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Abstract

This thesis is about distance-biregular graphs– when they exist, what algebraic and
structural properties they have, and how they arise in extremal problems.

We develop a set of necessary conditions for a distance-biregular graph to exist. Using
these conditions and a computer, we develop tables of possible parameter sets for distance-
biregular graphs. We extend results of Fiol, Garriga, and Yebra characterizing distance-
regular graphs to characterizations of distance-biregular graphs, and highlight some new
results using these characterizations. We also extend the spectral Moore bounds of Cioabă
et al. to semiregular bipartite graphs, and show that distance-biregular graphs arise as
extremal examples of graphs meeting the spectral Moore bound.
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1. INTRODUCTION

Figure 1.1: Example of a generalized polygon

Distance-biregular graphs are the subject of this thesis, and orthogonal polynomials are
the primary tool we use to study them. Distance-biregular graphs are a class of bipartite
graphs that contain interesting examples, have a nice algebraic and combinatorial structure,
and arise as extremal examples of graphs meeting certain bounds. This thesis is structured
around those three different facets of distance-biregular graphs.

Chapter 2 is about orthogonal polynomials and the other tools we will use in the the-
sis. Chapter 3 explores some constructions and necessary conditions for distance-biregular
graphs to exist, Chapter 4 uses some of the algebraic properties to give alternate charac-
terizations of distance-biregular graphs, and Chapter 5 motivates distance-biregular graphs
from an extremal perspective. Distance-biregular graphs are an interesting and under-
studied class of graphs, so Chapter 6 details more of the algebraic structure and lists a
number of problems for future research.

1.1 Precursors to Distance-Biregular Graphs

Distance-biregular graphs are bipartite graphs, and as such can be used to represent the
relationship of incidence structures. Many examples of incidence structures coming from
algebra, design theory, and finite geometry have a high degree of regularity, which is reflected
in the incidence graphs being distance-biregular. Thus a first notion of distance-biregular
graphs is that they are a class of bipartite graphs that contain:

• Generalized polygons. Generalized polygons are bipartite graphs with diameter d and
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1.1. PRECURSORS TO DISTANCE-BIREGULAR GRAPHS

girth 2d. They were introduced by Tits [152] in the study of groups of Lie type, and
many of the constructions come from algebra. Generalized polygons recur throughout
this thesis, and additional information can be found in the surveys by Payne [126],
Payne and Thas [129], Thas [149], and Van Maldeghem [153]. An explicit example is
shown in Figure 1.1.

• Certain 2-designs. A 2-design is an incidence structure where every point is incident
to ` blocks, every block contains k points, and every pair of points appear in exactly λ
common blocks. The systematic study of designs began with the work of Fisher [75] on
biological statistics, though examples of 2-designs such as Steiner triple systems [107,
139] or Latin Squares [64] appear much earlier. In this thesis, 2-designs are discussed
further in Section 3.1. More information can also be found in references such as
the Handbook of Combinatorial Designs [39] or the books of Beth, Jungnickel, and
Lenz [19] or Hughes and Piper [102].

• Partial geometries. A partial geometry is a point- and block-regular incidence struc-
ture where, for every point u and block x, there are exactly α incident pairs(v, y) such
that u is incident to y and v is incident to x. Partial geometries were introduced by
Bose [25] in connection to designs and strongly regular graphs, and include Steiner
triple systems and generalized polygons of diameter four, as well as infinite proper
families. Partial geometries are a particularly important example in Section 5.7. More
information can be found in the surveys of Brouwer and Van Lint [30], De Clerck and
Van Maldeghem [54], or Thas [150].

Distance-biregular graphs can also be seen as an extension of the class of distance-regular
graphs.

Biggs and Smith [23] introduced the notion of distance-transitive graphs. A graph G is
distance-transitive if, for any pair of vertices at some distance i from each other, there is
an automorphism mapping that pair to another pair at distance i. This symmetry forces a
large amount of structure onto the graph. Distance-transitive graphs are distance-regular ,
meaning that for all vertices u, v and all non-negative integers i, j the number of vertices at
distance i from u and distance j from v depends only on the distance between u and v, and
not on the specific choice of u and v. Adel’son-Velskii, Maksimovich, Weisfeiler, Leman, and
Faradzhev [4] constructed a distance-regular graph which is not distance-transitive, proving
distance-regularity is distinct from distance-transitivity.

The adjacency matrix A of a graph is the matrix indexed by vertices where the corre-
sponding entry is one if two vertices are adjacent and zero otherwise. This can be extended
to i-th distance adjacency matrices Ai where the entry indexed by a pair of vertices is one
if the vertices at distance i and zero otherwise. The adjacency algebra of a distance-regular
graph is closely related to association schemes, which arose in a different context around the
same time as distance-regular graphs. Working in design theory, Bose and Shimamoto [27]
introduced sets of matrices to represent relations and a list of axioms that such sets must
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1. INTRODUCTION

satisfy to form an association scheme. In particular, the set of distance adjacency matrices
of a distance-regular graph form an association scheme. The algebra of association schemes
was subsequently developed by Bose and Mesner [26]. Ideas similar to association schemes
and the adjacency matrices of a distance-regular graph can also be found in the paper of
Higman [94] on finite permutation groups. The paper of Higman [94] contains ideas related
not just to the subsequent theory of distance-regular graphs, but also connections to the
work of Feit and Higman [66] on generalized polygons.

More information about distance-regular graphs can be found in the book of Brouwer,
Cohen, and Neumaier [28] or the more recent survey of Van Dam, Koolen, and Tanaka [47].

Distance-biregular graphs also arise as extremal examples of graphs meeting certain
spectral or structural bounds.

