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Abstract

The automotive industry is moving from mass production towards an

individualized production, in order to improve product quality and reduce

costs and material waste. This thesis concerns aspects of load balancing of

industrial robots in the automotive manufacturing industry, considering

e�cient algorithms required by an individualized production. The goal

of the load balancing problem is to improve the equipment utilization.

Several approaches for solving the load balancing problem are presented

along with details on mathematical tools and subroutines employed.

Our contributions to the solution of the load balancing problem are

manifold. First, to circumvent robot coordination we have constructed

disjoint robot programs, which require no coordination schemes, are more

�exible, admit competitive cycle times for some industrial instances, and

may be preferred in an individualized production. Second, since solving

the task assignment problem for generating the disjoint robot programs

was found to be unreasonably time-consuming, we modelled it as a gen-

eralized unrelated parallel machine problem with set packing constraints

and suggested a tighter model formulation, which was proven to be much

more tractable for a branch�and�cut solver. Third, within continuous col-

lision detection it needs to be determined whether the sweeps of multiple

moving robots are disjoint. Our solution uses the maximum velocity of

each robot along with distance computations at certain robot con�gura-

tions to derive a function that provides lower bounds on the minimum

distance between the sweeps. The lower bounding function is iteratively

minimized and updated with new distance information; our method is

substantially faster than previously developed methods.

Keywords: Smart Assembly 4.0, automotive manufacturing, makespan mini-
mization, motion planning, Voronoi diagram, set packing, continuous collision
detection, decomposition, mathematical modelling, vehicle routing
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1 Introduction

This thesis is mainly motivated by the need to improve equipment utilization
and throughput in automotive manufacturing systems; see [5, 69]. Our focus
will be on production lines (in particular assembly lines), in which a workpiece
moves through di�erent stations (e.g., assembly cells) where a set of tasks are
performed; see Figure 1. The tasks could be performed by humans or by robots,
and the types of task include welding, sealing, gluing, mounting, and other
operations.

Figure 1: An assembly cell performing welding tasks on a workpiece that tran-
sitions through the assembly line.

The problem of distributing tasks among agents (robots or humans) in a
production line is well-studied and is known as line balancing, where the term
balancing refers to the objective that the agents should be equally occupied.
This objective directly translates into cycle time, that is the time it takes a
station to complete its assigned tasks. The cycle time also relates to the pro-
duction line throughput, and thus to the overall equipment utilization. Our
work considers both single and multiple stations, but rarely an entire produc-
tion line. Hence, we often refer to the problem as load balancing. This is in
order to emphasize that a more detailed solution is desired as compared to what
is often used in line balancing ; see Section 1.2.

1.1 Stations in the automotive industry

A typical station (e.g., an assembly cell) consists of several industrial robotic
arms (or industrial robots) mounted around the workpiece location. These
robots can be of varying types, depending on the task; as an example, the
robot in Figure 2 comprises six revolute joints, enabling it to position its tool
according to the tasks. A robot con�guration is a speci�cation for each of these
joints (e.g., angles of revolute joints), and the set of all con�gurations is called
the con�guration space. A certain position (and rotation) of the tool can corre-
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spond to multiple con�gurations, which are referred to as inverse con�gurations
for that tool position. Moreover, a robot motion de�nes a path in the con�gu-
ration space. A path contains no information of time; thus if the velocity of the
robot motion is not emphasized, we can refer to it as a robot path.

Figure 2: Two con�gurations of a typical industrial robot with six revolute
joints. In the right illustration, the rotational axes are highlighted by red circles.

A task to be performed in a station can be of various types, but for the
robot motion they all reduce to the same de�nition. For a task to be com-
pleted the tool is required to follow a motion. The motion of the tool can be
speci�ed�e.g., such that the tool is required to be in a speci�c position�or not
completely speci�ed�e.g., that a stud weld must be placed normal to a plane
but its rotation in that plane is arbitrary. Moreover, as every tool position can
correspond to several inverse con�gurations, each task can be performed by a
(possibly in�nite) number of alternative motions, each with a start and end
con�guration of the robot.

In order to access its tasks the robot needs to move between di�erent con�g-
urations in a collision-free way. The motion is achieved by a controller that is
speci�c for each type of robot. The controller is provided with a list of instruc-
tions, mainly consisting of con�gurations and details on how to move between
them. For example, the joints can be instructed to have a constant velocity
or the tool instructed to follow a linear motion (in the workspace). The robot
can be instructed to stop at a con�guration or pass by it at any feasible speed.
Moreover, to verify that the motion is collision-free w.r.t. the workpiece, it has
to be analysed in a simulation tool.

Another important type of instruction coordinates multiple robots in order
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to prevent robot�robot collisions. When a robot enters a workspace shared with
another robot, it sends a wait instruction to a programmable logic controller
(PLC) that responds whether the workspace is free or occupied. When the
robot leaves the shared workspace, a similar instruction is sent to the PLC.
This system of signals can be seen as a way to modify the velocity of the
robot motions to ensure a collision-free program, but more importantly as a
safeguard against unexpected failures. Note that there are other systems and
instructions enabling certain robots to collaborate in a shared workspace, e.g.,
ABB's multimove. See [1] for examples of robot instructions.

1.2 The load balancing problem in line production

In general, given one or several stations the load balancing problem is to divide
the tasks among the robots, decide a task sequence and a corresponding motion
for each robot, such that the cycle time is minimized and such that there are
no collisions with the environment or among robots. To model this problem
it is common to use a simulation software such as Industrial Path Solutions
(IPS) [43], where, e.g., the geometry and robot motions can be represented; see
Figure 3.

Figure 3: An assembly line modelled in Industrial Path Solutions (IPS). Cour-
tesy of Volvo Cars.

There are many variations of the load balancing problem, e.g., replacing
robots with humans or to minimize the energy consumption rather than the
cycle time. This thesis will consider some variations, see Section 2, and also
some limitations in Section 1.5.

1.3 Towards an individualized production

We denote a solution to the load balancing problem to be an o�ine solution,
if it has been constructed by engineers, possibly aided by simulation and op-
timization software. Such solutions are currently used in industry, since the
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load balancing problem contains di�erent problems that are tightly connected.
Hence, it is common that a model excludes some details, e.g., simulating �ex-
ible components and their interaction with the robots, or using a simpli�ed
controller. Hence, any solution computed will need to be analysed and possibly
modi�ed. Therefore, a robot program is generally time-consuming to create.
However, if this robot program is intended to produce many identical products
(mass production), then the time usage is not a crucial issue.

The mass production concept is challenged by the project Smart Assembly
4.0 (SA4.0), where one key point is that the product quality can be substantially
increased (or its production cost be reduced) by considering every product as an
individual. The idea is that the physical production system, together with an
accurate digital copy, a digital twin, enables a simulation and/or optimization
to be conducted for individual products; see [82]. A concept of an individualized
production is illustrated in Figure 4. A consequence of individualized production
is that o�ine solutions cannot be used in such a system.

Figure 4: SA4.0 setup where the input to the assembly cell (before scanning)
has been optimized using the digital twin. E.g., locators has been modi�ed,
thus placing the workpiece in a slightly di�erent position. See [82] for details
on the SA4.0 setup.

One enabler for an individualized production is the ability to automatically
generate solutions to the load balancing problem, i.e., online solutions. This
means that we need to be able to solve the load balancing problem for every
product individual, using models with enough detail to produce complete robot
programs. So in contrast to an o�ine solution no veri�cation or modi�cation by
an engineer can be permitted, since such a process would be too time-consuming
to be conducted for every product.

1.4 Objectives

The main goal of this thesis is the minimization of losses (i.e., increments of cycle
time) caused by the robot coordination. We approach this goal by investigat-
ing the possibility of creating robot programs without any shared workspaces,

https://strategiska.se/forskning/pagaende-forskning/smart-systems-2015/projekt/7339/
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thereby eliminating the need for coordination signals. Improving the equipment
utilization by minimizing the cycle time is a related and important aspect to be
considered in this thesis.

Motivated by the need for online solutions arising from an individualized
production, we contribute to the e�cient generation of robot programs. This
need could also be satis�ed by generating robust robot programs, i.e., that could
be reused or modi�ed to solve similar problem instances.

1.5 Limitations

We consider applications and instances from the automotive industry. However,
many of the methods and ideas will, after suitable adaptation, apply to other
types of production lines in which robots need to perform tasks in a shared
workspace.

We will consider the load balancing problem for robots only, and not for
human agents. Moreover, we will assume that the cycle time is to be minimized.

We will only brie�y consider precedence constraints between tasks; see Sec-
tion 2.5. Precedence constraints are modelling that tasks needs to be executed
in a speci�c order due to a logical con�ict or because it improves product quality.

We do not cover the topic of robot controllers, but assume that the robot
possesses constraints on the velocities of, e.g., joints or tool. This is compatible
with the goal of creating robot programs online, and is accomplished by applying
a preprocessing algorithm.

A related topic is the dynamic e�ects caused by the weight of a robot and,
similarly, the simulation of deformable parts of the robot (e.g., cables), which
need to be considered, but is left out of this thesis in order to simplify the
presentation.

1.6 Outline

This thesis surveys the load balancing problem for industrial robots. In sec-
tion 2, we present approaches to solve the load balancing problem using di�er-
ent models and assumptions. In Section 3, we give a mathematical background
to methods used in the appended papers and in routines used for load balanc-
ing. In Section 4, we present details of the subproblems and routines presented
in Section 2.1. The appended papers are summarized in Section 5 while in
Section 6 we state the main conclusions of this thesis and pointers to future
work.



