
Time-optimal control of large-scale systems of systems using
compositional optimization

Downloaded from: https://research.chalmers.se, 2020-01-17 15:56 UTC

Citation for the original published paper (version of record):
Hagebring, F., Lennartson, B. (2019)
Time-optimal control of large-scale systems of systems using compositional optimization
Discrete Event Dynamic Systems: Theory and Applications, 29(3): 411-443
http://dx.doi.org/10.1007/s10626-019-00290-0

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

https://doi.org/10.1007/s10626-019-00290-0

Time-optimal control of large-scale systems of systems
using compositional optimization

Fredrik Hagebring1 ·Bengt Lennartson1

Received: 5 September 2018 / Accepted: 26 July 2019
© The Author(s) 2019

Abstract
Optimization of industrial processes such as manufacturing cells can have great impact
on their performance. Finding optimal solutions to these large-scale systems is, however,
a complex problem. They typically include multiple subsystems, and the search space
generally grows exponentially with each subsystem. In previous work we proposed Com-
positional Optimization as a method to solve these type of problems. This integrates
optimization with techniques from compositional supervisory control, dividing the opti-
mization into separate sub-problems. The main purpose is to mitigate the state explosion
problem, but a bonus is that the individual sub-problems can be solved using parallel
computation, making the method even more scalable. This paper further improves on com-
positional optimization with a novel synchronization method, called partial time-weighted
synchronization (PTWS), that is specifically designed for time-optimal control of asyn-
chronous systems. The benefit is its ability to combine the behaviour of asynchronous
subsystems without introducing additional states or transitions. The method also reduces
the search space further by integrating an optimization heuristic that removes many non-
optimal or redundant solutions already during synchronization. Results in this paper show
that compositional optimization efficiently generates global optimal solutions to large-scale
realistic optimization problems, too big to solve when based on traditional monolithic mod-
els. It is also shown that the introduction of PTWS drastically decreases the total search
space of the optimization compared to previous work.

Keywords Large-scale optimization · Discrete event systems · State explosion problem ·
Time-optimal control · Compositional optimization

This article belongs to the Topical Collection: Smart Manufacturing - A New DES Frontier
Guest Editors: Rong Su and Bengt Lennartson

This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and
Software Program (WASP) funded by Knut and Alice Wallenberg Foundation

� Fredrik Hagebring
fredrik.hagebring@chalmers.se

1 Division of Systems and Control, Department of Electrical Engineering,
Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Discrete Event Dynamic Systems (2019) 29:411–443

/ Published online: 30 August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-019-00290-0&domain=pdf
http://orcid.org/0000-0002-1801-1969
mailto: fredrik.hagebring@chalmers.se

1 Introduction

Autonomous systems are becoming more and more important in society and especially
in industry. This applies also to manufacturing industry, where the level of automation is
continuously increasing. The goal is to enable systems, also referred to as plants, to take
independent decisions within an often unstructured and complex environment, in order
to reduce the need of human intervention. To reach this goal, new and fast methods for
large-scale optimization that can incorporate all available information must be developed.

Modelling manufacturing systems as discrete event systems (DES) (Cassandras and
Lafortune 2008) allows for verification and synthesis using formal methods, such as super-
visory control theory (SCT), first defined by Ramadge and Wonham (1987) and Ramadge
and Wonham (1989). However, verification and control of discrete systems are related to
combinatorial optimization, and the algorithms suffer from the well-known state explosion
problem, also called the curse of dimensionality (Gass and Fu 2013; Valmari 1998). Wong
and Wonham (1998) showed that this can be mitigated to some extent by modular or com-
positional algorithms when the system is separable into subsystems (system of systems).
It has been shown in later work by Flordal and Malik (2009) and Mohajerani et al. (2014)
among others that compositional supervisory control can efficiently synthesize controllers
for large-scale systems.

The downside of SCT for autonomous systems is that most work focuses on maximally
permissive control synthesis for a given set of specifications (Cassandras and Lafortune
2008, chap. 3). The controller should ensure that something bad never happens. This is use-
ful when the plant is operated by an external controller or human operator. An autonomous
system needs a controller that can take good decisions, in order to eventually let the system
reach a predefined goal state. This requires that the model is extended with a cost func-
tion that defines the notion of good. The controller should then reach the goal as cheap as
possible, which constitutes an optimization problem.

A wide range of efficient methods for solving these specific type optimization problems
have been explored over the years. There are a using a wide range of different optimization
techniques. For further references we recommend Passino and Antsaklis (1989), Brandin
and Wonham (1994), Huang and Kumar (2008), Kobetski and Fabian (2009) and Hagebring
et al. (2016). Many of them have been proven efficient with respect to computational com-
plexity and typically scales polynomially with the size of the system. Moreover, the type of
problems that is addressed can typically be perceived to relate directly to other large field of
optimization research such as planning and scheduling. For example, MDP theory, which is
the most basic modeling tool for stochastic scheduling, is claimed in the textbook by Cas-
sandras and Lafortune (2008) as a formal DES framework. Regardless of the modelling tool
or the solution method, all suffer from the state explosion problem. The problem of address-
ing this problem have of course been investigated in a large number of publications. For
further references we recommend Powell (2007), Cao X (2007), Bertsekas and Tsitsiklis
(1996) and Bertsekas (2005).

However, to the best of our knowledge, none of these methods offers a generalized com-
positional optimization approach, which means that they all have to consider the full search
space of the monolithic system. It is not enough with methods that scales polynomially with
the size of the system if the system itself scales exponentially with the number and size of
its subsystems. The problem with modular or compositional methods in optimization is that
there is not enough information locally to fully optimize the subsystem and still guarantee
a global optimal solution. In recent years, related work has been presented by other groups
on modular or compositional methods. Particularly interesting are the works done by Hill

Discrete Event Dynamic Systems (2019) 29:411–443412

and Lafortune (2016, 2017), Su (2012a) and Ware and Su (2017). The latter are closely
related to the work presented in this paper, where they propose a compositional method
for synthesis of a time-optimal controller. The techniques are, however, either restrictive in
their reduction of the subsystems or offer only approximative solutions. We claim that the
work presented in this paper offers a stronger mitigation of the state explosion, while still
generating global optimal solutions.

In Hagebring and Lennartson (2018) we presented a general formulation of a composi-
tional optimization method for system of systems, hereinafter called CompOpt. This method
integrates techniques from compositional supervisory control with traditional graph based
search algorithms. Its strength comes from the ability to reduce the state space of each
subsystem individually by exploiting their local behavior, mitigating the state explosion
that otherwise would occur during synchronization. It was shown that CompOpt drasti-
cally reduced the search space during the optimization of a realistic large-scale example
and, hence, improved the computational complexity. Dividing the optimization into multi-
ple independent sub-problems also allows for a parallel computation of their solutions. The
scalability gained by this is considered an important property of CompOpt. Yet, the added
benefit of parallelization has not been included in the evaluation of this paper. Instead it is
left to be investigated in future research.

There are several industrial applications where an optimization using CompOpt may be
beneficial. This paper provides examples both from logistics, in the motivating example of
Section 3, and manufacturing industry, in the large-scale examples of Section 6. The general
formulation of CompOpt does, however, enable it to optimize any system of systems as long
as these can be modelled using weighted automata, such as in these examples. These type
of systems can be found in a wide range of applications and are in no way restricted to only
the traditional areas of industrial automation.

One of the main limitation of the previous implementation of CompOpt was the decrease
in computational performance when dealing with time-optimal control. This was caused by
the non-trivial task of modelling the parallel execution of subsystems. Yet, this type of time-
weighted systems is one of the most common applications, e.g. minimizing cycle time of a
production cell. Optimization of industrial processes usually consider time as the main cost
when improving productivity. Similarly to Ware and Su (2017), the previous implementation
of CompOpt used tick automata (Gruber et al. 2005) during the synchronization of time-
weighted systems. The problem with this is that the technique includes a discretization of the
time line, which increases the search space and reduces the overall efficiency. There exists a
wide variety of other modelling tools specifically designed for time-weighted systems, the
most well known probably being Timed Automata (Alur and Dill 1994). Another modelling
technique, called time-weighted automata, proposed by Su et al. (2012b), is quite similar
to the weighted automata used in this paper. However, all these modelling techniques add
additional information and restrictions to the models. This is required to explicitly represent
the full synchronous composition of the time-weighted system. Fortunately, we show in this
paper that CompOpt does not require a full synchronous composition.

In this paper we improve on CompOpt by proposing a novel and efficient synchronization
method for time-weighted systems, called partial time-weighted synchronization (PTWS).
PTWS is able to synchronize the parallel behaviour of time-weighted subsystems without
adding any additional states or transitions to their models. The key to this method is the
integration of an optimization heuristic that, similarly to the local optimization, reduces the
state space of the synchronous composition by removing non-optimal or redundant solu-
tions, while maintaining the global optimal solution. We show in this paper that this further
improves the efficiency of CompOpt by strengthening the mitigation of the state explosion

Discrete Event Dynamic Systems (2019) 29:411–443 413

problem. The addition of PTWS does not change the main process of CompOpt, it only
extends the method with a more efficient synchronization of the subsystems.

The paper is organized as follows. In Section 2 the basic notation and preliminaries are
introduced. A motivating example of a logistics system is presented in Section 3, illus-
trating the impact of the state explosion problem and the benefit and challenges of using
a compositional optimization approach. Section 4 gives an introduction to compositional
optimization in general and defines the theory behind CompOpt. Section 5 presents PTWS,
the integrated optimization and synchronization method that is the main contribution of this
paper. In Section 6 we illustrate the potential of CompOpt and especially highlights the
improvements gained by PTWS compared to previous work. Finally, Section 7 concludes
the paper.

2 Preliminaries

Discrete event systems are modelled in this paper as non-deterministic finite automata
(NFA), defined by a 5-tuple G = (Q,�,→, q0,Qm), where Q is a set of states, � is a finite
set of events, →⊆ Q×�×Q is a transition relation, where q

σ−→ q ′ ∈→ denotes the transi-
tion from the source state q with the event label σ to the target state q ′, q0 ∈ Q is the initial
state and Qm ⊆ Q is a set of marked states. �(q) = {σ ∈ � | (∃q ′ ∈ Q) q

σ−→ q ′ ∈→} is
the active set of events in state q.