Let G be a connected bipartite graph with cells of the partition β and γ. Suppose every
vertex in β has valency k and every vertex in γ has valency `. If we fix a vertex u ∈ γ, then
u has ` neighbours. Each neighbour has at most k − 1 neighbours that are at distance two
from u, each of those neighbours has at most `−1 neighbours at distance three from u, and
so on. The number of vertices of β is the number of vertices that are at an odd distance
from u, so if G has diameter d, we can sum over all the possible distances from u to see that

|β| ≤ `
b d−1

2
c∑

i=0

(k − 1)i(`− 1)i . (1.1.1)

If equality holds, then we know that for any vertex v ∈ β, there is exactly one vertex that is
adjacent to v and at distance d(u, v)− 1 from u. It follows that there are k − 1 neighbours
of v at distance d(u, v) + 1 from u. If instead v ∈ γ, there is still only one neighbour of v
at distance d(u, v) − 1 from u, and there are ` − 1 neighbours of v at distance d(u, v) + 1
from u. If we instead choose u ∈ γ, we can rewrite Equation 1.1.1 to bound |γ| , and we get
similar characterizations when that bound is tight.

A connected bipartite graph is distance-biregular if for any vertices u, v and i, j ≥ 0,
the number of vertices at distance i from v and at distance j from u depends only on the
distance between u and v and the cell of the partition that u lies in. The extremal examples
where Equation 1.1.1 is tight for both cells of the partition are distance-biregular. We will
consider a different perspective on this example in Section 2.2, and consider more variations
of this bound in Section 5.1.

1.2 History of Distance-Biregular Graphs

Distance-biregular graphs were introduced by Delorme [56], and were the subject of Shawe-
Taylor’s thesis [134], papers [132, 133], and joint work with Godsil [85] and Mohar [118].
Distance-biregular graphs have also been the subject of work by other authors.

Distance-biregular graphs arise in a natural way from extending the theory of distance-
regular graphs. Recall that a graph is distance-regular if, for any vertices u, v the number
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1.2. HISTORY OF DISTANCE-BIREGULAR GRAPHS

of vertices at distance i from u and distance j from v depends only on the distance between
u and v and not the choice of u and v. A bipartite graph is distance-biregular if this number
also depends on the choice of cell that u lies in. A further weakening would be that the
number of vertices at distance i from u and distance j from v only depends on the choice of
u and the distance v is from u. However, Godsil and Shawe-Taylor [85] proved that all such
graphs are distance-regular or distance-biregular. Fiol [71] gave a new proof of a stronger
result.

The definitions of bipartite distance-regular graphs, generalized polygons, 2-designs, and
partial geometries predate the introduction of distance-biregular graphs. However, there
have also been numerous constructions specific to the context of distance-biregular graphs.
Mohar and Shawe-Taylor [118] characterized which subdivision graphs can occur as distance-
biregular graphs. Delorme [55, 56] and Shawe-Taylor [134] gave several constructions of
distance-biregular graphs coming from distance-regular graphs and finite geometry. Shawe-
Taylor [133] used covers of complete bipartite graphs to construct examples of distance-
biregular graphs. Some of these examples also came up in other contexts, such as graphs
satisfying a dual version of Pasch’s axiom [43] or uniformly geodetic graphs [108].

The high degree of regularity of distance-biregular graphs imposes a large number
of numerical constraints on the possible constructions of distance-biregular graphs. De-
lorme [55, 56] listed some conditions. Godsil and Shawe-Taylor [85] gave a list of conditions
for a distance-biregular graph to be feasible, meaning the parameters satisfy some set of
necessary, but not sufficient, numerical conditions. Shawe-Taylor [134] expanded on this
notion of feasibility. Other necessary conditions for distance-biregular graphs with girth di-
visible by four were given by Nomura [124] and Suzuki [143], and Bang [13] gave conditions
on distance-biregular graphs with girth at least eight.

One of the major motivations of distance-biregular graphs is that they can be used to
naturally extend the class of distance-regular graphs. Distance-biregular graphs can also be
motivated directly in the same way that distance-regular graphs were.

Shawe-Taylor [132, 134] considered distance-bitransitive graphs. This bipartite exten-
sion of distance-transitivity was extended further by Devilllers, Giudici, Li, and Praeger [61].
As in the general case, distance-bitransitive graphs are a subclass of distance-biregular
graphs.

The adjacency algebra has also been extended from distance-regular graphs to distance-
biregular graphs. Delorme [55, 56] first set up some algebraic formulations of distance-
biregular graphs. More recently, Fernández and Miklavic̆ [68] considered the Terwilliger al-
gebra of distance-biregular graphs, and Fernández and Penjić [69] considered 2-homogeneous
distance-biregular graphs. Other matrix formulations use the Laplacian matrix [2, 103] and
the matrix of distances [101].

There is another close connection between distance-regular and distance-biregular graphs.
Let G be a graph, and let G′ be the graph where two vertices are adjacent in G′ if and
only if they are at distance two in G. If G is distance-biregular, then the connected com-
ponents of G′ are distance-regular. Shawe-Taylor [134] and Yamazaki [155] investigated
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1. INTRODUCTION

which distance-regular graphs could arise from distance-biregular graphs in this way. More
generally, distance-regular and distance-biregular graphs have highly regular subgraphs,
which motivated work of Suzuki [144] and Hiraki [95, 96] on strongly closed subgraphs of
distance-regular and distance-biregular graphs.

Distance-regular graphs have been considered as extremal examples for certain bounds.
Fiol [72] proved a spectral excess theorem for distance-biregular graphs, which can be inter-
preted as a spectral bound for which distance-biregular graphs are the extremal examples.
However, most of the results on distance-regular graphs have been motivated more from the
subgraph structure or related algebras, and so the perspective of distance-biregular graphs
as extremal examples has generally been lacking.

1.3 Main Results

In this thesis, we will primarily use orthogonal polynomials to extend results on distance-
regular graphs to distance-biregular graphs. The major ideas and notation that we use
throughout the thesis are described in Chapter 2.

In Chapter 3, we describe famous families of distance-biregular graphs. We also give
a list of necessary conditions that distance-biregular graphs must satisfy. These numerical
conditions make it possible for a computer to generate a list of possible parameters for a
distance-biregular graphs. We include annotated tables in Appendix A and Appendix B.
Appendix A mainly focuses on the smaller examples, including bipartite distance-regular
graphs and partial geometries, that have been studied under other contexts. Appendix B
is focused on the graphs that have less literature about them.

Much of the nice structure of distance-regular graphs applies equally well to distance-
biregular graphs. In Chapter 4, we illustrate this by extending two characterizations of
distance-graphs to distance-biregular analogues. We improve and extend a result of Fiol,
Garriga, and Yebra [74] to get the following characterization of distance-biregular graphs.

