processing in oddball paradigms, that is, as we
shall see, explicitly formalized in popular predictive coding
implementation (Friston, 2005; Spratling, 2016). Interestingly,
this is in line with recent MMN findings which emphasized
the importance of the ordering of experimental conditions
(Fitzgerald and Todd, 2020; Todd et al., 2021), pointing out the
need for refining our understanding of mismatch responses.

Surprise or prediction errors play a key role in perceptual
inference and learning (Friston, 2009). Importantly, they are
thought to drive belief updating in a context dependent manner.
In other words, the context determines the relevance of a
given prediction error, and whether it should be filtered out
or accounted for by promoting some adaptation (Adams et al.,
2013; Mathys et al., 2014). In the Bayesian framework, this
context dependent modulation naturally emerges in the form of
a precision weight. And surprise takes the more refined form of a
precision-weighted prediction error (Bastos et al., 2012). Should
the precision or confidence be low (e.g., in a noisy environment),
the learning triggered by a new sound should be lessened to
avoid irrelevant updates of the internal model. On the contrary,
a high precision will amplify the prediction error, and yield a
larger belief update.

The precision weighting account of contextual influences
has led to manipulations of the statistical structure of oddball
sequences to test specific predictions about the ensuing
modulations of the MMN. In Garrido et al. (2013), auditory
stimulations were sampled from a Gaussian distribution; larger
amplitudes were measured at the MMN latency in response
to outlier sounds when the distribution variance was reduced.
This finding speaks to the precision of standard prediction,
an aspect that has also been investigated recently using a
different manipulation (SanMiguel et al., 2021). In this study,
sound sequence comprised multiple tones occurring randomly,
with two of them playing the role of deviants and standards,
respectively. The proportion of standards in the sequence was
manipulated while keeping deviant probability constant and
larger deviant response at the MMN latency was reported
in the more stable condition where standards were more

frequent. Several studies also manipulated the predictability
of sound sequences (Chennu et al., 2013; Recasens et al.,
2014; Auksztulewicz and Friston, 2015; Lecaignard et al., 2015;
Dürschmid et al., 2016; Auksztulewicz et al., 2017, 2018). In short,
predictability has been associated with reduced brain responses,
in line with expected smaller precision-weighted prediction
errors (Lecaignard et al., 2015). However, enhanced brain activity
has also been reported in predictability conditions (Barascud
et al., 2016; Southwell et al., 2017). Together, these reports call
for further investigations to shed light onto the computational
mechanisms at play and their neurophysiological underpinnings.
The current electrocorticographic (ECoG) study was intended to
contribute to this effort.

Specifically, a closer look at the putative effect of predictability
provides a plausible explanation for the above apparent
contradictory findings. Indeed, predictability has a two-fold
and opposite effect on prediction error and its precision,
respectively. It is expected to decrease the former (as an
unsurprising environment contributes to a more accurate
prediction of future sensations) but to increase the latter (as
a structured context provides more reliable prediction errors).
An important aspect is that both computational variables
depend upon the temporal structure of the sensory input
sequence, but precision weight (or inverse variance) pertaining
to second order statistics (in contrast with prediction pertaining
to first-order ones) is expected to be optimized over a
slower timescale (Mathys et al., 2014). As a consequence,
averaging methods like traditional event-related potential (ERP)
approaches will likely be unable to reveal the contribution of
their respective dynamics onto brain activity, even if these
dynamics become separable due to a predictability manipulation.
To circumvent this issue, attempts have been made that consisted
of comparing the mismatch responses obtained in the beginning
and end of oddball sequences (Fitzgerald and Todd, 2018;
Todd et al., 2021).

Alternatively, trial-by-trial analysis, pertaining to the
examination of the single-trial activity elicited by single sounds,
enables the direct examination of such dynamics. In a previous
study using simultaneous EEG and MEG recordings, we
coupled a predictability manipulation of an oddball paradigm
with a single-trial data modeling approach (Lecaignard et al.,
2021b). Trial-by-trial activity was found to be best predicted
by a Bayesian learning model of the deviant probability and
this model revealed a modulation of learning by sequence
predictability, suggesting an automatic adaptation of sensory
processing to the statistical structure of the auditory stream.
This adaptation could be captured by a model parameter that
determines the influence of past experience onto perceptual
inference. The larger value we found under predictability can
be interpreted as a larger memory span that fits well with the
fact that the more structured the sound sequence, the more
past information is integrated to make predictions These
findings and few others speak to the plausibility of perceptual
models engaged in oddball processing and the trial-by-trial
fluctuations they prescribe (Ostwald et al., 2012; Lieder et al.,
2013; Stefanics et al., 2014; Meyniel et al., 2016; Sedley et al.,
2016; Weber et al., 2020).
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We designed the present ECoG study around two objectives:
first, we aimed at testing the reproducibility of the recent EEG-
MEG single-trial findings, considering the youth of this field
of research, and the methodological challenge on which it is
based, i.e., the sensitivity of single-trial data to noise. We here
expect ECoG data to refine the spatio-temporal characterization
of perceptual learning because of its excellent spatial and
temporal resolution. Second, to refine the description of cognitive
process(es) engaged during the passive processing of sound, we
propose a novel approach combining a general linear model
(GLM) with advanced Bayesian methods for model comparison
(Bayesian model reduction, Friston et al., 2016, 2018) to compare
a learning regressor with non-learning ones. Using a GLM
approach, competing cognitive hypotheses are no longer tested
as mutually exclusive (as was the case in our prior EEG-MEG
study) and we could examine where and when their related
regressor each contributes to the observed data in a flexible
way. It is interesting to note that this investigation, because it
involves both dynamic and static models (learning and non-
learning, respectively) also amounts to addressing the potential
of the still little used single-trial modeling. In short, if dynamic
models were found unlikely based on current data, single-trial
modeling would appear too complex to reveal constant effects
for which averaging methods like evoked potential analysis are
perfectly relevant. Analysis of data from four implanted patients
with ECoG electrodes over the temporal lobe provides substantial
evidence for Bayesian learning in the brain and promotes single-
trial modeling to further characterize auditory processing in the
light of perceptual inference and predictive coding. Surprisingly,
no clear evidence for the expected adaptation of learning under
predictability could be disclosed.

MATERIALS AND METHODS

Participants
Six patients (P1, P2, P3, P4, P5, and P6) with pharmacologically
intractable epilepsy participated in this study at Albany Medical
Center (Albany, NY, United States). They underwent pre-surgical
monitoring with temporary placement of electrocorticographic
grids over frontal, parietal, and temporal cortices. Four of
the six patients (P2, P4, P5, and P6) were also assessed with
intracranial depth electrodes located over temporal regions;
analysis of the related data is not included in the present
study. All patients provided informed consent for participating
in the study, which was approved by the Institutional Review
Board of Albany Medical College and the Human Research
Protections Office of the United States Army Medical Research
and Materiel Command. Table 1 summarizes the patients’ clinical
profiles. Cortical views with electrode overlay are provided in
Supplementary Figure S1.

As explained in the experimental procedure section below,
each patient received auditory stimuli divided into four runs
during a single session. Two patients however followed a different
scheme: patient P1 underwent two sessions (day 2 and day 5
after surgery) as well as patient P6 who received two runs in
a first session (day 1) and six runs in a second one (day 2).

TABLE 1 | Clinical profiles of participants.

Subject Age Sex Seizure
focus

#grids #strips #electrodes

P1 69 M Right temporal 1 11 92

P2 33 M Left temporal 1 5 224

P3 51 M Left temporal 1 6 126

P4 36 F Right temporal 1 8 92

P5 27 F Left temporal 2 4 93

P6 31 M Left temporal 2 10 122

The number of electrodes refers to contacts included in the current analysis (distant
from epileptogenic foci, without electrical or mechanical artifacts).

Given that they did not report having noticed the statistical
manipulation of the sound sequences (see below), and in order
to take advantage of most of these data, we included them all
in our subsequent analyses (we hereafter refer to these datasets
by P1a, P1b, P6a and P6b, respectively). However, no data from
patient P1 or from P6a survived our selection criterion (see
below). Hence, only session P6b was included for subsequent
analysis. For full transparency, we included the analysis of P6a as
Supplementary Material (Supplementary Figure S2). Regarding
patient P3, our analyses identified only one responsive location;
we decided not to include the data in the study, and provide
the related findings in Supplementary Material (Supplementary
Figure S3). In summary, the present work relies on four datasets:
P2, P4, P5, and P6b.

Recordings
Implanted subdural grids (from PMT Corp., Chanhassen, MN,
United States) were approved for human use and consisted of
platinum-iridium electrodes (4 mm diameter, 2.4 mm exposed)
that were embedded in silicone and spaced 6–10 mm from each
other in five patients (P1, P3, P4, P5, and P6) and 3 mm in subject
P2. Reference and ground were subdural electrodes distant from
the epileptogenic area. Grid placement and duration of ECoG
monitoring were determined to meet the requirements of the
clinical evaluation.

Recordings were conducted at the patient bedside using
BCI2000 (Schalk et al., 2004; Schalk and Mellinger, 20101).
Electrocorticographic signals were amplified using a 256-channel
g.HIamp biosignal acquisition device (g.tec, Graz, Austria) and
digitized at a sampling rate of 1200 Hz.

Sensor co-registration with cortical anatomy involved pre-
operative magnetic resonance imaging (MRI) scans and post-
operative computed tomography images (CT; Kubanek and
Schalk, 2015), and was achieved using SPM82. Supplementary
Figure S1 shows for each patient the resulting estimates of 3D
stereotactic coordinates overlaying cortical brain mesh extracted
from individual MRI scans using FreeSurfer3.

Experimental Procedure
Each patient underwent one recording session with four runs,
except for patients P1 and P6 who received two sessions

1https://www.bci2000.org
2https://www.fil.ion.ucl.ac.uk/spm/
3http://surfer.nmr.mgh.harvard.edu
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FIGURE 1 | (A) Experimental Design. Schematic view of the predictability manipulation (chunk level) applying to typical oddball sound sequences (tone level).
Predictable context (left, green) involves cycles of ordered transitions between segments of repeating standards (chunks), which become shuffled in the
Unpredictable context (right, red). Average deviant probability remains the same in both contexts (p = 1/6). Gray rectangles delineate an exemplary cycle for both
sequences. S: Standard, D: Deviant. (B) Examples of regressors for the static (top), exponential (middle), and dynamic (bottom) categories. Each trajectory was
simulated with the first 100 tones of one subject in context UC, depicted in the upper panel following the standard/deviant representation in panel (A). In the static
category, deviant regressor is shown in blue (standard regressor is not displayed for convenience, as it mirrors deviant regressor). Exponential rank and chunk size
regressors are presented in pink and purple, respectively. Regarding the learning regressor, three examples of Bayesian Surprise trajectories are provided, and were
generated from different time constant values (parameter τ in (Eq. 3); 10,20 and 50: from dark to light gray).

separated by 3 days (four runs each) and 1 day (two and six
runs), respectively.

Brain activity was recorded during an auditory oddball
paradigm originally developed by our group (Lecaignard et al.,
2015) and slightly modified here (see Figure 1A). Participants
were instructed to ignore the sounds and watch a silent movie of
their choice with subtitles. Each session lasted∼50 min, including
short breaks between runs. In the previous EEG-MEG study
(Lecaignard et al., 2015), subjects were asked at the end of the
experiment, to report to which extent they had been following the
instruction to ignore the sounds and whether they had noticed
the different sound attributes. Here, given the constraints related
to the patients’ condition and the acquisitions conducted in

a clinical context, these verifications were validated orally but
we could not have an precise description of the participants’
sensory experience.

Auditory sequence in every run consisted of sounds (70 ms
duration, 500 ms interstimulus interval) with repeating standard
(500 Hz or 550 Hz) and unexpected frequency deviants
(550 Hz or 500 Hz, occurrence probability p = 1/6). As
shown in Figure 1A, in the predictable context (PC), deviants
were delivered according to an incrementing-decrementing rule
applied to the size of repeating standard segments (or chunks)
while they were pseudo-randomly distributed among standards
in the unpredictable context (UC). We considered specific
controls for the number of standards between two deviants

Frontiers in Human Neuroscience | www.frontiersin.org 4 February 2022 | Volume 15 | Article 794654186

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-794654 February 5, 2022 Time: 14:55 # 5

Lecaignard et al. Trial-by-Trial Modeling of Mismatch Responses

in context UC to ensure that despite their differing statistical
structure, both sequence types (UC, PC) had the same deviant
probability and the same distribution of chunk size (varying
from 2 to 8 standards). Each context (UC, PC) was delivered
in two runs to enable reversing the role of the two sounds
(500 Hz/550 Hz; standard/deviant). Further details about stimuli
and sequences can be found in Lecaignard et al. (2015). We
used BCI2000 to deliver the acoustic stimuli that were presented
binaurally through headphones.

Data Processing
We used the MNE software for electrophysiological analysis
(Gramfort et al., 2013) for raw data conversion to BIDS format4

and data preprocessing. Continuous recordings were band-pass
filtered using a zero-phase finite impulse response (FIR) filter
with Hann window in the 0.5–100 Hz band, notch-filtered at
60 Hz, 120 Hz, 180 Hz, and 240 Hz using a zero-phase FIR
notch filter (stop band width at each frequency = 6 Hz) to
remove the power line harmonics artifacts, and downsampled to
400 Hz. We excluded electrodes close to epileptogenic zones or
electrodes whose ECoG signals were clearly artifactual based on
visual inspection of the power spectral density. Time segments
with obvious noise from electrical, mechanical or muscular
origin were also rejected. Electrocorticographic recordings were
referenced to the common averaged reference (CAR). We then
extracted 600-ms-long epochs around the onset of the auditory
stimuli (-100 to 500 ms around stimulus onset). Trial rejection
was based on a peak-to-peak (maximum–minimum amplitude
within epochs) threshold procedure applied to ECoG data: for
each subject (except P2, see below), we first calculated for each
location the distribution of peak-to-peak amplitudes over epochs.
Next, at the level of the group of locations, we calculated the
global distribution of mean values as well as that of outliers
(two standard deviations from the mean). We rejected locations
if their mean was found outlying the global mean (we call
them as bad sensors). For the remaining locations, we used
the outlier amplitude of the global outlier distribution as the
threshold above which data segments were next rejected. The
overall approach yielded the following threshold and rejection
percentage: (364 uV; 26%), (330 uV; 19%), and (722 uV; 21%)
for patients P4, P5, and P6b, respectively. In patient P2, data were
contaminated by a lot of spikes; hence, we applied a threshold
of 500 uV and obtained 39% of trial rejection. Regarding
the datasets that were excluded, we obtained (586 uV; 16%),
(461 uV; 16%), (742 uV; 13%), and (552 uV; 18%) in P1a,
P1b, P3 and P6b, respectively. CAR referencing applied to the
resulting sensor set.

We next applied a 2–20 Hz pass-band filter (zero-phase FIR)
to continuous data, downsampled to 200 Hz for data reduction
purpose and extracted the 600-ms epochs around the accepted
trials resulting from the above-mentioned procedure. Finally,
artifact-free and baseline-corrected epochs ([–100 +500] ms
corresponding to Ns = 120 time samples) were exported into
SPM122.

4https://bids.neuroimaging.io/

Rationale of the Modeling Approach
In order to test Bayesian learning as the perceptual model the
brain would use when exposed to oddball sounds, as well as its
automatic modulation under predictability (as we found using
EEG-MEG), we considered a modeling framework based on
advanced Bayesian methods and applying to single-trial activity.
We here introduce to the overall procedure, which is depicted
in Figure 2.

Single-trial activity here corresponds to the signals measured
at ECoG sensors and induced by the presentation of a single
stimulus. Single-trial signals are naturally relevant to investigate
the functional interpretation of trial-by-trial fluctuations, that
should reflect the updates of computational (learning) quantities
if the brain was to entertain such learning. In this paper, the
notion of dynamics refers to the temporal dependencies that
take place over the time-course of the experiment (meaning that
trial order matters). Considering that time-dependent influence
is also critical for learning, we refer to dynamic or learning
process equivalently. Dynamic processes differ from static ones
where in this case past experience is not accounted for in
stimulus processing. It should be noticed that the dynamic-based
examination of brain activity is not possible using typical evoked
responses, as the averaging of single-trial content is precisely
meant to get rid of the dynamic information. In the following,
we will refer to trial-by-trial dynamics (or trajectory) as the time
series extracted over one or multiple experimental run(s) at a
particular sensor and a particular peri-stimulus sample. And
we will call data point the spatio-temporal location where it is
measured (one sensor, one peri-stimulus sample). An example
is illustrated in Figure 2 (panel “Single-trial responses”). In the
present work, there were Nt = 672 single trials per run, that
each involves a 600 ms temporal window (Ns = 120 peri-stimulus
samples). In total, for each participant, Nc × Ns trial-by-trial time
series contributed to the present findings, with Nc the number of
good channels (retained after artifact rejection).

The above-cited trial-by-trial modeling studies that have been
conducted using oddball paradigms confronted brain signals
(single-trial dynamics) with several model predictions that each
reflected a possible account of sound processing (Ostwald et al.,
2012; Lieder et al., 2013; Stefanics et al., 2014; Meyniel et al., 2016;
Sedley et al., 2016; Weber et al., 2020; Lecaignard et al., 2021b).
Typically, each model was treated separately and Bayesian model
comparison (Penny et al., 2010) was then employed to select
which one was more likely to have generate the observed data.
Here, we considered a different approach based on a GLM in
order to evaluate the contribution of each cognitive account
to the data, in a way that does not preclude a mixture of
several ones (thanks to the linear combination). We expected
this scheme, because it is more flexible, to provide a finer spatio-
temporal description of the mechanisms underlying oddball
sound processing.

