33 research outputs found

    On strongly closed subgraphs of highly regular graphs

    Get PDF
    AbstractA geodetically closed induced subgraph Δ of a graph Γ is defined to be strongly closed if Γi(α) ∩ Γ1(β) stays in Δ for every i and α, β ϵ Δ with ∂(α, β) = i. We study the existence conditions of strongly closed subgraphs in highly regular graphs such as distance-regular graphs or distance-biregular graphs

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Distance-Biregular Graphs and Orthogonal Polynomials

    Get PDF
    This thesis is about distance-biregular graphs– when they exist, what algebraic and structural properties they have, and how they arise in extremal problems. We develop a set of necessary conditions for a distance-biregular graph to exist. Using these conditions and a computer, we develop tables of possible parameter sets for distancebiregular graphs. We extend results of Fiol, Garriga, and Yebra characterizing distance-regular graphs to characterizations of distance-biregular graphs, and highlight some new results using these characterizations. We also extend the spectral Moore bounds of Cioaba et al. to semiregular bipartite graphs, and show that distance-biregular graphs arise as extremal examples of graphs meeting the spectral Moore bound

    Strongly Regular Designs and Coherent Configurations of Type [323]

    Get PDF

    Diameter, Covering Index, Covering Radius and Eigenvalues

    Get PDF
    AbstractFan Chung has recently derived an upper bound on the diameter of a regular graph as a function of the second largest eigenvalue in absolute value. We generalize this bound to the case of bipartite biregular graphs, and regular directed graphs.We also observe the connection with the primitivity exponent of the adjacency matrix. This applies directly to the covering number of Finite Non Abelian Simple Groups (FINASIG). We generalize this latter problem to primitive association schemes, such as the conjugacy scheme of Paige's simple loop.By noticing that the covering radius of a linear code is the diameter of a Cayley graph on the cosets, we derive an upper bound on the covering radius of a code as a function of the scattering of the weights of the dual code. When the code has even weights, we obtain a bound on the covering radius as a function of the dual distance dl which is tighter, for d⊥ large enough, than the recent bounds of Tietäväinen

    Master index of volumes 61–70

    Get PDF

    On Graph-Based Cryptography and Symbolic Computations

    Get PDF
    We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large girth and their cryptographical applications. It contains new explicit algebraic constructions of in finite families of such graphs. We show that they can be used for the implementation of secure and very fast symmetric encryption algorithms. The symbolic computations technique allow us to create a public key mode for the encryption scheme based on algebraic graphs

    Divergence in right-angled Coxeter groups

    Full text link
    Let W be a 2-dimensional right-angled Coxeter group. We characterise such W with linear and quadratic divergence, and construct right-angled Coxeter groups with divergence polynomial of arbitrary degree. Our proofs use the structure of walls in the Davis complex.Comment: This version incorporates the referee's comments. It contains the complete appendix (which will be abbreviated in the journal version). To appear in Transactions of the AM

    Divergence in right-angled Coxeter groups

    Get PDF
    Let W be a 2-dimensional right-angled Coxeter group. We characterise such W with linear and quadratic divergence, and construct right-angled Coxeter groups with divergence polynomial of arbitrary degree. Our proofs use the structure of walls in the Davis complex
    corecore