40 research outputs found

    Collision-free path coordination and cycle time optimization of industrial robot cells

    Get PDF
    In industry, short ramp-up times, product quality, product customization and high production rates are among the main drivers of technological progress. This is especially true for automotive manufacturers whose market is very competitive, constantly pushing for new solutions. In this industry, many of the processes are carried out by robots: for example, operations such as stud/spot welding, sealing, painting and inspection. Besides higher production rates, the improvement of these processes is important from a sustainability perspective, since an optimized equipment utilization may be achieved, in terms of resources used, including such things as robots, energy, and physical prototyping. The achievements of such goals may, nowadays, be reached also thanks to virtual methods, which make modeling, simulation and optimization of industrial processes possible. The work in this thesis may be positioned in this area and focuses on virtual product and production development for throughput improvement of robotics processes in the automotive industry. Specifically, the thesis presents methods, algorithms and tools to avoid collisions and minimize cycle time in multi-robot stations. It starts with an overview of the problem, providing insights into the relationship between the volumes shared by the robots\u27 workspaces and more abstract modeling spaces. It then describes a computational method for minimizing cycle time when robot paths are geometrically fixed and only velocity tuning is allowed to avoid collisions. Additional requirements are considered for running these solutions in industrial setups, specifically the time delays introduced when stopping robots to exchange information with a programmable logic controller (PLC). A post-processing step is suggested, with algorithms taking into account these practical constraints. When no communication at all with the PLC is highly desirable, a method of providing such programs is described to give completely separated robot workspaces. Finally, when this is not possible (in very cluttered environments and with densely distributed tasks, for example), robot routes are modified by changing the order of operations to avoid collisions between robots.In summary, by requiring fewer iterations between different planning stages, using automatic tools to optimize the process and by reducing physical prototyping, the research presented in this thesis (and the corresponding implementation in software platforms) will improve virtual product and production realization for robotic applications

    Mathematical Modelling for Load Balancing and Minimization of Coordination Losses in Multirobot Stations

    Get PDF
    The automotive industry is moving from mass production towards an individualized production, in order to improve product quality and reduce costs and material waste. This thesis concerns aspects of load balancing of industrial robots in the automotive manufacturing industry, considering efficient algorithms required by an individualized production. The goal of the load balancing problem is to improve the equipment utilization. Several approaches for solving the load balancing problem are presented along with details on mathematical tools and subroutines employed.Our contributions to the solution of the load balancing problem are manifold. First, to circumvent robot coordination we have constructed disjoint robot programs, which require no coordination schemes, are more flexible, admit competitive cycle times for some industrial instances, and may be preferred in an individualized production. Second, since solving the task assignment problem for generating the disjoint robot programs was found to be unreasonably time-consuming, we modelled it as a generalized unrelated parallel machine problem with set packing constraints and suggested a tighter model formulation, which was proven to be much more tractable for a branch--and--cut solver. Third, within continuous collision detection it needs to be determined whether the sweeps of multiple moving robots are disjoint. Our solution uses the maximum velocity of each robot along with distance computations at certain robot configurations to derive a function that provides lower bounds on the minimum distance between the sweeps. The lower bounding function is iteratively minimized and updated with new distance information; our method is substantially faster than previously developed methods

    Mathematical Modelling and Methods for Load Balancing and Coordination of Multi-Robot Stations

    Get PDF
    The automotive industry is moving from mass production towards an individualized production, individualizing parts aims to improve product quality and to reduce costs and material waste. This thesis concerns aspects of load balancing and coordination of multi-robot stations in the automotive manufacturing industry, considering efficient algorithms required by an individualized production. The goal of the load balancing problem is to improve the equipment utilization. Several approaches for solving the load balancing problem are suggested along with details on mathematical tools and subroutines employed.Our contributions to the solution of the load balancing problem are fourfold. First, to circumvent robot coordination we construct disjoint robot programs, which require no coordination schemes, are flexible, admit competitive cycle times for several industrial instances, and may be preferred in an individualized production. Second, since solving the task assignment problem for generating the disjoint robot programs was found to be unreasonably time-consuming, we model it as a generalized unrelated parallel machine problem with set packing constraints and suggest a tailored Lagrangian-based branch-and-bound algorithm. Third, a continuous collision detection method needs to determine whether the sweeps of multiple moving robots are disjoint. We suggest using the maximum velocity of each robot along with distance computations at certain robot configurations to derive a function that provides lower bounds on the minimum distance between the sweeps. The lower bounding function is iteratively minimized and updated with new distance information; our method is substantially faster than previously developed methods. Fourth, to allow for load balancing of complex multi-robot stations we generalize the disjoint robot programs into sequences of such; for some instances this procedure provides a significant equipment utilization improvement in comparison with previous automated methods

    Efficient Industrial Solution for Robotic Task Sequencing Problem With Mutual Collision Avoidance & Cycle Time Optimization