As can be seen in Figure 2 and as will be described in
Section “Statistical Model,” we first considered a GLM comprising
six different regressors (each detailed below) and that we call
the “full model.” For each participant (P2, P4, P5 and P6b),
it was fitted to the trial-by-trial activity extracted at each data
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FIGURE 2 | Overview of the trial-by-trial modeling approach. From left to right. Stimulus sequences: Four illustrative runs of an experimental session are
represented vertically with standard and deviant indicated by gray and white squares, respectively, and UC and PC contexts delineated by red and green rectangles,
respectively. Electrocorticographic sensor overlay on a brain cortical surface (from participant P5) indicates the sensors classified as bad (red) and those retained for
the modeling (black). Single-trial responses: 2D map of single-trial activity (uV) measured at the highlighted sensor on the brain surface (large black dot). Each row
represents the 600 ms epoch of signal elicited by a stimulus of the oddball sequence (first and last trials are shown with dotted arrows). Bad trials (orange lines) are
included in the modeling as trial order matters in dynamic processes (the related noisy signal is not accounted for). Full model (GLM): an example of design matrix
(X) is provided (right) showing typical regressor trajectories (columns) over trials (rows). Data to be fitted (y) pertains to the trial-by-trial time series extracted at a
particular latency (vertical black line overlaying the 2D single-activity map). Step 1, Full model fitting and selection of data points: data point is found responsive
to the full model if goodness of fit is larger than 5%. In this case, the model comparison procedure (steps 2 to 4) is performed. Step 2, Bayesian model reduction:
left panel (model space): each model (row) corresponds to a nested version of the full model obtained by switching ON (black) and OFF (white) the different
regressors. Bottom row represents the full model (all regressors are ON). Right panel: BMR is applied to each nested model to derive the free energy and posterior
estimates of model parameters. Step 3, Model comparison: for each regressor, two families are compared using family-level inference (Penny et al., 2010). The ON
family (indicated here for the dynamic regressor, with BS denoting the Bayesian Surprise) includes all the ON models (black) with associated free energies as
indicated with the dotted red lines. The OFF family is defined similarly based on the OFF models (white). Step 4, Posterior probability map: Posterior probability of
the ON family is then computed at each responsive data point to derive a spatio-temporal map of the regressor’s relevance. At each sensor (y-axis) and each
peri-stimulus latency (x-axis), color intensity (from blue to pink) reflect the posterior probability (in [0, 1]). White points corresponds to untested data points due to an
unreliable fitting of the full model (unresponsive data point). All maps in this figure are shown with arbitrary color scales.

point (defined in space and time at all good sensors and all
peri-stimulus samples). If the resulting goodness of fit was
acceptable (according to a criterion described in Section “Data
Point Selection”), the data point was considered as model
responsive and included for subsequent analysis. The latter aims
at identifying the regressor(s) responsible for such responsiveness
and rests on steps 2 to 4 of our methodological framework
depicted in Figure 2 (right panel). In step 2, we considered
alternative models of the full one, obtained by switching ON
and OFF the contributions of all regressors; we employed
Bayesian Model Reduction (BMR; Friston et al., 2016) to derive
efficiently specific Bayesian quantities that are necessary for the
model comparison that comes next. Precisely, model comparison
(step 3) was then conducted for each regressor independently
at the level of families of models, grouping models where the
regressor of interest is present (we will refer to the ON family)

and models where it is not (the OFF family). Using family-
level inference (Penny et al., 2010), we obtained the posterior
probability of the ON family which quantifies how likely the
regressor is to have contributed to the data (note that the sum
of the ON and OFF family posterior probabilities is equal to
1). Applying this scheme (step 1 to step 3) to all data points
(step 4) yields a spatio-temporal description of the regressor’s
relevance. Such posterior probability map (referring to the ON
family) could be computed for each regressor. For sake of
clarity, the notion of model will now refer to the GLMs (the
full or nested variants) and we will use the term “regressor” to
mention the different accounts of sensory processing that we test
(some of them were tested as separate “models” in the above-
mentioned trial-by-trial studies). This terminology emphasizes
the fact that current alternative accounts are not tested as
competing in this work.
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This modeling approach was first applied to data in both
contexts (UC and PC, four runs) to examine sensory processing
and test it as Bayesian learning. This analysis is called GLM
analysis and is described in Section “Assessing Dynamic, Static,
and Exponential Contributions (GLM Analysis).” We then
addressed the adaptation of sensory processing (of Bayesian
learning in particular) under predictability in a second analysis
(Predictability analysis) described in Section “Automatic Context
Adaptation of Sound Processing (Predictability Analysis).” In
this case, we first inverted data in context UC (two runs)
to derive estimates of model parameters and these were
next used as priors for model inversion in context PC (two
runs). In this way, the ON family for one regressor gathers
models where its related coefficient could depart from UC
prior. The resulting posterior probability map (step 4) thus
smartly indicates where and when the cognitive account
of sensory processing associated to the regressor is shaped
by predictability.

Statistical Model
We considered a general linear model (GLM) of the form:

y = h0X0 + hBSdynX
BS
dyn +

∑
i∈{std,dev}

histaticX
i
static

+

∑
i∈{rnk,cs}

hiexpX
i
exp + ε (1)

Where y is the trial-by-trial time series measured at a given
ECoG location and a particular peristimulus time sample across
all trials (for each subject, for each sensor, for each run and
for each of the Ns = 120 samples spanning the [–100 +500] ms
epoch, y is a vector of size Nt = 672 trials). All parameters of the
linear combination (denoted h∗∗) are defined as Gaussian random
variables and ε is a Gaussian measurement noise. Regressors (X∗∗)
all consist in trial-wise trajectories, each representing a candidate
explanatory factor (Figure 1B). First term in equation (Eq. 1)
corresponds to the mean factor, with X0 being a unit vector.
Below, we present the five regressors that we aimed to assess, and
that we grouped in three categories:
• Dynamic regressor (XBS

dyn)
This category involves a learning regressor deriving from an

internal generative model that assumes that the brain learns
from each stimulus presentation the probability µ to have a
deviant to predict the next stimulus category U (with Uk = 1
in the case of trial k corresponding to a deviant and Uk =

0 in the case of a standard). We define U ∼ Bern (µ) with
Bern the Bernoulli distribution, and µ ∼ Beta (α, β) with α

and β the parameters of the Beta distribution corresponding
to deviant and standard counts at trial k, respectively (Eq. 3).
Regressor reflects a precision-weighted prediction error at every
sound of the oddball sequence, which expresses as a Bayesian
Surprise (BS; Ostwald et al., 2012). In short, BS quantifies the
belief updating on µ as it corresponds to the Kullback-Leibler
divergence between the prior and the posterior Beta distributions
over µ. At trial k, following the observation of sound input Uk, it

writes:

BS (Uk) = log

(
0
(
αk−1 + βk−1

)
0 (αk + βk)

)
+ log

(
0 (αk)

0
(
αk−1

))

+ log

(
0 (βk)

0
(
βk−1

))+ (αk−1 − αk
) [

ψ
(
αk−1

)
− ψ

(
αk−1 + βk−1

)]
+ (βk−1 − βk)

[
ψ(βk−1)

− ψ(αk−1 + βk−1)
]

(2)

Where 0 and ψ are the Gamma and Digamma Euler
functions, respectively. Internal states α, β are updated as well as
XBS

dyn is augmented as follows:
αk+1 = Uk + e−

1
τ αk

βk+1 = (1− Uk)+ e−
1
τ βk

Xdyn,k+1 = BS
(
Uk,αk, βk, τ

) (3)

Full description of the model is provided in our previous EEG-
MEG work (Lecaignard et al., 2021b). As can be seen from
equation (Eq. 3) and in Figure 1B (lower panel), standard and
deviant counts vary with model parameter τ, a time constant that
enables controlling the relative influence of past events in belief
updating. It can be viewed as the size of the temporal integration
window (or memory span). In our previous EEG-MEG study,
a more predictable sequence was found to yield an increase in
τ, which is consistent with the idea that the more regular or
structured the sensory environment, the more one should rely on
past events to form predictions. In the following, since regressor
XBS

dyn is the only one to be both dynamic and the output of a
generative learning model, it will be called the dynamic or the
learning regressor equivalently.
• Static regressors (Xstd

static, Xdev
static)

We here include two regressors to classify trials according
to the actual sensory input (a standard or a deviant sound).
Xstd

static equals 1 at every occurrence of a standard stimulus,
and 0 at every occurrence of a deviant stimulus. Xdev

static is the
complementary of Xstd

static (it is equal to 1-Xstd
static). Although their

respective trajectory is not constant (Figure 1B, upper panel), we
consider these two regressors as static in the sense that they do not
incorporate any time dependency but simply capture stimulus
category. They are similar to the ‘change detection’ regressors
defined in previous MMN modeling studies (Lieder et al., 2013;
Stefanics et al., 2018; Lecaignard et al., 2021b). They indeed get
close to the actual definition of the MMN and the way (averaged)
oddball responses are traditionally computed, although typical
studies usually discard the first standard following a deviant or
even sometimes all standards but the one just preceding a deviant,
precisely to get rid of time-dependent (dynamic) effects.
• Exponential regressors (Xrank

exp ,Xcs
exp)

Introducing this additional category was motivated by well-
established MMN findings, namely that standard responses
decrease over stimulus repetitions (Grill-Spector et al., 2006) and
that the MMN amplitude increases as the number of standards
preceding a deviant (chunk size) increases (Sams et al., 1983).
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Note that these inter-trial modulations cannot be predicted by
the above static regressors (Xstd

static, Xdev
static), but could coincide

with the predictions from the above dynamic (learning) factor,
as was found in Lecaignard et al. (2021b). However, for a fair
examination of brain signal dynamics in relation to these MMN
findings, we considered two additional regressors accounting
for standard repetition effects and deviant history, while not
reflecting some output from a specific cognitive process. They
concern the rank of stimulus repetition, where at trial k,
rank (Uk) is defined as the within-chunk number of presentation
of current stimulus Uk, and chunk size, where cs (Uk) is the
size of the current chunk. Both rank and chunk size can take n
values in the 2–8 range (they are defined ad-hoc as no generative
model is involved here). We used exponential rather than linear
factors because of recent EEG findings in the visual modality that
showed that these regressors clearly best explain the repetition-
suppression effect and its modulation by the number of standard
repetitions (Stefanics et al., 2020). Thus, we defined regressors
Xrank

exp and Xcs
exp as the normalized mean-centered exponential

function of trial rank and trial chunk size, respectively. At trial
k, we have:

Xrank
exp (Uk) =

exp
(
rank (Uk)

)
− 1/n

∑n
i=1 exp(rank (i))

exp(max(rank (U)))

Xcs
exp (Uk) =

exp (cs (Uk))− 1/n
∑n

i=1 exp(cs (i))
exp(max(cs (U)))

(4)
It should be noticed that since deviant is of rank 1, the only way
to account for different brain responses to deviant and standard
following a deviant is to involve a mixture of the rank regressor
with either the chunk size or the static regressors (our modeling
procedure is precisely equipped to test such hypothesis). As can
be seen in Figure 1B, the rank regressor (middle panel, pink
trace) shows a possible dynamics for the expected standard-to-
standard variations (as amplitude increases over repetitions, we
would expect a negative posterior estimate for coefficient hrankexp )
that differs from the BS one (lower panel). Similarly, chunk
size regressor (purple) assigns different amplitude to deviants
depending on local past experience. The two exponential factors
thus enable testing a conservative approach as the learning factor
will now be proved explanatory only if it captures trial-wise
fluctuations that are not captured by these more traditional
factors (May and Tiitinen, 2010).

In sum, our model (that we denote as the full model) enables
mixing competing trial-based covariates to refine the spatio-
temporal description of cognitive processes engaged during the
current oddball sequence exposure. The static category contrasts
with the other two as related regressors Xstd

static and Xdev
static are

not equipped to capture time-dependent or trial order effects.
Besides, the dynamic and exponential categories differ in their
predictions of inter-trial fluctuations: dynamic regressor XBS

dyn is
computed as the output of a generative model implementing
the learning of stimulus regularities whereas the exponential
regressors are not directly computationally interpretable (Xrank

exp
and Xcs

exp do not map onto cognitive mechanism). In the
following, we provide in detail the modeling approach that we

used to assess the contribution of each regressor over space and
time to the ECoG data.

Assessing Dynamic, Static, and
Exponential Contributions (GLM
Analysis)
This first analysis aims at characterizing sensory processing
during an oddball sequence (whatever the predictability
manipulation, considering both contexts UC and PC), and
testing in particular the Bayesian learning of deviant probability
that we could evidence previously using EEG and MEG
(Lecaignard et al., 2021b). We evaluate the relevance of each
linear regressor (n = 6; XBS

dyn, Xstd
static, Xdev

static, Xrank
exp , Xcs

exp and
X0 = 1) to account for trial-to-trial fluctuations. Each evaluation
involves nested versions of the full model, that we compare
using Bayesian model comparison and family-level inference
(Penny et al., 2010).

First, we here describe the model space for this GLM analysis,
followed by a description of model inversion. Next, we present
the family-level inference procedure performed for each regressor
to assess its contribution to the observed data. Finally, we provide
the details of two additional studies that were conducted to
refine our analysis. The first one is based on simulated data
and aims at controlling the ability of our approach to separate
models (to infer the true generative model). The second consists
in replicating the GLM analysis without including the learning
regressor to test the specificity of its trial-by-trial dynamics
compared to those of exponential regressors.

Model Space
Recently, a novel approach proved efficient to test the relevance
of GLM factors, that frames this question in terms of model
comparison (Friston et al., 2016, 2018). Precisely, for each
regressor, we consider two GLM: one where the regressor is
present (or switched ON) and one where it is absent (or switched
OFF), using non-null and null coefficient h∗∗ in equation (Eq. 1),
respectively. Applying the ON/OFF scheme to all regressors,
we could build a model space with all possible combinations
(Nm = 26

= 64 models), depicted in Figure 2 (right panel). As
we shall see, evaluating the relevance of one regressor amounts
to comparing in a Bayesian model comparison fashion the 32
models where it is ON with the 32 other ones where it is OFF
(Figure 2, panel “Model Comparison”).

Model Inversion
First, we fitted the full model to the ECoG signals in both
contexts PC and UC, for each retained data point (that is, for
each of the Ns = 120 peri-stimulus time sample of each accepted
sensor). We used a Variational Bayes (VB) scheme implemented
in the VBA toolbox (Daunizeau et al., 2014). Gaussian prior
distributions were employed for every coefficient parameter, all
with zero mean and non-null variance (h∗∗ ∼ N (0,5)). We use
a similar Gaussian prior for the learning parameter (log(τ) ∼
N (2,5)). Data involved UC and PC runs (two runs per condition)
and inversion was achieved in the following fashion: each run
(Nt = 672 trials) was treated independently (model fit always
starts with the above-mentioned priors) but posterior estimate
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of each regressor coefficient accounts for the entire set (the four
runs). Bad trials were ignored to avoid contaminating model fit
with noisy signals but corresponding stimuli still entered model
dynamics as they were observed by the brain. At convergence
of the VB scheme, model inversion provides the Free Energy
approximation of the log-model evidence (Friston et al., 2007),
the percentage of explained variance afforded by the model
(denoted R2) and the posterior distributions of model parameters
(τ, h0, hBSdyn, hstdstatic, hdevstatic,hrankexp , hcsexp). Data point selection was
based on full model responsiveness, defined using a threshold
on R2 (5%; more details about data selection is provided in
Section “Data Point Selection”). Next, regarding the 63 nested
models, we employed Bayesian Model Reduction (BMR; Friston
et al., 2016) to derive analytically the (reduced) free energy and
posterior estimates for each model from those obtained with
the full model inversion. BMR affords a great gain in terms of
computational resource (only the full model is to be inverted)
and has been shown to provide better results than VB nested
model inversions that involve iterative optimization procedure,
with possibly the undesirable issue of local minima convergence
(Friston et al., 2018). In practice, for each switched-OFF regressor,
prior distribution of the corresponding regression coefficient was
set to h∗∗ ∼ N (0,0) with the null variance forcing posterior
estimate to stick to the null prior mean. Prior distribution for the
switched-ON regressors was equal to (h∗∗ ∼N (0,5)).

Family-Level Inference
For each regressor, model comparison relied on family-level
inference to compare the ON and OFF families of models,
defined by grouping the 32 ON models and the 32 OFF models,
respectively (Figure 2, panel “Model comparison”). Family
comparison was based on the Nm = 26 free energies described
above (full and reduced values). Applying the softmax function
to these free energies enables computing the posterior probability
of the ON family. The larger the ON posterior probability,
the more likely the corresponding regressor contributes to the
observed data. We performed ON/OFF family comparison for
each regressor to derive the 6 ON posterior probabilities. They
enabled us to examine the relevance of each corresponding
hypothesis for sensory processing. Importantly, this scheme (6
ON/OFF family comparisons) was performed independently at
every responsive peri-stimulus time point at every good electrode,
in the aim to finely describe spatio-temporally oddball processing
on a single-trial basis. For sake of clarity, the notation “family
X∗∗ = ON” will be used in what follows to differentiate between
families when necessary.

Finally, Bayesian model averaging (BMA; Penny et al., 2006)
provides the posterior estimates of model parameters averaged
across model space (with model-evidence weighting based on the
full and reduced free energies).

Model Separability (Simulation Study)
We investigated the ability of the above-mentioned procedure
to recognize the respective contribution of each regressor, in
particular with the present case of single-trial signals (as will be
seen, the full model inversion yields rather low goodness-of-fit).
To do so, we considered BMA posterior estimates of regressor

coefficients measured at a particular time point on one electrode
in a given participant. The full model was used with these values
to generate 100 datasets, each made of two runs per context (UC
and PC) using the exact stimulus sequences delivered to that
patient. Critically, Gaussian noise was added to the synthetic data
and its variance was adjusted so that the percentage of variance
explained by the full model when inverting this synthetic set was
of the same order of magnitude as the one measured with the real
data. Values of R2 (from observed and synthetic data inversion)
as well as measurement noise precision are provided in Table 2.
We refer to these simulated data as the full data with regard to
their generative model. We then generated another 100 datasets
using only a dynamic contribution (τ, h0,hBSdyn were equal to the

BMA values while hstdstatic, hdevstatic, h
rank
exp and hcsexp were set to 0); we

refer to them as the learning data. Last, we generated 100 datasets
using only static and exponential contributions (hstdstatic, hdevstatic,

hrankexp and hcsexp were equal to the BMA values while hBSdyn was set
to 0); we refer to them as the non-learning data. Each of the 300
datasets was confronted to our procedure (full model inversion,
BMR and family-level inference). Within each generative model
case (full, learning, non-learning), we conducted family model
comparison for each regressor. We used a random-effect (RFX)
model (Penny et al., 2010) to treat independently each of the
100 simulations.