6 2 Approaches to the load balancing problem

2 Approaches to the load balancing problem

We here cover the variations of the load balancing problem that is speci�ed
in Section 1.2, with the limitations mentioned in Section 1.5. Note that these
approaches prevent that pairs of robots collide (robot�robot collisions) using
di�erent methods, and since they study di�erent applications also the motion
planning problems have varying complexity. As a result not all of these ap-
proaches are interchangeable or even solve the same problem. This section is
concluded by two subsections regarding precedence constraints and a general
note on the motion planning problem; see Sections 2.5 and 2.7, respectively.

2.1 Lazy load balancing

The lazy load balancing algorithm by Spensieri et al. [84] is composed by a
few complex steps in a loop; see Figure 5. The idea is to decompose the load
balancing problem into two parts, the combinatorial problem of assigning and
sequencing the tasks and the geometrical problem of planning the robots' mo-
tions.

The initial step aims to �nd a small set of alternative ways to perform each
task without colliding with the environment. Each alternative is associated
with collision-free start and end con�gurations and a collision-free motion for
the robot (when the tool follows a given motion). The resulting set consists
of samples from the (possibly in�nite) set of feasible alternatives. The idea
employed in lazy load balancing is to use the concept of inverse con�gurations,
and to partition the set of alternatives into connected subsets, in each of which
the same inverse con�gurations applies, see Section 4.1 for details.

Task planning
Sec. 4.1

Assign and
sequence
Sec. 4.2

Path planning
Sec. 4.3

Robot�robot
collisions
Sec. 4.3.2

Coordinate
Sec. 4.4.1

Break

Update data

Figure 5: The iterative lazy load balancing approach described in [84].

The �rst step in the loop is to solve the problem of assigning each task
to a robot, selecting an alternative for each task, and deciding an ordering of
the tasks, in a collision-free way with the objective to minimize the cycle time.
However, this is done with a so-called lazy approach, where the word lazy�
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borrowed from lazy path planning, see [13]�means that initially no robot mo-
tions are computed, and thus no collisions are known, while the motion times
are bounded from below. The three following steps in the loop are: path plan-
ning between the con�gurations chosen in �rst step (see Section 4.3); detection
of robot�robot collisions among these paths, i.e., which might cause a collision
(see Section 4.3.2); and coordination of the robots' motions, i.e., tuning their
velocities so that collisions are prevented (see Section 4.4.1).

Before the loop continues to the next iteration, the data in the task as-
signment and sequencing model is updated, by including the planned motion
times and colliding pairs of task assignments or robot paths that cannot be
used simultaneously. The algorithm terminates when no new paths need to be
planned, or when, e.g., a computation time limit is reached. In the �rst case,
the solution is optimal if all steps are solved optimally (which is typically not
the case; see the respective sections) and the shortest robot paths are also the
optimal ones when also considering robot�robot collisions; see Section 2.7.

2.2 Line balancing

The relation between line balancing and load balancing can (generally) be seen
as follows. The line balancing problem is to assign tasks to stations, while the
load balancing problem is to determine in detail how to perform the assigned
tasks in the station. However, there exist some attempts (see ,e.g., [84]) to
perform load balancing with multiple stations and�vice versa�some line bal-
ancing models that incorporate details about how to perform the tasks within
the stations (including robots, sequences, motions, collisions, etc.).

Lopes Cantos et al. [61] describe as an assembly line by a mixed integer
linear programming (MILP) model (see Section 3.1), the authors assume that
the robot motion times between certain groups of tasks are constant. They then
ensure that collisions are avoided by enforcing the robots to work on disjoint
task groups, thus making this approach applicable only to a subset of instances.
Performing the division into groups can be hard, since checking if two robots
can never collide when working in di�erent groups is non-trivial for a general
problem instance. Moreover, it is also a strong assumption that the robot
motion time between two groups is constant, since a collision-free motion might
not even exist. Hence, this MILP model cannot be used in a truly online scenario
but the solution might require additional touch-ups from an engineer in-order
to produce feasible programs.

The term line balancing is broad and often refers to a larger scale than the
load balancing problem does; see Battaïa and Dolgui [8]. The line balancing
problem typically comprise a complete machining, assembly, or disassembly line.
In some simple versions the robots, or machines, are assumed to be identical and
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the order of the tasks negligible. The line balancing problem typically include
sequence constraints on the jobs, so-called precedence constraints. A typical
case for line balancing is to study the robustness of a schedule, and to minimize
the throughput loss due to unexpected failures; see Müller et al. [67].

2.3 Disjoint load balancing

In the appended paper I (cf. [2]) we present an alternative to lazy load balancing
by introducing an additional constraint enforcing the robots to work in disjoint
workspaces. Thus, no robot�robot collisions can occur and no velocity-tuning
or time coordination will be needed to prevent such collisions.

In short, the task assignment is done without considering the sequence or-
dering but instead ensuring that all pairs of tasks assigned to di�erent robots
are collision-free; see Section 4.2.2 for details. Using the resulting task assign-
ment, a spatial partition (i.e., disjoint workspaces) is constructed as the medial
surface called Voronoi diagram ; see Section 4.4.3 for details. The lazy load bal-
ancing loop is applied with the medial surface being a part of the environment
and without the robot�robot collisions and coordination steps. The procedure
is then repeated by searching for a new task assignment, until a termination
criterion is meet; see paper I for details.

The method is proven to be quite e�ective on some industrial instances,
which is due to a number of reasons; this despite that an additional constraint
has been introduced, and thus we can't expect the cycle time to decrease. How-
ever, when partitioned into disjoint workspaces the task assignment and se-
quencing problem becomes easier to solve, and hence the heuristic algorithms
are likely to perform better. Moreover, and more importantly, there is no in-
crease in cycle time due to the velocity-tuning or to the wait signals introduced
in the coordination (see Section 4.4.1 for details). As a result, we even observed
that the disjoint load balancing decreased the cycle time for some problem in-
stances. A last, but not least, important note is that there exist industrial
instances for which the disjoint load balancing problem is even infeasible.

2.4 Prede�ned makespan

Skutella and Welz [81] study a load balancing problem in which the makespan is
prede�ned and the total path length is minimized. Moreover, they assume that
tasks can only be performed by a single alternative, thus studying a somewhat
simpler problem. They use column generation (see Section 3.5.2) to solve it.
Their column generation master problem ensures that each job is performed
once, the subproblem is to �nd the least penalized tour respecting the makespan,
and on top of this they use branch�and�bound to resolve integrality as well as
robot�robot collisions.
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The approach has however, some drawbacks and limitations. First, the
motion time between tasks is assumed to be known, which is unreasonable
since not all pairs of paths can be planned in reasonable time (cf. Section 4.3).
Second, since every tour found within the course of the branch�and�bound
algorithm need checked if it is collision-free, thus very many paths need to be
planned. Third, the approach does not comprise that a typical weld task can
be completed using several robot con�gurations.

Landry et al. [53] address many of the issues regarding the requirement
of known robot paths, using an approach similar to that in [84], by planning
paths and checking collisions only for tours that are optimal in a current ap-
proximation of the motion times. Hömberg et al. [40] re�ne the procedure by
warm starting the solution process of �nding the optimal tour from previous
computations, incorporated in a branch�and�price schema.

2.5 Precedence constraints

Some applications require certain tasks to be done in a speci�c order. Then, so-
called precedence constraints have to be taken into account in the load balancing
problem. E.g., precedence constraints are necessary for applications in which
the weld sequence has a large impact on the product quality; cf. [93, 87]. There
is, however, little work done to include these constraints in the load balancing
problem. If the path planning and collision part of the load balancing problem is
removed or assumed to be trivially solved, then the remaining problem becomes
a generalization of the well known traveling salesperson problem, cf. [78, 77], or
of the job-shop scheduling problem, cf. [29, 76]; see Section 4.2.1 for details.

Wang et al. [92] solve a problem related to the load balancing problem. In
their problem, each task has only one option, two robots are considered, and
the product quality is also optimized. A case is studied where the robots are to
perform around �fty weld tasks, taking into account that these welds generate
heat; to ensure a high enough product quality, two adjacent weld tasks cannot be
consequently performed due to excess heat. Particle swarm optimization (PSO)
is applied to the problem of assigning tasks and sequences to the robots, they
consider a �tness function that involves both makespan and product quality.

2.6 Applications where robot motions are computation-
ally cheap

When the robots motions are computationally expensive, an e�cient algorithm
will need to reduce the number of motions that need to be computed, as in
Sections 2.1 and Section 2.4, See Section 2.7 for details on when robot motions
are computationally expensive. However, when the robot motions are compu-
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tationally cheap, e.g., a speci�c type of robot or environment, other algorithms
apply. Here, we list a few such applications.

Laser cutting problems usually comprise a single robot. The motions of this
robot are computationally cheap, but some tasks need to be performed in a
certain order, i.e., precedence constraints are present. Dewil et al. [24] tackled
this problem using a local search heuristic.

Kovács [51] studied the remote laser welding problem. In this work, a single
robot is considered, but the tasks can be performed from a continuous set of
con�gurations. The motion planning of the robots is, however, performed (only)
as a post processing step.

The laser sharing source problem is a generalization of the load balancing
problem where the robots share laser power sources. Hence, a robot can perform
a weld task only when a laser power source is available. Rambau and Schwarz
[73] study this problem and assumes the robot paths to be known and each
weld task can be formed by a single alternative. The problem is solved using a
tailored branch�and�bound algorithm.