When an automaton G is executed, a set of sequential transitions occurs. By merging this
sequence of transitions, a path is generated. The target state of the current transition is then
merged with the source state of the next transition. Repeating this n times results in the path

ρ = q0
σ1−→ q1

σ2−→ q2
σ3−→ · · · σn−→ qn, (1)

where each transition qi
σi−→ qi+1 ∈→. For convenience, a path is sometimes considered as

the set of sequential transitions that constitutes the path, which enables the use of set theory
to reason about paths. Thus, the path ρ defined in Eq. 1 can also be written

ρ =
{
q0

σ1−→ q1, q1
σ2−→ q2, · · · , qn−1

σn−→ qn

}
. (2)

The set Paths(qi, qj) is the set of all paths ρ in G starting in the state qi and stopping
in the state qj . The set Paths(G) is the set of all possible paths available in G. A path
ρ ∈ Paths(qi, qj) is accepting if qj ∈ Qm and the set Paths(qi,Qm) denotes the set of
all accepting paths starting in qi . Finally, the natural projection (Cassandras and Lafortune
2008, chap. 2) of a path ρ from a set of events � to the set �, is defined as

P�→�(ρ) =
{
qi

σ−→ qj ∈ ρ | σ ∈ �
}

. (3)

A state q is reachable if there exists a path ρ ∈ Paths(q0, q) going from the initial state
q0 to the state q, and q is coreachable if there exists an accepting path ρ ∈ Paths(q,Qm)

starting in the state q. States that are coreachable are said to be non-blocking, since the
system can reach a marked state from these states, the opposite being blocking states. An
automaton G is said to be trim if all states are both reachable and coreachable. The notion
of sub-automaton G′ ⊆ G means that Q′ ⊆ Q, �′ ⊆ �, q ′

0 = q0, Q′
m ⊆ Qm and

q1
σ−→ q2 ∈→′ implies q1

σ−→ q2 ∈→ for all q1, q2 ∈ Q′, σ ∈ �′.
When applying compositional synthesis to a system of systems, the events of each sub-

system can be divided into local and shared events, where local events appear only in

Discrete Event Dynamic Systems (2019) 29:411–443414

one single subsystem, while shared events appear in at least two subsystems. Given a
system of systems G = {G1, . . . , Gn}, the local events of each subsystem Gi ∈ G is
�l

i = {σ ∈ �i | σ /∈ �j , ∀j ∈ [1, n] \ {i}}. The shared events is the complement of the
local events, �s

i = �i \ �l
i . A transition labeled by a shared or a local event is referred to

as a shared or a local transition, respectively. A path that only includes local transitions are
referred to as a local path.

2.1 Weighted automata

To represent the costs of a system we introduce the notion of weighted automata. In con-
trast to a standard automaton, a weighted automaton is a 6-tuple G = (Q,�, →, q0, Qm, c)

extended with the cost function c : (q1, σ, q2) → R
+, where q1, q2 ∈ Q, σ ∈ �,

q1
σ−→ q2 ∈→ and R

+ denotes the set of positive reals. The function defines a unique cost
associated with traversing each transition in the automata. It is also extended to cover paths
such that c(ρ) gives the total cost of all transitions in path ρ. To simplify notation, we write

weighted transitions as q1
〈σ,w〉−−−→ q2 where w = c(q1, σ, q2).

Synchronization between weighted automata is equal to the synchronous composition ‖
for regular automata models, defined in Hoare (1978), with the addition that the maximum
from each cost function is included as the weight to the new transitions. That is, if G =
G1||G2 is the synchronous composition of two weighted automata, then the cost function c

is defined as

c((q1, q2), σ, (q ′
1, q

′
2)) =

⎧⎨
⎩

max(c1(q1, σ, q ′
1), c2(q2, σ, q ′

2)), σ ∈ �1 ∩ �2
c1(q1, σ, q ′

1), σ ∈ �1 \ �2
c2(q2, σ, q ′

2), σ ∈ �2 \ �1

(4)

3 Motivating example

This section provides a motivating example to illustrate the impact of the state explosion
problem and the potential benefit and challenges of using a compositional optimization
approach. The example depicts a simple logistics system, consisting of two delivery trucks
that pick up and deliver packages in separate zones. Every day, there are a list of packages
that should be picked up and delivered within there operation area. The objective in this
example is to deliver all packages as quickly as possible, that is, the goal is to minimize the
time when the last truck returns to the warehouse in the afternoon. This motivating example
might not really depicts the optimization of a large-scale system of systems, but it is in fact
already large enough for the purpose of this illustration. The system is illustrated in Fig. 1.

The figure shows the two trucks and there respective zone. In the center of the area there
is a warehouse, which is where the trucks must start and end each day. The figure also
includes an example of a scenario where nine packages should be picked up and delivered
during the day. The pick up and delivery location of these packages are marked with dots on
the map, where the labels iP and iD represent the pick up and delivery locations of package
i respectively. Some packages should be picked up in one zone but delivered in another. In
these cases the truck that picks up the package has to bring it back to the central warehouse
where it can be moved over to the delivery truck. These type of switches between the trucks
are assumed to occur only once a day. The weights to be considered by the cost function
should in this case represent the time it takes to perform each task. The tasks include the
pick up and delivery of packages, as well as the travel between these locations.

Discrete Event Dynamic Systems (2019) 29:411–443 415

Fig. 1 Illustration of a simple logistics system, consisting of two delivery trucks A and B, operating in
adjacent neighbourhoods, that should pick up and deliver a total of nine packages. The pick up and delivery
location of a package i is marked iP and iD respectively

The physical position of each truck, can be modelled as a strongly connected graph,
where nodes represent the locations of the warehouse and the pick up/delivery tasks, while
the edges represent the travel in between. The actual pick up and delivery operations can be
modelled as self loops in the nodes of the graph, indicating that a task is performed but the
physical location does not change. In favor of readability, a reduced example where truck
A only have to pick up and deliver package 1 and pick up package 2 is modelled using a
simple automaton in Fig. 2. The markings of the transitions are: (i) the self loops marked
by 〈x〉 illustrating the different operations that can be performed in each location, including
〈W 〉, which represents that the trucks switch packages at the central warehouse, and (ii)
the edges between different locations marked by 〈x, y〉 representing the travel between two
locations x and y. The central warehouse is marked green to illustrate that this is the desired
goal state, the accepting state.

In addition to a model of the possible behavior, there are of course also models of the
desired behavior. These are specified in Fig. 3. The specification in Fig. 3a is applied to
all packages that should be picked up and delivered by the same truck. It specifies that the
package has to be picked up and then delivered to its final delivery location exactly once.

Fig. 2 An automata model of the possible behavior of truck A, when assigned the tasks to pick up packages
1, 2 and deliver package 1. States represent the physical locations, while edges represent operations in these
locations and travel in between. The state W represents the central warehouse, which is both the initial and
the accepting state of the model

Discrete Event Dynamic Systems (2019) 29:411–443416

(a) (b)

Fig. 3 Generalized models of individual specifications for the route of each package. a applies to packages
that is picked up and delivered by the same truck, b applies to packages that should be picked up by one truck
and delivered by another

The specification in Fig. 3b is similar to Fig. 3a but should be applied whenever a package
is to be picked up in one zone by truck X and delivered to another zone by truck Y . It is then
required that the package is switched from one truck to the other in the central warehouse.
Individual specifications like these have to be included for each package.

To evaluate the example, the scenario from Fig. 1 is modelled as a system of systems,
using plant models for each truck and specifications for each package to represent the sub-
systems, such as shown in Figs. 2 and 3. Any optimization applied using a monolithic
approach would have to consider a search space spanning the complete synchronized behav-
ior of all subsystems. This is true regardless of the optimization paradigm that is used.
Advanced paradigms, such as MILP, CP, might be able to perform clever pruning of the
search space in an early stage, but initially all possible combinations of states and transitions
have to be considered. This is a potential problem since the size of the search space grows
exponentially, due to the state explosion problem. The search space of the simple example
shown here includes 342,144 states and 6,329,115 transitions, representing the synchronous
composition of all subsystems.

When solving the same example using CompOpt, the optimization problem is partitioned
into multiple sub-problems but the sum of states in the search spaces of all sub-problems
combined only adds up to 16,396 states. The reason that CompOpt is able to perform so
much better than the monolithic approach is the ability to reduce the subsystems even before
they are synchronized. The full search space is never computed, no unnecessary states have
to be pruned away or evaluated. It is worth noting that CompOpt only represents one specific
compositional approach, which most certainly can be further enhanced, but the purpose
of this example is just to illustrate that there is much to gain from the ability to optimize
systems of systems compositionally.

One could argue that there might exist more efficient models of this system than what
is shown here. To a human it is for example obvious that the trucks can be partially opti-
mized individually, since they drive in separate areas, have separate lists of tasks and so
on. It is, however, not obvious exactly how this problem can be partitioned since there still
exist dependencies between the trucks. Without digging into the details of exactly which
tasks that can be considered local, there is no way to partition this problem manually. One
benefit of using CompOpt is that it reduces the need of smart manual partitioning of the
optimization problem, since it already exploits the local behavior of the subsystems.

4 Compositional optimization

Compositional optimization is in this paper proposed as an appealing approach for the opti-
mization of large-scale system of systems. The reason is that it potentially can reduce the
state explosion problem, which otherwise occur during the synchronization of these systems
of systems. The basic concept behind compositional optimization is to find a global optimal
solution to a system of systems by combining the subsystems compositionally into larger

Discrete Event Dynamic Systems (2019) 29:411–443 417

and larger models, while performing local (partial) optimization on each model individually.
In this case global optimality refers to a global plan or schedule that, when executed, lets
the whole system, including all subsystems, transcend from the initial state to a predefined
goal state, while minimizing the total cost of performed tasks.

In this paper we present CompOpt, a method for compositional optimization of dis-
crete event systems of systems. In CompOpt, the system of systems is modelled as a set
of weighted automata, representing each subsystem and specification individually. These
weighted automata include necessary information about the costs and the constraints of the
optimization. The cost function is given by the weights on the transition, activating a spe-
cific transition is related to a certain cost. The constraints are defined by the structure of
the included models, such as their initial state, available transitions, the set of marked states
as well as the dependencies between the subsystems identified by shared transitions. Based
on this, the objective of CompOpt can be defined as: given a set of weighted automata
G1,G2, . . . , Gn, find a sequence of transitions, a path, that lets all subsystems transcend
from their initial state to a marked state while minimizing the total cost of the activated
transitions. That is, let G = (Q,�, →, q0, Qm, c) be the monolithic model of the system,
represented by the synchronous composition G = G1 ‖ G2 ‖ . . . ‖ Gn. The global optimal
solution is then a path ρ∗, such that

ρ∗ = arg min
ρ∈Paths(q0,Qm)

c(ρ). (5)

The basic idea in CompOpt is: (i) to use a local optimization algorithm to compute min-
imal reductions of each subsystem, called locally optimal reductions, (ii) synchronize a
subset of those locally optimal reductions incrementally to fewer but larger components that
include an increasingly larger part of the full system behaviour, (iii) iterate steps (i)-(ii) to
further reduce and combine the larger components until only one component remains. The
final component will, by construction, be the global optimal solution to the system. In this
way the solution is found without considering the full monolithic model at any step.