We applied this scheme to three data points in particular
(Figure 3A) at which we found strong evidence for both
standard and learning (case 1, a posterior temporal electrode
in P5 at 130 ms), for learning only (case 2, posterior temporal
electrode in P5 at 180 ms), and for standard only (case 3,
posterior temporal electrode in P4 at 150 ms). Values of R2 and
BMA estimates of τ, hBSdyn and hstdstatic obtained from real data
fitting are provided in Table 2. Applying the above-described
modeling procedure to the resulting synthetic datasets, we
would conclude in favor of model separability afforded by our
modeling approach if for each case we could select the true
regressor(s) and reject the null ones in the full, learning and
non-learning RFX analyses.

The selected values for noise precision yielded R2 values
that were found on average over simulations close to the
observed data value, suggesting that we succeeded in generating
similar conditions of data fitting between predicted and observed
conditions (Table 2). For each case, RFX family inference
(Figure 3D) indicated that contributions from dynamic and
standard regressors could be retrieved when present in the true
model (posterior exceedance probability = 1.0). In all three
cases however, the different posterior probabilities for family
XBS

dyn = ON obtained over simulations showed values between
0.4 and 1.0 (Figure 3C and Table 2). It is important to
acknowledge this variability and keep in mind that real data
inversion could well yield a posterior probability value within
that range. Regarding the learning data, very poor goodness-
of-fit was found over simulations (mean R2 = 0.2%) in case
3. This was expected as these data were generated with no
contribution from the dynamic regressor. We obtained similar
results with the non-learning data in case 2 (mean R2 = 0.2%).
Importantly, as can be seen in Figure 3, learning and non-learning
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TABLE 2 | Parameters and results obtained in the simulation study.

ECoG inversion Simulations Full Learning Non-learning

Noise precision 0.004 0.004 0.004

Case 1 R2 14.7 R2 (mean) 13.0 6.9 2.0

Pp XBS
dyn / Xstd

static > 0.99 / 0.86 XBS
dyn Pp range 0.4–1.0 0.4–1.0 0.0–0.1

BMA log(τ) 3.853 RFX 1.0 1.0 0.0

hBS
dyn –0.128 Xstd

static Pp range 0.3–0.7 0.0–0.0 0.0–1.0

hstd
static 0.006 RFX 1.0 0.0 1.0

Noise precision 0.003 0.003 0.003

Case 2 R2 12.6 R2 (mean) 12.2 12.1 0.2

Pp XBS
dyn / Xstd

static > 0.99 / 0.002 XBS
dyn Pp range 0.4–1.0 0.4–1.0 0.0–0.0

BMA log(τ) 2.870 RFX 1.0 1.0 0.0

hBS
dyn –0.094 Xstd

static Pp range 0.0–0.0 0.0–0.0 0.0–0.0

hstd
static 0.000 RFX 0.0 0.0 0.0

Noise precision 0.002 0.002 0.002

Case 3 R2 15.9 R2 (mean) 16.1 0.2 16.4

Pp XBS
dyn / Xstd

static 0.15 / > 0.99 XBS
dyn Pp range 0.0–0.1 0.0–0.1 0.0–0.1

BMA log(τ) 2.761 RFX 0.0 0.0 0.0

hBS
dyn 0.000 Xstd

static Pp range 0.0–1.0 0.0–0.0 0.0–1.0

hstd
static 0.026 RFX 1.0 0.0 1.0

Three simulation analyses (Case 1, Case 2 and Case 3) were performed using different model parameter values inferred from ECoG data (see Figure 3A). For each case
(rows), specific findings from ECoG inversion are provided (left): explained variance of full model fitting (R2) expressed as percentage, family ON posterior probability (Pp)
for the learning and standard regressors, and BMA estimates of model time constant (τ), learning and standard regressor coefficients. Simulation results obtained from
fitting the synthetic datasets generated with the full, learning, and non-learning GLM are provided (right). Measurement noise precision corresponds to the inverse variance
of the Gaussian noise added to the synthetic data. R2 corresponds to the average over the 100 simulations. Pp range: minimum and maximum posterior probability
values of family ON observed over the 100 simulations. RFX: posterior exceedance probability of family ON resulting from model comparison performed over the 100
simulations. XBS

dyn, Xstd
static, hBS

dyn, hstd
static and τ correspond to GLM parameters described in the main text.

data inversions yielded RFX family comparison that always
indicated strong evidence for the true contributing regressor
and poor evidence for the non-contributing ones. Overall,
these findings demonstrate the reliability of this scheme (full
model inversion, BMR and family-level inference) for single
trial data analysis.

Specificity of the Bayesian Surprise Dynamics
The learning regressor was found necessary to account for trial-
by-trial data in a spatially restricted but robust fashion (posterior
probability of ON family ≥ 0.9), while the exponential ones
could be clearly rejected. To better understand this effect, we
next examined the specificity of the BS time course over trials
in comparison to the exponential ones (Figure 1B). In other
words, we assessed whether the exponential contributions could
provide a better fit when taking the learning factor out of the
model (in this way, we derive a model space comparable to
the one used in the study by Stefanics et al. (2020), where the
exponential model was found winning). We thus ran another
time the ON/OFF family comparison (Figure 2, step 3) for each
regressor and at each responsive data point, over the subset

of model space where XBS
dyn was absent (Nm = 32). Increased

evidence for the Xrank
exp = ON and Xcs

exp = ON families would
indicate the relevance of a dynamic trajectory, be it exponential or
learning-based. On the contrary, similar rejection of exponential
regressors as when learning is present would point to the BS
specificity and strengthen the finding of a contribution of the
learning regressor.

Automatic Context Adaptation of Sound
Processing (Predictability Analysis)
This second analysis pertains to the modulatory effect of
predictability on learning, an effect measured at the group-
level using EEG-MEG recordings. In this previous work, we
considered a learning model that expresses as the present GLM
(Eq. 1) reduced to the X0 and the XBS

dyn contributions. Each
context (UC, PC) was treated separately and we tested for a
difference in the resulting posterior estimates using an ANOVA.
Such a predictability effect could be observed at the group-level as
a difference in the posterior estimates of the learning parameter τ

between contexts (we found τPC > τUC).
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FIGURE 3 | Simulation findings. (A) Simulations were based on parameter values inferred from ECoG data fitting. Three cases were considered. Case 1 and Case 2
concern one sensor in P5, highlighted on the cortical surface (same display as in Figure 5A). Corresponding evoked responses at this sensor (average response
across contexts UC and PC), for standard (green), deviant (purple) stimuli, and their difference (red), and posterior probabilities at peri-stimulus samples for the
learning (brown), standard (orange) and deviant (yellow) regressors suppress (color code provided on the figure). Case 3 derived from one sensor in P4 (right). Cases
are presented in columns in panels (B–D). (B) Percentage of explained variance when fitting the full model to 100 simulated data (x-axis) generated from the full
(blue), learning (red) and non-learning (yellow) models. (C) Posterior probability of each regressor (following the legend provided) for each simulated data with the full
model. (D) Posterior exceedance probability for each regressor (y-axis) computed from family-level inference (RFX) performed over the 100 simulations generated
from the full, learning and non-learning models (x-axis).

Here, to assess the difference in auditory processing between
the two contexts, we adopt a different procedure inspired
from typical analysis using dynamic causal models, where
one experimental condition is defined as the basic process
performed by the brain while the other condition is treated
as perturbing this basic state (Garrido et al., 2009a; Kiebel
et al., 2009). The strength of such approach lies in the fact
the identification of specific model parameter(s) that capture(s)
the difference between conditions is itself informative about
the mechanisms behind such different processing. Not only
this approach accounts very well for the expected predictability
effect that we seek (an automatic adaptation of typical oddball
processing through the modulation of the learning process) but

also, from a methodological perspective, testing it can be handled
very nicely with the ON/OFF family-level inference procedure
deployed in the GLM analysis.

Precisely, we here started fitting only the UC data using
the same priors as defined in the previous section, and the
resulting estimates of model parameters (regressor coefficients
and learning parameter τ) enabled to characterize a baseline for
oddball processing. These values were next used as priors to fit
the GLM with the PC data; here again the full model was inverted
using a variational approach and the nested ON/OFF models
were treated using BMR. The ON/OFF family comparison
scheme was applied to model parameters (this time including
τ) in context PC. Importantly, since priors were no longer null
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(depending on UC data), the ON/OFF family comparison now
enables testing the conformity/departure from priors resulting
from the posterior estimates after fitting UC data, which speaks
to the absence/presence of predictability effect. In sum, we
here assess whether model parameters (the regressor coefficients,
and the learning rate τ) in context PC should depart from
baseline (UC) value in order to account for learning in a
predictable context.

In more detail, we restricted the analysis to data points where
evidence for learning was supported in the previous analysis.
We chose a threshold of 0.75 on family XBS

dyn = ON posterior
probability to that aim. For a fair examination of all predictability
effects, we also included data points showing evidence for other
contributing regressors (using the same threshold on posterior
probability). In sum, all data points showing at least one regressor
(except mean regressor X0) for which posterior probability of
the ON family was larger than threshold was included in the
present analysis.

Starting with context UC, we applied the procedure described
in Figure 2 (step 1 to step 3) to derive BMA posterior
estimates for every regressor coefficient. To obtain a fine estimate
of the learning parameter in that context, we used those
posterior estimates as priors over corresponding parameters in
a dedicated inference where (h∗ ∼ N (µh∗,BMA,5)) while keeping
an uninformative log-normal prior over the learning parameter
itself (log(τ) ∼ N (2, 5)). The resulting posterior mean estimates
were then used as prior means for subsequent inversions in
context PC. Regarding prior variance, an important distinction
was made between the learning and static investigations. For the
former, we expected predictability to affect learning parameter
but not the regressor coefficient. This is because τ is an evolution
parameter involved in the learning process (it shapes the effect of
learning over trials) while hBSdyn is an observation parameter used
to map hidden activity (here the BS) onto actual measurements
(at the sensor level). Contrary to the evolution parameter, this
observation one is meant to capture biophysical properties of
the data generative process that are unrelated to the cognitive
processes at play. This led us to set the following prior variance
(for convenience, notation hBSdyn has been reduced to dyn in
subscripts):

στ =

{
5 if XBS

dyn = ON
0 otherwise

σdyn = 0
(5)

For regressors Xstd
static, Xdev

static, Xrank
exp andXcs

exp, which do not
include any evolution parameter but a single observation one
(h∗∗), prior variances were set as follows:

σ∗ =

{
5 if X∗∗ = ON
0 otherwise

Similarly, we did not allow for offset parameter h0 to
vary between contexts, considering the prior distribution h0 ∼

N (µ 0,BMA, 0).

Following full model inversion in PC using these adjusted
prior distribution, the BMR and family-level inference procedure
(Figure 2, steps 2, 3) was performed to assess the relevance of the
evolution (τ) and observation (h∗∗) parameters. This procedure
was run separately for each parameter category. For the evolution
parameter τ, at every data point that showed a significant learning
effect in the previous GLM analysis (p(XBS

dyn = ON) ≥ 0.75),
family-level inference was run over a model space with 2 models
(τ being ON/OFF). Regarding the observation parameters,
similarly we selected data points that showed at least a significant
contribution of the static or the exponential models in the
previous GLM analysis. As the number of these effects varies from
one data point to another, the model space was therefore specific
to each of them (it comprises 2n models with n the number of
free parameters or, equivalently, the number of significant effects
at that particular data point).

We also considered testing the predictability effect on the
MMN component, as a significant reduction under context PC
was measured at the group-level using each EEG and MEG
modality separately (Lecaignard et al., 2015, 2021b). To that
aim, at the individual level, we focused on post-stimulus time
points in 100 and 200 ms where the MMN could be identified
in all participants (Figure 5B). For each sensor that exhibited a
learning effect in the GLM analysis (posterior probability larger
than 0.75) at least in one of these time points, we averaged
the [100 200] ms data for each accepted single trials. The
resulting values were then examined using an unbalanced two-
way ANOVA with a factor of stimulus type (standard, deviant)
and a factor of context (UC, PC) in MATLAB (R2017b, The
MathWorks Inc.).

Data Point Selection
Electrocorticographic grids provide a large number of electrodes,
in particular high-density grids such as the one used with
P2. For the sake of tractable computations as well as not to
draw conclusions out of very poor model fits, we restricted
the above analysis to ECoG electrodes with a fair amount of
explained variance. Indeed, single-trial modeling approaches
are quite recent, with no established standard regarding the
expected explained variance contrary to more conventional
ERP analysis. In a recent ECoG study (Sedley et al., 2016), a
linear model composed of learning-based regressors (surprise,
prediction error and precision trajectories) was applied to
time-frequency data and resulted in an explained variance
of the order of 2% or less, across subjects and electrodes.
Here we selected data points based on the percentage of
explained variance when fitting the full model to the pooled
UC and PC data. Inspection of R2 values obtained at each
sample, each sensor (Figure 4A) shows that R2 reached values
up to 37.2%.

We further computed the individual evoked responses to
standard and deviant sounds, and their difference exhibiting the
MMN. Overlaying R2 time series on these responses (resulting
from model inversions at each peri-stimulus time sample)
revealed that maximum R2 values did coincide with electrodes
and latencies showing the MMN (Figure 4B). Based on this
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FIGURE 4 | Data selection based on goodness-of-fit in the full model inversion. (A) For each patient, explained variance (R2 percentage value) measured at each
sensor (x-axis) for each peri-stimulus sample inversion (Ns = 120 black dots covering the [–100, 500] ms epoch per sensor). (B) Evoked responses elicited by
standard (green), deviant (purple) and their difference (red) for two unresponsive (in P1b, upper plot) and responsive (in P4, lower plot) sensors. These two sensors
are highlighted (red shaded areas) in panel (A). Black trace indicates the R2 time-course. Red horizontal lines indicate the 5% threshold. (C) Cortical surface with
sensor overlay in the four patients included in the present work. Selected sensors based on R2 thresholding are depicted in red, unresponsive and bad (rejected)
sensors are in black and white, respectively. The present findings were measured in the anterior (blue) and posterior (purple) temporal regions.

qualitative investigation, we decided to apply an R2 threshold of
5% for data selection. This value resulted in the rejection of all
data from P1a and P1b. In patient P3, only one electrode proved
above-threshold (5.8%; over 4 consecutive time samples from 180
to 195 ms, see Supplementary Material). Finally, 10, 28, 11, 18,
and 7 sensors fulfilled the selection criterion for patients P2, P4,
P5, P6a, and P6b, respectively.

The above-described simulation study could confirm the
validity of this data selection procedure with a 5% threshold for
explained variance to separate models reliably.

All selected electrodes were found distributed over
temporal regions (except for one parietal sensor in P4).
In the following, for convenience, we present the results
on those electrodes, which we split into two groups:
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FIGURE 5 | Mismatch evoked responses (2–20Hz). (A) Projection of difference responses (deviant–standard) around the MMN peak onto cortical surface (linear
projection based on sensor-to-mesh distance), for each patient (columns). Latency and amplitude range are provided for each patient. Sensor overlay: black and
white dots represent good and bad sensors, respectively. For each cortical map, black arrow points to a relevant electrode (green dot) showing an MMN, whose
evoked activity is provided in lower panel. (B) Average evoked activity across contexts (UC and PC) for standard (all of them including those of rank 1), deviant
stimuli, and their difference for each patient (column), at a particular electrode (highlighted in panel A). (C) Evoked standard and deviant responses at the same
electrode in context UC and PC. Panels (B,C): traces are baseline corrected (–100 to 0 ms) and follow the color code provided.

the anterior and the posterior part of the temporal lobe,
respectively (Figure 4C).

RESULTS

We report findings measured in four patients (P2, P4, P5, and
P6b), first identifying the relevant explanatory variables and
their spatio-temporal mapping (GLM analysis), and then testing
for the effect of our experimental manipulation (Predictability
analysis). Typical evoked responses to standard (occurring at any
position within a chunk) and deviant stimuli as well as their
differences are shown in Figure 5B, along with standard and
deviant waveforms measured in each context separately (UC, PC)
in Figure 5C.

Results in both sections below were obtained from selected
data points (see “Materials and Methods” section). We do not
report findings regarding the constant regressor (coefficient
h0 in Eq. 1); they are provided as Supplementary Material
(Supplementary Figure S4).

GLM Analysis
Responsive data points (R2 ≥ 5%) were all found in the
post-stimulus interval, at samples exhibiting the MMN in the
following time windows: 145–325 ms in P2, 100–335 ms in P4
(one anterior temporal sensor showed also later responsiveness
in 405–470 ms), 115–290 ms in P5, and 90-215 ms in P6b. We
start by presenting the family-level inference results obtained
with the ECoG data (UC and PC contexts) in the aim to assess the
presence of each regressor in the GLM. We next show the effect of
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switching off the contribution of the dynamic regressor onto the
estimated contribution of the static and exponential covariates in
order to test if the latter could compensate for the BS absence due
to the alternative dynamics they entail (Figure 1B).