Sometimes the load balancing problem as described in Section 2.1 is simpli-
�ed and then solved. E.g., Xin et al. [94] assume that the degree of freedoms
in the con�gurations space of the robots are large enough to position the tool
centre point at a desired location in a plane. Furthermore, they assume that as
long as the tool centre points do not collide (with a non-zero tolerance), then
robots can be con�gured to not collide. With these assumptions, they suggest
a time indexed network �ow model with some side constraints to solve the load
balancing problem, they solve the model using a genetic algorithm.

2.7 Path planning�the curse of dimensionality

To conclude this section we emphasize and clarify the main di�erences between
the methods mentioned above and where they apply. The main di�erence is
how hard the path planning step is considered to be. In [84, 40] the path
planning step is considered as the bottleneck, while in [61], it is not. It all
depends on to what kind of robot(s) and environment are considered. First,
if the robot is low-dimensional, e.g., having two or three degrees of freedom�
typically representing its position in a Euclidean space�then the path planning
problem becomes computationally quite simple. Second, if the environment
is simple, i.e., if straight paths between pairs of con�gurations are likely to
be collision-free, then the path planning problem can be solved for very high-
dimensional robots; see, e.g., [62].

It is known that the path planning problem is PSPACE-complete, which
imply that it cannot be solved in polynomial time unless P = NP; cf. [14, 75].
Moreover, in a �xed dimension the path planning problem is polynomially solv-
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able ([15]). As a consequence it appears that any general path planning algo-
rithm possess a running time that is exponential w.r.t. the dimension; see [58].
This �curse of dimensionality� does not only appear in obvious cases such as
sampling approaches (n samples in each of the d dimensions yields nd combi-
nations), but also for seemingly simple problems, such as locating the nearest
neighbour in a collection of points (see [42]), which is used in several path plan-
ning algorithms; see Section 4.3.1. Thus, in practice path planning problems are
typically solved only approximately. From Section 4.3, it will become clear that
if the problem is high-dimensional and does not admit a crude approximation,
it will generally require a long computation time.

Therefore, the assumption that the robots do not collide along their paths
is vital. Otherwise, the path-planning algorithm would need to consider all
the robots simultaneously, e�ectively multiplying the number of dimensions
in the path planning problem by the number of robots in the load balancing
problem. However, when the robots are assumed not to collide, we both get less
intractable path planning problems and the shortest collision-free path between
two con�gurations becomes independent of the other robots' paths, and thus
the robots paths are well-de�ned regardless of the task sequence of any involved
robot.

The method used to ensure that the robots do not collide in the �nal so-
lution vary between the existing methods, and is known as the coordination
of the robots. The most well-known method is to keep the robot paths while
tuning their velocities; cf. [83, 40]. Disjoint robot paths can also be achieved by
planning the paths subjected to disjoint workspaces, as in [2]; see Section 4.4.

3 Mathematical modelling and optimization

This section provides a mathematical background to modelling and optimization
methods that is utilized to solve di�erent parts of the load balancing problem.
While the section is written to be self-contained, the methods are given a focus
roughly proportional to their use in Section 4.

3.1 Mixed integer linear programming (MILP)

A mixed-integer linear program is an optimization problem with a�ne objective
and constraint functions, where some variables are restricted to be integral. Any
MILP can thus be written as

z∗ := minimum c>x, (1a)

such that Ax ≥ b, (1b)

x ∈ Zn1 × Rn2 , (1c)
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where n = n1 + n2 is the dimension of the variable space, and m is the number
of inequality constraints (c and b are vectors and A is a matrix), also let I :=
{1, . . . , n1} and z∗LP be the optimal value of the corresponding LP relaxation of
(1), i.e., relax (1c) and let x ∈ Rn.

The MILP formulation (1) may seem restrictive, but by exploiting the inte-
grality requirement many combinatorial optimization problems can be modelled
as MILPs. Hence, it is reasonable that MILP is NP-hard1 (see, e.g., [19, Ch.
1.3]). Moreover, the question �Is the feasible set non-empty?� is in [20] shown
to be NP-complete, whereas its negation �Is the feasible set empty?� is NP-hard
and conjectured not to be in NP.

An example of a problem that can be expressed as a MILP is the travelling
salesperson problem (TSP). It is de�ned on a directed graph G = (V,A), where
the nodes v ∈ V and arcs a ∈ A represent cities and roads, respectively. Each
arc a ∈ A is associated with an arc cost ca representing the travelling time
between the two nodes; if c(ij) = c(ji), (ij) ∈ A, then the problem is called a
symmetric TSP (STSP) and otherwise it is an asymmetric TSP (ATSP). The
solution to the ATSP (assuming that the arc costs satisfy the triangle inequality)
equals the shortest tour that visits each city exactly once, i.e., the least weighted
Hamiltonian tour. This can be modelled as a MILP in many ways; one of the
most simplistic formulations is given by Miller, Tucker, and Zemlin [64], and is
to

minimize
x,u

∑
a∈A

caxa, (2a)

such that
∑

a∈δ+(i)

xa = 1, i ∈ V, (2b)

∑
a∈δ−(i)

xa = 1, i ∈ V, (2c)

ui − uj + (n− 1)x(ij) ≤ n− 2, (ij) ∈ A | i, j 6= s, (2d)

ui ∈ [1, n− 1], i ∈ V \ {s}, (2e)

x ∈ Bm. (2f)

Here, the variables ui ∈ R denote the order in which the nodes are being visited,
i.e., ui = 3 imply that node i ∈ V is the third node visited after the arbitrarily
chosen source s ∈ V. Moreover, the constraints (2c) and (2b) ensure that each
node has one entering and one leaving arc, respectively, where δ−(i) and δ+(i)
denote the sets of arcs entering and leaving, respectively, node i. The reason

1A decision problem is NP if the answer �yes� can be veri�ed in polynomial time. A decision
problem is NP-hard if any NP problem can be reduced to it in polyomial time. A decision
problem is NP-complete if it is NP and NP-hard; see [19, Ch. 1.3].
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that the variables ui and the constraints (2d) are needed is to prevent so-called
subtours, i.e., to ensure that the solution admits only one connected tour, and
not multiple disjoint tours.

3.2 The branch�and�bound algorithm

Branch�and�bound (B&B) is a general algorithm that always includes three
components: (i) a partition of the feasible set, (ii) a relaxation of the minimiza-
tion problem that can be solved to optimality, and (iii) an incumbent solution
(i.e., the best known feasible solution). When the algorithm applies the parti-
tion, the problem is split into several problems with smaller feasible sets; this
is known as branching. This gives rise to the so-called B&B tree, in which each
node represents a feasible set, and its children a partition of this set. In each
iteration, the algorithm selects a node i in the B&B tree, computes the lower
bound (zi) by the relaxation applied to node i and use the upper bound z given
by the incumbent solution; the partition is applied to node i if zi < z, creat-
ing new (child) nodes of the B&B tree. A new incumbent solution is retrieved
when the relaxed solution turns out to be feasible. It is also common to apply
heuristics to facilitate the search for incumbent solutions.

When applied to solve a MILP the most common specialization is to relax
the integrality restriction (a so-called LP-relaxation) to receive the lower bound
z∗LP on z

∗ and to form the partitions by rounding a fractional value up or down.
Formally, let xi be an LP solution in node i; if xi is feasible in (1) the incumbent
is updated and no further partitioning is needed, otherwise ∃j ∈ I : xij /∈ Z
and two new nodes are created with the additional constraints xj ≤ bxijc and
xj ≥ dxije, respectively.

There are, however, many details that together determine whether an im-
plementation of B&B is e�cient or not, such as choosing the next node i in
the B&B tree, or choosing the fractional variable to use for the next branching;
See [19, Ch. 9.2] for such details. Regardless of such details, B&B is also much
dependent on the MILP formulation, or more precisely the size of the integrality
gap (the di�erence between the optimal objective value of the MILP and its LP
lower bound). Since, when the integrality gap is large, it is likely that very
many partitions are needed before zi ≥ z can be veri�ed.

For example, consider replacing the constraint (2d) with the so-called sub-
tour elimination constraints∑

a∈δ+(S)

xa ≥ 1, ∅ ⊂ S ⊂ V, (SEC)

which was suggested by Dantzig, Fulkerson, and Johnson [23]. The constraint
(SEC) can be understood as that every proper subset of nodes needs at least
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one outgoing arc. Using the (SEC) constraints results in a better lower bound
for the ATSP as compared to using the constraints (2d), which is a classical
result; cf. [55]. For example, with |V| = 50 and the arc costs de�ned as the Eu-
clidean distances between uniformly distributed points in the unit square; then
by using the constraints (SEC) instead of (2d), the integrality gap is reduced
from roughly 15% to 1%. Thus, B&B would be much more e�ective by using
(SEC), if not for the issue that these constraints are exponentially many. This
topic will be addressed in Section 3.4.

3.3 Polyhedral theory, convex hulls, and tight formula-
tions

A natural question that arise from the (SEC) formulation example is if there
exists an alternative MILP formulation of a general MILP (1) with no integrality
gap, i.e., a so-called perfect formulation. This is indeed true and it follows
from two observations. First, relax the feasible set of (1) to its convex hull,
i.e., consider the set Xconv := conv{x ∈ Zn1 × Rn2 | Ax ≥ b }. Then, since
the objective function is a�ne the optimal objective value remains unchanged.
Second, by Meyer's theorem ([63]) Xconv is a polyhedral set and can be expressed
on the form of (1) (if Xconv is bounded this follows from the representation
theorem by Minkowski [65]).