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn the automotive industry, several robots are required to simultaneously carry out welding sequences on the same vehicle. Coordinating and assigning welding points between robots is a manual and difficult phase that needs to be optimized using automatic tools. The cycle time of the cell strongly depends on different robotic factors such as the task allocation among the robots, the configuration solutions and obstacle avoidance. Moreover, a key aspect, often neglected in the state of the art, is to define a strategy to solve the robotic task sequencing with an effective robot-robot collision avoidance integration. In this paper, we present an efficient iterative algorithm that generates a high-quality solution for Multi-Robotic Task Sequencing Problem. This latter manages not only the mentioned robotic factors but also aspects related to accessibility constraints and mutual collision avoidance. In addition, a home-developed planner ( RoboTSPlanner ) handling 6 axis has been validated in a real case scenario. In order to ensure the completeness of the proposed methodology, we perform an optimization in the task, configuration and coordination space in a synergistic way. Comparing to the existing approaches, both simulation and real experiments reveal positive results in terms of cycle time and show the ability of this method to be interfaced with both industrial simulation software and ROS-I tools.Peer ReviewedPostprint (published version

    Literature survey about elements of manufacturing shop floor operation key performance indicators

    Get PDF
    In the era of globalisation, manufacturing industries are compelled to continuously monitor their manufacturing operations to maintain competitiveness. As a result, manufacturers have integrated several measurement models to inspect their manufacturing operations. These models comprise of a set of Key Performance Indicators (KPIs), which are capable to enumerate the effectiveness, competence, efficiency and proficiency of manufacturing operations. This paper presents a review of manufacturing shop floor operation KPIs that has been studied in the recent literature. Based on the reviewed literature author proposes various KPI elements such as: description, category, scope, formula, unit of measure, range, trend, mode of display, viewers and manufacturing approach. These elements can help manufacturers to better describe, classify, analyze and measure the appropriate KPIs for their shop floor operations. Thus, enabling manufacturers to accomplish and uphold great quality, increased productivity and throughput