The key is the local optimization that enables a reduction of each subsystem individually,
while still maintaining global optimality. This optimization does, however, suffer from a
major limitation that restricts the potential of the approach. In a system of systems, there
are typically dependencies between the subsystems. In CompOpt this is caused by shared
events between the subsystems. There is no guarantee that the quickest or cheapest sequence
of transitions in an individual subsystem is part of the quickest or cheapest sequence of
transitions for the whole system. Choosing a specific path in one subsystem can affect other
subsystems. In worst case it can block all further actions in another subsystem, making
the system unable to reach the goal. In fact, when considering a single subsystem, there is
typically not enough information available about these dependencies to prove any unique
local path to be optimal for the global system. The local optimization is instead limited to
a partial optimization of the subsystems, optimizing only those parts that has no external
dependencies. This way it may still reduce the state space of the subsystems and, hence,
mitigate the state explosion problem. The main challenge then becomes to identify these
independent parts and to reduce these maximally.

To further illustrate the local optimization, consider a small system of systems consisting
of two subsystems G1,G2. Subsystem G1 is shown in Fig. 4a, where the marking {σ, x}
of transitions indicates that the transition is activated by the event σ and has the weight x.
The only available information of G2 is that the event a is shared between the two sub-
systems in some way. How they interact is not revealed. The task at hand is to perform
local optimization on G1. Based on the discussion above we know that the shared behavior

Discrete Event Dynamic Systems (2019) 29:411–443418

(a) (b)

Fig. 4 An illustration of the properties of local optimization. a shows a plant model of a subsystem G1,
where it is known that the event a is shared with another subsystem, b shows the locally optimal reduction
of G1, where the local transition {d, 3} and the sequence {b, 1}, {c, 2} has been merged into an abstraction
{bc, 3} that represent there sequential execution

has to be preserved. In this case it means that the shared transition over event a has to be
maintained. The rest of the behavior can be considered local and can, hence, be optimized
without affecting G2. The local transition over event d is removed since it has a higher cost
than the sequence of local events b, c. The remaining sequence of local events is abstracted
to a single transition representing there sequential execution. The resulting locally optimal
reduction of G1, denoted G′

1, is shown in Fig. 4b.
The formal definition and properties of local optimization and the implementation of a

compositional algorithm is explained in detail in the following sections.

4.1 Local optimization of subsystems

Local optimization defines the process of computing a locally optimal reduction G′ of a
subsystem G. That is, G′ ⊆ G is a reduction of G including only states and transitions
that is required in order to guarantee a global optimal solution of the monolithic system. In
contrast to the maximally permissive supervisors that is the focus of SCT, a locally optimal
reduction can be seen as a minimally permissive or maximally restrictive supervisor that
satisfies the specification that all potentially optimal behavior should be maintained. In
some cases where it is clear from the context, we use G′ also to denote a locally optimal
reduction that has been abstracted, such as in the example in Fig. 4.

Since the local optimization considers each subsystem individually, this implicitly
requires that the reduction does not modify any of the non-blocking shared behavior of the
subsystem. For example no shared transitions from which a marked state can be removed.
Doing so might cause a sub-optimal solution or even a blocking of another subsystem. What
can be reduced using local optimization is redundant local paths. If there exist two local
paths ρ1, ρ2 ∈ Paths(q1, q2) between any pair of states q1, q2 ∈ Q, they can be considered
redundant and the optimization is free to remove the path with highest cost, or either one
if their cost is equal. Additionally, all states that are not reachable or coreachable can also
be safely removed since they can not be part of any optimal solution. The reduction can be
considered locally optimal when it is trim and a maximum of one such local path remains
between any two pair of states.

It is worth mentioning that the locally optimal reduction of a given automaton is not
always unique. These may be multiple redundant solution to the local optimization. How-
ever, it is proven below that any locally optimal reduction satisfy the required properties of
global optimality and minimally permissive.

Discrete Event Dynamic Systems (2019) 29:411–443 419

The aforementioned properties can be summarized in the following definition.

Definition 1 Given a weighted automaton G, then G′ ⊆ G is a locally optimal reduction
of G if:

1. G′ is trim
2. For all accepting paths ρ ∈ Paths(q0,Qm) in G, there exists an accepting path ρ′ ∈

Paths(q ′
0,Q

′
m) in G′ such that:

P�−→�\�l (ρ) = P�−→�\�l (ρ′) ∧ c′(ρ′) ≤ c(ρ)

3. |{ρ ∈ Paths(q1, q2) | ρ is local}| ≤ 1, ∀q1, q2 ∈ Q′

Note that the first part of the conjunction in point 2 of Def. 1 defines, for all accepting
paths ρ ∈ Paths(q0,Qm) in G, the existence of an accepting path ρ′ ∈ Paths(q ′

0,Q
′
m) in G′,

such that a projection of ρ′ that only considers the set of shared events equals corresponding
projection of ρ. From this we can infer that the non-blocking shared behavior of G′ equals
that of G. Point 3 prevents redundant paths in the reduction by allowing a maximum of one
local path between any two states q1, q2 in the reduction G′.

Based on Def. 1 we can formulate two theorems: Theorem 1 stating that any locally
optimal reduction maintains the global optimal solution and Theorem 2 stating that the
reduction is minimal.

Theorem 1 Given a weighted automaton G = G1 ‖ G2 representing a system of systems,
let G′ = G′

1 ‖ G2 where G′
1 is the locally optimal reduction of the subsystem G1. Then,

the global optimal solution of G is also available in G′, i.e. for all accepting paths ρ ∈
Paths(G) there exists an accepting path ρ′ ∈ Paths(G′) such that c′(ρ′) ≤ c(ρ).

Proof The theorem can then be proven by contradiction using point 2 in Def. 1. Assume
that the global optimal solution to G is given by the path

ρ∗ = arg min
ρ∈Paths(q0,Qm)

c(ρ)

and that there exists no accepting path ρ′ ∈ Paths(q ′
0,Q

′
m) in G′ such that c′(ρ′) ≤ c(ρ∗).

This implies that at least one transition in the global optimal solution is blocked by the
synchronization of the two subsystems in G′.

Since G2 remains untouched we can infer that the specific sequence that corresponds
to the global optimal solution has been removed during the reduction of G′

1, i.e. the
shared behaviour of the subsystem has changed. This, in turn, requires that the subsys-
tem G′

1 fulfills one of two properties: (i) a shared transition has been removed from G′
i

blocking the global optimal solution in the synchronization, i.e. there exists an accepting
path ρ ∈ Paths(G1) that has no matching accepting path ρ′ ∈ Paths(G′

1) that fulfills
P�−→�\�l (ρ) = P�−→�\�l (ρ′), (ii) at least one local path leading between the shared tran-
sitions or marked states in G′

1 are sub-optimal. Both of these properties directly violates
point 2 of Def. 1, (i) since the definition explicitly requires the existence of an accepting path
{ρ′ ∈ Paths(q ′

0, Q
′
m) | P�−→�\�l (ρ) = P�−→�\�l (ρ′)}, for all ρ ∈ Paths(q0,Qm), and (ii)

since a sub-optimal local path would violate part two of the conjunction, c(ρ′) ≤ c(ρ). This
proves that Theorem 1 holds by definition for any locally optimal reduction.

Remark It is important to note that we use natural projection to compare only the shared
behavior of the reduction, the theorem full behavior of G′ does not have to be a projection

Discrete Event Dynamic Systems (2019) 29:411–443420

of G, i.e. the reduction does not necessarily handle all local transitions equally even if they
have the same event, there might exist two local transitions with the same event where one
is removed an the other is kept.

Using Theorem 1, we can also induce that the global optimal solution is preserved also
when G′′ = G′

1 ‖ G′
2, where both subsystems has been replaced by their locally optimal

reductions. Since the synchronous composition is commutative (Cassandras and Lafortune
2008, chap. 2.3), we know that G′ = G′

1 ‖ G2 = G2 ‖ G′
1. Theorem 1 then states that the

global optimal solution of G′ = G2 ‖ G′
1 is also available in G′′ = G′

1 ‖ G′
2. This proves

that the global optimal solution is unaffected when combining the subsystems composition-
ally. However, Theorem 1 does not put any requirements on the reduction, e.g. G′ = G

fulfills the requirements of Theorem 1 since it maintains the global optimal solution. To
verify the optimality of the reduction we need to form Theorem 2.

Theorem 2 Given a weighted automaton G, let G′ be the locally optimal reduction of G.
Then, there exists no smaller reduction G′′ ⊂ G′ such that G′′ is a locally optimal reduction
of G′.

Proof This theorem can be proven by deduction from points 1-3 of Def. 1. As previously
mentioned, point 2 of the definition ensures that any locally optimal reduction maintains
all non-blocking shared transitions. These can never be reduced. The remaining transi-
tions can be divided into two groups. Firstly, transitions that ends up in blocking states,
these are all removed in accordance to point 1 of the definition and, hence, cannot be fur-
ther reduced. The final group of transitions are the non-blocking local transitions. We can
deduct from Def. 1 point 2 that it exist at least one local path between any sequential pair
of shared transitions in all accepting paths, and from point 3 that it will exist at most one
such local path (since redundancy is not allowed). Hence, no further reduction is possible
without violating the definition, which proves that the theorem holds for any locally optimal
reduction.

To compute an abstracted locally optimal reduction of a system G we propose Algorithm
1. The main idea of this algorithm is to initiate a model based only on the non-blocking
shared transitions and then connect these shared transitions with the initial state, with each
other, and with the marked states using local paths. Finally the algorithm applies an abstrac-
tion of the local paths, replacing each sequence of local events with a single event that
includes there combined behavior, as previously shown in Fig. 4.

The algorithm first adds all shared transitions of G to G′. Based on these, two sets of
states Qs,Qt are defined, that represent potential source and target states, respectively, for
those local paths that will connect the shared transitions in G′. Set Qs includes the initial
state and the target state of all shared transitions, and set Qt includes the source state of
all shared transitions. The algorithm then considers each source state qs separately. The
shortest local paths from qs to all other states are calculated using Dijkstra’s algorithm
(Dijkstra 1959), which basically is a forward search that only include local transitions. For
each target state qt where such a local path is found, the transitions of the path are added
to G′. Then, in the same way, the shortest accepting local path from qs to any marked
state is added to G′. When all source states have been processed, the set of marked states
Q′

m is generated, completing the locally optimal reduction. Finally, the algorithm performs
the subsequent abstraction, where all straight sequences of local transitions are replaced
with a single transition, and the original structure is saved in a look-up table τ for later
reconstruction.

Discrete Event Dynamic Systems (2019) 29:411–443 421

Example Consider the example shown in Fig. 5. Applying Algorithm 1 on G, shown in
(a), will return the locally optimal reduction G′, shown in (b). Note that the events a and b

are shared and local events respectively and the events c and d are local abstractions. The
process will include the following steps.

1 Initiate:
G′ = (Q′, �′,→′, q ′

0,Q
′
m, c′) := ({s0}, {a, b}, {}, s0, {}, c′), τ := {}.