4.4.3 Theorem. Let G be a connected bipartite graph with diameter d, adjacency matrix
A, d-th distance adjacency matrix Ad, and cells of the partition β, γ. Then G is distance-
biregular if and only if G has d+ 1 distinct eigenvalues and there exist polynomials fβ and
fγ of degree d such that for π ∈ {β, γ}

fπ(A) Eπ = AdEπ,

where Eπ is the matrix whose columns are characteristic vectors for vertices in π.

Building on the work of Fiol, Garriga, and Yebra [74], Fiol and Garriga [73] proved a
spectral excess theorem for distance-regular graphs. We similarly build on Theorem 4.4.3
to get a distance-biregular spectral excess theorem.

6



1.3. MAIN RESULTS

4.6.4 Theorem. Let G be a semiregular bipartite connected graph with diameter d and
largest eigenvalue ρ. Then G is distance-biregular if and only if it has d+ 1 distinct eigen-
values and there exist polynomials fβ, fγ of degree d such that for π ∈ {β, γ} and all vertices
u ∈ π, we have

1

|π|
∑
w∈π

eTwf
π(A)2 ew = fπ(ρ) = |{v ∈ V (G) : d(u, v) = d}| ,

where ew is the characteristic vector of w.

Using these characterizations, we extend a result of Abiad, Van Dam, and Fiol [3] for
bipartite distance-regular graphs of large girth to distance-biregular graphs.

4.7.4 Theorem. Let G be a connected semiregular bipartite graph with diameter d and
d+ 1 distinct eigenvalues. If the girth g ≥ 2d− 2, then G is distance-biregular.

We further consider the adjacency algebra of distance-biregular graphs in Chapter 6.
In Chapter 5, we explore distance-biregular graphs as extremal examples. We mainly

focus on semiregular bipartite extensions of the bounds of Nozaki [125], Cioabă, Koolen,
Nozaki, and Vermette [37] and Cioabă, Koolen, and Nozaki [36]. In particular, amalgamat-
ing several results in Section 5.6, we get the following result.

1.3.1 Theorem. Let G be a bipartite semiregular graph where every vertex in cell β has
valency k, and every vertex in γ has valency `. Let t, c > 0 be constants determined by the
choice of k, `, and λ. Then

|β| ≤
t−2∑
i=0

(`− 1)i(k − 1)i +
`(`− 1)t−1(k − 1)t−1

c

or

|β| ≤ 1 + k
t−2∑
i=1

(`− 1)i(k − 1)i−1 +
k(`− 1)t−1(k − 1)t−2

c
.

If either bound is tight, then G is distance-biregular.
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2. BACKGROUND

In this thesis, we are primarily interested in using sequences of orthogonal polynomials to
study distance-biregular graphs, especially with respect to extremal problems. Orthogonal
polynomials have led to some powerful results for distance-regular graphs, which we extend
to distance-biregular graphs. In this chapter, we present the ideas and notation that we
will use throughout the thesis. Our approach to orthogonal polynomials is non-standard,
but equivalent to the basic results that can be found in references such as Nikiforov, Suslov,
and Uvarov [121] or Szegö [145]. We also set up the spectral decomposition for graphs and
bipartite graphs which will be fundamental to later results.

2.1 Moore Graphs

Let G be a connected graph, and let Ai be the matrix indexed by the vertices of G where the
(u, v)-entry is one if u and v are at distance i and zero otherwise. We call Ai the i-th distance
adjacency matrix . The adjacency matrix A1 is denoted by A. The distance graph Gi of G
is the graph with adjacency matrix Ai. If i is greater than the diameter of the graph, Ai is
the all-zero matrix. We are particularly interested in graphs where the distance adjacency
matrices can be written as polynomials evaluated at the adjacency matrix, because they
have strong algebraic and combinatorial properties.

Let P be the vector space of real polynomials. Given a sequence of polynomials p0, p1, . . .
we say the polynomials satisfy a three-term recurrence if for all positive integers i, the
polynomial pi(x) has degree i and there exist coefficients bi−1, ai, and ci+1 with bici+1 > 0
satisfying

xpi(x) = bi−1pi−1(x) + aipi(x) + ci+1pi+1(x) . (2.1.1)

Similarly, for some positive integer n, we can define a finite sequence of polynomials p0, . . . , pn
satisfying a three-term recurrence so long as b0, . . . , bn−2, a0, . . . , an−1, and c1, . . . , cn satisfy
bici+1 > 0 and Equation 2.1.1.

By convention, we define p−1(x) = 0. Then we can let b−1 = 1 and extend the three-
term recurrence relation to hold for all non-negative integers i. Also by convention, we will
assume that p0(x) = 1.

2.1.1 Example. Let k ≥ 2. We define a sequence of polynomials F ki (x)i≥0 satisfying the
three-term recurrence with ai = 0 for all i ≥ 0, b0 = k, bi = k − 1 for all i ≥ 1, and ci = 1
for all i ≥ 1. Then we have F k0 (x) = 1, F k1 (x) = x,

F k2 (x) = xF k1 (x)− kF k0 (x) ,

and, for i ≥ 1, we have

F ki+1(x) = xF ki (x)−(k − 1)F ki−1(x) .

Working out a few small examples, we see that

F k2 (x) = x2 − k,

10



2.1. MOORE GRAPHS

F k3 (x) = x3 −(2k − 1)x,

and

F k4 (x) = x4 −(3k − 2)x2 + k(k − 1) .

This example will be useful for its relation to the the k-regular tree. The k-regular
tree is an infinite tree where every vertex has valency k. We extend the notion of distance
adjacency matrix to distance adjacency operators.

2.1.2 Proposition. Let (Ai)i≥0 be the distance adjacency operators of the k-regular tree

for k ≥ 2, and let
(
F ki
)
i≥0

be defined as in Example 2.1.1. Then for i ≥ 0, we have

F ki (A1) = Ai.

Proof. This is clearly true if i = 0, 1. Suppose by induction that F ki (A) = Ai for some i ≥ 1.
We have

F ki+1(A) = AF ki (A)− bi−1F
k
i−1(A) = AAi − bi−1Ai−1.