GLM Analysis (Fitting UC and PC Data)
Figure 6 shows the posterior probability of families XBS

dyn =

ON, Xstd
static = ON, and Xdev

static = ON measured at responsive
time points in the anterior and posterior temporal clusters.
In the anterior region, there were 4, 11, 2, and 5 responsive
sensors (showing at least one sample with full model inversion
R2 ≥ 5%) in P2, P4, P5, and P6b, respectively. Across the four
subjects, the learning regressor (XBS

dyn) was not found relevant
at most responsive data points (median value of posterior
probability: 0.09), with only three data points showing posterior
probability larger than 0.5 (one sensor in P2, from 230 to
235 ms, p > 0.78; one sensor in P6b at 130 ms, p = 0.81).
In contrast, strong evidence for the standard regressor (Xstd

static)
was measured predominantly (median value = 0.72). Posterior
probability was found larger than 0.9 over at least one time point
in 2/4, 7/11, and 2/5 sensors in P2, P4, and P6b, respectively
(depicted in blue in Figure 6A). Regarding the deviant regressor
(Xdev

static), posterior probability median was found equal to 0.26;
data points showing values exceeding 0.9 could be found in P4
(one sensor at 425 ms), P5 (one sensor from 135 to 150 ms)
and P6b (2 electrodes, from 210 to 215 ms, and from 190
to 205 ms, respectively) (depicted in green in Figure 6A).
Concerning the exponential covariates (Xrank

exp , Xcs
exp), they both

showed low posterior probabilities across patients. Regarding
Xrank

exp , maximum posterior probability did not exceed 0.29 in all
patients, but P6b (0.87 at 170 ms). Similarly, maximum posterior
probability of Xcs

exp was smaller than 0.39 in all patients, but P2
(0.85 at one sensor, from 265 to 270 ms).

In the posterior temporal clusters, we report 4, 15, 9, and 2
responsive electrodes in P2, P4, P5, and P6b, respectively. No
clear evidence supporting family XBS

dyn = ON was found in P2
(maximum value of 0.83, at one sensor from 200 to 215 ms)
but in P4, P5, and P6b (each with maximum value of 1.0; 5/15,
8/9, and 2/2 electrodes above 0.9, respectively; depicted in red
in Figure 6B). Across subjects, this learning effect was spanning
from 85 to 215 ms (one sensor in P4 also showed posterior
probability larger than 0.9 from 140 to 270 ms). For the static
category, P4 showed 7/15 sensors with posterior probability
larger than 0.9 over at least one time point but this effect was
not found in the other three patients: maximum probability for
Xstd

static = ON was equal to 0.72, 0.86, and 0.72 in P2, P5 and P6b,
respectively. Regarding the deviant regressor, its contribution
was found relevant in 1/4 sensor in P2 (p > 0.92 from 155
to 185 ms) and 3/15 sensors in P4 (p > 0.91 from 125 to
135 ms; p = 0.95 at 130 ms; p > 0.98 from 150 to 155 ms)
but not in P5 and P6b (maximum posterior probability of 0.72
in both cases). In patient P4, 3 electrodes revealed learning
and static effects (depicted in purple and cyan in Figure 6B)
but not occurring at the same latency. For the exponential
models, two patients disclosed an effect for Xrank

exp = ON: in
P2, posterior probability was larger than 0.94 in 3/4 sensors

from 165 to 185 ms, and in P5, it was larger than 0.91 in 1/9
sensor from 150 to 170 ms. No evidence could be suggested in
P4 and P6b as maximum values were equal to 0.19 and 0.02,
respectively. For family Xcs

exp = ON, posterior probabilities were
all measured below 0.64, 0.06, 0.37 and 0.01 in P2, P4, P5 and
P6b, respectively.

Specificity of Bayesian Surprise Dynamics
As the above findings supported the learning of the deviant
probability (hence a dynamic process) in the posterior temporal
region, we next examined if the exponential regressors (Xrank

exp and
Xcs

exp) would be sufficient to capture this dynamics or whether
the proposed learning dynamics would still be required to better
explain the data.

Results are shown in Figure 7. First, it should be noticed
that in P2, family-level inference for each regressor (except
XBS

dyn) revealed similar results as the full model space analysis

(this can be seen for Xstd
static and Xdev

static by comparing posterior
probability maps between Figures 6, 7). This is because data in
this patient did not support the learning model (poor evidence
for XBS

dyn = ON). Based on findings in P4, P5 and P6b where it
was found relevant, we see that the exponential hypothesis could
be rejected: across these patients, median posterior probability
was equal to 0.005 and 0.004 for families Xrank

exp = ON, and
Xcs

exp = ON, respectively. On the contrary, the absence of learning
contribution tend to increase the estimated contribution of the
static family, as median posterior probability increases from 0.26
to 0.61, and from 0.14 to 0.55 for the standard and deviant
regressor, respectively (over P4, P5, and P6b). However, this
increase remains limited as when focusing on data points with
strong learning evidence (p(XBS

dyn = ON) ≥ 0.9), these median
values were found to change from 0.07 to 0.33 and from 0.03 to
0.40 for the standard and the deviant regressor, respectively.

Predictability Effect
In this second analysis, we test the hypothesis of an automatic
adaptation of sound processing in the predictable context. We
first report the analysis of the MMN component, followed by a
presentation of the single-trial modeling findings.

In the [100 200] ms window, there was 1, 6, 9, and 3 sensors
in participants P2, P4, P5 and P6b, respectively, that showed
a posterior probability of family XBS

dyn = ON larger than 0.75
over at least one time point. The ANOVA revealed a significant
main effect of stimulus type (standard, deviant) in all sensors
in all participants (p < 0.0001). Without correcting p-values for
multiple tests performed over sensors, no significant main effect
of the factor context (UC, PC) could be observed in P2, P5 and
P6b (P2: F(1,1638) = 0.99, p = 0.34; P5 (larger effect across the 9
sensors): F(1,2163) = 3.39, p = 0.07; P6b (larger effect across the
3 sensors): F(1,3195) = 4.96, p = 0.03). In P4, there were 5 out
6 sensors that disclosed a significant reduction of amplitude in
context PC (smaller effect across the 5 sensors: F(1,1987) = 8.42,
p<0.004; non-significant sensor: F(1,1987) = 0.49, p = 0.48). The
stimulus type by context interaction, which corresponds to the
predictability effect on the MMN, was not supported by any
sensors in all participants (P2: F(1,1638) = 0.94, p = 0.32; P4
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FIGURE 6 | GLM findings at temporal electrodes (across contexts, UC and PC). (A) Anterior overlay. Top row: for each subject (columns), zoomed view of cortical
mesh with anterior temporal electrodes (following the clustering depicted in blue in Figure 4C). Electrodes exhibiting a posterior probability larger than 0.9 in the
50–250 ms time window (at least one sample) for one or multiple regressors are colored following the code provided at the bottom right of the figure. Rows 2 to 4:
family-level inference for regressor XBS

dyn, Xstd
static, and Xdev

static, respectively. Each graph represents the posterior probability of family X∗∗ = ON, measured at each
peri-stimulus sample. (B) Posterior overlay. Same display, with electrodes in posterior clusters (purple cluster in Figure 4C).

(larger effect across the 6 sensors): F(1,1987) = 2.42, p = 0.12; P5
(larger effect across the 9 sensors): F(1,2163) = 2.23, p = 0.14; P6b
(larger effect across the 3 sensors): F(1,3195) = 3.35, p = 0.07).

The latter finding fits well with the similar difference (deviant-
standard) traces obtained in contexts UC and PC represented in
Figure 5C.
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FIGURE 7 | Family-level inference in posterior temporal region when learning is removed from the GLM (UC and PC). Following the display in Figure 6, each
individual map shows the posterior probability at posterior temporal sensors and at each peri-stimulus time point for families Xstd

static = ON (top row), Xdev
static = ON

(upper central), Xrank
exp = ON (lower central) and Xcs

exp = ON (bottom).

TABLE 3 | Selection of data points for the Predictability analysis.

Subjects Selected data points Sensors Time windows Learning Standard Deviant Rank Chunk size

P2 48 7 155–320 5 22 7 21 2

P4 186 19 85–455 67 117 15 0 0

P5 81 11 115–200 69 6 6 6 0

P6b 33 7 100–215 19 8 6 1 0

Selection was based on findings in the GLM analysis shown in Figure 6: all data points that disclosed a posterior probability larger than 0.75 in at least one regressor
(except mean regressor X0) was included in the Predictability analysis. For each participant (rows), columns 2 to 4 provides the number of selected data points, their
spatial extent (number of sensors involved) and their temporal extent (in ms). Columns 5 to 9 specify the number of selected data points that involved the corresponding
regressor (multiple regressor effects could occur at the same peri-stimulus latency).

The single-trial modeling analysis is based on the GLM
and ON/OFF family-level inference scheme employed in the
GLM analysis. Here it was adjusted at the level of prior
definition to test if model parameters depart from the values
inferred in the UC context when the GLM (and nested variants)
is fitted to the PC data. We restricted this analysis to the
significant covariate contributions identified by the above GLM
analysis (based on a threshold of 0.75 on posterior probability).
Table 3 summarizes the resulting data point selection for
each participant.

Results are presented in Figure 8.
First, regarding the predictability effect on learning, there was

no data point to be tested in the anterior region, except one
sensor in P2 from 230 to 235ms that here shows poor evidence
for a predictability effect on τ (posterior probability lower than
0.5). Unexpectedly, in the posterior region where learning was
previously found in P4, P5 and P6b, no clear evidence was
observed in favor of a contextual modulation of parameter τ.
Precisely, as can be seen in Figure 8B, maximum posterior

probability of family τ = ON was equal to 0.5 in P2, 0.6 in P4,
0.9 in P5 (one electrode from 155 to 160 ms) and 0.5 in P6b.

For the static and exponential regressors, over the tested
data points (columns 6 to 9, Table 3) we found low
evidence supporting the modulation of their respective coefficient
(h∗∗) by predictability. Indeed, family-level inference yielded
posterior probabilities with median value over data points
equal to 0.001 and 0.01 in the anterior and posterior
region, respectively.

In sum, these results indicate that we here failed to reveal a
predictability modulation of the MMN component and of the
related perceptual learning as was evidenced at the group-level
using EEG and MEG recordings (Lecaignard et al., 2021b).

DISCUSSION

We here presented results from single-trial ECoG data measured
during the passive listening of oddball sequences with two
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FIGURE 8 | Predictability findings (family-level inference in context PC). Following the display in Figure 6, each individual map shows the posterior probability
measured at each peri-stimulus time point over anterior (panel A) and posterior (panel B) temporal electrodes. In each panel, top row (learning) shows results for
family τ = ON: posterior probability here indicates how likely parameter τ differs across contexts PC and UC. Bottom row (non-learning) present similar results
applied to the non-learning regressor coefficients (hstd

static, hdev
static,hrank

exp and hcs
exp). Family-level inference for each parameter was conducted only at data points for

which an effect for this parameter was found in the GLM analysis (posterior probability threshold of 0.75). For the non-learning maps, in the specific case where
multiple effects could occur at the same data point in the GLM analysis, we present the largest posterior probability across these effects.

different levels of predictability. This study had two purposes.
First, to test and refine the effects that we reported in a
previous study using EEG-MEG recordings. In that respect, we
do reproduce an important finding by showing that a cross-
trial Bayesian learning model does predict some of the inter-
trial fluctuations of temporal cortex activity, at the typical
latency of the scalp MMN. However, we did not observe any
difference in the learning parameter between the predictable
and unpredictable contexts. The second related objective was
methodological and concerned the relevance of single-trial
analysis for the investigation of mismatch responses. We
addressed this question by evaluating the respective explanatory
power of dynamic and static predictors, respectively. Therefore
we combined a GLM approach with a BMR strategy. Simulations
indicated a sufficient model separability given our experimental
design and validated this approach. When next applied to the
ECoG data, it suggested a spatial dissociation whereby the
dynamic account (Bayesian learning) could be measured mostly
over the posterior part of the temporal lobe and the static one over
anterior electrodes. Moreover, this analysis clearly concluded in
favor of a Bayesian learning explanation over an exponential one.
This demonstrates the sensitivity of single-trial model fitting and

strengthens the computational view of trial-by-trial fluctuations
as reflecting a trajectory of precision-weighted prediction errors.

Strengthened Evidence for Bayesian Learning During
Oddball Processing
In this study, we pursued our investigation initiated with EEG-
MEG recordings to shed light on perceptual learning processes
and neurophysiological mechanisms during auditory oddball
processing. In Stefanics et al. (2020), a similar GLM approach
was employed and fitted to single-trial scalp EEG data, in the
aim of investigating the repetition-suppression effect in the visual
modality. Competing hypotheses were each framed as a separate
GLM, that were all confronted to the data and next compared to
each other using Bayesian model comparison. Here we appeal to a
different methodology with a single GLM that enables mixing all
hypotheses but whose respective contributions are then assessed
using BMR and family-level inference. The strength of this
approach is twofold. It is computationally very efficient and
enables to compare many nested models. Furthermore, using a
GLM approach alternative hypotheses are not strictly competing
against each other in the sense that the putative most likely
combination of models can be inferred given the data.
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Our findings in 3 out of 4 patients present compelling
evidence for Bayesian learning in posterior temporal sensors that
also best show the classical MMN, between around 100 and
250 ms. Based on a posterior probability threshold of 0.9, it
was measured in 5/15, 8/9, and 2/2 responsive sensors in P4,
P5 and P6b, respectively. We thus succeeded in reproducing
previous EEG-MEG findings, which support the view of auditory
oddball processing as automatic perceptual learning (both studies
involved passive listening). These results add to an emerging
literature providing converging evidence from single-trial data
analysis in similar experimental settings (Ostwald et al., 2012;
Lieder et al., 2013; Stefanics et al., 2018; Weber et al., 2020) and
more generally during sensory processing (Iglesias et al., 2013;
Meyniel, 2020) where regularity learning in a context-dependent
fashion is involved.

An important contribution of our study is that we succeeded
in enriching this interpretation, as we here demonstrate the
reliability of the explanatory power of learning dynamics
(a Bayesian Surprise trajectory). This was achieved in a
straightforward fashion by conducting an additional family-level
inference analysis restricted to models in which the dynamic
(learning) regressor was switched off. Increased evidence for
the exponential regressors in this case was fairly expected,
as these are the only ones that provide a time-dependent,
though somewhat arbitrary, trajectory. In this way, we get
closer to the model comparison performed in the study by
Stefanics et al. (2020), that involved exponential, static and
linear trends, but no learning model. Their study focused on
the repetition-suppression effect that consists in the robust
reduction of brain response amplitudes over stimulus repetition;
a mechanism that is thought to participate to the MMN
(Malmierca and Auksztulewicz, 2020). The authors found the
exponential explanatory variable to outperform the other models.
Several other studies provided similar evidence. At the neuronal
level, using intracellular recordings, it was shown to account for
the attenuation of the evoked discharge of visual cortical neurons
(Sanchez-Vives et al., 2000). Regarding mismatch processing,
plausible MMN modulations could be simulated using an
exponential function, as in an attenuation model of the auditory
N1 component (May and Tiitinen, 2010) or in a generative
model operating at the neuronal level (Wacongne, 2016). None
of these studies included a (Bayesian) learning explanatory
factor. In contrast, the present analysis clearly speaks against
this computational hypothesis as we measured poor evidence
in favor of the rank and chunk size exponential regressors.
Our findings favor such perceptual learning processes over
simpler exponential accounts as the latter alternatives were
clearly rejected by the data. These results fit with previous fMRI
results obtained in a visual cue-association task (Iglesias et al.,
2013) where a Bayesian learning model was selected over a
simpler (Rescorla-Wagner) learning rule. Taken together, these
findings demonstrate the informational value afforded by single-
trial content, long considered as noise.

Spatially Distinct Processes in the Temporal Cortex
Stimulus-responsive electrodes were located predominantly in
the temporal region. Interestingly, the GLM analysis highlighted

the spatial specificity of cognitive processes. Neurophysiological
correlates of perceptual learning were located in posterior
temporal electrodes whereas electrodes best distinguishing
between standard and deviant stimuli, at the latency of the
classical MMN, were located in the anterior part. Note that
the static category was also found to correlate with posterior
electrode signals, but to a far lesser extent than the dynamic one.
These two functional clusters correspond to the electrode subsets
that showed an MMN (Figure 5A).

The mapping of the Bayesian learning process onto posterior
electrodes is in line with previous EEG-MEG findings
(Lecaignard et al., 2021b). The fusion of these non-invasive
observations optimized the reconstruction of the cortical
generators of mismatch responses, including the MMN and an
earlier component peaking at approximately 70 ms after the
deviant onset (Lecaignard et al., 2021a). In the superior temporal
plane, we found a bilateral contribution from the primary
auditory cortex (Heschl’s gyrus), followed by a more anterior
bilateral involvement of the planum polare. Bayesian learning
was associated with both generators after fitting the single-trial
cortical activity reconstructed at these cortical sites.

At the anterior cluster, we found large evidence for the
static family (in 3/4 patients). This effect was more visible
in P4 (7/11 sensors), at a latency (around 135ms) where
the cortical map of the MMN displays lower amplitudes in
anterior regions compared to the posterior ones. This low
signal-to-noise ratio in the anterior regions may explain a
greater sensitivity to the static regressor than to the dynamic
one (assuming that trial-by-trial fluctuations in the case of
noisy data could be well explained by the rather simple static
trajectories but not by the dynamic one which in this case would
be rejected as too complex). However, the fact that P6b also
shows an anterior standard effect while both spatial clusters
(anterior and posterior) have similar (but reverse) amplitude
at the MMN speak against this hypothesis. Nevertheless, this
anterior static effect contrasts with our EEG-MEG findings
where, in the planum polare, Bayesian learning was found to
outperform a simple ‘change detection’ model (Lecaignard et al.,
2021b). Further investigations are needed to reconcile these
two findings.

Lack of Predictability Effect
We could not reproduce here our EEG-MEG findings regarding
the automatic adaptation of Bayesian learning to changes in
the predictability of the acoustic environment. Neither did we
observe the consequence of such an adaptation onto the evoked
responses (the visible tip of the iceberg; no MMN reduction was
measured as reported using EEG and MEG). Furthermore and
somewhat surprisingly, no modeling responsiveness was found
at inferior frontal sites where MMN generators could be located
in several studies (Rinne et al., 2000; Schönwiesner et al., 2007;
Fulham et al., 2014; Auksztulewicz and Friston, 2015; Lecaignard
et al., 2021a).

In the EEG-MEG study, adaptation of Bayesian learning was
found to imply model time constant or memory span (learning
parameter τ). A larger τ value was inferred from single-trial data
in the predictable context. Here, since the GLM analysis provided
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strong evidence for such Bayesian learning, we expected to
measure a comparable predictability modulation. Several possible
explanations are discussed below as to why we did not reproduce
the EEG-MEG findings.