2 G is already trim.
3 Add shared transitions to G′:

→′:= {s2
a,1−→ s6, s3

a,2−→ s4, s6
a,1−→ s8}, Q′ := {s0} ∪ {s2, s3, s4, s6, s8}.

Discrete Event Dynamic Systems (2019) 29:411–443422

(a) (b)

Fig. 5 Local optimization of a weighted automata G, where the events a and b are shared and local events
respectively. a show the full model G and b show the locally optimal reduction G′

4 Since →′ only includes shared transitions, the source states of potential local paths
are:
Qs := {s0} ∪ {s4, s6, s8}.

5 Similar to step 4, the target states of potential local paths are:
Qt := {s2, s3, s6}.

6.1 For qs = s0, add to →′, the shortest local path from s0 to each target state. This adds

three paths: s0
b,2−→ s1

b,1−→ s2, s0
b,3−→ s3 and s0

b,1−→ s4
b,1−→ s9

b,3−→ s6. Also add the

shortest local path from s0 to any marked state, which is s0
b,1−→ s4

b,2−→ s5.
6.2 For qs = s4, add to →′, the shortest local path from s4 to each target state. This adds

only one paths: s4
b,1−→ s9

b,3−→ s6, since the other target states are unreachable using

local paths. The shortest local accepting path from s4 is s4
b,2−→ s5.

6.3 For qs = s6, this state has no local outgoing transitions and can be neglected.
6.4 For qs = s8, this state has a single outgoing transition, a local transition leading to

the initial state, and, hence, the result from the optimization will be similar to step
6.1 with the addition of the new transition. That is, the following paths will be added:

s8
b,1−→ s0

b,2−→ s1
b,1−→ s2, s8

b,1−→ s0
b,3−→ s3, s8

b,1−→ s0
b,1−→ s4

b,1−→ s9
b,3−→ s6 and the

accepting path s8
b,1−→ s0

b,1−→ s4
b,2−→ s5.

* Remark: Step 6 adds many transitions to →′ multiple times. This is okay as long as
the transition relation is implemented using sets and, hence, only will accept one entry
for each unique transition.

7 Q′
m := {s5, s6, s7} ∩ {s0, s1, s2, s3, s4, s5, s6, s8, s9}

8 There are two states in Q′ that satisfy the criteria in step 8, s1 and s9. Each of these

states are removed. This will add τ [s0, s2] := s0
b,2−→ s1

b,1−→ s2 and τ [s4, s6] :=
s4

b,1−→ s9
b,3−→ s6 and the paths will be replaced by the abstracted transitions s0

c,3−→ s2

and s4
d,4−−→ s6 respectively.

Discrete Event Dynamic Systems (2019) 29:411–443 423

9 This terminates the algorithm and the completed locally optimal reduction G′ and the
abstraction look-up table τ are returned.

Computational complexity: The complexity of the local optimization is dominated by the
computation of the shortest paths from each source state to all other states. This search is
done using Dijkstra’s algorithm, with a complexity of O(V 2), in each source state, which
gives the local optimization a worst case complexity of O(V 3) where V is the number of
states in the system. Initially we implemented a more complex search algorithm including
caching of the partial search results from Dijkstra’s algorithm such that no path was required
to be searched twice. This looked promising when testing on smaller instances but it scaled
poorly with larger instances due to significantly higher memory allocation.

4.2 Compositional optimization

The benefit of the local optimization becomes obvious when integrated with the composi-
tional computation of the global optimal solution, presented in this section. In addition to
local optimization of each individual subsystem, the algorithm further mitigates the state
explosion by an incremental synchronization of the subsystems, where local optimization is
utilized in each step before adding additional subsystems. The incremental process contin-
ues until only one final model remains representing the global optimal solution. Comparing
this to a monolithic approach, this requires that multiple sub-problems are solved instead
of one single optimization, but in return each sub-problem has the potential to be very
small compared to the monolithic model. Algorithm 2 presents a complete algorithm for
CompOpt.

Algorithm 2 Compositional optimization: Given a set of weighted automata G
, compute the globally optimal model

1. Initiate to be a look up table, such as described in Algorithm 1, including every

abstraction performed during all individual reductions

2. For G, replace with computed by Algorithm 1

3.

4. While 1:

i Select two arbitrary subsystems G
ii

iii Compute using Algorithm 1

iv

v G

5. Return and , where is the final remaining component of G

The choice of subsystems in each iteration of step 4.i in the algorithm affects the perfor-
mance, since it determines the amount of reduction that is possible in next step. There are
efficient heuristics available to maximize the benefits of the compositional synthesis such
as Flordal and Malik (2009). The evaluation of these heuristics has not been included in
this work. The systems have instead been synchronized in a predefined sequence in order to
isolate the complexity of the method, instead of the efficiency of the heuristics.

Another potential benefit of CompOpt that has not been evaluated in this paper is the
inherent ability to compute many of the sub-problems in parallel. It is obvious that the local

Discrete Event Dynamic Systems (2019) 29:411–443424

optimization of the individual subsystems in step 2 can be performed in parallel. In addition
to this, one can also partially parallelize the computations in step 4 by running multiple
loops on separate CPU cores, while coordinating the results in a mutual set G. In this case
the separate cores can synchronize and optimize different subsystems simultaneously to
reduce the total computation time.

Computational complexity: The actual complexity of CompOpt is mainly dependent on
the complexity of the shared behavior between the subsystems since this cannot be reduced
by the local optimization. Following the Algorithm 2, one can see that Comp-Opt performs
local optimization 2n − 1 times and n − 1 synchronizations. Hence, the number of steps in
the algorithm grows linearly with the number of subsystems. Sections 4.1 has already shown
the local optimization has a complexity that is polynomial in the size of the subsystems and
the same is true also for the synchronous composition (Cassandras and Lafortune 2008).
However, due to the state explosion problem, the complexity is better described by the
growth of the state space during the synchronization of the subsystems. This cannot be
guaranteed to always be polynomial. In worst case, when no local behavior exist, the local
optimization will be unable to reduce the subsystems at all. This will give an exponential
growth of the state space. The complexity can then be simplified to O(V n), where V is
the number of states in the largest subsystem and n is the number of subsystems. The best
case is when all subsystems are disjoint, they can then be reduced to a single transition each
through local optimization. In this case the complexity becomes O(nV 3).

5 Synchronization of time-weighted systems

This section describes the integrated synchronization and optimization operation, called
partial time-weighted synchronization (PTWS) and denoted ‖′, which we propose as part of
CompOpt to synchronize the behaviour of time-weighted systems.

Time-weighted systems can be considered as a specific class of weighted systems, where
the weights connected to the transitions represent their execution time or duration. This
means that a time-weighted system is no DES, since the transitions have a duration. In
practice, this does not affect the optimization except during the synchronization of the
subsystem, where the default synchronous composition no longer can be applied.

To illustrate the implications related to time-weighted systems, consider the automata in
Fig. 6, where (a) and (b) are two subsystems G1, G2 that run in parallel and (c) represents

(a) (b) (c)

Fig. 6 Example of two subsystems systems G1,G2 and their synchronous composition G = G1 ‖ G2

Discrete Event Dynamic Systems (2019) 29:411–443 425

their synchronous composition G. First assume that the weight associated with each tran-
sition represents the energy consumption of the event. Then, the synchronous composition
in G is correct. Each event generates an individual energy consumption and the total con-
sumption or cost of a specific path in the model equals the sum of the included weights. If
we instead assume that the weights represent the execution time of the transitions, then G

no longer models the parallel execution of the subsystems correctly. Consider for example
the path in G where event b is executed in the initial state, the sequential representation of
the events prevents event a from executing until event b has finished, delaying it for 5 sec-
onds, even though these are strictly local transitions that should be able to run in parallel.
In contrast to a parallel execution, the synchronous composition implies that it will be the
sum of these execution times that is required to reach the marked state. This shows that the
default synchronous composition known from DES is insufficient for the synchronization
of time-weighted subsystems when modelled as weighted automata. For a correct synchro-
nization it is required that the execution of each system is tracked individually, since they
can, and often will, run in parallel.

In SCT, these systems generally require more complex modelling paradigms, such as
timed automata (Alur and Dill 1994) or timed Petri net (David and Alla 2010). The main
problem with these paradigms is that they can not be used to apply many of the efficient
verification and synthesis techniques, which are developed for ordinary automata or Petri
net models. An alternative approach, which allows the time-weighted system to be modelled
using regular automata, is to apply simplifications to the system, e.g. discretization of the
time line such as tick automata (Gruber et al. 2005). However, we proved in Hagebring and
Lennartson (2018) that these are very inefficient, since the discretized time-line resulted in
a reduced accuracy as well as a drastically increased state space. This makes simplifications
such as tick automata unfit for the use in CompOpt, since the main goal is to mitigate the
state explosion problem. For this reason we propose PTWS to support CompOpt in the
optimization of time-weighted systems. Once again, remember that the addition of PTWS
does not change the main process of CompOpt. The theory presented in Section 4 remains
valid, except that, when optimizing time-weighted system, the synchronization in Algorithm
2 is performed using PTWS instead of default synchronous composition.

There are two main properties that distinguish PTWS and makes it especially suitable for
CompOpt. Firstly, PTWS solves the previously mentioned implications of time-weighted
systems by the introduction of a novel modelling technique, where the execution of the
individual subsystems are tracked by extending the state names in the synchronous com-
position. This enables a correct modelling of parallel time-weighted subsystems using only
ordinary weighted automata without applying any simplifications. Secondly, the integra-
tion of an optimization heuristic into the synchronization reduces the state explosion of the
synchronous composition, which aligns with the main goal of CompOpt.

PTWS is implemented using a single forward search, where the optimization heuris-
tic ensures that the synchronization only expands specific parts of the composition. This
disregards many states and transitions that are not needed in order to compute a global
optimal solution of the monolithic system. The result is a partial synchronous composition,
which still maintains the global optimal solution. The most beneficial effect of this inte-
grated optimization is that it directly mitigates the state explosion problem during every
synchronization.

Using a single forward search makes PTWS cheap, both with respect to time and mem-
ory, but the heuristic is not sufficiently strong for the result to be a locally optimal reduction.
However, similarly to Def. 1 of locally optimal reduction, requirements on the heuristics
used by PTWS guarantees that that any PTWS ‖′ maintains the global optimal solution. The

Discrete Event Dynamic Systems (2019) 29:411–443426

locally optimal reduction can then be computed subsequent to PTWS, using Algorithm 1,
but with the benefit of a much smaller search space.

These modelling techniques, using extended state names and the specific optimization
heuristic that we propose, are thoroughly described in the following sections.