Hence, any MILP can be solved as a regular LP if a perfect formulation
is known, which does not contradict the fact that MILP is NP-hard and LP
is solvable in polynomial time. For example, note that the ATSP formulation
using (SEC) is not perfect but still has an exponential number of constraints.
This indicates that even though a perfect formulation exist for a general MILP,
it might contain an exponential number of constraints. Hence, any MILP with
a perfect formulation of polynomially many constraints can be solved in polyno-
mial time. On the other hand, there exist polynomially solvable problems, e.g.,
the minimum spanning tree problem, that has an exponentially large perfect
formulation (see [19, Ch. 4.10] for details on sizes of perfect formulations).

The quality of a constraint can also be classi�ed w.r.t. the perfect formu-
lation. An inequality a>x ≤ δ satisfying all points in Xconv is called a valid
inequality (VI). Moreover, a VI de�nes a face F := Xconv ∩ {x ∈ Rn | a>x = δ}
if F is non-empty. The dimension of F yields a quality measure of the VI,
where the highest dimensional faces (one dimension less than the dimension of
Xconv) are called facets. A perfect formulation consist of every facet-de�ning VI
of Xconv. Similarly, for a polyhedron P , a VI a>x ≤ δ dominates another VI
ã>x ≤ δ′ if {x ∈ P | a>x ≤ δ} ⊂ {x ∈ P | ã>x ≤ δ′}. Note that a facet-de�ning
VI cannot be dominated. The constraints (SEC) are examples of facet-de�ning
inequalities, whereas (2d) are not.
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Each MILP formulation of a certain problem will have di�erent VIs, thus
each problem formulation need to be analysed in order to �nd VIs, facets, and
in the best case, its perfect formulation. For instance, in paper II a MILP
formulation, containing so-called set packing constraints, is investigated. These
constraints de�ne a feasible set of the form {, x ∈ Bn | xi + xj ≤ 1, (ij) ∈ E },
where E is an edge set representing mutually exclusive variable assignments.
The undirected graph G = (V, E) can be used to derive facet-de�ning VI; for
instance, each clique2 C ⊂ V in G induce a facet-de�ning VI (

∑
i∈C xi ≤ 1),

cf. [68, Cor. 3.5].

3.4 The branch�and�cut algorithm

When no perfect formulation is known, one can instead rely on generating cuts,
which are VIs that cut o� a current LP optimal solution. One example is Go-
mory's [34] mixed integer inequalities; see, e.g., [19, Ch. 5.3] for implementation
details. These cuts have the property that as long as the LP solution is infeasi-
ble a cut can be generated, yielding a tighter representation of Xconv; continuing
this process iteratively leads to the cutting plane algorithm for solving (1).

Moreover, given a (perfect) formulation that is too large to handle, we can
apply the cutting plane algorithm by solving a so-called separation problem.
That aims to generate cuts on a given form. For example, �nding a cut on the
form (SEC) corresponding to an LP solution x, is to �nd the non-empty set
S ⊂ V that minimizes the sum

∑
a∈δ+(S) xa, which is the minimum capacity

cut problem and which can be solved e�ciently, see [86].
To this end, most state-of-the-art MILP solvers use an algorithm called

branch�and�cut (B&C), which is a combination of B&B and the cutting plane
algorithm. The di�erence from B&B is that in each iteration a choice is made
whether the LP bound should be strengthened by branching or by generating
cuts.

To illustrate that B&C rely on a tight model formulation, we again consider
the ATSP formulation using (2d) versus using (SEC), and the same random
instance as in Section 3.2. In both cases the Gurobi MILP solver [36] is used
which can generate several general cuts, such as Gomory cuts. Also, the con-
straints (SEC) are initially relaxed and added whenever a violating integral
solution is found. This is a so-called lazy-constraint; another option would be
to add the constraints (SEC) that violate the LP solution as previously de-
scribed. The result is that the formulation (2) required 30960 nodes and 615378
simplex iterations, whereas using (SEC) only used 684 nodes and 5863 simplex
iterations.

2A clique is an inclusion-wise maximal subset S ⊂ V such that every pair of nodes in S is
connected by an edge e ∈ E.
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In load balancing, B&C is often used when a MILP is to be solved to opti-
mality, which is the case of the task assignment (described in Section 4.2) and
line balancing (see Section 4.2.3). However, for some harder MILP instances,
either some inexact method or a decomposition method needs to be applied.

3.5 Decomposition and reformulations

To decompose an optimization problem is to split the problem into multiple
smaller problems, where the most straightforward decomposition comes from
the observation that two parts of a problem are not mutually dependent. For
example, if an ATSP is the model of a weld sequence to be done by an industrial
robot, then, since the robot motions do not depend on the sequence, the motions
can either be computed before the sequence, or a lazy approach can be used,
as described in Section 2.1. However, if instead multiple robots are considered
and collisions are to be avoided, then a robot motion becomes dependent on
the motions (and sequences) of other robots. To overcome such issues, it is
very common to use some type of suboptimization (Section 3.5.3), where some
parts of the problem are simply assumed to be independent, which can lead to
suboptimal or even infeasible solutions that need to be handled.

When the problem cannot be naturally decomposed, or there is no reason-
able assumption that allows it to be decomposed one could instead employ a
mathematical reformulation that allows for an e�cient decomposition. This
section will brie�y cover the three most common ones, Lagrangian relaxation,
Dantzig�Wolfe decomposition, and Benders decomposition. The two �rst rely
on a relaxation that enables the decomposition and then an iterative process
towards feasibility; Benders decomposition instead rely on a restriction of the
problem (�xing some variables) that enables the decomposition and then an
iterative process towards optimality.

3.5.1 Lagrangian relaxation

A Lagrangian relaxation is, as the name indicates, a relaxation of an optimiza-
tion problem; and although it is applicable for non-linear optimization problems,
see [9] for details, we restrict our presentation to MILP problems. Consider
the MILP formulation (1) and let A and b be partitioned into (A>1 , A

>
2 )> and

(b>1 , b
>
2 )>, respectively. Letting S := {x ∈ Zn1×Rn2 | A2x ≥ b2}, for any vector

of so-called Lagrangian multipliers u ∈ Rm1
+ we have the following relaxation

zLR(u) := min
x∈S

(
c>x+ u>(b1 −A1x)

)
≤ z∗ := min

x∈S
c>x,

s.t. A1x ≥ b1.
(3)
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The inequality in (3) holds since any x satisfying A1x ≥ b1 is negatively
penalized. Hence, zLR(u) is a lower bound on z∗, and we receive the best
possible Lagrangian bound by solving the so-called Lagrangian dual problem
zLD := maxu≥0 zLR(u), were zLD is called the Lagrangian dual bound. The func-
tion zLR : Rm1 7→ R is continuous non-smooth and concave and can be maxi-
mized using subgradient optimization; see, e.g., [57] and paper III for details.

The Lagrangian dual bound is also always not lower than that of the linear
relaxation, i.e., zLD ≥ zLP, where equality holds if (A2, b2) constitutes a perfect
formulation of S. This can be seen by posing the Lagrangian dual as an LP
problem by using a perfect formulation of S. Using the LP dual one can then
show that zLD = minx∈conv S{c>x | A1x ≥ b1} and observe that convS ∩ {x ∈
Rn | A1x ≥ b1} ⊆ {x ∈ Rn | Ax ≥ b} yields that zLD ≥ zLP.

As an example, consider the ATSP formulation (2) employing the con-
straints (SEC) and Lagrangian relax the constraints (2b). The correspond-
ing Lagrangian relaxed problem becomes a shortest spanning r−arborescence
problem, which is the directed version of the minimum spanning tree problem.
Without going into much detail it can be shown that the resulting bound is
stronger than the LP bound. For an analogous relaxation of the STSP�where
the Lagrangian relaxed problem becomes a minimum spanning tree problem�
the Lagrangian dual bound equals the LP bound.

3.5.2 Dantzig�Wolfe decomposition

The Dantzig�Wolfe decomposition is closely connected to the Lagrangian relax-
ation and it attempts to solve the problem zLD = minx∈conv S{c>x | A1x ≥ b1}.
To simplify the presentation we assume that S is a bounded set so that convS
can be described by the convex combination of its extreme points xq, q ∈ Q.
The so-called master problem is thus

zLD = minimum
λ

∑
q∈Q

c>xqλq, (4a)

such that
∑
q∈Q

A1x
qλq ≥ b1, (4b)

∑
q∈Q

λq = 1, (4c)

λq ≥ 0, q ∈ Q. (4d)

The master problem (4) is solved by a technique called column generation
that use the concept of reduced costs to generate a su�ciently large subset of
Q. In short, a subset Q̄ ⊆ Q is su�cient to solve (4) if all reduced costs of
λq, q ∈ Q \ Q̄ are non-negative, otherwise the subset Q̄ is extended by some
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q violating this condition. Moreover, a subset Q̄ that constitutes a feasible
solution to the version of (4) restricted to the set Q̄ would give rise to optimal
dual variable values u and v, corresponding to (4b) and (4c), respectively. With
these values the minimum reduced cost can be computed as zLR(u) − ub1 − v.
Hence, there is a one-to-one relation between the Dantzig�Wolfe decomposition
and the Lagrangian relaxation.

A typical case for applying Lagrangian relaxation or Dantzig�Wolfe decom-
position is when the subproblem in (3), i.e., to compute zLR(u), decomposes
into several subproblems. One example is the generalized assignment problem
that assigns jobs to machines when each machine has a maximum capacity.
By Lagrangian relaxing the constraint modelling that each job should be done,
the corresponding Lagrangian problem will decompose into one binary knapsack
problem per machine. However, even though a decomposition of the subprob-
lem is computationally tractable, it is not required, e.g., the Dantzig�Wolfe
reformulation for load-balancing suggested by Skutella and Welz [81] does not
decompose.