First, the present work relies on individual analysis of data in 4
patients while the previous study relied on a group-level inference
from 20 subjects. It should be noticed that individual statistical
analysis of the predictability effect on the MMN component
(data not shown) yielded 13 out of 20 participants showing a
significantly reduced MMN in context PC (an effect measured
with EEG, MEG or both). The fact that this MMN modulation
was not systematically visible at the individual level (7/20
subjects did not show the effect) suggests a large inter-individual
variability that could arise from the difficulty to learn the subtle
predictability manipulation in passive listening (this difficulty is
here even more stronger with the present paradigm, as discussed
below). In this ECoG study, the implicit learning of the statistical
structure of sound sequences could also be influenced by the
patients’ condition.

Also, in patients P2 and P4, 39% and 26% of the trials
were discarded due to artefacts (spikes and high frequency
bursts of arguably muscle origin). We obtained different results
in the two recording sessions acquired in P6 (P6a and P6b,
separated by 1 day), and they strongly differ in their number
of accepted trials (1097 and 3199, respectively). This likely
speaks to the fact that single-trial data modeling requires highly
informed signals to provide conclusive inference from subtle
variations. This could be achieved in the EEG-MEG work by
collecting a large amount of data by fusing complementary
techniques (EEG, MEG) and also through a large number
of participants. In the present case, although ECoG provides
signals with excellent temporal and spatial resolution, individual
datasets may be insufficient. Again, single-trial data analysis is
a burgeoning methodology as compared to averaging methods
(ERPs, oscillations) and empirical reports are therefore needed
to strengthen and improve this approach.

Another aspect concerns the lack of superior frontal cortical
coverage of ECoG arrays in the four participants. In our EEG-
MEG study, the predictability modulation of the MMN was larger
in space and time in EEG than in MEG (as can be seen in
Figure 1B; Lecaignard et al., 2021b). This aspect led us assume a
superior frontal generator whose radial orientation would poorly
express on gradiometers (MEG is acknowledged to have a very
low sensitivity to radial sources). Few studies have reported
MMN generators in superior frontal cortex (Lappe et al., 2013),
but we could confirm the contribution of this region to the
predictability adaptation (this effect was measured over a fronto-
temporal network). Here, none of the four patients presented
electrodes located in those regions, and it cannot be excluded
that such a predictability effect might have been observed if it
had been the case.

Finally, a plausible explanation for not observing a
predictability effect could be the slight change of paradigm
that we implemented for this study. Indeed, here the predictable
sequence was made of alternating cycles with incrementing and
decrementing chunk sizes, respectively, while in our initial study,
predictable sound sequences were composed of incrementing

cycles only. This change was made to avoid the discontinuity at
the end of each cycle (where a chunk of size 8 is followed by a
chunk of size 2), which consists in a kind of rule violation (at
the chunk level). However, the counterpart of this correction
is a reduction of the saliency of the underlying statistical
structure, making it possibly more difficult for the brain to
learn implicitly and adapts accordingly. Here we are faced
with the challenge inherent in investigating implicit sensory
processing. Experimental manipulations should be salient
enough to be processed, but subtle enough to avoid triggering
explicit processing.

Perspectives
The present analyses were based on single-trial evoked responses
in the 2–20 Hz frequency band, in the aim of testing the
reproducibility of and refine spatio-temporally previous EEG-
MEG findings. The great informational value of ECoG is evident
here, in particular through the spatial functional distinction
at the MMN latency. However, the benefit of ECoG also
lies in its potential to reveal fine cognitive processes from
spectral analysis (Moheimanian et al., 2021; Paraskevopoulou
et al., 2021). Regarding oddball processing, an ECoG study
addressed the computational role of specific bandwidths from
single-trial data analysis in the auditory cortex (Sedley et al.,
2016). Remarkably, they could relate the gamma, beta and
alpha bands to surprise, prediction updates and precision,
respectively. In another study (Dürschmid et al., 2016), a
predictability manipulation of deviant occurrence was also
employed. Significant mismatch evoked responses in the 1–
20 Hz frequency band were found in frontal and temporal
electrodes but were not found to be modulated by predictability.
This predictability effect was only visible in the high gamma
activity, in frontal regions. Putting aside the differences in
the experimental design between the two studies, the absence
of predictability effect on evoked responses fits our own
observations in the present work. An important next step with
our data will be to explore the computational correlates of
spectral responses.

CONCLUSION

The original results presented here and obtained from ECoG
data analysis provide further evidence for the implementation
of implicit Bayesian inference processes dedicated to monitoring
environmental auditory regularities. Such empirical evidence are
essential in the effort to assess the computational underpinnings
of perception, and to reveal the link between neurobiological
mechanisms and cognitive algorithms such as predictive coding.
Importantly, this study illustrates the great potential of single-
trial data analysis to reveal subtle dynamic brain processes.
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Our eyes move in response to stimulus statistics, reacting to surprising events, and

adapting to predictable ones. Cortical and subcortical pathways contribute to generating

context-specific eye-movement dynamics, and oculomotor dysfunction is recognized

as one the early clinical markers of Parkinson’s disease (PD). We asked if covert

computations of environmental statistics generating temporal expectations for a potential

target are registered by eye movements, and if so, assuming that temporal expectations

rely on motor system efficiency, whether they are impaired in PD. We used a repeating

tone sequence, which generates a hazard rate distribution of target probability, and

analyzed the distribution of blinks when participants were waiting for the target, but the

target did not appear. Results show that, although PD participants tend to produce fewer

and less temporally organized blink events relative to healthy controls, in both groups

blinks became more suppressed with increasing target probability, leading to a hazard

rate of oculomotor inhibition effects. The covert generation of temporal predictions may

reflect a key feature of cognitive resilience in Parkinson’s Disease.

Keywords: predictions, temporal expectations, eye movements, Parkinson’s disease, hazard rate

INTRODUCTION

Blinks are defined as the temporary closure (≈ 0.3 s) of both eyes via rapid movements of both the
upper and lower lids: the closing and closed phases of the movement are extremely rapid (<0.1 s),
while the opening phase is slower (≈ 0.2 s, Kwon et al., 2013). On average, healthy human adults
blink every 3–5 s (≈ 12–20 blinks per minute, Fatt and Weissman, 1992). Blinks help preserve
the integrity of the ocular surface (lubrication, shielding from light and dirt, relieving eye muscle
fatigue, Hall, 1945). However, blink frequency far exceeds such basic physiological needs, and there
is evidence that arousal and attention drive blink frequency to change depending on whether at
any given moment sensory information processing can be chunked (Wascher et al., 2015), when
a release of attention from external stimulation is required (Nakano et al., 2013), or when fulfilled
expectations indicate the end of cognitive processing (Ichikawa and Ohira, 2004).

In general, spontaneous blink rates decrease when attention is directed to incoming, external
stimuli, particularly during experimental trials (Van Opstal et al., 2016) and when sustained,
continuous attention is required to successfully complete a task (Maffei and Angrilli, 2018). It is
unclear whether the component of attention that modulates blinking probability is strictly under
dopaminergic control (Maffei and Angrilli, 2018; Sescousse et al., 2018), but there is evidence
that Parkinson’s patients with dyskinetic symptoms often exhibit increased eye movement rates
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(Karson, 1983), possibly as a consequence of intracortical
dishibition (Stinear and Byblow, 2003; Ammann et al., 2020).
Indeed, eye movement disorders may present one of the
early symptoms of Parkinson’s Disease onset (Jung and Kim,
2019). However, while the blinking rate is likely a confounded
measure as it could be due to either attentional demands or
fatigue (Maffei and Angrilli, 2018), the temporal distribution
of blink movements or blink timing appears to be a reliable
and unconfounded index of participants’ engagement in a task
(Ichikawa and Ohira, 2004; Nakano and Miyazaki, 2019).

Temporal attention is reflected in the hazard rate distribution,
which normalizes true stimulus probability using the survival
function, that is, the probability that the event has not yet
occurred (Luce, 1986). Recent work showed that blinks and
saccadic movements are suppressed (oculomotor inhibition)
before the onset of predictable targets (Abeles et al., 2020).
For uniformly distributed stimulus onset times, the perceived
probability of target onset is assumed to monotonically increase
as time elapses. It follows that blink probability at each target
position should diminish with increasing temporal expectations.
As cortical beta disorganization in Parkinson’s disease has been
associated with reduced sensitivity to temporal regularities (te
Woerd et al., 2015), and the generation of temporal expectations
has been linked to motor cortical activity (Morillon and Baillet,
2017), we tested the distribution of blinks in Parkinson’s patients
(PD) and a healthy control group (HC) matched for gender,
age, and cognitive performance. All participants completed an
auditory task which required detecting the onset of a target sound
in a continuous attention mode. Auditory stimulation sequences
were composed of the continuous repetition of four standard
tones followed by a fifth non-target, deviant tone. All sounds
were delivered using a fixed stimulus onset asynchrony interval
(isochronous stimulation). Target sounds occurred rarely (20% of
sequences) and unpredictably (randomized distribution) within
the repeating sequence, equiprobably substituting a standard
tone in either position 2, 3, or 4, hence giving rise to the
hazard rate of response times (see stimulus structure section).
We hypothesized that if the orienting of attention in time giving
rise to expectations depends on the functional integrity of motor
cortical, then the distribution of blinks in time in PD and HC
should differentially reflect the temporal statistics of target onset.
Specifically, we expected PD patients to be less efficient than HC
in suppressing blinks with the increasing probability of target
onset as attention moved from position 2 to position 4 within
each sound sequence.

MATERIALS AND METHODS

Participants
The experiment was conducted at the Max Planck Institute for
Human and Cognitive Brain Sciences in Leipzig (Germany).
Sixteen participants diagnosed with Parkinson’s Disease (PD, 9
males, 7 females) were selected (mean age = 63.9 years, SD =

6.8). Sixteen healthy adult individuals (Healthy controls, HC),
matched in age (mean = 63.9 years, SD = 7.1) and gender,
were also recruited from the Institute’s database. Education level
was also matched (PD, mean = 5.6 years, SD = 1.2; HC,

mean = 5.7 years, SD = 1.3). HC participants self-reported
no neurological or psychiatric disorders or therapies involving
the central nervous system. All participants signed a written
informed consent complying with the Declaration of Helsinki on
human experimentation. The study was approved by the Ethics
Committee of the University of Leipzig, Germany.

Neuropsychological Profile
The two experimental groups were also cognitively matched on a
battery of neuropsychological tests (see Table 1, reporting means
and standard deviations within parenthesis): Mini Mental Test
(Tombaugh and McIntyre, 1992); Tower of London (Shallice,
1982); Trail Making Test A and B (Tombaugh, 2004); Working
memory–Digit Span Forward, maximal N of numbers recalled
[Wechsler, 1997, Backward, maximal N of numbers recalled
(Wechsler, 1997). For all pairwise comparisons, all ts(30) ≤ -0.73,
all ps ≥ 0.465].

Clinical Profile
The average illness duration in participants with PD was 3.78
years (SD = 2.63), with only two participants having been
diagnosed for more than 6 years (15 and 11 years). Most
patients (11 out of 16) presented with both tremors and akinetic
rigidity, while 3 presented solely with akinesia and 2 with
tremors. The average Höhn and Yahr index (Höhn and Yahr,
1967) was 2.03 (SD = 0.53, range 1–3), suggestive of bilateral
involvement preserved balance functions. Asymmetry in body
symptoms was equally distributed (right side = 8). On the
UPDRS motor scale (Goetz et al., 2007), the mean was 13.5
(SD = 5, range 7–21), indicative of minimal to mild slowness
and movement abnormality. All participants with PD were
pharmacologically treated, predominantly with Levodopa and
Ergot-dopamine agonists.

Stimulus Structure
Stimuli were three 50-ms pure tones (5 ms rise/fall), organized
into continuously repeating five-tone sequences, binaurally
presented via loudspeakers at 80 dB SPL and generated using
Matlab (version 7, Mathworks, Natick, MA). The five-tone
sequence was composed of four standard tones followed by
a non-target deviant tone (Figure 1A). Standards were 440
Hz in pitch (A4 on the equal tempered scale, presented 900
times, 75% global stimulus probability), non-target deviants
were 494 Hz (B4, presented 240 times, 20% global stimulus
probability). A rare target (349 Hz, F4, presented 60 times,
20% of sequences, 5% global stimulus probability) occurred
equiprobably (1/3) at one among standard positions 2, 3, or
4. To detect a target, participants had to attentively listen to
each incoming sequence, whether it contained a target or not;
within each sequence, internal target probability was predicted to
changed with elapsed time, generating a hazard rate distribution
(Figure 1B, upper panel). Denoting the survival probability
(“the event has not yet occurred”) as 1-F(t), where F(t) is the
cumulative distribution function, the hazard function is then: h(t)
= f(t)/(1-F(t)). There was a maximum of one target per sequence,
and minimally two successive sequences without targets before
the next target-containing sequence. Stimulus sequences were
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TABLE 1 | Neuropsychological results.

Group Mini Mental State Tower of London Trail Making Test A and B Digit Span Fw Digit Span Bw

HC 29.12 (0.85) 16.18 (1.42) A: 40.56 (12.06), B: 77.62 (25.32) 6.50 (1.00) 5.06 (0.89)

PD 28.87 (0.99) 15.43 (2.06) A: 39.37 (12.21), B: 82.37 (32.49) 6.68 (1.04) 5.06 (1.39)

FIGURE 1 | Experimental design: (A) Pure tones were isochronously distributed in continuously repeating five-tone sequences, composed of four standard tones (440

Hz) and a final non-target deviant tone (494 Hz). Target tones were lower in pitch (349 Hz), and appeared in 20% of the sequences (= 5% of the tones). (B) Tones

would appear equiprobably either in position two, three, or four within a sequence (upper left panel). Potential rare target position is used as a proxy for elapsed time.

The hazard rate distribution increases target probability with target position (upper right panel).

delivered using Presentation© software (version 12.0, www.
neurobs.com) running on a Windows PC.

Experimental Design
Participants sat in an electrically shielded, sound-attenuated
chamber, and fixated a white cross on a black computer screen
at a distance of 1 meter while listening to the auditory sequences.
They responded to target tone onset by pressing a button on an
external response box, using their preferred hand. Participants
were unaware of target distribution, and were instructed to
respond to the onset of target tones as accurately and fast
as possible by pressing a button on a response box. They
trained in a short block of 60 experimental randomly distributed
tone sequences containing three targets. The training phase
was repeated maximally once. If errors were made (Missing,
False Alarm), the training block was repeated until no errors
were detected. Experimental tone sequences were delivered
with a constant 750-ms stimulus onset asynchrony (SOA),
corresponding to a 1.34 Hz stimulus rate (three 5-min blocks).

EEG Recording
Electroencephalographic (EEG) data were collected using a 26
scalp Ag/AgCl electrode set (BrainAmp, 10–20 system): Fp1,
Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FC4, FT8, T7, C3, Cz,

C4, T8, CP5, CP6, P7, P3, Pz, P4, P8, O1, O2. Two external
electrodes were placed at right and left mastoid sites, and four
additional electrodes were placed at both eye canthi (leftLateral,
rightLateral), and above and below the right eye (lowerVertical,
upperVertical) to record eye movements (electrooculogram,
EOG). An online reference was placed on the left mastoid
and the sternum served as ground. Electrode impedance was
kept below 5 KOhm. EEG/EOG sampling rate was set to 500
Hz, with online high-pass filtering at 0.01 Hz. The resulting
continuous recordings were visually inspected and pruned from
non-stereotypical artifacts or extreme voltage changes values.
An Independent Component Analysis (ICA, Infomax algorithm,
Bell and Sejnowski, 1995, as implemented in the EEGLAB
toolbox, Delorme and Makeig, 2004) was performed on pruned,
offline highpass-filtered at 1 Hz and lowpass-filtered at 45 Hz
(Kaiser window, Beta 5.6533, filter order points 9056 and 184,
transition bandwidth 0.2 and 10 Hz, respectively), standardized
(z-score) continuous data. Using the SASICA toolbox for
EEGLAB (Chaumon et al., 2015), ICs reflecting blinks/vertical
eye movements and lateral eye movements were identified by a
correlation threshold of 0.7 with bipolarized vertical and lateral
EOG channels. The SASICA toolbox also identified ICs likely
to reflect muscle artifacts, using autocorrelation (lag = 20 s),
as well as those reflecting bad electrodes via a measure of focal
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topography (threshold at 7 standard deviations relative to the
mean across electrodes). The ICA results were then copied
back to the pruned, standardized original continuous EEG data
highpass-filtered at 0.1 Hz (lowpass 45 Hz). Eye-movement-
related ICs, both vertical/blink-related and horizontal, ranged
between 2 and 5 per participant, with at least a vertical/blink-
related component per participant.

Blink Modeling
Blinks were individually modeled using the best signal selected
out of a subset comprising the vertical EOG channel (both
lowerV and upperV), a subset of frontal electrodes (in our
case: Fp1, Fp2, Fz, F3, F4) and frontally focused independent
components (ICs) representing blinks or vertical eye movements
according to the Blinker toolbox pipeline (https://github.com/
VisLab/EEG-Blinks; Kleifges et al., 2017). The Blinker algorithm
first bandpasses the signal (1–20 Hz), then determines the
intervals with an SD > 1.5 standard deviations above the signal
mean (min interval = 50 ms, min separation between intervals
= 50 ms). A fitting process follows by first finding specific
landmarks for each blink interval, such as the maximal value
within the interval, and the zero crossings immediately to the
left and right of each max value, and then computing for each
potential blink the best linear fits for the inner 80% of the up-
stroke and down-stroke, respectively. The R2 of left and right
fit lines with the actual blink trajectory measures how close
the potential blink is to a stereotypical blink. Then, the blink-
amplitude ratio (BAR) is computed by dividing the average
amplitude of the signal between the blink left and right zero
crossings by the average amplitude of the positive portion of the
signal comprised between the preceding blink right zero crossing
and the current blink left zero crossing, as well as the current
blink right zero crossing and the following potential blink right
zero crossing (or end of signal if the current blink is the last
one). Potential blinks with a BAR outside the range [3–20] are
not included in the final computation (“used” signal, see below).