Let u and v be vertices with characteristic vectors eu, ev, respectively. Then

eTuAAiev =
∑

w∈V(G)

eTuAeweTwAiev = |{w ∼ u : d(w, v) = i}| ,

is clearly zero unless d(u, v) = i− 1 or i+ 1. If d(u, v) = i+ 1 then this quantity is equal to
one, if d(u, v) = i− 1 ≥ 1, it equals k − 1, and if d(u, v) = 0 = i− 1, it is k. Thus

Ai+1 = AAi − bi−1Ai−1 = Fi+1(A) .

We will refer to F ki (x) as the sequence of polynomials associated to the k-regular tree.

A connected graph G of diameter d with distance adjacency matrices A0, . . . , Ad is
distance-regular if there exists a sequence of polynomials FG0 (x) , FG1 (x) , . . . , FGd+1(x) such

that, for 0 ≤ i ≤ d+ 1, the polynomial FGi (x) has degree i and FGi (A) = Ai.

2.1.3 Remark. Distance-regular graphs are often defined, as they were in Chapter 1, as
connected graphs where, for any pair of vertices u and v, the number of vertices at distance
i from u and distance j from v depends only on the distance between u and v, and not on
the specific choice of vertices u and v.

Another common definition is that a connected graph of diameter d is distance-regular
if, for any 0 ≤ i ≤ d and any pair of vertices u and v at distance i, the number of vertices
adjacent to v and distance i− 1, i and i+ 1 does not depend on the choice of vertices u and
v.

These three definitions of distance-regular are equivalent and can be found, for instance,
in Section 4. 1 of Brouwer, Cohen, and Neumaier [28].

11
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We call the sequence FG0 , F
G
1 , . . . , F

G
d+1 the distance polynomials for G. The k-regular

tree is an infinite distance-regular graph. Terwilliger [146] proved that k-regular trees are
the only infinite distance-regular graphs, though the associated polynomials are still useful
for finite graphs.

The sequence of polynomials associated to a k-regular tree was introduced by Single-
ton [138], though he did not refer to them that way. Rather, he used them to count
non-backtracking walks. A walk on the vertices of the graph is non-backtracking if the
sequence uvu does not appear for any vertices u, v.

2.1.4 Lemma (Singleton [138]). Let G be a k-regular graph with adjacency matrix A.
Then eTv F

k
i (A) eu counts the of non-backtracking walks of length i from u to v.

We will apply this result and use the sequence of polynomials associated to the k-regular
tree to describe a family of finite distance-regular graphs.

2.1.5 Proposition. If G is a regular graph with diameter d and girth 2d + 1, then G is
distance-regular.

Proof. Let k be the valency of G, and let A0, A1, . . . , Ad be the distance adjacency matrices.
For 0 ≤ i ≤ d and vertices u, v, we have that eTuF

k
i (A) ev is zero unless d(u, v) ≤ i.

Suppose otherwise, then if d(u, v) = j < i, then there exists a path from v to u of length j
and a non-backtracking walk from length u to v of length i. Concatenating them gives us a
nontrivial closed walk of length i+ j < 2d+ 1, which is a contradiction because cycles must
have length at least 2d+ 1. Similarly, if d(u, v) = i and eTuFi(A) ev ≥ 2, we can concatenate
two non-backtracking walks from u to v to get a non-trivial closed walk of length 2i < 2d+1,
leading to another contradiction.

For 0 ≤ i ≤ d, let FGi (x) = F ki (x) and let

FGd+1(x) =(x− k + 1)FGd (x)−(k − 1)FGd−1(x) .

Then
FGd+1(A) = AAd −(k − 1)Ad −(k − 1)Ad−1.

If u, v are vertices at distance d− 1 from each other, then we have

k = |{w : w ∼ u}|
= eTv AAd−2eu + eTv AAd−1eu + eTv AAdeu

= 1 + eTv AAdeu.

Similarly, if u, v are vertices at distance d from each other, then we have

k = 1 + eTv AAdeu.

Thus
FGd+1(A) = AAd −(k − 1)Ad −(k − 1)Ad−1 = 0 = Ad+1,

and so G is distance-regular.

12
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A graph with diameter d and girth 2d+1 is called a Moore graph. A counting argument,
such as the one that can be found in Section 5.8 of the book by Godsil and Royle [84] shows
that all Moore graphs are regular, and therefore distance-regular.

2.1.6 Remark. Let G be a k-regular graph with diameter d. Then a simple counting argu-
ment gives us the Moore bound

|V (G)| ≤ 1 +
d−1∑
i=0

k(k − 1)i .

By fixing an arbitrary vertex u in a Moore graph and counting the number of vertices at
distance i from u, we see that Moore graphs meet this bound. Further, any graph that meets
this bound must have girth at least 2d + 1, and so Moore graphs are precisely the graphs
meeting the Moore bound. The Moore bound, and a spectral variant, will be considered
more thoroughly in Chapter 5.

2.2 Generalized Polygons

Let G =(β ∪ γ,E) denote a bipartite graph with cells of the partition β and γ. It is (k, `)-
semiregular if all vertices in β have valency k, and all vertices in γ have valency `. Let
π ∈ {β, γ} . The characteristic matrix Eπ of π is the |V (G)| × |π| matrix whose columns
are the characteristic vectors of the vertices in π.

Analogously to the regular tree, we define the (k, `)-semiregular tree to be the infinite
tree where every vertex has valency k or `, a vertex with valency k is only adjacent to
vertices of valency `, and a vertex of valency ` is only adjacent to vertices of valency k. As
we did with the regular tree, we can define an associated sequence of polynomials satisfying
a three-term recurrence.

2.2.1 Example. Let k, ` ≥ 2. For all i ≥ 0, let ai = 0. Let b0 = k, and for i ≥ 0 let b2i+1 = `−1

and b2i+2 = ` − 1. Let ci = 1 for all i ≥ 0. We define
(
F k,`i (x)

)
i≥0

to be the sequence of

polynomials satisfying the three-term recurrence with these coefficients. In other words,
this is the sequence of polynomials defined by F k,`0 (x) = 1, F k,`1 (x) = x, F k,`2 (x) = x2 − k
and, for i ≥ 0,

F k,`2i+1(x) = xF k,`2i (x)−(`− 1)F k,`2i−1(x)

F k,`2i+2(x) = xF k,`2i+1(x)−(k − 1)F k,`2i (x) .