As a last remark, a vital di�erence between the Dantzig�Wolfe decompo-
sition and the Lagrangian relaxation is that the Dantzig�Wolfe decomposition
allows a direct generalization of B&B, called branch�and-price (B&P). It works
as follows: when (4) has an optimal solution λ∗, but x :=

∑
q∈Q̄ x

qλ∗q /∈ S (thus
∃j ∈ I : xj /∈ Z), then branching occurs by adding the constraints xj ≤ bxjc
and xj ≥ dxie one the respective branches. Similar to B&B a more advanced
partitioning can also be used, but regardless, the new constraints must either
enter the master problem, by extending A1, b1, or the subproblem, by modi-
fying the set S; the most common is to modify S if the subproblem remains
computationally tractable.

3.5.3 Suboptimization

Suboptimization is a technique that heuristically �xes the values of some vari-
ables of the problem and then solve the remaining problem. This is often used
when a problem becomes too computationally expensive. One example of this
is the task planning step (see Section 4.1), the goal of which is to discretize a
continuous set of alternatives that allows a robot to complete a task. The gain
is that the remaining load balancing problem can be solved, but since some al-
ternatives to complete a task is no longer available the resulting solution cannot
be veri�ed to be optimal.

A similar idea is used to �nd good feasible solutions during a B&C process,
where one example is the e�cient algorithm called relaxation induced neigh-
bourhood search (RINS) [22]. RINS is an improvement heuristic that �xes all
variables that have the same values in a feasible solution as in an LP solu-
tion, the remaining problem is then solved with B&C. Since some variables are
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�xed heuristically, an optimal solution cannot be guaranteed, however, a better
feasible solution might be found.

The risk of ending up at suboptimization becomes larger if the variables
are poorly �xed (due to a too crude approximation). This can, however, be
resolved using some kind of feedback loop and iteratively adjusting the �xing of
the variables until a satisfactory solution is received. A feedback loop is used in
paper I, in which a surrogate model is used to �x the values of some variables; in
each iteration the surrogate model is solved but with the additional constraints
that all previously found optimal solutions are infeasible. This is equivalent
to �nding the k best solutions to this surrogate model, and even though the
surrogate model provides a lower bound that could be used to determine a
su�ciently small value k it is for most instances too large. As a remedy, some
other termination criterion, such as a time limit, can be of greater practical use.

3.5.4 Benders decomposition

For MILP problems (1) where the continuous part is considered to be �easy�
or even decompose whenever the integral variables are �xed, Benders decom-
position can be used. Initially, the master problem is a relaxation of (1) where
some continuous variables are removed (or �xed) and the constraints involving
these variables are relaxed. Given an optimal solution to the master problem,
the remaining problem (subproblem) is linear, and its optimal dual solution
yields a constraint that cuts o� the previous solution to the master problem.
This constraint is a conic combination of constraints from the original problem
where LP duality is used to bound the relaxed continuous variables.

Hence, Benders decomposition is an iterative approach that in each iteration
solves a relaxation of the original problem, that is also projected onto the space
of the integral variables. Then either provides a certi�cate that the resulting
solution is optimal in the original problem or a cut that separates the resulting
solution it from the original (projected) feasible set.

3.5.5 Logic-based Benders decomposition

Logic-based Benders is a generalization of the classical Benders decomposition
that does not require the subproblem to be linear. Again the master problem
�xes the values of some variables of the problem, and a subproblem involv-
ing these �xed variables generates a cut whenever the �xed variables are non-
optimal. Depending on the properties of the subproblem the cut will be derived
di�erently. E.g., if the subproblem is an LP then this reduces to the classical
Benders decomposition, see [41] for details.

As an example on how general the logic-based Benders framework is con-
structed we describe the lazy load balancing (see Section 2.1) as special case of
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it. In the master problem the cost, time to move a robot between two con�gura-
tions, is variable. Moreover, the master problem solves the task assignment and
sequencing problem (see Section 4.2) using the cheapest available costs. The
subproblems are then to �nd the shortest path for each robot to travel along
each selected robot path, while the cuts generate new lower bounds for the costs
using of these paths.

This is the main drawback of logic-based Bender, even though it is a very
general procedure, in order to work e�ciently the derivation of good cuts needs
to be on a per problem basis.

4 Detailed steps and subroutines used within load

balancing

As described in Section 2, there are di�erent approaches for solving the load
balancing problem and also some variations of the problem itself; nonetheless,
these approaches typically share some subproblems and/or subroutines. In this
section these subroutines are detailed to an extent roughly proportional to their
importance in this thesis.

4.1 Task planning

There are many types of tasks that can be performed by an industrial robot in
the automotive industry, spot welding, stud welding, inspection, and sealing, to
name a few. These all have di�erent requirements on the position of the robot's
tool. For instance, a stud weld need to be orthogonal to the workpiece but its
rotation is free to vary. A sealing task, on the other hand, requires that the
tool traverses continuously along a path. Thus, the task can be performed by
possibly in�nitely many alternatives.

However, all approaches to load balancing outlined in Section 2.1 assume
that each task has a �nite (and quite limited) set of alternatives to perform
each task. Some approaches even consider a single alternative for each task.
The task planning step aims to �ll this gap by assuming that there exist a
small set of representative alternatives to perform each task, a short explanation
can be found in [16]. Thus, the task planning step will introduce an error or
approximation, since possible ways of performing a task are excluded; however,
this error can be controlled, see the following example.

To exemplify how to �nd such samples we consider a simple stud weld task.
Let α ∈ [0, 2π] be the rotational degree of freedom. Then for any given α̂ ∈
[0, 2π] there exist a representative interval [α, α] 3 α̂ in which the possible
inverse con�gurations (see Section 1.1) corresponding to α̂ remain feasible w.r.t.
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joint and collision constraints. The task planning step �nds these intervals and
determines suitable samples in each interval. By construction there exists a
collision-free path between any two con�gurations in each interval; this path
can also be made su�ciently short. Hence, the error introduced by only using
these samples, instead of every possible α ∈ [0, 2π], can be made arbitrarily
small.

A question to raise here is whether this discretization is really required.
The answer is that it depends on the complexity of the robot and the collision
geometry, which determines the di�culty of the path planning problem; see,
[31, 51, 90] for examples on continuous tasks.

4.2 Task assignment and sequencing

When the task planning step is done one has to assign an order in which to
complete these tasks, and�if there are multiple robots�make a task assignment
for each robot. Moreover, depending on the approach for planing the robot paths
and preventing robot�robot collisions, di�erent types of optimization problems
arise, which will be summarized in this section.

4.2.1 The traveling salesperson problem (TSP) with variants

The traveling salesperson problem is a very well-studied problem; see, e.g., [7].
There are also a lot of variations and generalizations of the TSP. Here, we will
survey those that often occur in the context of the load balancing problem.

In the simplest case, when there is a single robot and each task can be
performed by a single alternative, the STSP or the ATSP is retrieved, depending
on the type of task. However, single alternatives are rare, and typically there
are several robots involved as well as multiple alternatives for each task and
robot. This generalization is poorly studied, and we next review some related
problems.

If multiple robots are considered�and thus load balancing is needed�the
problem becomes an mTSP, or as more commonly denoted a vehicle routing
problem (VRP) without limited vehicle capacities; see [12]. Moreover, since
the robots are located at di�erent positions it is rather a so-called multi-depot
VRP (MDVRP); see [66] for an overview. In addition, with the objective to
minimize the cycle time (i.e., makespan) the problem is a so-called makespan
MDVRP. Note that each task has a single alternative and the robots assumed to
be are identical, e,g., automated guided vehicles (AGVs). Makespan MDVRPs
are studied from di�erent perpectives; see [6, 17] for a polyhedral approach, [30]
for a heuristic MILP approach, [91] for a TSP based approach, and [88] for a
robotic application.
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The makespan objective is not commonly used for the VRP, but it is more
common for the closely related �exible job-shop problem; cf. [11]. Hence, there
is also a wide range of literature that relate to the load balancing problem.
For example, in [76] so-called transition times between activities is considered,
these are used to model the travel time between robot poses. These times are
identical among the robots, which is not the case for robotic applications where
the robots are positioned at di�erent locations in the room.

The most serious attempt to solve this problem is due to Hömberg et al.
[40], which use column generation to solve an MDVRP with vehicle capacities
and a heterogeneous �eet, which they refer to as the welding cell problem. The
capacities allow putting a constraint on the makespan, which is su�cient for
many industrial robotic applications. This approach lacks, however, the option
of multiple alternatives in which a robot can complete a task. Another approach
to solve the makespan VRP with a heterogeneous �eet is the B&B procedure
described in [72], where each B&B node corresponds to a partial task assignment
and for each robot (i.e., vehicle) a TSP is solved.

There are works that address the issue of multiple alternatives when a single
robot is considered. The resulting sequencing problem is often referred to as a
generalized TSP (GTSP), for which there are exact approaches, such as [28]�
using B&C�and [77]�using B&B�and heuristic approaches, e.g., [47]. See [3]
for an overview of the single robot case.