5.1 Synchronization of time-weighted systems using extended state names

The purpose of using extended state names in the synchronization of time-weighted systems
is to avoid more complex modelling paradigm, which otherwise would affect the complexity
of the optimization negatively. To better understand the idea behind this technique and the
added benefit, consider the model in Fig. 7. This illustrates how a timed automaton can
be used to represent a parallel execution of the two subsystems in Fig. 6. Timed automata
is one of the best-known paradigm for modelling of temporal properties in discrete event
systems. Timed automata are an extension of regular automata where the notion of clocks
controls the timing. This can be used to specify the minimum or maximum time that a
system may stay in a state before executing a certain event. Note that the example uses
a simplified notation of timed automata, where c represents a clock that executes certain
transitions after a predefined time. This is used to simulate the duration of event a and b

from the subsystems.
The model in Fig. 7 does not represent a full synchronous composition of the two sub-

systems. Instead, it shows only an example of one possible combination of the two systems,
including three accepting paths: (i) ’ba’ where a and b are run in parallel, (ii) where a and
b are run in sequence and (iii) ’a, e’ where G2 is waiting until event e can be executed both
in G1 and G2 as a shared transition. The specific choice of transitions to include in this
example is in fact based on the heuristic presented below in Section 5.2.

The example above shows that the timed automata model requires one additional state
and transition each time the clock is used. This is the type of increased complexity that is
avoided using extended state names. Each state name qi is then extended to a pair (qi, ti)

where qi is the original state name and ti is the time left until all outgoing transitions become
activated, i.e. ti = 0 means that the system is ready to perform a new transition while ti > 0
means that it still executes the previous transition. This way of modelling is not meaningful
for individual subsystems since the value of ti is zero in all states and, hence, does not
affect the model at all. The extended state names should be utilized only in the synchronized
system, where the extended state names, on the form 〈(q1i , t1i), (q2i , t2i)〉, can be used to
indicate that one of the subsystems is still waiting for a previous task to finish. Remember
that the transitions of a time-weighted system are typically not instantaneous. Instead, the

Fig. 7 Example of a possible
combination of the two
asynchronous subsystems
G1,G2 from Fig. 6, represented
by a timed automaton where c is
a clock representing the time that
the system has waited in a
specific state. c is set to zero in
each transition

(a)

Discrete Event Dynamic Systems (2019) 29:411–443 427

weights of the transitions represent the time step required to finish the execution and to reach
the next state. The benefit of using extended state names is that the time step of a transition in
the synchronized system does not have to equal the time step of the corresponding transition
in the subsystem. Instead, the status of each subsystem is tracked in the name of the next
state. The extended state names do not affect the final result, which still will be an ordinary
weighted automaton.

The method is most easily illustrated using an example, in Fig. 8, showing the same syn-
chronization as in Fig. 7 but with the extended state names instead of a timed automaton.
The state names of the two subsystems are extended in Fig. 8a and b. This is done for ref-
erence only and is not necessary in the implementation of the algorithm. The synchronized
system is given in Fig. 8c. Consider the upper path of G in Fig. 8c, where event b is exe-
cuted from the initial state for a duration of 0 time unit. The corresponding transition in
G2 has a weight of 5, which means that when G has finished the transition, G2 still have 5
time units left until it has reached the marked state. This is then indicated in the target state
name by setting 〈(q1i , t1i), (q2i , t2i)〉 = 〈(s1, 0), (s2, 5)〉 saying that G1 still remains in the
initial state, ready to execute an event while G2 currently transcending towards state s2 but
requires 5 time units until this state is reached. Next, the event a is executed in G and, even
if G1 only requires 1 time unit to execute this event, the synchronized system chose to exe-
cute for 5 time units. The reason is of course to allow both G1 and G2 to finish there current
transition and reach their marked state.

Even in this very small example, one can see that the complexity of this model, in
terms of number of states and transitions, is lower than in Fig. 7, which directly affects the
resulting computation time in the local optimization.

Just as the timed automata in Fig. 7, the weighted automata in Fig. 8 only represent one
possible combination of the two subsystems. This partial synchronization has been applied
in these examples since the full synchronous composition requires an infinite number of
states when modelled using extended state names. The reason being that the extended state
names and the weights of the transitions put strict constraints on the delays between the
events.

Consider for example the sequence of event b, a, which in Fig. 8 is represented only
by the accepting paths 〈b, 0〉, 〈a, 5〉. This specific path represent the case where event b is
executed in the initial state, event a is executed at the same time without delay (since the
weight of the first transition is zero) and after 5 time units both subsystems have reached
a marked state. However, a full synchronous composition of the two system also have to

(a) (b) (c)

Fig. 8 Compositional modelling of asynchronous systems using extended state names. (a-b) the individual
systems G1,G2 with extended state names, (c) example of a PTWS G = G1 ‖′ G2

Discrete Event Dynamic Systems (2019) 29:411–443428

include all other variations of this event sequence, such as 〈b, 1〉, 〈a, 4〉 where event b still
executes from the initial state, but an additional delay of 1 time unit is applied before event
a can occur. These infinite variations of the event delays makes it impossible to model a full
synchronous composition of the two subsystems using this simple method.

Fortunately, CompOpt does not need a full synchronous composition. From Algorithm
2 we remember that CompOpt applies local optimization on the model directly after the
synchronization. This means that a partial synchronization is enough as long as the syn-
chronous composition is guaranteed to include at least locally optimal reduction of the full
composition. This makes this modelling technique ideal for PTWS when combined with a
heuristic that restricts the expansion of the state space in the synchronization. The specific
heuristic that we propose is presented in the next section.

5.2 Heuristic for partial time-weighted synchronization

We can see above that integrating an optimization heuristic into PTWS offers clear ben-
efits to CompOpt. However, any heuristic that is used in PTWS has to fulfill two main
requirements, it should: (i) restrict the expansion of the synchronization such that a finite
composition can be computed, (ii) maintain the global optimal solution of the full system.

The heuristic that is presented in this paper is static in the sense that it does not require
information about the previous or future transitions, instead it works only with the informa-
tion of the outgoing transitions from the current states in the subsystems. The main benefit
of this is that the implementation is very memory efficient. This comes at the expense
of a less powerful reduction that is not enough to generate a locally optimal reduction
directly during the synchronization. Instead, an additional optimization, using Algorithm 1,
is required when the synchronization is finished. Experiments were first conducted using
a more advanced heuristic that utilized an extensive search process to compute the locally
optimal reduction directly. This proved fast for very small systems but it scaled poorly with
the size of the system. The reason was that the advanced heuristic had to search through all
potential paths in a much larger part of the search space, which with the current heuristic
can be pruned away without any extensive search.

Given two subsystems Gi = (Qi, �i,→i , q0i , Qmi, ci) for i ∈ [1, 2] and a spe-
cific synchronized state {〈(q1, t1), (q2, t2)〉} in G1 ‖′ G2 = (Q,�, →, q0, Qm, c). Let
heuristic (G1, G2, 〈(q1, t1), (q2, t2)〉) be a function that generates a set of outgoing
transitions T from the current state following specific criteria. The generation of these tran-
sitions can be separated into three parts: the generation of shared transitions, local parallel
transitions and local single transitions. The complete process of computing the heuristic is
summarized in Algorithm 3 in the end of this section.

Shared transitions: If both G1 and G2 are ready to execute new events, i.e. t1 = t2 = 0,

then, for all shared transitions q1
〈σ,w1〉−−−→ q ′

1 ∈→1, q2
〈σ,w2〉−−−→ q ′

2 ∈→2, add corresponding
shared transition to T , given by

〈(q1, 0), (q2, 0)〉 〈σ,max(w1,w2)〉−−−−−−−−−→ 〈(q ′
1, 0), (q ′

2, 0)〉 ∈ T . (6)

The shared transitions are similar to regular synchronization, they requires both systems
to execute simultaneously and to wait until the one with longest duration is completed,
which creates a single transition where both systems takes a full step. Figure 8 shows an
example where a shared transition, triggered by event e, is generated.

Discrete Event Dynamic Systems (2019) 29:411–443 429

Local parallel transitions: If both G1 and G2 are ready to execute new events, i.e. t1 =
t2 = 0, then all pairs of local transitions,

{
q1

〈σ1,w1〉−−−−→ q ′
1, q2

〈σ2,w2〉−−−−→ q ′
2 ∈→1 × →2 |σ1 /∈ �2 ∧ σ2 /∈ �1

}
, (7)

can be executed in parallel in the synchronized system using two sequential transitions .
This is done by adding the first of the two transitions to the set T with the duration set
to zero following Eq. 8. The second transition will then be added automatically as a local
single transition in a later stage when the target of the first transition is explored.

〈(q1, 0), (q2, 0)〉 〈σ1,0〉−−−→ 〈(q ′
1, w1), (q2, 0)〉 ∈ T w1 ≥ w2

〈(q1, 0), (q2, 0)〉 〈σ2,0〉−−−→ 〈(q1, 0), (q ′
2, w2)〉 ∈ T w1 < w2

(8)

The criteria for generation of parallel transitions is more complex than that of the shared
transitions. The upper path of Fig. 8c illustrates how two local parallel transitions are mod-
elled where events a, b are executed immediately after each other (no delay in between).
Event b is started at time zero (in the initial state) with zero duration. This allows event a

to also start at time zero in the next state. Event a is set to execute for 5 seconds allowing
the system to finish event a after 1 second and event b after 4 seconds. The reason that the
event with the longest duration is started first is that this gives the algorithm the opportunity
to execute multiple short local transitions in one system parallel to a long transition in the
other system.

Local single transitions: There are three specific situations where a transition should be
executed in one system while no transition is executed in the other. This is when the other
system (i) continues an ongoing transition, (ii) waits in a marked state or (iii) waits for a
shared transition. To clarify, if any of the aforementioned situations applies while G1 is
ready to execute a new transition, i.e. t1 = 0, then each local single transition

{q1
〈σ1,w1〉−−−−→ q ′

1 ∈→1| σ1 /∈ �2} (9)

can be executed in G1 without executing a transition in G2. This is modelled according to
the following criteria:

– if t2 �= 0 ∧ w1 ≥ t2, then:

〈(q1, 0), (q2, t2)〉 〈σ1,t2〉−−−→ 〈(q ′
1, w1 − t2), (q2, 0)〉 ∈ T ; (10)

– if t2 �= 0 ∧ w1 < t2, then:

〈(q1, 0), (q2, t2)〉 〈σ1,w1〉−−−−→ 〈(q ′
1, 0), (q2, t2 − w1)〉 ∈ T

〈(q1, 0), (q2, t2)
〈σ1,t2〉−−−→ 〈(q ′

1, 0), (q2, 0)〉 ∈ T ;
(11)

– if t2 = 0 ∧ (q2 ∈ Qm2 ∨ �2(q2) ∩ �1 �= ∅), then:

〈(q1, 0), (q2, 0)〉 〈σ1,w1〉−−−−→ 〈(q ′
1, 0), (q2, 0)〉 ∈ T . (12)

Note that two separate transitions are added in Eq. 11. The reason is that the synchronized
system must have the alternative to either: (i) start a new local single transition in G1 once
the first transition is done, or (ii) to wait with the execution of any additional transitions
until G2 has completed its current task. The second alternative can be seen in the right path

Discrete Event Dynamic Systems (2019) 29:411–443430

of Fig. 8c, where a is executed in state 〈(s1, 0), (s2, 5)〉 with a time step of 5 seconds to

allow G2 to finish. The first alternative would in this case have been 〈(s1, 0), (s2, 5)〉 〈a,1〉−−→
〈(s2, 0), (s2, 4)〉. However, this was removed when trimming the final model, since it would
have been a blocking state. Another example of a local single transition can be seen in the
left path of the figure, where a is executed in G1, while G2 is waiting for the shared event e

to be available. A side effect of the static property of the heuristic is that, in the second state
of the path (〈(s2, 0), (s1, 0)〉), the heuristic does not remember that it had already neglected
the b transition in that path so it will also include the option to run this transition in sequence
with the first, which never can be an optimal solution. The criteria are analogue in the
reverse situation when G2 is to execute a transition while G1 is waiting.