We can compute that

F k3 (x) = x3 −(k + `− 1)x,

and

F k4 (x) = x4 −(2k + `− 2)x2 + k(k − 1) .

13
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Using these polynomials, we can extend some of our results from the previous section
to bipartite semiregular graphs.

2.2.2 Lemma. Let G = (β ∪ γ,E) be the (k, `)-semiregular tree with distance adjacency
operators (Ai)i≥0 . Let

(
F ki
)
i≥0

be defined as in Example 2.1.1. For all i ≥ 0, we have

F k,`i (A) Eβ = AiEβ.

Proof. Suppose by induction F k,`i (A) Eβ = AiEβ for some i ≥ 1. We have

AAiEβ = AF k,`i (A) Eβ = bi−1F
k,`
i−1(A) Eβ + F k,`i+1(A) Eβ.

If u ∈ β and v is a vertex, then

eTv AAieu =
∑

w∈V(G)

eTv AeweTwAiev = |{w ∼ v : d(u,w) = i}| ,

from which we see that

AAiEβ = bi−1Ai−1Eβ +Ai+1Eβ,

so

F k,`i+1(A) Eβ = Ai+1Eβ.

A similar inductive argument gives us

F `,ki (A) Eγ = AiEγ .

A connected bipartite graph G =(β ∪ γ,E) of diameter d with distance adjacency matri-

ces A0, . . . , Ad is distance-biregular if there exists two sequences of polynomials F β0 , . . . , F
β
d+1

and F γ0 , . . . , F
γ
d+1 such that for 0 ≤ i ≤ d + 1, and π ∈ {β, γ} the polynomial F πi (x) has

degree i and satisfies

F πi (A) Eπ = AiEπ.

The sequences F β0 , . . . , F
β
d+1 and F γ0 , . . . , F

γ
d+1 are the distance polynomials for β and γ.

2.2.3 Remark. As with distance-regular graphs, distance-biregular graphs can be defined in
several different ways. Some of these equivalences can be found in [110].

The definition of distance-regular graphs used by Delorme [55] and Godsil and Shawe-
Taylor [85] is that a connected bipartite graph of diameter d is distance-regular if, for any
0 ≤ i ≤ d and any pair of vertices u and v at distance i, the number of vertices adjacent
to v and distance i − 1 and i + 1 depends only on the cell of the partition that u lies in.
In Section 2.4, we will justify why that is equivalent to the definition in terms of distance
polynomials given here.

14



2.2. GENERALIZED POLYGONS

Analogously to distance-regular graphs, we could also consider the connected bipartite
graphs where, for any pair of vertices u and v and any i, j ≥ 0, the number of vertices
at distance i from u and v depends only on the distance between u and v and the cell of
the partition that u lies in. We will expand on why this is equivalent to our definition of
distance-biregular graphs in Section 6.2.

Building on the work of Terwilliger [146], Delorme [55, 56] and Shawe-Taylor [134]
proved that semiregular trees are the only infinite distance-biregular graphs. As with the
distance-regular case, the polynomials associated to a semiregular tree are related to finite
graphs with large girth, since when evaluated at the adjacency matrix of a finite semiregular
bipartite graph G, the entries count the number of non-backtracking walks in G.

2.2.4 Lemma. Let G = (β ∪ γ,E) be a (k, `)-semiregular bipartite graph with adjacency

matrix A. Then if u, v are vertices with u ∈ β, the entry eTv F
k,`
i (A) eu is the number of

non-backtracking walks of length i from u to v.

Proof. The statement is trivial for i = 0, 1. For i = 2 we note that

eTv F
k,`
2 (A) eu = eTv

(
A2 − kI

)
eu

is zero unless v = u or vertices u and v are at distance two. Any walk of length two between
vertices at distance two is non-backtracking, and the number of closed backtracking walks
of length two from u to itself is the valency of u, which is k. Thus we may assume by
induction that the statement holds for some 2i ≥ 2, some u ∈ β, and all vertices v.

Let v be a vertex. We have

eTv F
k,`
2i+1(A) eu = eTv AF

k,`
2i (A) eu −(`− 1) eTv F

k,`
2i−1(A) eu

=
∑
w∼v

eTwF
k,`
2i (A) eu −(`− 1) eTv F

k,`
2i−1(A) eu.

By the inductive hypothesis, eTv F
k,`
2i−1(A) eu counts the number of non-backtracking walks

of length 2i − 1 from u to v. Let W be such a non-backtracking walk. Each of the ` − 1
neighbours of v that is not the penultimate vertex in W can be appended to the end of W ,
followed by v, to create a walk of length 2i+ 1 from u to v that backtracks in precisely the
last step. Since ∑

w∼v
eTwF

k,`
2i (A) eu

counts the walks that backtrack in at most the last step, we have that eTv F
k,`
2i+1(A) eu counts

the non-backtracking walks of length 2i + 1 from u to v. A similar computation holds to
compute F k,`2i+2, so by induction we get the desired result.
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2.2.5 Corollary. Let G = (β ∪ γ,E) be a (k, `)-semiregular graph with adjacency matrix

A. Then if u, v are vertices with u ∈ γ, the entry eTv F
`,k
i (A) eu is the number of non-

backtracking walks of length i from u to v.

2.2.6 Remark. Let G be a graph with adjacency matrix A, and let D be the diagonal matrix
indexed by the vertices of G, with eTuDeu equal to the valency of u. For r ≥ 0, let Mi be the
matrix indexed by vertices with eTvMieu equal to the number of non-backtracking walks of
length i from u to v. Chan and Godsil [31] proved that Mi can be written as a polynomial in
A and D, where A has degree i. This generalizes the result of Singleton [138] in Lemma 2.1.4.

When G is regular, then D is a polynomial of degree 0 in A, and so the result of Chan
and Godsil [31] simplifies to a polynomial in the adjacency matrix of degree i. A similar
simplification happens when considering a semiregular bipartite graph and restricting to
a single cell of the partition. Thus Lemma 2.2.4 and Corollary 2.2.5 are special cases of
the result of Chan and Godsil [31], rewritten in a form more analogous to the result of
Singleton [138].