There are however, to the best of our knowledge little or no literature cov-
ering the problem when there are multiple heterogeneous robots, multiple al-
ternatives, and asymmetric travelling times, with a makespan objective, here
denoted makespan mGTSP. This problem is considered in, e.g., [84]. The so-
lutions to real sized problems are, however, often disclosed within commercial
optimization softwares, such as Industrial Path Solutions [43] and IBM ILOG
CP Optimizer [52]. These softwares also include constraints forbidding paths
and task assignments that would imply a collision, which is also considered
in [84] and [40]. Other generalizations than those considered here exist. One
example is TSP with moving tasks, as described in [35].

4.2.2 The unrelated parallel machine problem (UPMP) with set
packing constraints

The unrelated parallel machine problem (UPMP) is to assign n tasks to m
machines, the processing time depending on both the machine and task (i.e.,
unrelated times), and minimizing the makespan. Set packing constraints are
appended to ensure that certain pairs of tasks cannot be assigned to di�erent
machines, which is used, e.g., to model a collision.

In paper I, we present a decomposition method that use UPMP with set
packing constraints as a surrogate model for assigning tasks to robots such
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that there exists a �xed spatial partition of the robots. If the problem consist
of a single work station, the remaining problem is to solve a GTSP for each
robot. However, if the decomposition method is applied to multiple stations,
then tasks can be swapped between robot at di�erent work stations and the
sequencing problem is thus still a makespan mGTSP but with fewer alternatives
for the tasks. This surrogate model is classi�ed as an UPMP with set packing
constraints and by formulating it as a MILP model a B&C algorithm developed
and successfully used to solve it; see paper II for details.

Note that, even for two machines, the UPMP is NP-hard and for an arbi-
trary number of machines there exist no polynomial 3

2 -approximation algorithm3

(unless P=NP); see [60]. However, for a �xed number of machines in a UPMP
problem, there are fully polynomial-time (1+ε)-approximation algorithms, e.g.,
with a running time of n(m/ε)O(m) according to [44]. If however, the machines
are assumed to be identical, then the problem is an identical parallel machine
problem (IPMP; and for the IPMP there is a (1 + ε)-approximation algorithm
with running time of O((n/ε)ε

−2

), cf. [39].
As a side note, the IPMP is a special case of the so-called �exible job-shop

scheduling problem where each task consist of several activities that should be
executed in a speci�ed order; the IPMP is retrieved when each task consist of a
single activity. The UPMP is, however, not a special case of the �exible job-shop
scheduling problem, unless the �exible job-shop problem is slightly generalized
to let the processing times be unrelated, cf. [4].

4.2.3 The assembly line balancing problem

As noted in Section 2.2, line balancing concerns the case when an assembly line
contains multiple workstations. It is, however, often simpli�ed and assumes,
e.g., some �xed processing time for a task. Thus, this resembles the UPMP
approach in Section 4.2.2, and, e.g., sequencing is instead done at a later stage.
When considering an entire assembly line it is more common that some tasks
are subjected to precedence constraints (see, e.g., [37]), which, however, falls
outside the scope of this thesis.

4.3 Path planning

When a task-sequence for each robot is given, the corresponding collision-free
paths need to be computed. In our thesis we concentrate on the case where
the path planning problem�called motion planning problem if time-dependent
constraints are present�have a high computational complexity, i.e., with a high-
dimensional robot in a cluttered environment. Moreover, we here assume that

3An τ -approximation algorithm is constructed to �nd a solution with an objective value
less than τ times the optimal objective value.
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the robots do not collide with each other; see Section 4.4 on how these collisions
are prevented. Note also, that if the path planning problem is relatively low-
dimensional, then there are attempts to solve the sequencing problem as a
multi-goal path planning problem; see [26, 90]. This is sometimes called the
multirobot patrolling problem; see [71] for details.

Our path planning problem can be understood as follows (see [58] for de-
tails): navigate a robot from a start to an end con�guration, in a cluttered 3D
world space . The robot is controlled by the continuous (possibly dependent)
parameters in the con�guration space C, the con�guration space is partitioned
into Cfree and Cobs, which corresponds to the con�gurations that are free of
collisions and those that collide with an obstacle, respectively. Each path in
Cfree is associated with a length that is given by constraints on the robot, such
as maximum joint and tool velocities. The path planning problem is to �nd a
shortest continuous path in Cfree from the start (qinit) to the goal con�guration
(qgoal).

Note that the con�guration space is dependent on the robot type, but also
that the same robot can have multiple con�guration spaces, for instance a quad-
copter is typically assumed to be able to follow any path in R3, hence the
con�guration space is the world space. The con�guration space could also be
de�ned by how the quad-copter is controlled, e.g., the thrust of each engine.
However, for an industrial robot this is not the case, i.e., a certain position and
rotation of the tool may correspond several as well as no robot con�gurations.
Thus, the con�guration space of an industrial robot is most commonly given by
the angles of its revolute joints and values de�ning the positions of other types
joints (such as prismatic). In the simplest and most common case the robot has
six revolute joints.

4.3.1 Algorithms for path planning

There are two types of path planning algorithms, so-called combinatorial and
so-called sampling-based. Combinatorial path planning algorithms are complete
and reports a correct solution within �nite time, but su�ers from long computing
times and are thus unable to solve �industrial-grade� path planning problems;
see [58, p. 80]. Recall that path planning is known to be PSPACE-complete
(cf. [14]). Thus, we focus on sampling-based path planning algorithms that are
generally e�cient but may fail to �nd the shortest path within �nite time.

Rapidly-exploring random tree (RRT) is one of the most popular sampling-
based method for solving the path planning problem, or rather the path planning
feasibility problem in which any collision-free path is desired. RRT is a proba-
bilistic complete4 algorithm and has an exponential decay of failure in terms of

4An algorithm is probabilistic complete if it converges within an in�nite amount of time.
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number of samples; see [59]. In short, the RRT algorithm is initialized with the
tree G = (V, E) with V = {qinit} and E = ∅; then iteratively does the following:
randomize a state qrand ∈ C, �nd the closest state qnear ∈ V to qrand; from qnear,
take a small step towards qrand to generate the new sample qnew ∈ Cfree; extend
G according to V := V ∪ {qnew}, E := E ∪ {(qnear, qnew)}. The algorithm termi-
nates when qgoal is included in G. There are many variations of the RRT that
specify the details of the above description, e.g., how to generate new samples,
how to �nd the closes state qnear, and how to take a step towards a given point.
Moreover, since both the start and the goal con�gurations are known, a common
generalization is to simultaneously grow two trees, one from each con�guration.

If the shortest path between two con�gurations is desired then the RRT
generalizations Rapidly-exploring random graph (RRG) or RRT∗ can be used;
see [45] and [46], respectively. The construction of RRG is very similar to that of
RRT; the only di�erence is that whenever a new sample qnew is introduced, edges
to all close enough vertices in V are included in E . When the generation stops,
a graph search such as A∗ is conducted to �nd the shortest path between qinit
and qqoal in G. The RRT∗ works similarly to the RRG, but also as A∗, in the
way edges are included in G to maintain a tree-structure. A version of RRT∗,
called RRT2.0, instead use an RRT in the product space of con�gurations and
time; see [50].

A drawback of the RRT-based approaches is that it is designed for a single
query. It is, however, very common to conduct multiple queries, in which case
a sampling-based roadmap can be used, which is also known as a probabilistic
roadmap (PRM); see [48]. A PRM builds an initial graph G = (V, E) (i.e.,
a roadmap) of Cfree ⊃ V and then use this roadmap to �nd the �nal path.
Here, G is constructed by generating many random (uniformly distributed)
con�gurations in Cfree and a so-called local planner to connect samples in small
neighbourhoods. There is a trade-o� between how computationally expensive
the local planner should be and how many samples can be generated and con-
nected. Most commonly the local planner consists of checking if the straight
line in con�guration space is collision-free, thus enabling the set V to be large.

In order for a path planner to be competitive, the algorithm must have some
protection against so-called corridors or narrow passages, which typically arise
when a robot needs to navigate through the door opening of a car workpiece.
One example is the iterative di�usion algorithm presented in [27] and that gen-
eralizes the RRT. It works as follows: beginning with a low (or even negative)
threshold for collision in order to construct an initial RRT, then by iteratively
increasing the threshold for collision and by excluding violated edges the RRT
splits into multiple RRT's. To reconnect the RRT's the coming iterations gener-
ate new samples near excluded edges, since these edges are likely to correspond
to narrow passages. Note that this requires a sophisticated distance query that
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is able to compute negative distances (penetrations depths); see Section 4.3.2.
Another issue is that while building the RRT as well as the roadmap, a huge

number of paths have to be checked for collision by the local planner. Bohlin
and Kavraki [13] tackle this issue by using a so-called lazy approach including
a strategy for narrow passages. In this approach, the PRM is initialized with
Cobs = ∅ and then only edges participating in the shortest path are checked for
collision. When a collision is identi�ed the corresponding edge is deleted and a
new shortest path is found. If the PRM becomes too sparse or even disconnected
then new random con�gurations are generated close to some nodes v ∈ V, with
the goal to reconnect the components of the graph.

As a �nal remark, we mention a path planning algorithm based on opti-
mal control; see, e.g., [54, 40]. The optimal control problem is there stated in
terms of control parameters, i.e., di�erences in the con�guration parameters;
the problem is thus in�nite dimensional, which is handled by a time discretiza-
tion. The constraints of the optimal control models are of three types. First,
boundary constraints ensuring that qinit and qgoal correspond to the �rst and
last con�guration, respectively. Second, physical constraints that model the
robot's movements according to the control inputs of each time step; some au-
thors include dynamic properties here. Third, collision preventive constraints,
which ensure that each state is free of collision; see Section 4.3.2. The resulting
problem is typically solved using a sequential quadratic programming SQP solver
[33], this despite the presence of the non-smooth collision constraints functions.
The objective function in SQP is a local approximation of the Lagrange func-
tion, its Hessian matrix is not well-de�ned due to the non-smooth constraint
functions. In [40] this issue addressed by using the BFGS update ([10]) formu-
las for approximating the Hessian matrix and �nite di�erences to approximate
subgradient of the constraint function.