Algorithm 3 PTWS heuristic: Given two systems for

and a specific synchronized state in

, compute the outgoing transitions from the the synchronized state.

1. Initiate the empty set to become the set of outgoing transitions from state

.

2. If 1 2 0:

i For 2:

– If 1 2:

Add a shared transition based on (6).

– If 1:

Add one of the local parallel transitions given by (8).

ii If 1 :

– For :

Add a local single transition based on (12).

iii Duplicate the process of step while interchanging 1 and 2.

3. Else If 0:

i For :

– Add local single transitions based on either (10) or (11), depending on the ratio

between 1 and 2.

4. Duplicate the process of step 3 while interchanging 1 and 2.

5. Return .

5.3 Implementation of PTWS

As previously mentioned, the implementation of PTWS is based on a simple forward search
algorithm that adds new transitions based on the heuristic defined above. Pseudo code of
the implementation is presented in Algorithm 4.

The algorithm starts by initiating an empty synchronous composition G, only including
the initial state 〈(q01, 0), (q02, 0)〉. It then uses the heuristic defined above to compute the
set of outgoing transitions from the initial state and adds these to G. For those transitions
that lead to a previously unidentified state, this state is added to an ordered set S that acts as

Discrete Event Dynamic Systems (2019) 29:411–443 431

a queue of states to expand next. The state is, of course, also added to the set of states Q in
G and to the set of marked state Qm when applicable.

The algorithm then successively expands G by evaluating the states in S one by one,
performing the same steps. It terminates when there are no unexplored states left in S. In
the end, the final model is trimmed to remove any blocking states that has been generated
by the synchronization.

Algorithm 4 Partial Time-weighted synchronization: Given two weighted automatons

, compute the PTWS 2 of the two

subsystems.

1. Initiate

2. If

3. is an ordered set of states to expand, where

is a function that returns the state at index in

4. 1

5. While

i

ii heuristic
iii

iv For ,

if

–

–

– If

v 1

6. Trim the final model

7. Return

Example Consider the system of systems previously presented in Fig. 8. Applying Algo-
rithm 4 on G1,G2 includes the following steps.

– Initiation: G := ({〈(s1, 0), (s1, 0)〉}, {a, b, e}, {}, 〈(s1, 0), (s1, 0)〉, {}, c), no changes to
Qm since s1 ∈ Qm1 ∧ s1 ∈ Qm2 �= T rue, S := {〈(s1, 0), (s1, 0)〉}.

– Iteration 1:

i The first state to expand is the initial state 〈(s1, 0), (s1, 0)〉.
ii T := heuristic(G1, G2, 〈(s1, 0), (s1, 0)〉) will return the following two tran-

sitions: (i) no shared transitions, since no pair of transitions exists in the initial
state with a shared event, (ii) in accordance with Eq. 8, the pair of local tran-

sitions (s1, 0)
〈a,1〉−−→ (s2, 0) ∈→1 and (s1, 0)

〈b,5〉−−→ (s2, 0) ∈→2 will give one

local parallel transition 〈(s1, 0), (s1, 0)〉 〈b,0〉−−→ 〈(s1, 0), (s2, 5)〉, and (iii) since

Discrete Event Dynamic Systems (2019) 29:411–443432

t2 = 0 ∧ �2(s1) ∩ �1 = {e} �= ∅, the local single transition 〈(s1, 0), (s1, 0)〉 〈a,1〉−−→
〈(s2, 0), (s1, 0)〉 is included, in accordance with Eq. 12.

iii The transitions in T are added to →.
iv The target states 〈(s1, 0), (s2, 5)〉, 〈(s2, 0), (s1, 0)〉 are added to both Q and S since

neither of them has been previously explored. None of them are added to Qm.

– Iteration 2:

i The second state to expand is 〈(s1, 0), (s2, 5)〉.
ii Since G2 is busy executing the previous transition (t2 = 5), the heuristic will in

this case only have to consider local single transitions. This gives two transitions

{〈(s1, 0), (s2, 5)〉 〈a,1〉−−→ 〈(s2, 0), (s2, 4)〉, 〈(s1, 0), (s2, 5)〉 〈a,5〉−−→ 〈(s2, 0), (s2, 0)〉},
according to the criteria defined in Eq. 11.

iii The transitions in T are added to →.
iv The target states 〈(s2, 0), (s2, 4)〉, 〈(s2, 0), (s2, 0)〉 are added to both Q and S since

neither of them has been previously explored. The state 〈(s2, 0), (s2, 0)〉 is added
to Qm since t ′1 = t ′2 = 0 ∧ s2 ∈ Qm1 ∧ s2 ∈ Qm2.

– Iteration 3:

i The third state to expand is 〈(s2, 0), (s1, 0)〉.
ii In this case, the heuristic gives a total of two transitions: (i) one shared transition

〈(s2, 0), (s1, 0)〉 〈e,2〉−−→ 〈(s2, 0), (s2, 0)〉, (ii) no local parallel transitions, since no
local transitions are available in G1, i.e. �l

1(s2) = ∅, and finally (iii) one local

single transition 〈(s2, 0), (s1, 0)〉 〈b,5〉−−→ 〈(s2, 0), (s2, 0)〉, since t1 = 0 ∧ s2 ∈ Qm1.
iii The transitions in T are added to →.
iv Both transitions in T have the same target state 〈(s2, 0), (s2, 0)〉. This state has

been seen before and is already part of the set S.

– Iteration 4 and 5:
There are two remaining states in S: 〈(s2, 0), (s2, 4)〉 and 〈(s2, 0), (s2, 0)〉. Neither of
these will have any outgoing transitions since G2 does not have any available transitions
and the only transition in G1 is a shared transition.

– Termination:
There are no further states in S to explore. Trimming G will remove transition

〈(s1, 0), (s2, 5)〉 〈a,1〉−−→ 〈(s2, 0), (s2, 4)〉 and its target state 〈(s2, 0), (s2, 4)〉, since this
state is blocking, i.e. it is impossible to reach a marked state from here.

Computational complexity: The main benefit with a static heuristic is, as previously
explained, its low impact on the computational complexity. This is especially true for the
memory complexity, which refers to how the memory allocation of the algorithm scales with
the number of states in the system. It is shown later in Section 6 that the computation time of
the optimization can be directly correlated to the total memory allocated by the algorithm.
The heuristic requires no additional memory allocation, since it only uses information about
outgoing transitions of the current states of the subsystems, which can be retrieved directly
from the system models.

To calculate the theoretically worst case computational complexity of the synchro-
nization in Algorithm 4, one should look at the expansion of states in the synchronous
composition. Following the enumeration of Algorithm 4 one can see that (5) considers each

Discrete Event Dynamic Systems (2019) 29:411–443 433

state in S, O(|S|). For each such state the heuristic function is computed in (5.ii), where
the heuristic function considers each pair of outgoing transitions from the current states,
O(| →1 × →2 |). In (5.iv) the transitions generated by the heuristic is analyzed again to
generate new states which only adds a multiplier to the complexity of the heuristic. How-
ever, the generation of new states is the key to the total complexity, since this drives the size
of the explored state space S. Due to the the properties of the heuristic, the states in S fol-
lows one of the following criteria: (i) both of the subsystems is in a state (i.e t1 = 0 = t2),
(ii) subsystem G1 is in a state while G2 is currently executing a transition (i.e t1 = 0 �= t2),
(iii) subsystem G2 is in a state while G1 is currently executing a transition (i.e t1 �= 0 = t2).
Hence the total amount of states that can be generated from the heuristic during a full
synchronization is |Q1 × Q2| + |Q1× →2 | + |Q2× →1 |.

Let V = max(|Q1|, |Q2|) and E = max(| →1 |, | →2 |) be the maximum number of
states and transitions respectively, where E >> V in general. From this we can formulate
the worst case computational complexity of Algorithm 4 as

O(|V × E||E × E|) = O(V E3). (13)

6 Application

This section illustrates the actual complexity and potential of the algorithms when optimiz-
ing a system of systems that have subsystems with complex local behavior. This is done in a
series of experiments using a simplification of a respotting problem in a welding robot cell.
Just like the real scenario, the example includes multiple robots that operate in parallel on
the same product but from different angles. During a production cycle there are specific dis-
ruptive events that affect all robots similarly, such as the assembly of one additional sub-part
to the product. A few of the welding operations performed by the robots has to be performed
while the assembly robot is still gripping the part, but a majority of the operations can or
has to be performed once the assembly robot has left the zone.

These disruptive events typically put strict constraints on most tasks in the cell to be
performed either before or after the global event. This constitutes the dependencies between
the systems and makes it impossible to only optimize each robot individually without risking
ending up with a sub-optimal solution. This is a common scenario in applications where
the subsystems mainly work independently but have to collaborate regarding some global
or shared behavior. It is also just the type of structure that can be exploited by the CompOpt
method, since most of the behavior in each subsystem is local.

The goal of the optimization is to find a globally optimal schedule for one repeated cycle
of the robot cell. This result can be represented as a Gantt chart such as Fig. 9, which shows
a globally optimal schedule for a specific instance of the given example.

The size of the example can be modified in multiple ways to evaluate how the actual
complexity of the algorithms scales with different properties of the problem instance. The
results shown in this section focus on how the size of the reduced state space scales when
the system grows. This is also compared to time and memory allocation of the computation
to verify the complexity of the algorithms used in the optimization.