As we did in the regular case, we use these sequences of polynomials to obtain finite
distance-biregular graphs.

2.2.7 Example. Let G = (β ∪ γ,E) be a bipartite (k, `)-semiregular graph with diameter d
and girth 2d. Let A0, A1, . . . , Ad be the distance adjacency matrices.

Let u ∈ β. For 0 ≤ i ≤ d and vertex v, we have that eTv F
k,`
i (A) eu is one if d(u, v) = i

and zero otherwise, since anything else would create a cycle of length strictly less than 2d.
An analogous argument holds for u ∈ γ and F `,ki . As such, for 0 ≤ i ≤ d, we define

F βi (x) = F k,`i (x)

and

F γi (x) = F `,ki (x) .

Let bβd = k if d is even and ` if d is odd, and let bγd = ` if d is even and k if d is odd.
Then for π ∈ {β, γ} , we define

F πd+1(x) := xF πd (x)− bπdF πd−1(x) .

If u and v are at distance d from each other, then every neighbour of u must be at
distance d− 1 from v. This tells us that

F πd+1(A) Eπ = 0 = Ad+1Eπ,

so G is distance-biregular.

Bipartite graphs with girth twice the diameter are called generalized polygons, and were
introduced by Tits [152] in the study of groups of Lie type.
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Even cycles are trivial examples of generalized polygons. Given a graph G, the k-fold
subdivision G′ is the graph obtained by replacing every edge in G with a path of length k.
If G is a generalized polygon with diameter d, then the k-fold subdivision G′ has diameter
kd and girth 2kd, and is therefore also a generalized polygon. Even cycles and k-fold
subdivisions all have minimum degree two. We exclude these constructions by considering
thick generalized polygons, with minimum degree at least three.

Yanushka [156] proved that a generalized polygon that is not thick is the k-fold subdivi-
sion of a multiple edge or the k-fold subdivision of a thick generalized polygon, and further,
thick generalized polygons are semiregular. Feit and Higman [66] proved that any thick
generalized polygon has diameter d = 2, 3, 4, 6 or 8. Infinite families of thick generalized
polygons exist for all these viable options for d. More information can be found in the
surveys of Payne [126], Payne and Thas [129], Thas [149], and Van Maldeghem [153].

Moore graphs and generalized polygons both arose from families of polynomials satis-
fying a three-term recurrence, but the definition of distance-regular and distance-biregular
graphs did not require that. In fact, the distance polynomials will always satisfy a three-
term recurrence, as we can see through further development of the theory.

2.3 Orthogonal Polynomials

In this section, we wish to prove an equivalence between sequences of polynomials satisfying
a three-term recurrence described earlier, and the orthogonal polynomials in the title of this
section and this thesis. In particular, we wish to prove the following:

2.3.1 Theorem. Let (pi)i≥0 be a sequence of polynomials such that pi has degree i for all
non-negative integers i. The following are equivalent:

(a) For any non-negative integer i, there exist coefficients bi−1, ai, ci+1 with bici+1 positive
such that

xpi(x) = bi−1pi−1(x) + aipi(x) + ci+1pi+1(x) ;

(b) There exists a non-decreasing function α(x) which is not constant on the interval [a, b]
such that ∫ b

a
pi(x) pj(x) dα(x) = 0

for any non-negative integers i, j with i 6= j; and

(c) There exists an inner product on the vector space of polynomials 〈, 〉 with the addi-
tional property that

〈xf, g〉 = 〈f, xg〉
such that

〈pi, pj〉 = 0

for any non-negative integers i, j with i 6= j.
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We say that a sequence of polynomials is a sequence of orthogonal polynomials if they
satisfy (a), (b), or (c). Most often, we will define orthogonal polynomials in terms of the
three-term recurrence, though sometimes it is will be easier to define orthogonal polynomials
by giving an inner product satisfying (c).

Standard treatments of orthogonal polynomials such as Szegö or Nikiforov, Suslov, and
Uvarov [121] begin by defining a sequence of polynomials satisfying (b) and developing other
properties from there. Godsil [80] defines orthogonal polynomials as a sequence satisfying (c)
and shows the equivalence to the other definitions from there. We begin with the three-term
recurrence of (a), and working from there develop properties to show the equivalence of this
definition to (b) and (c).

A key result for polynomials satisfying a three-term recurrence is the Christoffel-Darboux
identity. Christoffel [32] was working with the Legendre polynomials, which satisfy the
three-term recurrence

xpn(x) =
n

2n+ 1
pn−1(x) +

n+ 1

2n+ 1
pn+1(x) ,

and Darboux [51] proved their namesake identity in a more general context. For some n ≥ 0
and 0 ≤ i ≤ n, we define

b̂i,n =

{∏n
j=i+1

bj
cj+1

i ≤ n− 1

1 i = n
.

2.3.2 Theorem (Christoffel-Darboux). Let (pi)i≥0 be a sequence of polynomials satisfying
a three-term recurrence. Then

pn(x) pn+1(y)− pn(y) pn+1(x)

y − x
=

1

cn+1

n∑
i=0

b̂i,npi(x) pi(y) .

Proof. We have

p1(x) =
1

c1
(x− a0) ,

so
p0(x) p1(y)− p0(y) p1(x)

y − x
=

1

c1
p0(x) p0(y) .

We can inductively assume that for n ≥ 1 we have

pn−1(x) pn(y)− pn−1(y) pn(x)

y − x
=

1

cn

n−1∑
i=0

b̂i,n−1pi(x) pi(y) .
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Using the three-term recurrence and the inductive hypothesis, we compute

pn(x) pn+1(y)− pn(y) pn+1(x)

y − x
=

pn(x)

cn+1(y − x)
((y − an) pn(y)− bn−1pn−1(y))

− pn(y)

cn+1(y − x)
((x− an) pn(x)− bn−1pn−1(x))

=
1

cn+1
pn(x) pn(y) +

bn−1

cn+1

(
1

cn

n−1∑
i=0

b̂i,n−1pi(x) pi(y)

)

=
1

cn+1
pn(x) pn(y) +

1

cn+1

n−1∑
i=0

b̂i,npi(x) pi(y)

=
1

cn+1

n∑
i=0

b̂i,npi(x) pi(y) .