4.3.2 Continuous collision detection

Every path planning algorithm relies on continuous collision detection (CCD) in
order to detect collisions during a robot motion. There exist three algorithms
that check if a path is contained in Cfree, namely conservative advancement
(CA), sweep volume approximation, and bounding volume hierarchy (BVH). The
most common as well as the oldest algorithm is CA (see, e.g., [21]), in which
the distance from the robot to the environment is checked in discrete sample
con�gurations and then an assumption on the robots maximum velocity is used
to determine if the samples are dense enough. Sweep volume approximation
(see, e.g., Herman [38]) uses primitive shapes (such as cylinders) to approximate
the robot; then by assuming a speci�c type of robot (e.g., only revolute joints)
the sweep volume of these shapes are computed to a desired accuracy. BVH
creates a hierarchy of outer approximations of the robot's sweep volume; in order
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to receive a better approximation, either the path is divided into subpaths or
the robot is divided into subparts; see, e.g., [74].

However, CA is still competitive and is frequently used. One reason for this is
that it only depends on an analysis of the robot's velocity, and its distance to the
environment at speci�c con�gurations. The distance computation depends on
how the geometry of the robot and the environment is represented. First, if the
geometrical representation is done by triangulated bodies then the most popular
distance computation uses a proximity query package (PQP; see [56]) where sets
of triangles are contained in a bounding volume created by a rectangle sweep
sphere (RSS); a BVH is then created by recursively splitting sets of triangles
into smaller subsets. Second, if the geometrical representation is a union of
convex polyhedra then there are e�cient routines to compute the distance (e.g.,
[32]). Moreover, it is possible to compute a signed distance (see [49]). A signed
distance equals the Euclidean distance if it is positive, and otherwise it equals
some measure of the penetration depth. This is highly useful in motion planning
algorithms, since when a collision is detected (i.e., a negative distance) then a
set of colliding con�gurations can be derived; this idea is used in the optimal
control approach described in [40].

The main issue of CA is to determine in which con�gurations the distance
should be computed. The most common idea (cf. [79]) is a binary search strategy
which measures the distance in the end points of the path, and if the path is too
long to be determined collision-free its middle point is also measured, creating
two shorter paths for which the procedure is repeated recursively. A key for
e�ciency is to use PQP by utilizing the fact that in most distance computations
a lower bound is su�cient and which is much cheaper to compute within the
PQP framework, compared to an exact distance computation.

Paper IV formalizes the idea of CA for the case when there are multiple
robots that are to be checked for collision. However, for the special case when
only one robot is present, the test resembles that of a binary search. In paper
IV each distance computation is done in the middle of a path; then the path
is split into three parts, of which one is collision-free and two (possibly empty)
which might contain collisions.

4.3.3 Lazy load balancing�which paths to plan?

In Section 2.1, we introduced the concept of lazy load balancing, that is, to
initially bound the length of each path from below. Then, iteratively, update
these lengths by planning the paths used in the solution to the task assignment
and sequencing problem (recall Section 4.2). This is done in, e.g., [84] and it can
be shown (recall Section 3.5.5) that an optimal solution to the load balancing
problem is retrieved. However, the argument requires two major properties hold,
�rst that the path planner is able to �nd the shortest path and second that the
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�nal schedule has no collisions among robots. Unfortunately, these properties do
not hold in practice: as discussed in Section 4.3.1 the path planning problem is
often solved by a sampling approach. Moreover, con�ned and shared workspaces
robot�robot collisions need to be prevented by coordination.

4.4 Coordination

So far in this section the robots are assumed not to collide. Hence, thus their
motions need to be made disjoint w.r.t. other robots' motions. This is often
referred to as coordination.

There are several approaches to coordinate the robots to prevent collision.
However, all of these approaches need to check if any two robots' motions collide
or not. This is a generalization of CCD (described in Section 4.3.2) and the usual
approach is to generalize CA (see paper IV and [40]). In paper IV, the check
is done by iteratively measure the distance at a minimum of a function that
bounds the robot�robot distance from below.

Note also that coordination does not only seek to �nd a collision-free solution
but also a robust solution, in the sense that the robots should not collide even if
one (or several) of them breaks (unexpectedly) and does not follow its planned
motions.

4.4.1 Time and signal optimization

One of the most obvious remedies to prevent robot�robot collisions is to pause
one of the robots until the shared workspace is free of other robots. This is
also re�ected in the way industrial robots are typically programmed: to utilize
wait signals that tell other robots that a speci�c region is currently occupied.
Spensieri et al. [83] propose using a MILP model to the problem of �nding
optimal wait signals, this by analysing a so-called coordination diagram (see
Figure 6). Moreover, a wait signal causes a robot to stop, which increases the
robot wear and additional cycle time from the dynamical e�ects. Hence, there
is also a need to minimize the number of signals (see [85]).

Another approach to prevent robot�robot collisions is presented in [40],
where all detected pairs of colliding motions enter as new constraints in the task
assignment and sequencing problem. Hence, it does not consider the bene�t of
using and optimizing wait signals but the solution is feasible. The approach is
useful since it highlights the important fact that coordination can be partially
prevented by modifying the order of the tasks. This fact is also used in [84].

Historically, it is more common to consider each robot's workspace and al-
ready at the task assignment phase attempt to assign tasks to each robot ac-
cording to its workspace, and introduce wait signals only when the robot is
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Figure 6: A coordination diagram for two robots (P and Q) with discrete po-
sitions that allows for wait instructions. Each axis corresponds to the time
parametrization of a robot motion, a cell is coloured green if the corresponding
subpaths are disjoint, red if a collision is found, and white if its state is not
determined. The black line corresponds to the fastest collision-free (velocity
tuned) motions.

required to leave its workspace. In this spirit Segeborn et al. [80] attempt to
partition the tasks into clusters in order to reduce the need of coordination.

4.4.2 Prioritized motion planning

Another method for coordinating robots without considering a high-dimensional
motion planning problem is to use a prioritized motion planning approach, see
[89, 18]. The idea is quite straightforward and is a suboptimization technique.
The assumption is that a priority can be given each robot, and that planning
and �xing the motions for a higher prioritized robot will not negatively impact
the motions for lower prioritized robots. Thus, for a given task sequence the
motions of the highest prioritized robot is computed. This process is repeated
for the next prioritized robot, and so on. The main di�culty with this approach
is that a motion planning algorithm is required (not a path planning algorithm),
since the planned robot motions constitute time-dependent obstacles.

If the priority assumption (almost) holds, this can result in high-quality
solutions, since both waiting and detours are allowed in order to avoid collisions.

4.4.3 Voronoi diagrams

A Voronoi diagram is a partition of a space created by so-called generators.
The Voronoi diagram is always equally distant from the two closest generators.
A Voronoi cell is the part of the space that is closest to a speci�c generator.
In its most minimalistic form the generators are assumed to be points and the
distance measure is Euclidean. In our application we will assume that robots
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or rather unions of triangles are the generators. Hence, a generalized Voronoi
diagram is used; see [25, 70] for details about Voronoi diagrams, and Figure 7
for an illustration.

Figure 7: Illustration of a GVD approximation, where the generators constitute
the union of the robot positions from the disjoint task assignment computed
using the algorithm described in Section 4.2.2.

In paper I, a coordination approach that does not rely on wait instructions
is proposed. Instead, a partition of the space is made based on a generalized
Voronoi diagram. First, a task assignment without any pairs of colliding assign-
ments is found (recall Section 4.2.2). Then, using the geometry of the robots
positioned at every assigned task as generators of the Voronoi diagram. Thus,
each robot is assigned a private workspace, and every path that is planned
within this workspace will trivially be collision-free w.r.t. any path of any other
workspace. Hence, removes the need of wait signals.

The obvious drawback with this approach is that an additional constraint
has been introduced. This can cause both unbalanced solutions (i.e, that some
robots have to be idle) and even infeasible solutions. Hence, it can be seen as
an alternative approach.

5 Summary of the appended papers

This section summarizes the appended papers and highlights their use for load
balancing of industrial robots in a production line.
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5.1 Paper I: Intersection-free Geometrical Partitioning of
Multirobot Stations for Cycle Time Optimization

We suggest an approach to coordinate the robots' motions using the unrelated
parallel machines problem (UPMP) with set packing constraints, as described
in Section 4.2.2, and generalize Voronoi diagrams, as described in Section 4.4.3.
This approach eliminates the need to coordinate the robots' motions in time
using a wait signal scheme. The motivation for this is to reduce the wear and
cycle time losses that are associated with wait signals; see Section 4.4.1. The
proposed algorithm is visualized in Figure 8 and the steps are summarized as
follows. By assuming that the motions between tasks are negligible the load
balancing problem reduces to the UPMP. Then, by introducing set packing
constraints that exclude all pairs of task assignments corresponding to colliding
robots (regardless of time), the UPMP with set packing is retrieved. The re-
sulting task assignment is then used to construct the Voronoi generators, each
as the union of a robot volume at its assigned con�gurations. Note that the set
packing constraints ensure that these generators are disjoint and thus that the
Voronoi diagram is well-de�ned. After introducing the Voronoi diagram (see
Figure 7) the software Industrial Path Solutions (IPS) is used to compute a se-
quence and the corresponding motions (possibly using other task alternatives)
for each robot. Note that load balancing of tasks is allowed here whenever mul-
tiple workstations are present. The feedback loop modi�es the UPMP in one of
two ways: First, if the Voronoi diagrams prohibit every path to a selected task,
then new set packing constraints are introduced, which correspond to task al-
ternatives that make the robot intersect with the sweep of a path from the home
con�guration to the inaccessible task. Second, if a feasible solution is found,
this particular task assignment is excluded from the feasible set of the UPMP.
Two termination criteria are suggested: First, since the UPMP provides a lower
bound on the load balancing problem, the algorithm stops whenever this lower
bound exceeds the current best solution. Second, since this lower bound is very
weak a time limit was also used.