6.1 Modelling of the example

The example is based on a robot cell that includes a set of robots R = {r1, . . . , rn} that
represent the subsystems of the plant. Each robot ri ∈ R can operate in an independent

Discrete Event Dynamic Systems (2019) 29:411–443434

0 10 20 30 40 50 60 66

Time

1

2

3

4

5
R

ob
ot

2

2 3 4 0

2 1 4 3 0

2 3

3

3 4 0

1 2 4 0

1 4 0

s

7 5 6 0

5 6 7 0

7 5 6 0

1 6 5 7 0

7 6 5 1 0

Fig. 9 The globally optimal schedule for a specific instance with 5 robots and 7 tasks per robot. Block j on
robot i represents the travel to and execution of task tij . Event 0 represents the action when a robot returns to
its initial state and s represents the global event

area Ai of size xmax × ymax . Recent work by Åblad et al. (2017) shows that it is possible
to generate (more complex) zones such that collisions between robots are guaranteed to be
avoided. In a single cycle of the cell, each robot ri is required, from a home position or
idle state, to go to and perform m tasks of duration d that are located at random locations
in Ai . The tasks are pair-wise independent and can be performed in arbitrary order. When
all tasks are finished, each robot should return to its idle state. In addition to the individual
tasks there is also one global event s with duration ds that simulates a disruptive change of
the product which affects all robots.

Specific problem instances for the example are represented by a set of automata G =
{Gi},∀ri ∈ R. Each element Gi ∈ G models the full behavior of a robot including the tasks
to be performed. The process of generating these instances are now presented.

Selecting coordinates for each task: For each robot ri ∈ R, m coordinates (xij , yij)

should be randomly selected to represent the position within Ai of the task tij , where i, j

represent the index of the robot and task respectively. This has been done using a ran-
dom permutation Pi of the integers [1, xmaxymax] for each robot. The coordinates are then
selected as xij = (pij − 1) mod xmax + 1 and yij = �pij /xmax�, where a mod b is the
non-negative remainder when dividing a by b. This gives xmax ×ymax possible locations for
the tasks of each robot and ensures that no two tasks are in the same position. The random
permutation is generated using Mersenne Twister as random number generator, accepting a
specific seed to be used to create an unlimited number of reproducible instances (Matsumoto
and Nishimura 1998).

Modelling of the individual robots: The behavior of each robot ri is modelled as a
weighted automaton including the physical movement and the execution of the global and
individual tasks. The model is restricted to only one initial state q0 representing the idle state
of the robot and one state qj for each task tij . The idle state is also a marked state. Between

all pair of states q, q ′ ∈ Q there is a transition q
〈σ,w〉−−−→ q ′, where σ is a local event σij

corresponding to the movement and execution of task j and w represent the cost c(qj , σij)

Discrete Event Dynamic Systems (2019) 29:411–443 435

given by the Eucledian distance between the tasks plus the duration d (the idle state is set
to be located in (xi

i , y
i
i) = (0, 0) and there is no duration added when entering this state).

This means that all transitions that share the same target also share the same event but with

different weights. In addition to this, there exists a self-loop q0
〈s,ds 〉−−−→ q0 simulating that

the robot first needs to return to the idle state before the global event can occur. Figure 10a
shows an example of a robot model for an instance with three tasks per robot.

Ensure that each task is performed exactly once: This is done by including one individual
automata for each task that requires the task to be performed before entering a terminating
marked state, see Fig. 10b.

Construct specifications with regards to the global event: To simulate the desired global
behavior, specific precedence constraints are added between the global event and most indi-
vidual tasks. These specify whether the task should precede or be preceded by the global
event. This is modelled by automata such as Fig. 10c.

The example could in principle be varied with all possible combination of precedence
constraints but some simplifications has been made when generating problem instances to
make the evaluation of the complexity more accurate. For this reason, each robot has been
constrained in the same way to better isolate the different behaviors. However, since the
tasks themselves are randomly generated the behavior still differs between similar instances.
The m tasks in each robot have been divided as follows: the first k tasks are considered
independent of the global event, the following �(m− k)/2� tasks have to precede the global
event and the rest have to be preceded by the global event. For example, if m = 4 and k = 1
then ti1 will be independent, ti2, ti3 will precede and ti4 will be preceded by the global event
for each robot ri ∈ R.

Combining the parts into separate subsystems: The last step when generating a problem
instance is to synchronize all models described above into one subsystem Gri that represents
the complete behavior of each robot. Synchronization of these components does not require
PTWS, since each robot only can perform one task at a time.

6.2 Evaluation of actual complexity

The evaluation has been done by solving multiple problem instances with different proper-
ties. The properties that has been varied are mainly the number of robots in the cell and the

(a)

(b)
(c)

Fig. 10 Example of the individual models that constitutes a subsystem. a example of a robot model with two
tasks, b model of each task tij ensures exactly one execution, c example of a preceding constraint where task
tij is to precede the global event s

Discrete Event Dynamic Systems (2019) 29:411–443436

number of tasks performed by each robot, to test how the complexity scales with the amount
of subsystems and complexity of their local behavior respectively. The results focus on the
total number of states in the optimization of the system, i.e. the sum of the number of states
in all sub-problems solved.

How the complexity scales with the number of subsystems is, as mentioned in
Section 4.2, strongly connected with the complexity of the shared behavior. To show the
potential of the method, the evaluation focus mainly on problem instances with a single
independent task in each robot. In the end of this section we show how the method scales
when the complexity of the global behavior increases to give an indication of the limitations
of the method.

Scaling of state space size : The plots in Fig. 11 show how the total number of states in
the optimization increase when increasing the number of subsystems (additional robots)
or the complexity of their local behavior (more tasks per robot). This refers to the sum of
the number of states in all sub-problems solved during the CompOpt, which represents the
extent of the total search space. The complexity is evaluated for a varying number of robots
ranging from 2-15 and tasks per robot ranging from 3-10. Note that the scale of the y-axis
in the plots is logarithmic.

The system scales very differently for the two parameters. When only scaling the com-
plexity of the local behavior the number of states scales almost linearly, the reason is that
it only adds to the complexity of the initial optimization of the subsystems, which have
a very limited effect on the total complexity since they are solved independently before
synchronization. This is the main reason why CompOpt can be so efficient.

On the other hand, the number of states scales exponentially when increasing the number
of robots in the system. The reason is that, even if the CompOpt decreases the size of
each subsystem, there will still remain some shared behavior that cannot be solved until all
subsystems have been synchronized. This will cause the state space to grow exponentially
with the size of the shared behavior until the final optimization. However, this still scales
very efficiently compared to a monolithic model.

(a) (b)

2 4 6 8 10 12 14
Robots

10 1

10 2

10 3

10 4

10 5

10 6

S
ta

te
s

3 4 5 6 7 8 9 10
Tasks

10 1

10 2

10 3

10 4

10 5

10 6

S
ta

te
s

Fig. 11 Illustration of how the state space scales with the number of robots and tasks per robot. Each line in
the plots represents a fixed number of robots in a ranging from 2-15 and a fixed number of tasks per robot in
b ranging from 3-10

Discrete Event Dynamic Systems (2019) 29:411–443 437

Comparisonwith amonolithicmethod: Table 1 shows how the state space of a trim mono-
lithic model grows with an increased number of subsystems and/or an increased number of
tasks per robot. This gives a hint on the size of the problem instances used and the efficiency
of the CompOpt.

The extent of the table is limited by to the fact that the computation either timed out or
ran out of memory when solving for any larger instances (apart from instances with only
one robot which was considered irrelevant for the application). This is in contrast to the
results below where systems with 10 robots and 10 tasks per robot were solved.

Looking at how fast the state-space explodes gives an indication why a modular or
compositional approach is to prefer to a monolithic method.

Comparingwith theoretical results: In Section 4.1 we show that the theoretical worst case
complexity of the local optimization is polynomial for the number of states. To verify these
results and to indicate the speed of the polynomial scaling, the time and memory allocation
have been measured during each optimization. Computation time has also been calculated
as an average of 10 independent executions for identical instances. The measurements are
shown in Fig. 12.

The plots in Fig. 12 also include a curve fit, where a second order polynomial has been
fitted to the data. One can see that the quadratic curve follows the average growth of the
data quite well both for time and space complexity, even if the quadratic function does not
represent the data exactly. This indicates that the complexity is approximately O(n2) for this
specific example where n is the sum of the number of states in all sub-problems. However,
as described in Section 4.2, this will generally not be true for a system with more extensive
shared behavior between the subsystems.

Increasing the complexity of the global behavior: This section shows results that can give
an indication of the dependencies between the efficiency of CompOpt and the complexity
of the shared behavior in the subsystems. It is illustrated by a set of experiments using
the same example as previously but increasing the number of independent tasks in each
robot, that is how many tasks that are independent of the global event. These tasks can be
performed either before or after the global event, which constitutes an alternative in the
global behaviour of the subsystem and increases the global complexity of the system.

Table 1 Average number of states in the monolithic model for an instance with n robots with m tasks each,
calculated using instances with ten different random seeds

m n=1 n=2 n=3 n=4

2 117.0 8,140.0 657,440.0 35,961,344.0

3 188.6 15,392.0 1,379,880.8 -

4 420.6 96,030.8 27,150,565.3 -

5 627.6 180,032.0 - -

6 1,263.6 912,585.6 - -

7 1,882.4 1,638,088.0 - -

8 3,503.2 6,986,696.0 - -

9 5,098.4 11,981,064.0 - -

10 9,237.6 42,450,952.0 - -

Discrete Event Dynamic Systems (2019) 29:411–443438

(a) (b)

0 2 4 6 8
States 10 5

0

5

10

15

20

25

30

T
im

e
[s

]

0 2 4 6 8
States 10 5

0

1000

2000

3000

4000

5000

6000

M
em

or
y

[M
iB

]
Fig. 12 Evaluation of how computational complexity scales with the number of states, measured as a
computation time, b memory allocation

The evaluation uses a fixed number of 8 tasks per robot while varying the number of
robots, since it already has been shown that this has a worse effect on the complexity. The
results can be seen in Fig. 13 which show a significant increase of the complexity when
increasing the number of independent tasks. An interesting note is that the average search
space of when optimizing 2 robots with 6 independent tasks each has a size of approximately
4e4, which is less than 1% of the monolithic model of 2 robots with only 1 independent task
each, shown Table 1.

2 4 6 8 10 12 14

Robots

10 2

10 3

10 4

10 5

10 6

10 7

S
ta

te
s

1
2
3
4
5
6

Independent

Fig. 13 Illustration of how the complexity of the example scales with the number of independent tasks

Discrete Event Dynamic Systems (2019) 29:411–443 439

6.3 Comparison with previous work

All results presented in Section 6.2 have been calculated using the exact same instances of
the example that were used in previous work. This allows for a comparison between the
new synchronization method proposed in this paper with the old method, which used tick
automata to model time-weighted systems. We can conclude that the results presented in
this paper is approximately a magnitude of ten better than with the previous method, i.e.
fewer states in the evaluations. This shows that CompOpt manages to optimize systems of
larger scale when using PTWS due to the reduction in memory allocation.