Next, Blinker determines “good” blinks (upStroke and
downStroke R2 > 0.90), “better” blinks (upStroke and
downStroke R2 > 0.95), and “best” blinks (up-stroke and down-
stroke R2 > 0.98). To eliminate extraneous eye movements
from actual blinks, two further criteria are satisfied: 1) The
positive amplitude by velocity ratio (pAVR = 3), calculated
from the left zero crossing to the maximal amplitude of each
blink, distinguishes between the sharp rise of saccades (large
velocity) and the more curved one proper to blinks; 2) The
maximum amplitude distribution criterion eliminates blinks
with low R2 and with amplitude vastly away from the “best”
blink median (Threshold = 5 robust standard deviations—1.48
times the median absolute deviation from the median—for
“best” blinks, 2 for for “good” blinks). The resulting blinks
constitute the “used” blinks set, which inform the analysis at
an individual participant level (minimum number of blinks to
stable estimates= 20).

Analysis of Blink Distributions
The Blinker pipeline was run on continuous, clean EEG datasets.
One participant from the PD group was marked as an outlier
as far as blink counts were concerned (N = 556) and thus was

removed from further analysis, together which the gender- and
age-matched HC participant. The final group was thus composed
of 30 participants, 15 per group. Then, blink landmarks were
copied back to the EEG trial structure, and finally epochs were
extracted based on the repeating 5-tone sequences which did not
contain a target (0–3,500 ms). This approach allowed analyzing
the distribution of blinks in time as participants waited for
a potential target, without any confounding effect from target
onset. For each epoch, we marked the positions in time of
blink maximal values (peaks), while the rest of the EEG data
were zeroed out, obtaining vectors of blink peak distributions
in time.

Participants were first compared for the total number of
blinks (counts) and median blink-to-blink interval using a one-
sided Wilcoxon rank sum test for equal medians, with the
assumption that HC would outperform PD participants. The
choice of a non-parametric statistical test was motivated by the
non-gaussian distribution of blink counts (Kolmogorov-Smirnov
test, all ps < 1.645*10-15). Blink counts were subject to a robust
regression analysis with bisquare weighting of the residuals
(Matlab function robustfit.m), to asses the the relationship
between HC and PD blink generators. The effect of age in driving
blink counts was also tested, using both robust regression and
Spearman correlation.

To assess the degree to which blink timing was sensitive to the
auditory stimulus rate (1.34 Hz), blink epochs were concatenated
into a single vector for each participant. A Fast Fourier Transform
(FFT) analysis (N = 8192 data points, normalized dividing by N)
was run on a hundred concatenated blink vector per participant
in each group. The average peak power differences between HC
and PD at sequence rate (0.267 Hz), stimulus rate (1.34 Hz), and
first harmonic of the stimulus rate (2.67 Hz) were compared to
their group threshold using a Wilcoxon signed rank test, and
to each other using a one-sided Wilcoxon rank sum test (effect
size r = Z/

√

Samplesize for one sample/paired samples, r =

Z/
√

Samplesize1+ Samplesize2 for independent samples).
Next, we turned to the analysis of median blink distributions

within the repeating sequence. First, for each participant blink
peak latencies were binned using a 20-ms bin size. Then, bin
counts were normalized by the total number of blinks, and
smoothed using a moving median of 5 bins. To obtain a measure
of regularity in blink distribution across the repeating sequence,
we employed the Nelder-Mead simplex direct search algorithm
(Image Analyst, 2021) and optimized the search for the best fit
for 5 Gaussian distributions on the median distributions across
participants in each group, using a sigma of 20 and taking each
tone interval’s middle point as an initial guess for the mean
or peak of each Gaussian. We then calculated the dissimilarity
between HC and PD median histograms using χ

2 are a measure
of distance: sum((xi-yi)2/(xi+yi))/2. We tested the significance
of the distance value using a bootstrapping approach (1,000
randomizations). Then, for each participant we collected the
value at the each grand median fitted Gaussian peak within each
sound interval, and compared them across groups using a series
ofWilcoxon rank sum tests, FDR-corrected. Finally, by regressing
blink frequency against the positional order of potential Target
stimulus onset (positions 2, 3, and 4), we obtained peri-stimulus
estimates of hazard rate effects in blink distributions—from –300
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to+ 300ms relative to potential target onset -, which were tested
for significance using a one-sample permutation test based on
the t-statistic (Groppe et al., 2011; one-sided). Significance was
determined for p= 0.05.

Probabilistic Saccade Estimation
As a partially independent measures of ocolomotor disorders
in participants with PD, we resorted to calculating saccade
probability and duration. An impairment in saccadic initiation,
leading to a more variable onset of saccadic movements than
matched healthy controls, has been shown to characterize
patients PD from early on in the disease progression (Terao
et al., 2011). Furthermore, saccade intrusions—characterized

by involuntary saccades away and back to a fixation point,
characterize oculomotor system functioning in PD (White et al.,
1983), adding to variance in saccade probability distribution.
We selected a probabilistic algorithm which detects saccades—
as distinct from peri-blink saccadic movements—using an
unsupervised training period (between 50 and 200 s), and
uses expectation maximization to learn the parameters of
Gaussian likelihood distributions for saccades (Toivanen et al.,
2015; https://github.com/bwrc/eogert). Two parameters were
selected: saccade probability for each detected event, and
saccade duration. A Wilcoxon rank sum test was used to
detect significant differences in mean variance between PD
and HC.

FIGURE 2 | Blink models: (A) Exemplary blink models for participant number 1 of the HC group. The green line depicts the amplitude distribution of all potential

blinks: Amplitudes are measured in standard deviations, to avoid the confounding effects of differences in mean blink amplitudes across participants. Blink range on

the x-axis: Notice that the right tail of the distribution is interrupted because most large amplitude values were outliers. The blue line depicts the blink distribution

selected for further analysis. For details, see the Materials and Method section. (B) Exemplary blink models for participant #1 of the PD group. The red line depicts the

blink distribution selected for further analysis. (C) There was a tendency to a significant difference favoring HC in total blink counts. There was no significant difference

between HC and PD on mean interblink interval. Notice that the median interval is similar across groups. The largest median blink interval for both groups corresponds

to physiological intervals. (D) A robust regression fit shows a tendency for matched participants from both groups to perform similarly, hinting at possible underlying

common factors driving blink frequency.
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RESULTS

Blink Models
Figures 2A,B display illustrative blink modeling results for
participant number 1 of both groups. In both cases, the right
tail of the distribution contains outliers that are eliminated based
on the distance from the best blinks distribution (up-stroke
and down-stroke R2 > 0.98). A Wilcoxon rank sum test of
the difference between the number of blinks in HC and in PD
failed to reach significance: Z = 1.61, p = 0.052, HC median
number of blinks = 163, PD median number of blinks = 116.
We then checked for the physiological realness of the interblink
intervals, and found that values for both groups were comparably
within expected values: HC median interblink interval = 1,037
ms (range: 650–3,638), PDmedian interblink interval= 1,419ms
(range: 422–4,125), Z = –1.41, p = 0.920. With the exception of
one participant in each group, all medians were below 3,500 ms,
likely reflecting the chunking effect of attention to the repeating
tone sequence (see Figure 2C). The concentration of individual
median values at the lower portion of the range suggests an
attractive effect of stimulus rate on blink rate. A robust regression
fit between HC blink counts and PD blink counts failed to reach
significance [t(13) = 1.959, p = 0.071] (see Figure 2D). When
we averaged blink counts across groups and regressed the results
against age in years, we found no significant fit (Spearman ρ =

–0.215, p = 0.503), suggesting that in our samples age did not
appear to be driving changes in blink frequencies.

Blink Distribution Reflects Stimulus
Structure
To explore how stimulus structure influenced the temporal
distributions of blinks, we concatenated all selected epochs and
submitted the resulting vector to a Fast Fourier Transform
(FFT) analysis. Using a Wilcoxon signed rank test, we found
a significant peak at stimulation frequency (1.34 Hz) in each
group: HC, Z = 2.89, p = 0.002, r = 0.74 (reference power
= 3*10-05); PD, Z = 1.98, p = 0.047, r = 0.51 (reference
power = 2*10-05). However, there was a significant difference
in peak power between the groups: HC median = 1.098*10-04,
PD median = 4.644*10-05, Z = 1.825, p = 0.034, r = 0.33.
There was no significant group peak, nor a group difference
at the first harmonic of the stimulus rate (2.67 Hz): all
ps ≥ 0.079. Similarly, there were no significant findings at
the repeating sequence frequency (0.266 Hz): all ps ≥ 0.187
(see Figure 3).

Blink Rates Encode Temporal Predictions
The Nelder-Mead algorithm allowed us to optimally fit 5
Gaussians on the median of the median blink distributions for
each group. For HC, the number of iterations was 719, with a
mean residual of 6.447*10-4. For PD, the number of iterations
was 1228, with a mean residual of 7.515*10-4 (see Figures 4A,B,
respectively). We measured histogram similarity using χ

2 as
a distance measure, and found that—globally—the distribution
of blinks across the repeating sound sequence did not differ
(distance = 1.494, p = 0.73, bootstrapping distribution, 1,000
repetitions). However, when we tested the differences in blink

FIGURE 3 | Auditory regularities in the eyes: FFT results on concatenated

epochs show a significant effect of stimulus rate in both groups, but larger for

healthy control participants (blue line) than participants with Parkinson’s

Disease (red line). The first harmonic processes (H1) were not significant.

frequency (pristine values, that is before applying the moving-
average smoothing) at fitted curve peak within each sound
interval, using the fitted values for HC as reference also for
participants with PD, we then found that the two groups differed
in the S3 interval, that is at the center of the sequence (original
p = 0.007, FDR p = 0.01), which corresponds also to the
middle point in the attentive searchlight for a potential target
onset (Figure 4C).

We then used a robust linear fit approach to calculate, for each
peristimulus bin point, the slope of values across the onset of
sounds at S2, S3, and S4. For both groups, we found a significant
hazard-rate effect on blink frequency in the pre-stimulus period
only (Figure 4D): all cluster Ts leq –2.79, all cluster ps leq 0.029;
HC –220 to 200 ms, PD –180 ms; negative slopes indicate
the amount of decrease with each potential Target interval.
Pre-stimulus oculomotor activity became more inhibited with
increasing waiting time across positions S2, S3, and S4.

Saccadic Movements
The similarity in blink temporal distribution between
participants with PD and HCs becomes more relevant on the
background of the significant difference between the two groups
in saccadic movements estimated from electrooculographic
data. Average saccade probability displyed larger variance in
participants with PD (mean = 0.014) than in HCs (mean =

0.011): Z = 2.13, p = 0.032, r = 0.54. However, average saccade
duration did not differ: Z = 0.43, p = 0.663. This suggests a
disorder in saccade initiation in participants with PD, detectable
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FIGURE 4 | Temporal organization of blink onset: (A) Median of blink frequency medians estimates across time for HCs. The Gaussian fit highlights the regularity in

blink peak distribution following entrainment to stimulus regularity. (B) The same approach for PD participants displays a less organized structure. (C) The main

difference between the two distribution lies with how blinks reflect the onset of S3. (D) The gray shade indicates mean blink frequency slopes for both HC and PD

which display significant oculomotor inhibition effects; colored shaded areas indicate standard error of the mean.

even in the context of isochronous auditory stimulation driving
entrainment in blink onset.

DISCUSSION

When stimulus statistics in the environment drive our attention
toward the potential onset of a target event, changes occur at
both central and autonomic nervous system levels, thereby
modulating all motor effectors, not just those required to
press a button. Indeed, recent work suggests that temporal
predictions are reflected by eye movements, such as saccades
and blinks (Abeles et al., 2020), that are partially under
voluntary and partially under involuntary control. When we
approach the probable onset time of a target event, ocular
movements are suppressed, in order to avoid diverting attention
to other stimuli (saccades) or suppressing sensory input
(blinks). However, in everyday situations the uncertainty
about when a target event will occur adds to the uncertainty

about whether a target will occur at all. We tested whether
oculomotor inhibition occurs for targets whose chance
is globally very low (20%). Furthermore, by comparing

the performance of healthy controls (HC) and gender-
and age-matched Parkinson’s Diseases (PD) patients, we
measured the extent to which temporal predictions conveyed

via oculomotor inhibition depend on general oculomotor
fitness, which is impaired in PD. Overall, PD participants
tended to produce less blinks than HCs, but the temporal

organization of inter-blink-intervals is similar to that of
healthy controls. Previous work showed that, in spontaneous
blinking conditions and for a cohort between 40 and 89 years,
mean blink amplitude and peak velocity decreased with age,
but blink rate as such was not affected (Sun et al., 1997).
In our case, age was not a significant factor in determining
blink counts, although the effect of age on blink counts
might have been overridden by the entraining effects of the
stimulation structure.
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We also found that inter-blink-intervals in both groups
tend to follow the regular auditory stimulation rate (750 ms,
1.34 Hz, Figure 3), although HC outperformed participants
with PD. This finding suggests that motor impairment in our
sample of participants with PD, including oculomotor saccadic
impairments, did not prevent the locking of blink frequency
to stimulus statistics. However, oculomotor impairment in PD
partially affected the organization of blink peak distribution
(Figures 4A–C). Although the sequence-based distance between
blink histograms for HC and PD was not significant, we found
that in participants with PD blinks were significantly less likely
to occur in response to the third sound of each repeating
sequence. Previous work showed that spontaneous blinks in
PD participants with mild and moderate severity were either
abnormally reduced or increased relative to HC (Korosec et al.,
2006). PD participants in that study displayed a more advanced
motor impairment (UPDRS motor scale score) than in our
patient sample, and participants were tested offmedication, while
the patients in our sample were tested on medication. The lack
of an off medication condition is a limit to our findings, as
it would have provided a test for blink entrainment. However,
our study assesses oculomotor functionality within a continuous
attention condition, that is under under stressful attentional
demands (Maffei and Angrilli, 2018), suggesting resilience in
patients’ performance.

When we regressed blink probability across potential Target
positions (S2, S3, S4), we found evidence of a hazard
rate organization of blink onset probability in both groups.
Oculomotor inhibition progressively increased while waiting
for a potential target (Figure 4D). Importantly, as our analysis
was run on the repeating sequences that did not contain a
target, oculomotor inhibition was purely driven by cognitive
expectancies for future target onset. The “hazard rate” of
oculomotor activity is evident in the prestimulus period only,

consistent with previous findings (Tavano et al., 2019; Abeles
et al., 2020). Motor disorganization as a consequence of PD—
at least in as far as it affects the oculomotor system—did not
prevent the computation of evolving target probability in time,
which is a key component of the processes generating temporal
expectations. This likely preserves in patients a sufficient fit with
the environment, whose statistics are inherently time-dependent.
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Predictive coding models of brain processing propose that top-down cortical signals
promote efficient neural signaling by carrying predictions about incoming sensory
information. These “priors” serve to constrain bottom-up signal propagation where
prediction errors are carried via feedforward mechanisms. Depression, traditionally
viewed as a disorder characterized by negative cognitive biases, is associated with
disrupted reward prediction error encoding and signaling. Accumulating evidence
also suggests that depression is characterized by impaired local and long-range
prediction signaling across multiple sensory domains. This review highlights the
electrophysiological and neuroimaging evidence for disrupted predictive processing in
depression. The discussion is framed around the manner in which disrupted generative
predictions about the sensorium could lead to depressive symptomatology, including
anhedonia and negative bias. In particular, the review focuses on studies of sensory
deviance detection and reward processing, highlighting research evidence for both
disrupted generative predictions and prediction error signaling in depression. The role
of the monoaminergic and glutamatergic systems in predictive coding processes is
also discussed. This review provides a novel framework for understanding depression
using predictive coding principles and establishes a foundational roadmap for potential
future research.

Keywords: major depression, predictive coding, mismatch negativity, reward processing, prediction errors,
ventral striatum

INTRODUCTION

The predictive coding framework suggests that the brain functions to minimize surprise and
uncertainty by actively generating explanations for encountered stimuli (Friston, 2009). The
framework is rooted in Bayesian probability theory and the so-called Bayesian brain hypothesis
(Knill and Pouget, 2004) that conceptualizes perception as a constructive process that uses internal
or generative models to encode prior beliefs about sensory inputs and their causes. Generative
models help an individual formulate predictions about incoming sensory information that are
tested against incoming sensory inputs and produce prediction errors. Prediction errors, in turn,
are used by the brain to revise its model of the world by updating predictions in order to minimize
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prediction errors (Friston, 2010). Recent work has extended these
ideas to cognitive phenomena related to interoception (Seth,
2013), including the shaping of emotions (Seth and Friston, 2016;
Clark et al., 2018) and the development of depression (Barrett
et al., 2016; Kube et al., 2020).

Interoception, broadly defined as the sense of the physiological
condition of the body (Craig, 2002), is proposed to be the
sensory consequence of allostasis, the regulation of metabolism
and bodily states (Barrett et al., 2016). Several recent reviews
have focused on the role of predictive processes related to
interoception in the etiology and pathophysiology of depression
(Barrett and Simmons, 2015; Barrett et al., 2016; Stephan et al.,
2016; Eggart et al., 2019). Rather than focusing on interoceptive
processes, this review examines the electrophysiological and
neuroimaging evidence regarding predictive coding deficits
in exteroception in depression, focusing on sensory deviance
detection and reward processing deficits that accompany major
depressive disorder (MDD).

Bayesian models can be used to inform our understanding of
neural and circuit-level dysfunction concomitant with psychiatric
conditions such as MDD because they relate formal information-
processing algorithms to underlying neural signals (O’Reilly
et al., 2012). In current models of Bayesian brain updating, for
example, predictions are thought to be carried by descending
feedback from deep pyramidal cortical layers and to interact with
ascending, feedforward prediction error signals from superficial
cortical layers (Rao and Ballard, 1999; Friston and Kiebel, 2009;
Bastos et al., 2012; Shipp et al., 2013). These prediction error
signals serve to update an individual’s expectations, with the
precision or confidence placed in prediction errors associated
with the synaptic gain or efficacy of superficial pyramidal cell
signaling. From a theoretical standpoint, a model such as this
can help elucidate cardinal differences between individuals with
MDD and healthy participants because the fitting of experimental
data to such a model can provide a mechanistic understanding
of differences between groups. For example, such models could
help an investigator test whether deficits in MDD are related
to faulty internal generative models and resultant prediction
error signaling associated with incoming sensory information.
These models could also be used to make inferences about where
prediction error signals originate in the cortex, and these regions
can be probed to determine whether activity in a given region is
associated with specific features of depressive symptomatology.