    Multi-robot cooperative platform : a task-oriented teleoperation paradigm

    Get PDF
    This thesis proposes the study and development of a teleoperation system based on multi-robot cooperation under the task oriented teleoperation paradigm: Multi-Robot Cooperative Paradigm, MRCP. In standard teleoperation, the operator uses the master devices to control the remote slave robot arms. These arms reproduce the desired movements and perform the task. With the developed work, the operator can virtually manipulate an object. MRCP automatically generates the arms orders to perform the task. The operator does not have to solve situations arising from possible restrictions that the slave arms may have. The research carried out is therefore aimed at improving the accuracy teleoperation tasks in complex environments, particularly in the field of robot assisted minimally invasive surgery. This field requires patient safety and the workspace entails many restrictions to teleoperation. MRCP can be defined as a platform composed of several robots that cooperate automatically to perform a teleoperated task, creating a robotic system with increased capacity (workspace volume, accessibility, dexterity ...). The cooperation is based on transferring the task between robots when necessary to enable a smooth task execution. The MRCP control evaluates the suitability of each robot to continue with the ongoing task and the optimal time to execute a task transfer between the current selected robot and the best candidate to continue with the task. From the operator¿s point of view, MRCP provides an interface that enables the teleoperation though the task-oriented paradigm: operator orders are translated into task actions instead of robot orders. This thesis is structured as follows: The first part is dedicated to review the current solutions in the teleoperation of complex tasks and compare them with those proposed in this research. The second part of the thesis presents and reviews in depth the different evaluation criteria to determine the suitability of each robot to continue with the execution of a task, considering the configuration of the robots and emphasizing the criterion of dexterity and manipulability. The study reviews the different required control algorithms to enable the task oriented telemanipulation. This proposed teleoperation paradigm is transparent to the operator. Then, the Thesis presents and analyses several experimental results using MRCP in the field of minimally invasive surgery. These experiments study the effectiveness of MRCP in various tasks requiring the cooperation of two hands. A type task is used: a suture using minimally invasive surgery technique. The analysis is done in terms of execution time, economy of movement, quality and patient safety (potential damage produced by undesired interaction between the tools and the vital tissues of the patient). The final part of the thesis proposes the implementation of different virtual aids and restrictions (guided teleoperation based on haptic visual and audio feedback, protection of restricted workspace regions, etc.) using the task oriented teleoperation paradigm. A framework is defined for implementing and applying a basic set of virtual aids and constraints within the framework of a virtual simulator for laparoscopic abdominal surgery. The set of experiments have allowed to validate the developed work. The study revealed the influence of virtual aids in the learning process of laparoscopic techniques. It has also demonstrated the improvement of learning curves, which paves the way for its implementation as a methodology for training new surgeons.Aquesta tesi doctoral proposa l'estudi i desenvolupament d'un sistema de teleoperació basat en la cooperació multi-robot sota el paradigma de la teleoperació orientada a tasca: Multi-Robot Cooperative Paradigm, MRCP. En la teleoperació clàssica, l'operador utilitza els telecomandaments perquè els braços robots reprodueixin els seus moviments i es realitzi la tasca desitjada. Amb el treball realitzat, l'operador pot manipular virtualment un objecte i és mitjançant el MRCP que s'adjudica a cada braç les ordres necessàries per realitzar la tasca, sense que l'operador hagi de resoldre les situacions derivades de possibles restriccions que puguin tenir els braços executors. La recerca desenvolupada està doncs orientada a millorar la teleoperació en tasques de precisió en entorns complexos i, en particular, en el camp de la cirurgia mínimament invasiva assistida per robots. Aquest camp imposa condicions de seguretat del pacient i l'espai de treball comporta moltes restriccions a la teleoperació. MRCP es pot definir com a una plataforma formada per diversos robots que cooperen de forma automàtica per dur a terme una tasca teleoperada, generant un sistema robòtic amb capacitats augmentades (volums de treball, accessibilitat, destresa,...). La cooperació es basa en transferir la tasca entre robots a partir de determinar quin és aquell que és més adequat per continuar amb la seva execució i el moment òptim per realitzar la transferència de la tasca entre el robot actiu i el millor candidat a continuar-la. Des del punt de vista de l'operari, MRCP ofereix una interfície de teleoperació que permet la realització de la teleoperació mitjançant el paradigma d'ordres orientades a la tasca: les ordres es tradueixen en accions sobre la tasca en comptes d'estar dirigides als robots. Aquesta tesi està estructurada de la següent manera: Primerament es fa una revisió de l'estat actual de les diverses solucions desenvolupades actualment en el camp de la teleoperació de tasques complexes, comparant-les amb les proposades en aquest treball de recerca. En el segon bloc de la tesi es presenten i s'analitzen a fons els diversos criteris per determinar la capacitat de cada robot per continuar l'execució d'una tasca, segons la configuració del conjunt de robots i fent especial èmfasi en el criteri de destresa i manipulabilitat. Seguint aquest estudi, es presenten els diferents processos de control emprats per tal d'assolir la telemanipulació orientada a tasca de forma transparent a l'operari. Seguidament es presenten diversos resultats experimentals aplicant MRCP al camp de la cirurgia mínimament invasiva. En aquests experiments s'estudia l'eficàcia de MRCP en diverses tasques que requereixen de la cooperació de dues mans. S'ha escollit una tasca tipus: sutura amb tècnica de cirurgia mínimament invasiva. L'anàlisi es fa en termes de temps d'execució, economia de moviment, qualitat i seguretat del pacient (potencials danys causats per la interacció no desitjada entre les eines i els teixits vitals del pacient). Finalment s'ha estudiat l'ús de diferents ajudes i restriccions virtuals (guiat de la teleoperació via retorn hàptic, visual o auditiu, protecció de regions de l'espai de treball, etc) dins el paradigma de teleoperació orientada a tasca. S'ha definint un marc d'aplicació base i implementant un conjunt de restriccions virtuals dins el marc d'un simulador de cirurgia laparoscòpia abdominal. El conjunt d'experiments realitzats han permès validar el treball realitzat. Aquest estudi ha permès determinar la influencia de les ajudes virtuals en el procés d'aprenentatge de les tècniques laparoscòpiques. S'ha evidenciat una millora en les corbes d'aprenentatge i obre el camí a la seva implantació com a metodologia d'entrenament de nous cirurgians.Postprint (published version

    Time-optimal control of large-scale systems of systems using compositional optimization

    Get PDF
    Optimization of industrial processes such as manufacturing cells can have great impact on their performance. Finding optimal solutions to these large-scale systems is, however, a complex problem. They typically include multiple subsystems, and the search space generally grows exponentially with each subsystem. In previous work we proposed Compositional Optimization as a method to solve these type of problems. This integrates optimization with techniques from compositional supervisory control, dividing the optimization into separate sub-problems. The main purpose is to mitigate the state explosion problem, but a bonus is that the individual sub-problems can be solved using parallel computation, making the method even more scalable. This paper further improves on compositional optimization with a novel synchronization method, called partial time-weighted synchronization (PTWS), that is specifically designed for time-optimal control of asynchronous systems. The benefit is its ability to combine the behaviour of asynchronous subsystems without introducing additional states or transitions. The method also reduces the search space further by integrating an optimization heuristic that removes many non-optimal or redundant solutions already during synchronization. Results in this paper show that compositional optimization efficiently generates global optimal solutions to large-scale realistic optimization problems, too big to solve when based on traditional monolithic models. It is also shown that the introduction of PTWS drastically decreases the total search space of the optimization compared to previous work

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field
    corecore