However, the major improvement of PTWS becomes clear first when we generate
instances where the duration or precision of the weights are increased. This will have a big
negative effect to the state space when using the old method with tick automata, due to the
discretization of the state space. So far the examples have used only small weights on the
transitions and the tick automata has been allowed to round this up to nearest integer. This

(a) (b)

(c) (d)

0 20 40 60 80 100
Size

0

2

4

6

8

10

12

14

16

18

T
im

e
[s

]

0 20 40 60 80 100
Size

3.3

3.4

3.5

3.6

3.7

3.8

3.9

T
im

e
[s

]

10 -3

0 20 40 60 80 100
Size

0

2000

4000

6000

8000

10000

M
em

or
y

[M
iB

]

0 20 40 60 80 100
Size

2.36

2.37

2.38

2.39

2.4

2.41

2.42

M
em

or
y

[M
iB

]

Fig. 14 Evaluation of how computational complexity scales with the size of the area of operation: a and b
computation time using the old method and PTWS respectively, c and d memory allocation using the old
method and PTWS respectively

Discrete Event Dynamic Systems (2019) 29:411–443440

is not realistic in industrial applications where the scheduling usually requires high preci-
sion. This can be achieved by letting a tick-event in the automata represent a shorter time
unit, e.g. milliseconds, but this would drastically increase the number of states added to the
model.

To evaluate the effect of an increased precision we have run a series of experiments where
the number of robots and the number of operations per robot has been kept constant at 5
respectively, while increasing the size of the area of operation in each robot, i.e. changing the
values of xmax, ymax mentioned in Section 6.1. This will automatically increase the average
duration of the operations, since they mainly comes from the movement of the robot. The
area of operation has been grown from the nominal value of 10×10 used by the experiments
in Section 6.2 to 100 × 100. The results are presented in Fig. 14 where both time and
memory complexity are compared. Note that the scale on the y-axis differs between the four
graphs.

In Fig. 14 we see that the complexity of the old method increases rapidly when increasing
the size of the area of operation while the complexity of the new method is mostly indifferent
to changes to the size. The variance that still exists in the results using the new method is
assumed to be caused by the variance in the individual problem instances, caused by the
randomized generation of tasks, rather than a growth in complexity.

7 Conclusion

This paper continues the development of compositional optimization, an optimization
method which previously has been proposed for large-scale systems of systems. The key
to this method is a local optimization technique that reduces the size of each subsystem
individually to mitigate the state explosion problem. It is proven that this local optimiza-
tion maintains the global optimal solution of the system while removing all non-optimal
or redundant paths. The method offers further reduction of the search space using a com-
positional algorithm that performs local optimization iteratively while synchronizing the
subsystems. Moreover, dividing the problem into multiple sub-problems makes paralleliza-
tion of the computation possible. This improves the applicability of the method significantly,
since additional computation power can be purchased on-demand through cloud services.
Results in this paper show that the method has the potential to scale very well with the
number of subsystems. This is especially true with subsystems that have complex local
behavior, something that in a monolithic optimization would cause an exponential growth of
the search space. This makes it possible to calculate global optimal solutions for large-scale
industrial applications.

A novel contribution in this paper is the introduction of a new synchronization method,
called partial time-weighted synchronization (PTWS), that is specifically designed for a
class of systems called time-weighted systems. The method further mitigates the state
explosion problem by integrating an optimization heuristic into the synchronization that
generates a reduced synchronous composition where many non-optimal or redundant solu-
tions already have been removed. The synchronization of time-weighted systems were in
previous work identified as one of the main limitations to compositional optimization and,
yet, a majority of the current industrial applications are of this class. In this paper we show
that the addition of PTWS greatly improves on this limitation. For these reasons, PTWS is
considered to be a major improvement to compositional optimization.

In future work it would be of interest to implement parallel computation of compositional
optimization as a cloud service to evaluate the potential of having scalable computation

Discrete Event Dynamic Systems (2019) 29:411–443 441

power. Additionally, it would be interesting to apply this method as an online optimization
method in real industrial applications.

Funding Information Open access funding provided by Chalmers University of Technology.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Åblad E, Spensieri D, Bohlin R, Carlson JS (2017) Intersection-free geometrical partitioning of multirobot
stations for cycle time optimization. IEEE Trans Autom Sci Eng PP(99):1–10

Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126(2):183–235. https://doi.org/10.
1016/0304-3975(94)90010-8

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming. Athena Scientific, Belmont
Bertsekas DP (2005) Dynamic Programming and Optimal Control, vol I, 3rd edn. Athena Scientific, Belmont
Brandin BA, Wonham WM (1994) Supervisory control of timed discrete-event systems. IEEE Trans Autom

Control 39(2):329–342
Cao X (2007) Stochastic Learning and Optimization: A Sensitivity-Based Approach. Springer, Berlin
Cassandras CG, Lafortune S (2008) Introduction to Discrete Event Systems, 2nd edn. Springer Science &

Business Media, Berlin
David R, Alla H (2010) Discrete, Continuous, and Hybrid Petri Nets. Springer, Berlin. https://doi.org/10.1007/

978-3-642-10669-9
Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271.

https://doi.org/10.1007/BF01386390
Flordal H, Malik R (2009) Compositional verification in supervisory control. SIAM J Control Optim

48(3):1914–1938
Gass SI, Fu MC (2013) Encyclopedia of Operations Research and Management Science, 2013rd edn.

Springer, Berlin
Gruber H, Holzer M, Kiehn A, König B (2005) On timed automata with discrete time – structural and lan-

guage theoretical characterization. In: De felice C, Restivo A (eds) Developments in Language Theory.
Springer, Berlin, pp 272–283

Hagebring F, Wigström O, Lennartson B, Ware SI, Su R (2016) Comparing MILP, CP, and A* for multiple
stacker crane scheduling. In: 13th International Workshop on Discrete Event Systems (WODES), pp
63–70

Hagebring F, Lennartson B (2018) Compositional optimization of discrete event systems. In: 14th IEEE
International Conference on Automation Science and Engineering

Hill R, Lafortune S (2016) Planning under abstraction within a supervisory control context. In: 2016 IEEE
55th Conference on Decision and Control (CDC)

Hill R, Lafortune s (2017) Scaling the formal synthesis of supervisory control software for multiple robot
systems. In: 2017 American Control Conference (ACC)

Hoare C (1978) Communicating Sequential Processes, vol 21. ACM, New York. https://doi.org/10.1145/
359576.359585

Huang J, Kumar R (2008) Optimal nonblocking directed control of discrete event systems. IEEE Trans
Autom Control 53(7):1592–1603

Kobetski A, Fabian M (2009) Time-optimal coordination of flexible manufacturing systems using determin-
istic finite automata and mixed integer linear programming. Discret Event Dyn Syst 19(3):287–315

Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Trans Model Comput Simul 8(1):3–30

Mohajerani S, Malik R, Fabian M (2014) A framework for compositional synthesis of modular nonblocking
supervisors. IEEE Trans Autom Control 59(1):150–162

Passino KM, Antsaklis PJ (1989) On the optimal control of discrete event systems. In: Proceedings of the
28th IEEE Conference on Decision and Control

Powell WB (2007) Approximate dynamic programming: Solving the curses of dimensionality. Wiley-
Interscience, New York

Discrete Event Dynamic Systems (2019) 29:411–443442

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-642-10669-9
https://doi.org/10.1007/978-3-642-10669-9
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585

Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete event processes. SIAM J Control
Optim 25(1):206–230

Ramadge PJ, Wonham WM (1989) The control of discrete event systems. Proc IEEE 77(1):81–98
Su R (2012a) Abstraction-based synthesis of timed supervisors for time-weighted systems. IFAC Proc Vol

45(29):128–134. https://doi.org/10.3182/20121003-3-MX-4033.00024
Su R, van Schuppen JH, Rooda JE (2012b) The synthesis of time optimal supervisors by using heaps-of-

pieces. IEEE Trans Autom Control 57(1):105–118. https://doi.org/10.1109/TAC.2011.2157391
Valmari A (1998) The state explosion problem. In: Lectures on petri nets I: Basic Models, Advances in Petri

Nets, the Volumes Are Based on the Advanced Course on Petri Nets
Ware S, Su R (2017) Time optimal synthesis based upon sequential abstraction and its application to cluster

tools. IEEE Trans Autom Sci Eng 14(2):772–784
Wong KC, Wonham WM (1998) Modular control and coordination of discrete-event systems. Discret Event

Dyn Syst 8(3):247–297

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Fredrik Hagebring was born in Borås, Sweden, in 1985. He received
a M.Sc. degree in Systems, Control and Mechatronics from Chalmers
University of Technology, Gothenburg, Sweden, in 2016. Since then,
he has been pursuing a Ph.D. degree at Electrical Engineering
Department, Chalmers.

Bengt Lennartson was born in Gnosjö, Sweden, in 1956. He
received the Ph.D. degree from Chalmers University of Technology,
Gothenburg, Sweden, in 1986. Since 1999, he has been a Professor of
the Chair of Automation, Department of Electrical Engineering, and
now he is Head of the Division of Systems and Control. From 2004
to 2007 he was Dean of Education at Chalmers University of Tech-
nology, and since 2005 he is also part-time Professor at University
West, Trollhättan. Lennartson is IEEE Fellow for his contributions
to hybrid and discrete event systems for automation and sustain-
able production. He was General Chair of the 11th IEEE Conference
on Automation Science and Engineering, CASE 2015, and the 9th
International Workshop on Discrete Event Systems, WODES08, and
Associate Editor for Automatica 2002-2005 and IEEE Transaction on
Automation Science and Engineering 2012-2015. He is (co)author of
two books and 300+ peer reviewed papers in international journals
and conferences. His main areas of interest include discrete event and
hybrid systems, AI planning and learning, as well as robust feedback
control.

Discrete Event Dynamic Systems (2019) 29:411–443 443

https://doi.org/10.3182/20121003-3-MX-4033.00024
https://doi.org/10.1109/TAC.2011.2157391

	Time-optimal control of large-scale systems of systems using compositional optimization
	Abstract
	Introduction
	Preliminaries
	Weighted automata

	Motivating example
	Compositional optimization
	Local optimization of subsystems
	Computational complexity:

	Compositional optimization
	Computational complexity:

	Synchronization of time-weighted systems
	Synchronization of time-weighted systems using extended state names
	Heuristic for partial time-weighted synchronization
	Shared transitions:
	Local parallel transitions:
	Local single transitions:

	Implementation of PTWS
	Computational complexity:

	Application
	Modelling of the example
	Selecting coordinates for each task:
	Modelling of the individual robots:
	Ensure that each task is performed exactly once:
	Construct specifications with regards to the global event:
	Combining the parts into separate subsystems:

	Evaluation of actual complexity
	Scaling of state space size
	Comparison with a monolithic method:
	Comparing with theoretical results:
	Increasing the complexity of the global behavior:

	Comparison with previous work

	Conclusion
	References