This review will highlight the electrophysiological and
neuroimaging evidence for disrupted predictive processing in
MDD, conceptually framing the discussion around Bayesian
models of uncertainty and how disrupted generative predictions
about the sensorium might lead to depressive symptomatology,
including anhedonia and negative bias. This review will
highlight studies of sensory deviance detection and reward
processing in particular, describing research evidence for
both disrupted predictions and prediction error signaling
in MDD. Gaps in the literature where further research is
warranted will also be discussed. Finally, the role of the
monoaminergic and glutamatergic systems in generating these
signals will be examined. This review provides a novel
framework for understanding MDD using predictive coding

principles and establishes a foundational roadmap for potential
future research.

DISRUPTED SENSORY DEVIANCE
DETECTION IN MAJOR DEPRESSIVE
DISORDER

Sensory deviance detection—broadly defined as the ability to
detect deviant stimuli while attending to a stream of incoming
sensory information—is thought to reflect pre-attentive sensory
processing (Schröger, 1998; Restuccia et al., 2006; Czigler,
2007). One technique for studying pre-attentive change detection
involves using an oddball paradigm where a series of frequent
stimuli (e.g., tones of a specific pitch “standard”) are occasionally
interrupted by less-frequent stimuli (e.g., tones of a higher
pitch “deviant”). These kinds of paradigms have traditionally
been collected using electrophysiological techniques such as
electroencephalography (EEG) and magnetoencephalography
(MEG) because the temporal components of event-related
potentials (ERPs) generated in response to these stimuli have
consistent response characteristics and well-documented neural
generators (Garrido et al., 2009). In particular, a negative
component in the event-related waveform is elicited by deviant
relative to standard stimuli, which has been termed the mismatch
negativity (MMN) response. The MMN response is considered an
index of change detection processes (Näätänen et al., 2012) and,
within a prediction coding framework, is thought to represent
prediction error signaling (Friston, 2005). Generators of MMN
electrophysiological signatures have been localized to primary
and secondary auditory, visual, somatosensory, and olfactory
cortices, and they have also been localized to higher-order
regions, including the frontal cortex (Garrido et al., 2009).

Studies of the MMN response in MDD patients have
reported mixed findings regarding waveform topographical
changes accompanying MDD (see Table 1). The amplitude
and latency of the characteristic MMN response—which
occurs at approximately 100–250 ms after stimulus onset—has
been measured in individuals with MDD relative to healthy
participants. While some studies have reported that the MMN
amplitude is attenuated in currently medicated and unmedicated
MDD patients relative to healthy participants (Takei et al.,
2009; Qiu et al., 2011; Qiao et al., 2013; Chen et al., 2015;
Tseng et al., 2021), other studies have reported that the MMN
amplitude is increased in unmedicated MDD patients (Kähkönen
et al., 2007; He et al., 2010). Other studies found hemispheric
asymmetries in the MMN response in MDD patients, with
reduced MMN amplitudes in the right but not the left hemisphere
in medicated MDD patients compared to healthy participants
(Hirakawa et al., 2017). Furthermore, other studies reported
MMN latency differences in MDD, with patients demonstrating
slower peak MMN latencies than healthy participants (Qiao et al.,
2013; Tseng et al., 2021). Finally, a small number of studies
reported MMN amplitude changes for specific sensory features
of oddball stimuli (e.g., timbre and tone duration), but not others
(e.g., pitch, intensity, or location) in MDD patients (Mu et al.,
2016; Tseng et al., 2021). Taken together, these findings provide
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preliminary evidence that MDD is accompanied by an inability
to accurately predict forthcoming sensory information, though
significant inconsistencies exist with regard to whether the MMN
amplitude is larger or smaller and whether it is shifted in time
compared to healthy participants.

In addition to examining differences in MMN amplitudes and
latencies, an important clinical question is whether differences
in pre-attentive change detection are associated with depressive
symptomatology in MDD. Several studies have examined
whether changes in components elicited during an oddball
task are associated with severity of depressive symptoms or
other clinical measures of functional outcomes. For example, a
recent study comparing both medicated and unmedicated MDD
patients to healthy participants found that clinical measures
of functional outcomes for MDD patients were associated
with MMN source activity in regions including the anterior
cingulate and the inferior and middle frontal gyri, though no
significant differences in MMN amplitudes were noted in MDD
patients compared to healthy participants (Kim et al., 2020).
Other studies that did not source-localize MMN generators
found no significant associations between severity of depressive
symptoms and MMN amplitudes or latencies (He et al., 2010;
Mu et al., 2016; Tseng et al., 2021), though earlier and later
waveform components, such as the attenuation of the P1
(Kähkönen et al., 2007) and the amplitude of the P3a (Chen
et al., 2015), have been associated with clinical characteristics
such as severity of depressive symptoms and the number of
depressive episodes reported by patients. The P1 is a positive
ERP waveform component occurring approximately 100 ms
after stimulus presentation and thought to reflect initial sensory
attentional processing, while the P3a is a positive component
occurring approximately 250–280 ms after stimulus presentation
that localizes to fronto-central electrode sites and reflects
attentional orienting and novelty detection processes. Taken
together, the evidence suggests that gross changes in MMN
response characteristics such as amplitude and latency are
indeed associated with clinical measures reflecting the severity
of depressive symptoms. Further research should continue to
explore the relationship between source-localized generators of
the MMN signal and depressive symptomatology, given that
source-localized MMN response estimates in regions such as
the anterior cingulate and inferior frontal gyrus could provide a
stronger index of the severity of depressive symptoms compared
to waveform characteristics alone.

Inconsistencies in MMN response findings in MDD may
be due to several factors, including differences in the sensory
modality under study, manipulations regarding what constitutes
standard and deviant stimuli, sample sizes, and recruitment
criteria for MDD samples. For example, some studies recruited
drug-free patients only, while others included a mixture of
medicated and unmedicated patients. Special caution should
be exercised in interpreting studies where the samples include
medicated patients, particularly those in which patients are
taking selective serotonin reuptake inhibitors (SSRIs), the most
widely prescribed antidepressants. This is because serotonin
(5-hydroxytryptamine, 5-HT) is thought to play an important
role in salience detection (see “Antidepressant Drugs and

Predictive Processes,” below). The heterogeneity of findings
regarding deficits in the MMN response in MDD across studies
may also be explained by the underlying heterogeneity of
MDD symptomatology. For example, the MMN response has
been hypothesized to index cognitive decline across different
psychiatric disorders (Näätänen et al., 2012), suggesting that
dysregulated sensory change detection, as indexed by the MMN
response, might have prognostic importance in MDD.

As research expands our understanding of the sensory
deviance detection deficits that accompany MDD, it is important
to keep in mind the potential applications of this work. For
example, a better understanding of the brain circuitry supporting
prediction errors in sensory processing and their connectivity
would improve our understanding of how feedforward and
feedback signaling interact as well as illuminate the ways
that these might be dysregulated in MDD. In addition,
understanding the relationship between MMN signaling deficits
and depression symptomatology could lead to the development
of a simple, robust biomarker of symptom severity. Such work
also fits within the larger Research Domain Criteria (RDoC)
framework examing the relationship between neural circuitry
disruption and dimensional symptomatology associated with
mental disorders.

DISRUPTED REWARD PREDICTION AND
PREDICTION ERROR SIGNALING IN
MAJOR DEPRESSIVE DISORDER

Reinforcement learning, the process by which behavior is
modified through experiences with reward and punishment,
offers a theoretical framework for studying the neural circuity
supporting decision making under conditions of uncertainty
(Schultz, 2006). Several lines of evidence now suggest that
dysfunctional reinforcement learning processes and dysregulated
reward circuity might underlie some symptoms of MDD
(Pizzagalli, 2014). Anhedonia, or hyposensitivity to rewards,
is a cardinal symptom of MDD and is associated with worse
outcomes, including poor treatment response and greater
prevalence of suicidal thoughts and behaviors (Eshel and Roiser,
2010; Spijker et al., 2010; Pizzagalli, 2014; Vrieze et al., 2014;
Winer et al., 2016; Yaseen et al., 2016; Loas et al., 2018).
Negative bias—a hypersensitivity to punishment and a bias in
expectation of negative events—is another common feature of
MDD (Gotlib, 1983; Eshel and Roiser, 2010; Rouhani and Niv,
2019). It is worth noting that, though conceptualized distinctly,
neural correlates of anhedonia and negative bias may overlap
and mutually influence depressive symptoms and differences in
reward processing.

Reinforcement learning paradigms using monetary incentives
provide an avenue for modeling brain circuitry disruptions
in reward processing associated with anhedonia and negative
bias. During such tasks, discrepancies between an expected
reward and a given reward produce reward prediction errors
(RPEs). The neural correlates underlying belief updating, during
which a participant alters their framework to make more
accurate predictions to subsequent trials, can be examined.
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Growing evidence suggests that key neural regions mediating
RPE signaling include the lateral habenula, the ventral tegmental
area (VTA), and the substantia nigra (Matsumoto and Hikosaka,
2007). The lateral habenula occupy a set of nuclei within the
posterior-dorsal-medial region of the thalamus that are thought
to have an important role in reward learning behavior [for
a recent review of the circuity and functions of the lateral
habenula, see Hu et al. (2020)]. The lateral habenula acts
as a relay station by connecting the limbic forebrain with
monoaminergic centers implicated in the pathophysiology of
depression and has been proposed to participate in processing
negatively valenced information (Yang et al., 2018b). Animal
studies have demonstrated that lateral habenula neurons transmit
RPEs in an inverted fashion (Matsumoto and Hikosaka, 2007,
2009a) and can suppress both activity in dopamine neurons
(Christoph et al., 1986; Ji and Shepard, 2007) and motivated
behaviors (Shumake et al., 2010; Friedman et al., 2011).
While many lateral habenula neurons transmit information
related to motivational salience (Matsumoto and Hikosaka,
2009b; Bromberg-Martin and Hikosaka, 2011), a subset of
these neurons transmit information related to motivational

value and exert control over selective positive RPE (i.e.,
signaling more reward than anticipated) and negative RPE
(i.e., signaling less reward than anticipated) dopamine neurons
(Matsumoto and Hikosaka, 2009b). Reward-related dopamine
signals from the midbrain are broadcast to various regions
of the cortex, including the striatum (particularly the nucleus
accumbens), the prefrontal cortex, and the amygdala (Schultz,
2007; Niv and Montague, 2009).

Reward processing involves several distinct stages, and
many studies have focused on the neural circuitry supporting
the reward anticipation and feedback periods. Reward-related
learning in particular is thought to occur through RPEs encoded
by striatal dopamine signals (Schultz, 2016b). Several lines of
evidence suggest that, compared to healthy participants, both
medicated and unmedicated MDD patients have blunted RPE
signaling within the ventral striatum during reward feedback
(see Table 2; Zhang et al., 2013; Keren et al., 2018; Kumar
et al., 2018), and EEG studies have consistently reported
significant reductions in the feedback-related negativity (FRN)
ERP component in medicated and unmedicated MDD patients
compared to healthy participants (Keren et al., 2018). In addition,

TABLE 1 | Sensory deviance detection disruptions in MDD.

Authors Major findings—MMN Sample size and
characteristics

Medication
status

Methodology

Chen et al. (2015) ↓ MMN amplitude in first-episode and recurrent MDDs; no
association between depression severity and MMN amplitudes;
P3a amplitude negatively associated with depression severity in
both MDD groups

45 first-episode MDD,
40 recurrent MDD, 46
HC

Medicated EEG

Takei et al. (2009) ↓ MMN amplitude in MDDs; no association between
depression severity and MMN amplitude/latency

14 MDD, 19 HC Medicated MEG

Hirakawa et al. (2017) ↓ MMN amplitude in MDDs in right but not left hemisphere,
reduced MMN latencies in both hemispheres; no association
between depression severity and MMN amplitude/latency

20 MDD, 36 HC Medicated MEG

Tseng et al. (2021) ↓ MMN amplitude and prolonged latency in first-episode/early
stage MDDs for duration but not frequency deviants, ↓ MMN
amplitude only for duration deviants in recurrent MDDs; no
association between depression severity and MMN
amplitude/latency

Meta-analysis of
studies including 339
MDD, 343 HC

Mixed status EEG and MEG

Qiao et al. (2013) ↓ MMN amplitude and prolonged latency in MDDs for
increment but not decrement deviants; no association between
depression severity and MMN amplitudes

20 first-episode MDD,
20 HC

Unmedicated EEG

Qiu et al. (2011) ↓ MMN amplitude in MDDs for long-duration but not
short-duration deviants; no association between depression
severity and MMN amplitudes

24 first-episode MDD,
24 HC

Unmedicated EEG

He et al. (2010) ↑ MMN amplitude in MDDs only compared to other groups; no
association between depression severity and MMN amplitudes
or latencies

22 MDD, 19 BPD, 22
comorbid MDD/BPD,
32 HC

Unmedicated EEG

Kähkönen et al.
(2007)

↑ MMN amplitude in MDDs for 10% but not 20% frequency
change deviants in EEG but not MEG; P1 latency decrease
negatively associated with depression severity

13 MDD, 12 HC Unmedicated EEG and MEG

Mu et al. (2016) ↑ MMN amplitude in MDDs for timbre but not pitch, location,
intensity, slide, or rhythm deviants; no association between
depression severity and MMN amplitudes or latencies

20 MDD, 20 HC Unmedicated EEG

Kim et al. (2020) No differences in MMN amplitude between MDD and HC; ↓

MMN amplitude in BD compared to HC
27 MDD, 29 BD, 33 HC Medicated EEG

BD, bipolar depression; BPD, borderline personality disorder; EEG, electroencephalography; HC, healthy control; MEG, magnetoencephalography; MDD, major
depression; MMN, mismatch negativity.
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TABLE 2 | Reward prediction and prediction error disruptions in MDD.

Authors Major findings—Reward signaling Sample size and
characteristics

Medication
status

Methodology

Greenberg et al.
(2015)

↓ RPE signal in right striatum in MDD; striatal PE-related signal
associated with anhedonia severity

148 MDD, 31 HC Unmedicated fMRI

Keren et al. (2018) ↓ striatal activation during reward anticipation and blunted FRN
response in MDD; longitudinal studies suggest these effects
precede onset of depression in adolescents

Meta-analysis of 38
fMRI studies and 12
EEG studies

Mixed status EEG and fMRI

Kumar et al. (2018) ↓ RPE signal in striatum in MDD; ↓ VTA-striatal connectivity
during feedback; both striatal RPE signal blunting and habenula
PPE signal associated with number of MDEs

25 MDD, 26 HC Unmedicated fMRI

Zhang et al. (2013) ↓ striatal activation during reward anticipation and feedback in
MDD, ↑ activation in middle frontal gyrus and dorsal anterior
cingulate during reward anticipation in MDD

Meta-analysis of
studies including 341
MDD, 367 HC

Mixed status fMRI

Rothkirch et al.
(2017)

No differences in RPE signals in striatum and anterior insula; ↓

RPE signaling in orbitofrontal cortex in MDD; RPE signals in
striatum and orbitofrontal cortex negatively associated with
anhedonia severity

28 MDD, 30 HC Unmedicated fMRI

Rutledge et al.
(2017)

No differences in RPE signals in striatum 32 MDD, 20 HC Medicated fMRI

EEG, electroencephalography; fMRI, functional magnetic resonance imaging; FRN, feedback-related negativity; HC, healthy control; MDD, major depression; MEG,
magnetoencephalography; PE, prediction error; PPE, punishment prediction error; RPE, reward prediction error; VTA, ventral tegmental area.

some studies have suggested that VTA-striatal connectivity is
blunted in response to reward feedback in unmedicated MDD
patients compared to healthy participants (Kumar et al., 2018).
However, other researchers have found seemingly contradictory
results regarding RPE signaling in the striatum. For example,
Rutledge and colleagues (2017) found that ventral striatum RPE
signaling did not significantly differ between medicated MDD
patients and healthy participants, while a recent review identified
discrepancies in blunting or lack of blunting of ventral striatum
signals during RPEs in MDD patients (Yaple et al., 2021). Taken
together, a growing consensus suggests that MDD is accompanied
by changes in dopaminergic signaling that affect reward-related
outcomes in the striatum, though significant inconsistencies
remain regarding whether the striatal activation is blunted or
increased in MDD.

As with MMN response changes accompanying depression,
an important clinical question is whether differences in striatal
activity or other aspects of reward processing are associated
with depressive symptomatology. Recent research suggests that
blunting of striatal RPE signaling is associated with the number
of depressive episodes reported by patients, indicating that MDD
has an increasing impact on reward learning processes over
time (Kumar et al., 2018). Similarly, signals in the habenula
have also been correlated with the number of depressive
episodes experienced by MDD patients (Kumar et al., 2018).
A recent meta-analysis of studies using reward tasks in depression
found that blunting of both striatal activation and the FRN
response were associated with depressive symptomatology,
though changes in the metrics that accompanied symptom
severity did not reach levels that would be useful for clinical
prediction (Nielson et al., 2021). Taken together, these findings
suggest that RPE signaling deficits, as indexed by reductions
in striatal activation and the FRN component of the M/EEG,
are potentially useful biomarkers of MDD; nevertheless, more

research is warranted to determine whether these brain circuitry
changes may play a causal role in the development of depression
(Nielson et al., 2021).