Taking the limit of both sides as y approaches x gives us a well-known corollary.

2.3.3 Corollary. Let (pi)i≥0 be a sequence of polynomials satisfying a three-term recur-
rence. Then

pn(x) p′n+1(x)− p′n(x) pn+1(x) =
1

cn+1

n∑
i=0

b̂i,npi(x)2 .

2.3.4 Corollary. Let (pi)i≥0 be a sequence of polynomials satisfying a three-term recur-
rence. Then for n ≥ 1, the roots of pn+1 are simple, and distinct from the roots of pn.

Proof. Suppose that θ were a multiple root of pn+1(x) . Then θ is also a root of p′n+1(x),
and so by Corollary 2.3.3, we have

0 = cn+1

(
pn(θ) p′n+1(θ)− p′n(θ) pn+1(θ)

)
=

n∑
i=0

b̂i,npi(θ)
2

≥ p0(θ)2

> 0.

The same contradiction holds if θ is a root of pn and pn+1.

To prove his namesake identity for Legendre polynomials, Christoffel [32] developed a
version of discrete orthogonality, though he remarked that the identity also followed directly
from the three-term recurrence. Following the approach of Godsil [80] in Section 8. 4, we
use our direct proof of the Christoffel-Darboux formula of Theorem 2.3.2 to establish a
version of discrete orthogonality for polynomials satisfying a three-term recurrence.
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Let θ1 > · · · > θn be the zeros of pn(x) . For k = 1, . . . , n, we define the Christoffel
numbers

αn,k :=
1

cn
b̂0,n−1

1

pn−1(θk) p′n(θk)
.

By Corollary 2.3.4, we know that they are well-defined, and by Corollary 2.3.3, we know
that they are positive.

2.3.5 Theorem (Discrete Orthogonality [80]). Let (pi)i≥0 be a sequence of polynomials
satisfying a three-term recurrence. Let θ1 > · · · > θn be the zeros of pn(x) , and for
k = 1, . . . , n, let αn,k be the Christoffel number. If 0 ≤ i, j < n, then

1√
b̂0,ib̂0,j

n−1∑
m=0

αn,mpi(θm) pj(θm) = cnδi,j .

Proof. Let U be the n× n matrix with entries defined by

Ui,j =
√
αn,j

pi(θj)√
b̂0,i

.

We wish to show that U is orthogonal.
For 0 ≤ i, j ≤ n− 1, we compute

(
UTU

)
i,j

=

n−1∑
k=0

Uk,iUk,j

=
n−1∑
k=0

√
αn,i

pk(θi)√
b̂0,k

√
αn,j

pk(θj)√
b̂0,k

=
√
αn,iαn,j

n−1∑
k=0

1

b̂0,k
pk(θi) pk(θj)

=
1√

pn−1(θi) p′n(θi) pn−1(θj) p′n(θj)

1

cn

n−1∑
k=0

b̂k,n−1pk(θi) pk(θj) .

If i 6= j, then Theorem 2.3.2 tells us that(
UTU

)
i,j

=
pn−1(θi) pn(θj)− pn−1(θj) pn(θi)√

pn−1(θi) p′n(θi) pn−1(θj) p′n(θj)(θi − θj)
= 0,

and Corollary 2.3.3 tells us(
UTU

)
i,i

=
pn−1(θi) p

′
n(θi)− p′n−1(θi) pn(θi)

pn−1(θi) p′n(θi)
= 1.
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Thus

UTU = I.

Since UUT = I, it follows that

δij =
(
UUT

)
ij

=

n−1∑
k=0

√
αnk

pi(θk)√
b̂0,i

√
αnk

pj(θk)√
b̂0,j

=
1√
b̂0,ib̂0,j

n−1∑
k=0

αn,kpi(θk) pj(θk) .

We are now ready to sketch a proof of Theorem 2.3.1.

Proof. We define a discrete measure using the Christoffel numbers. Specifically, if S ⊆ R,
we define

µn(S) :=
∑
θk∈S

αn,k.

If 0 ≤ i, j ≤ n− 1, we have∫
pipjµn =

n−1∑
k=0

αn,kpi(θk) pj(θk) = b̂0,iδij .

This gives us an interval and a discrete measure for any finite sequence of polynomials satis-
fying a three-term recurrence. Given an infinite sequence satisfying a three-term recurrence,
the measures converge, and therefore the sequence is an infinite sequence of orthogonal poly-
nomials. This result is often attributed to Favard [65], although he was far from the first
to prove it. A number of mathematicians working in different contexts proved some version
of this claim, beginning with Stieltjes [140] in the context of continued fractions. Inde-
pendent proofs of “Favards’s Theorem” were developed by, among others, Natanson [120],
Shohat [135], and Stone [141].

For a fixed non-decreasing function α(x) which is not constant on the interval [a, b] , we
can define an inner product by

〈f, g〉α =

∫ b

a
f(x) g(x) dα(x) .

This satisfies the additional property that

〈xf, g〉α = 〈f, xg〉α. (2.3.1)

21



2. BACKGROUND

Given an inner product with the additional property of Equation 2.3.1, we can use
the Gram-Schmidt process to define a sequence of polynomials p0, p1, . . . orthogonal with
respect to this inner product such that for i ≥ 0, the polynomial pi has degree i. Note
that p0, . . . , pi is a basis for the vector space of polynomials of degree at most i. Then since
xpi(x) is a polynomial of degree i+1, we can write it as a linear combination of p0, . . . , pi+1.
If 0 ≤ j ≤ i+ 1, we take the inner product to see that

〈xpi, pj〉 = 〈pi, xpj〉

must be zero unless j + 1 ≥ i. Thus there exist coefficients bi−1, ai, and ci+1 such that

xpi(x) = bi−1pi−1(x) + aipi(x) + ci+1(x) .

Further,

bi−1||pi−1||2 = 〈xpi, pi−1〉 = 〈pi, xpi−1〉 = ci||pi||2,

so
bi−1

ci
=
||pi||2

||pi−1||2
> 0

and p0, p1, . . . satisfies a three-term recurrence.