UPMP with
set packing
constraints

Approximate
GVD partition

GTSP+motion
planning

Use the best
partition foundBreak

Add constraints

Figure 8: Illustration of the disjoint load balancing algorithm.

The results are somewhat surprising: Despite the adding additional con-
straint (spatial partition), for many industrial instances a solution is computed
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with little or no increase in the robot's cycle time compared to solutions of the
conventional approach of coordinated the robots' motions in time. Moreover,
when also the dynamic e�ects are estimated there seems to be a reduction in
cycle time for some instances. The strongest result is retrieved when the algo-
rithm is applied to a production line containing multiple work stations. Since
even when a partition of the workspace is enforced, most tasks are accessible
by multiple robots in di�erent workstations, it is likely that each partitioning
suggested by the algorithm permits a solution in which the load is fairly well-
balanced. We also believe that since the remaining optimization problem, when
the workspace has been partitioned into sub-spaces, is much smaller than the
original makespan mGTSP instance (many variables are then �xed to zero),
the task assignment and sequencing algorithm within IPS performs better. As
a result, we were able to �nd solutions with lower cycle times by utilizing these
partitions than without them. However, we also constructed counter examples
(that can occur in industrial instances), that didn't permit even a feasible so-
lution. This means that the disjoint load balancing approach is a useful option
only for some load balancing instances.

The paper is published in IEEE Transaction on Automation Science and
Engineering (see [2]) and the algorithm is incorporated in the software IPS (see
[43]).

5.2 Paper II: Exact methods for the UPMP with set pack-
ing constraints

One of the results of paper I is that the UPMP with set packing constraints
(see Figure 9) turned out to be computationally very hard for some of our in-
dustrial instances. Paper II aims to resolve this complication by suggesting a
customized B&C method. The method is implemented in a commercial solver
(Gurobi) as well as in a tailored B&C code based on open source software. Two
contributions of the paper concern the formulation of the MILP model. First,
we show that clique facets of a speci�c set packing polytope induce facets for
the UPMP with set packing constraints. Second, when introducing certain aux-
iliary variables in the model, the B&C methods more e�ciently increased the
weak lower bound caused by the makespan objective. These auxiliary variables
represent the number of tasks assigned to each robot, and which should be in-
teger. The main impact occurs when the auxiliary variables are constrained by
a branching, the makespan objective is generally increased, and some observed
integrality properties are preserved. In addition, some techniques such as ad-
ditive lower bounds and strong minimal covers were used to improve our B&C
implementation.

As a result, we found that the two solvers (Gurobi and our open source
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Figure 9: Illustration of an instance of UPMP with set packing constraints and
a feasible solution.

implementation) used roughly the same amount of computing time in order
to �nd an optimal solution to the industrial instances. Moreover, we found
that the use of the suggested reformulation�in particular using the auxiliary
variables�caused a reduction in computation time by a factor of ten.

The main ideas of the paper were presented at the 23rd International Sym-
posium on Mathematical Programming (ISMP) in Bourdeau, 2018.

5.3 Paper III: Exact methods for the UPMP

In parallel with the development of Paper II, we investigated the use of the
auxiliary variables in a plain UPMP�i.e., without the set packing constraints.
Since these two papers are yet to be published they have a rather large overlap
in order for both of them to be self-contained.

In this paper we applied Lagrangian relaxation to solve the UPMP and
combined it with a B&B algorithm, a local search heuristic, and a de�ected
subgradient optimization routine. The de�ected subgradient routine reduces
the well-known zigzagging phenomenon of a vanilla subgradient optimization
routine, by determining the next step direction as a combination of the current
subgradient and the previous step direction. A key ingredient in the B&B
algorithm is that our Lagrangian subproblem allowed a direct computation of
so-called residual costs, which we then used to phantom branch�and�bound
nodes.

We tested these two approaches�the inclusion of the auxiliary variables and
the B&B algorithm�applied to several well-known UPMP instance types. We
found that the inclusion of our auxiliary variables in the UPMP model almost
always enables larger problem instances to be solved within the time limit; we
also found that they are most bene�cial in a model of a state-of-the-art cutting
plane method for the UPMP. Moreover, our B&B algorithm outperformed all
other approaches tested, including the tailored cutting plane method as well as
a general MILP solver applied to the UPMP formulation including our auxiliary
variables.

This paper is neither yet presented nor published.



34 5 Summary of the appended papers

5.4 Paper IV: E�cient collision analysis of pairs of robot
paths

The main objective of paper IV is to e�ciently construct a coordination diagram
(recall Figure 6). In this work, pairs of robot paths are to be checked whether
they are disjoint, i.e., whether the robots' sweep volumes do not intersect. By
generalizing the ideas of CA (recall Section 4.3.2) where a maximum velocity, or
rather a so-called unit-velocity parametrization of each robot path, is assumed,
the robots paths can be expressed in terms of maximum displacement. Hence,
each distance measurement will yield a lower bound on the clearance (i.e., the
robot�robot distance); the lower bounding function is illustrated in Figure 10.

Figure 10: The domain representing the two robots' motions is decomposed into
regions such that the piecewise linear lower bounding function is convex in each
region. The black lines denote the region boundaries and the rhombus shaped
markers represent collision-free points at which the distance between the two
robots is computed.

The idea of the paper is that if the clearance is always computed at the
current minimum of the lower bounding function, then a collision is likely to
be found early in the process, if it exists; otherwise, new distance information
is ensured since the current minimum is also far from previous samples. One
enabler for this idea is that this lower bound can e�ectively (in polylogartihmic
time) be minimized, by dividing the domain into subdomains in which the lower
bounding function is convex; see Figure 10. The minimum in each such domain
can be computed analytically (in constant time). Note that this minimization
algorithm can be useful for other applications, since only a bivariate function
admitting a unit L1 Lipschitz constant is assumed.
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A generalization is also considered in which the domain corresponds to paths
for entire robot sequences, for which each pair of subpaths needs to be deter-
mined disjoint. The idea is then not to lose information on the boundary of
the domain. This generalization is shown to be highly e�ective, especially when
each sequence consists of many short subpaths.

Our methods are compared with an existing method that �rst builds approx-
imations of the sweep volumes and then check their intersections. An interesting
di�erence between these two approaches is that our methods scale linearly with
the number of pairs of paths whereas the sweep volume method scales linearly
with the number of paths. Hence, for a large enough number of paths, the old
method should still be more e�cient. We found that for our industrial instances,
the number of paths does typically need to be very large.

The paper is currently under review and the main ideas have been presented
at the 19th Wingquist Laboratory Annual Seminar, Gothenburg, November
2019. The algorithm is also incorporated in the software IPS (see [43]).

6 Conclusion and further work

To summarize we note that there are many variations of both the problem of
balancing the work-load of industrial robots and its solution. Moreover, it seems
that the path planning problem is at the core of the load balancing problem
and di�erent assumptions on di�culty of the path planning problem lead to
completely di�erent solution approaches. Another important aspect is how
to prevent robot�robot collisions, for which there are currently two remedies:
adjusting the velocity of the robots' motions or enforcing the robots to be in
disjoint workspaces.

Moreover, for the most general industrial versions of the problem, there
seems to be a great need for future research. Regarding how to solve the task
assignment and sequencing problem�which today can be solved to some ex-
tent by commercial software�there is no method published in (open) academic
literature.

Since robustness is essential in many industries, there is also a need to supply
and optimize wait signals that prevent robot�robot collisions. This was partially
resolved by the disjoint load balancing (Paper I) approach that systematically
separates the robots workspaces. This should be generalized in future work, by
allowing wait signals whenever the cycle time will bene�t from it.

This generalization could comprise a more detailed model, which also de-
scribe the task sequences, and would thus likely require new solution methods
that adopts the idea of lazy collision checking. Another possibility is to consider
the minimization of wait signals in a post-processing step, i.e., an improvement
heuristic, which considers the possibility of modifying pairs of intersecting robot
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paths to be disjoint. Another possible generalization of the disjoint load bal-
ancing approach is to include precedence constraints between the tasks.

Many ideas such as CCD is directly applicable to other problems, not con-
sidered in this thesis. Moreover, the load balancing problem can be solved for
other types of production cells and lines. In many cases some specialization is,
however, needed. For instance, there may be precedence constraints between
the tasks. But the main ideas�of how robot�robot collisions can be prevented
by a coordination in either time or space�still apply.

My main contributions to the solution of the problem of load balancing
between industrial robots are the following:

� The idea of generating a complex partition of the workspace in order to
(partially) prevent the need for coordination.

� The addition of variables that aid B&C solvers to address the makespan
objective, which should apply to other problems related to UPMP.

� A new sampling technique for CCD in two dimensions.
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