As previously noted in relation to the MMN response,
inconsistencies in neurophysiological RPE findings in MDD
may be due to a number of factors, including sample size
and recruitment criteria, medication status, and differences in
reward tasks and incentives and punishments. In addition,
the heterogeneity of findings on RPEs in MDD may also be
explained by underlying heterogeneity in MDD symptomatology.
The severity of anhedonia, in particular, might be a useful
construct for analyzing RPE signals in this context. One study
that included anhedonia in its framework found that, for
MDD patients, higher levels of anhedonia were associated
with reduced RPE signals in the ventral striatum and medial
orbitofrontal cortex (Rothkirch et al., 2017). Another study
found that among those with and without an MDD diagnosis,
severity of anhedonia moderated the relationship between reward
expectancy and RPE signaling in ventral striatum; this suggests
that those with worse symptoms of anhedonia may experience
deficits in related aspects of reward learning regardless of
diagnosis (Greenberg et al., 2015). Such subtyping work has
also demonstrated that resting-state hyperconnectivity between
thalamic and frontostriatal networks, including the reward-
related circuitry discussed here, is associated with a depressive
biotype characterized by increased anhedonia and psychomotor
retardation (Drysdale et al., 2017).

As research in this area expands and our neuroscientific
understanding of predictive coding deficits in depression is
refined, it is important to consider the real-world applications
of this work. For example, a better understanding of RPE
signaling in reward tasks might increase our understanding of
the neural processes that mediate anhedonia and negative bias,
allowing the development of more refined and better targeted
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pharmaceutical and psychotherapeutic interventions. Given the
connection between altered reward learning and decision making
processes, this research also has implications for suicide-related
interventions (Dombrovski et al., 2013).

ANTIDEPRESSANT DRUGS AND
PREDICTIVE PROCESSES

Presently, most approved antidepressant drugs target the
monoaminergic system and regulate the reuptake, metabolism,
or receptor pharmacodynamics of the neurotransmitters 5-HT
and norepinephrine (also called noradrenaline). The typical
onset of beneficial drug effects for these antidepressants takes
several weeks (Quitkin et al., 1984; Gelenberg and Chesen,
2000), though mounting evidence suggests that earlier clinical
and cognitive processing changes may help predict treatment
outcomes (Katz et al., 1996; Harmer et al., 2009). More
recently, the glutamatergic modulator ketamine has gained
attention as a novel therapeutic that produces rapid-acting
antidepressant effects in individuals with treatment-resistant
MDD that manifest within hours of administration and last
days (Zarate et al., 2006; Kishimoto et al., 2016). Concomitantly,
in 2019 the FDA approved esketamine (the intranasally-
administered S-enantiomer of ketamine) as an adjunctive
treatment option for depression. This section explores the current
state of the literature regarding the role of monoaminergic
and glutamatergic [particularly via the N-methyl-D-aspartate
(NMDA) receptor] signaling in predictive coding processes.
Where appropriate, research evidence that highlights the effects
of monoaminergic and glutamatergic antidepressant therapeutics
on these processes in both MDD patients and healthy participants
is also presented.

Monoaminergic Drugs
5-HT, norepinephrine, and dopamine are monoamines involved
in a wide range of physiological and homeostatic processes. 5-
HT, for example, has been implicated in a range of behaviors,
including regulating the sleep-wake cycle and hormonal levels
as well as influencing cognition, sensorimotor behaviors, and
emotions (Jacobs and Azmitia, 1992). Norepinephrine has
been implicated in regulating arousal and adapting network
activity by influencing neuromodulatory neurons and peripheral
arousal levels to support adaptive, flexible behavioral responses
(Sara and Bouret, 2012).

Pre-attentive sensory processing research suggests that 5-
HT is important for salience detection and potentially regulates
the speed of change detection during sensory tasks (Kähkönen
et al., 2005). In the primary visual cortex, for instance, the
distribution of 5-HT-ergic axons appears to be highest in input
layer IV of the cortex (Kosofsky et al., 1984; Morrison and Foote,
1986). In contrast, while 5-HT-ergic axons are consistently found
in layer IV in primary auditory and somatosensory cortices,
the distribution does not appear to be preferential (Wilson
and Molliver, 1991a,b). Despite variability in the distribution
of 5-HT-ergic axons across sensory modalities, studies have
consistently shown that 5-HT modulates the salience of sensory

inputs across modalities (Jacob and Nienborg, 2018). While the
role of 5-HT in salience detection has been well documented, its
role in the MMN response is less clear. In healthy participants,
studies using acute tryptophan depletion (ATD)—which rapidly
reduces the amino acid precursor of 5-HT and 5-HT metabolite
concentrations in cerebrospinal fluid—have produced mixed
findings. While some studies reported that ATD increased
MMN amplitudes and reduced latencies (Kähkönen et al.,
2005), other studies found either reduced MMN amplitudes
(Ahveninen et al., 2002) or no differences in MMN responses
following ATD (Leung et al., 2009). These discrepancies might be
due to methodological differences in preprocessing approaches
and other analytical techniques, including choices related to
M/EEG source localization techniques (Fusar-Poli et al., 2006).
In addition, while ATD is thought to reduce 5-HT release
and subsequently blunt neurotransmission, there is no direct
evidence that it decreases extracellular 5-HT concentrations.
Caution is thus needed when interpreting its selective 5-HT
effects (van Donkelaar et al., 2011).

The role of 5-HT in reward processing is less clear than
for sensory deviance detection, and our current understanding
derives from the observation that 5-HT has an opponent
relationship with dopamine (Kapur and Remington, 1996; Daw
et al., 2002). Phasic levels of dopaminergic activity are known
to signal positive and negative RPEs related to how different
the current reward is from ongoing predictions of long-running
rewards (Schultz et al., 1997; Schultz, 2016b). Given the opponent
relationship between dopamine and 5-HT, one theory regarding
5-HT’s role in reward signaling is that phasic levels of 5-HT
signal punishment prediction errors related to how different
the current punishment is from ongoing predictions of future
punishment (Daw et al., 2002). An extension of this model
also accounts for how tonic 5-HT levels may represent the
opportunity costs of waiting to avoid punishments (Cools et al.,
2011). Studies using ATD and reward learning tasks in healthy
participants have produced mixed findings, echoing studies
that used MMN response tasks. One review of 36 studies that
used ATD during reward learning tasks reported that lower
5-HT levels resulted in reduced sensitivity to punishments in
nine of the 36 studies, with the authors noting that further
research was warranted to clarify the role of 5-HT in reward
tasks (Faulkner and Deakin, 2014). Similar caution should
be used when interpreting results regarding 5-HT’s role in
reward processing, as previously discussed in relation to sensory
deviance detection.

Research examining the role of norepinephrine in sensory
processing indicates that it plays a complex modulatory role in
sensory signaling (Jacob and Nienborg, 2018). Norepinephrine
innervation in the somatosensory cortex is both uniform and
dense across cortical layers (Morrison et al., 1982; Lewis et al.,
1987). Unlike 5-HT, however, norepinephrine innervation in
primary auditory and visual cortices is sparse across layers
and virtually absent in layer IV (Foote and Pineda, 1993).
Given the sparse distribution of norepinephrine receptors in
auditory and visual cortices, norepinephrine’s primary role in
sensory processing appears to be in modulating NMDA receptor-
mediated glutamate responses (Devilbiss and Waterhouse, 2000),
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gating long-term plasticity (LTP) of glutamatergic synapses,
and increasing the gain of local inhibitory synapses (Salgado
et al., 2016). Because norepinephrine plays only an indirect
role in sensory cortex signaling via modulation of glutamatergic
mechanisms, little research has examined its specific role in
sensory deviance detection.

While norepinephrine’s role in sensory processing is
understudied, recent work has begun to examine its role in
reward-related tasks. In particular, recent evidence suggests
that norepinephrine plays a role in modulating glutamatergic
synapses in the nucleus accumbens, and that it might tune
feedforward inhibition and impact reward-related circuitry as
well as motivational states (Manz et al., 2021). Animal studies
have also suggested that norepinephrine is associated with the
amount of effort required to perform a reward task (here, force
exerted on a grip in order to receive a reward) and that this
effort is distinct from reward sensitivity (Varazzani et al., 2015;
Borderies et al., 2020). While norepinephrine’s role in reward-
related tasks is also understudied, current findings suggest
that it plays an important role in modulating motivation and
effort levels. One particularly relevant area for future research
regarding where motivation and effort influence reward-related
behavior would be determining the opportunity costs associated
with seeking or avoiding rewards and punishments. Perhaps
norepinephrine and 5-HT operate synergistically in this regard
to support motivated behaviors to continue to seek rewards or
avoid punishments.

Given the proposed role of 5-HT and norepinephrine in
predictive coding processes, it is useful to consider the effect
of antidepressant drugs that target the monoaminergic system
on sensory deviance detection and reward processing. While
many previously reviewed studies of the MMN response and
reward processing included medicated patients, the heterogeneity
of medications and the inclusion of both medicated and
unmedicated samples makes it difficult to tease apart the role
that specific neurotransmitters may have played in predictive
processing. Another way to approach this experimentally is to
give antidepressant drugs to healthy participants. Such studies
found that drugs such as escitalopram, the therapeutically-
active S-enantiomer of citalopram [a highly selective serotonin
reuptake inhibitor (SSRI)], increase MMN amplitudes in healthy
participants (Oranje et al., 2008; Wienberg et al., 2010). In
addition, research with citalopram using appetizing and aversive
food picture stimuli found reduced ventral striatum and ventral
medial/orbitofrontal cortex activation in healthy participants
to appetizing foods such as chocolate (McCabe et al., 2010).
Research with reboxetine, a norepinephrine reuptake inhibitor,
found increased neural responses in the medial orbitofrontal
cortex to the same appetizing foods (McCabe et al., 2010).
One difficulty with using such dosing studies to inform our
understanding of how predictive coding might be altered in
MDD is that these antidepressants have a delayed onset of
action of several weeks. Research on antidepressant drugs that
selectively downregulate the 5-HT or norepinephrine transporter
found that they produced a marked loss of binding sites for
the targeted neurotransmitter over an overlapping 2–3 week
time window corresponding with antidepressant efficacy (Frazer

and Benmansour, 2002). Some drug studies have tried to
account for this delay by having healthy participants take such
drugs over several days (e.g., 7 days) (McCabe et al., 2010),
while other studies have examined drug effects after only a
single dose (Oranje et al., 2008; Wienberg et al., 2010). One
study of the serotonin-norepinephrine reuptake inhibitor (SNRI)
duloxetine in healthy participants used a 2-week daily dosing
regimen and found increased ventral striatum responses during
a reward task (Ossewaarde et al., 2011). Further work is needed
using this longer-term dosing approach that overlaps with
antidepressant response to the drug in order to better characterize
the roles of 5-HT and norepinephrine in predictive coding
processes. As a final point, recent research has begun to explore
the antidepressant efficacy of “classic” 5-HT-ergic psychedelics
including psilocybin and lysergic acid diethylamide-25 in MDD
patients. Examining how such drugs impact both the MMN
response and reward processing are promising directions for
future research.

Finally, a new class of antidepressant drugs target dopamine,
in addition to 5-HT and norepinephrine. Therefore, it is useful
to consider the role of dopamine in predictive processes related
to the MMN response and reward-related signaling. The role
of dopamine in sensory signaling is understudied, though it
is thought to play an important role in modulating human
attention and arousal (Coull, 1998). Limited research examining
the effects of haloperidol, a partially selective dopamine D2
receptor antagonist, demonstrated that drug administration
did not affect the source location or amplitude of the MMN
response in healthy participants, suggesting that dopamine does
not have a role in sensory deviance detection processes per
se (Kähkönen et al., 2002). However, the drug was found
to influence the amplitude of the MMN response in healthy
participants during a condition where participants selectively
attended to one of two simultaneously presented auditory
streams, suggesting that dopamine plays a specific role in the
involuntary detection of task-irrelevant deviants (Kähkönen
et al., 2001). Studies examining the MMN response in healthy
participants following acute tyrosine/phenylalanine depletion
also suggest that reducing dopamine neurotransmission has
no effect on the MMN response (Leung et al., 2009).
Taken together, these findings suggest that dopamine is not
directly involved in predictive coding processes at the level of
sensory inputs.

Much more is known about dopamine’s role in reward
processing and RPE signaling, as has been previously discussed
(Matsumoto and Hikosaka, 2007; Schultz, 2007; Matsumoto
and Hikosaka, 2009b; Schultz, 2016b). However, while animal
models consistently demonstrate that dopamine signals code
RPEs (Schultz, 2016a), research examining pharmacological
manipulations of dopamine in healthy participants offer mixed
findings. While dopamine antagonism has been demonstrated to
consistently decrease reward learning, dopamine antagonism and
dietary manipulations of dopamine offer mixed results (Webber
et al., 2021). These discrepancies could be due to a number of
factors including drug manipulations, dosing regimens, or the
possibility that there is an optimal level of dopamine for reward-
related learning, with increases beyond this level impairing
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reward-related functioning (Vaillancourt et al., 2013). Further
research is needed in this area to elucidate how changes in
dopamine signaling concomitant with depression are associated
with RPE signals.

Glutamatergic Drugs
Glutamate is the primary excitatory neurotransmitter in the
brain and is important for regulating cortical excitability and
experience-dependent synaptic plasticity and LTP. Glutamatergic
signaling deficits have been widely reported in mood disorders
including MDD (Choudary et al., 2005; Yüksel and Öngür,
2010; Bernard et al., 2011), and subanesthetic doses of
the non-competitive NMDA receptor antagonist ketamine
have been shown to rapidly reduce depressive symptoms
(Zarate et al., 2006; Kishimoto et al., 2016). Antidepressant
response to ketamine appears to rely on both high affinity
antagonistic binding properties at the NMDA receptor and
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) throughput modulation (Maeng et al., 2008; Zanos
et al., 2016). In the context of predictive coding signaling,
this is particularly relevant because AMPA and NMDA
receptors may support distinct contributions to feedforward
and feedback signaling. For example, in the visual system,
AMPA receptors are primarily thought to propagate visual
activity from lower to higher-order visual areas, while NMDA
receptors modulate recurrent connections (Lumer et al.,
1997; Dehaene et al., 2003; Self et al., 2012). Much of what
is known about the NMDA receptor’s role in the MMN
response and reward processing comes from pharmacological
ketamine studies.

Subanesthetic-dose ketamine has been used to model
schizophrenia-like effects in healthy participants, and findings
from these studies can inform our understanding of the
NMDA receptor’s role in sensory deviance detection. In healthy
participants, ketamine administration consistently diminished
auditory ERP amplitudes during drug infusion (Rosburg
and Kreitschmann-Andermahr, 2016; Harms et al., 2021).
Electrophysiological findings have also demonstrated that
ketamine increases the latency of MMN responses in healthy
participants (Umbricht et al., 2000; Kreitschmann-Andermahr
et al., 2001), though its effect on amplitude is stronger than
its effect on latency (Rosburg and Kreitschmann-Andermahr,
2016). In the context of the MMN response, ketamine
administration was found to reduce frontal MMN amplitudes
immediately post-infusion and again at 2 h post-infusion
in MDD patients; furthermore, immediate change in MMN
amplitude predicted antidepressant response (de la Salle, 2022).
In contrast, other studies that used a roving auditory oddball
task collected 3–4 h post-ketamine infusion in MDD patients
found that ketamine administration increased MMN response,
but only when all repetitions of the post-deviant tone were
analyzed (Sumner et al., 2020). The same study found that
feedforward connectivity from the primary auditory cortex
to the inferior temporal cortex for the deviant tones was
associated with antidepressant response. Taken together, the
evidence suggests that ketamine administration consistently and
acutely attenuates MMN amplitude and increases its latency in

healthy participants, but that findings regarding how ketamine
influences MMN response in MDD patients are mixed. Some
of this discrepancy could be related to differences in the
oddball task design or could be related to differences in the
timing of MMN response measurements relative to ketamine
administration. Additional work is needed to examine both acute
and delayed ketamine effects on MMN response, particularly
in unmedicated patients, in order to tease apart transient
effects that result from NMDA receptor blockade from more
delayed antidepressant effects that result from changes in
synaptic efficacy.

Ketamine has also been administered to healthy participants
during reward learning tasks. Results indicated that acute
subanesthetic ketamine administration attenuated ventral
striatum activation during reward anticipation (Francois et al.,
2016). Additional research focused on ketamine’s effects on
reward processing in MDD patients, in part spurred by recent
findings that ketamine blockade of NMDA receptor-dependent
bursting activity in the lateral habenula mediated antidepressant
response in animal models, with subsequent disinhibitory effects
in downstream reward centers (Yang et al., 2018a; Cui et al.,
2019). A recent study of unmedicated MDD patients currently
in remission found that ketamine increased activation in the
nucleus accumbens, putamen, insula, and caudate 2 h post-
administration, during the reward feedback period (Kotoula
et al., 2021). Another study of medicated MDD patients found
that ketamine administration resulted in increased ventral
striatum and orbitofrontal cortex activation during both the
reward anticipation and feedback periods of a reward task
administered 1 day post-infusion (Sterpenich et al., 2019).
Taken together, these findings suggest that ketamine improves
sensitivity to rewards as indexed by increased activation in the
striatum and other reward-related circuitry, and that these effects
might be mediated by changes in NMDA receptor-mediated
bursting within the lateral habenula. Additional work is needed
to examine how changes in activity within these reward-related
regions post-ketamine may be associated with antidepressant
response in MDD.

CONCLUSION

The predictive coding framework conceptualizes perception as
a constructive process where internal generative models are
used to predict incoming sensory inputs and their causes.
MDD has traditionally been viewed as a disorder characterized
by negative cognitive biases, and these biases could result in
disrupted prediction error signaling within this framework. This
paper reviewed the evidence for disrupted predictions in MDD
in relation to both sensory deviance detection and reward
processing and examined the role of 5-HT, norepinephrine,
and NMDA receptor-mediated glutamate signaling in these
predictive processes. While the evidence suggests that MDD is
accompanied by changes in both sensory deviance detection
and reward processing, much additional work is needed.
Future studies should pay particular attention to medication
status in MDD in order to control for the influence of
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antidepressant drugs on effects of interest. More work is also
needed to understand how cardinal symptoms of MDD such as
anhedonia and negative bias are associated with reward-related
neural processing in particular. Finally, additional studies are
needed to understand how 5-HT, norepinephrine, and NMDA
receptor-mediated glutamate signaling might synergistically
support predictive signaling in both healthy participants
and MDD patients.
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