2.3.6 Remark. Additional restrictions can be placed on the sequence of orthogonal polyno-
mials. For instance, Szegö [145] assumes that the sequence is orthonormal, and Godsil [80]
assumes that the sequence is monic. We place no such restrictions. Further, we wish to em-
phasize the coefficients of the three-term recurrence, since we will be working with classes
of graphs and inner products where they have a nice combinatorial interpretation. This
leads to a different formulation of results than is found in the standard texts, though the
proofs are largely the same.

2.3.7 Example. The sequence of polynomials
(
F ki (x)

)
i≥0

associated to the k-regular tree is
orthogonal with respect to the inner product defined on the interval[

−2
√
k − 1, 2

√
k − 1

]
with weight function

α(x) =
k
√

4(k − 1)− x2

2π(k2 − x2)
.

This was computed explicitly in Chapter 4 of Hora and Obata [99], building off work of
Kesten [106] studying walks on groups. McKay [115] derived equivalent results to study
the eigenvalues of large regular graphs, and Section 4.5 of Karlin [105] obtained a similar
expression using stochastic walks.
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2.4. LOCALLY DISTANCE-REGULAR

Figure 2.1: Hypercube graph Q4

2.4 Locally Distance-Regular

We wish to apply the theory of orthogonal polynomials to distance-regular and distance-
biregular graphs. It will be useful to work with a local version of distance-regularity, since
this unifies the two classes. Note that a graph can be both distance-regular and distance-
biregular, such as the hypercube graph in Figure 2.1.

Recall that the eccentricity of a vertex is the maximum distance from that vertex to
the other vertices in the graph. Let G be a graph, and let u be a vertex of G with eccen-
tricity e. We say that u is locally distance-regular if there exists a sequence of polynomials
F u0 , . . . , F

u
e+1 such that for all 0 ≤ i ≤ e+ 1, the polynomial F ui (x) has degree i and satisfies

F ui (A) eu = Aieu.

If a graph is distance-regular, then every vertex is locally distance-regular with the same
sequence of local distance polynomials. If a graph is distance-biregular, then every vertex in
the same cell of the partition has the same sequence of local distance polynomials. It seems
like this definition could extend further to an arbitrary partition of the vertices into sets
of locally distance-regular vertices with the same sequence of local distance polynomials.
However, it turns out that if every vertex in a graph is distance-regular, this forces the
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graph to be regular or bipartite semiregular. This leads to the following result of Godsil
and Shawe-Taylor [85].

2.4.1 Theorem (Godsil and Shawe-Taylor [85]). Let G be a graph such that every vertex
is locally distance-regular. Then G is either distance-regular or distance-biregular.

Distance-biregular graphs are the subject of this thesis, and Theorem 2.4.1 is one of the
motivations for studying them, since it shows they naturally extend the well-studied class
of distance-regular graphs. We will give a new proof of a stronger version of Theorem 2.4.1
in Section 4.3.

Results about locally distance-regular vertices translate to both distance-regular and
distance-biregular graphs.

Let G be a graph with adjacency matrix A and vertex u. We define a local inner product
relative to u by

〈f, g〉u = eTu f(A) g(A) eu.

Note that since A is symmetric, polynomials of A commute, and therefore this satisfies the
additional property of Equation 2.3.1.

2.4.2 Lemma. If u is locally distance-regular, the local distance polynomials are orthogonal
with respect to the u-inner product.

Proof. Let e be the eccentricity of u, and let F0, . . . , Fe+1 be the local distance polynomials
with respect to u. For 0 ≤ i, j ≤ e we have

〈Fi, Fj〉u = eTuFi(A)Fj(A) eu

= euAiAjeu

=

{
|{v ∈ V (G) : d(u, v) = i}| i = j

0 i 6= j
.

Thus F0, . . . , Fe+1 are a sequence of orthogonal polynomials with respect to the given inner
product.

We can use this inner product to define a graph inner product and bipartite inner
product. For a graph G, we define

〈f, g〉G =
1

|V (G)|
∑

u∈V(G)

〈f, g〉u =
1

|V (G)|
tr(f(A) g(A)) .

If G =(β ∪ γ,E) is bipartite and π ∈ {β, γ}, we define

〈f, g〉π =
1

|π|
∑
u∈π
〈f, g〉u.
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2.4. LOCALLY DISTANCE-REGULAR

Since the distance polynomials for a distance-regular or distance-biregular graph are
orthogonal, we can define them entirely in terms of the three-term recurrence.

If G is a distance-regular graph with diameter d, then for any 0 ≤ i ≤ d, there exist
coefficients b∗i−1, a

∗
i , c
∗
i+1 such that

AFGi (A) = b∗i−1F
G
i−1(A) + a∗iF

G
i (A) + c∗i+1F

G
i+1(A) .

We are not too concerned with the specific values of b∗−1 and c∗d+1 as long as they are
positive. The coefficients b∗0, . . . , b

∗
d−1, a

∗
0, . . . , a

∗
d, c
∗
1, . . . , c

∗
d are the intersection coefficients

of the distance-regular graph G. They have a combinatorial interpretation, since if u, v are
at distance i, we have

b∗i = b∗i e
T
uAiev = eTuAAi+1ev = |{w ∼ u : d(u, v) = i+ 1}| ,

and similarly for a∗i and c∗i .
Thus

b∗i + a∗i + c∗i = |{w : w ∼ v}| = b∗0.

Since we can derive a∗i from b∗0, b
∗
i , and c∗i , this allows us to compactly write the intersection

coefficients in the intersection array
(
b∗0, . . . , b

∗
d−1; c∗1, . . . , c

∗
d

)
.

Let G =(β ∪ γ,E) be a distance-biregular graph with π ∈ {β, γ}. The covering radius
dπ of π is the maximum eccentricity of vertices of π. Then for any 0 ≤ i ≤ dπ, there exist
coefficients bπi−1, c

π
i+1 such that

AF πi (A) Eπ = bπi−1F
π
i−1(A) Eπ + cπi+1F

π
i+1(A) Eπ.

2.4.3 Remark. These coefficients for distance-biregular graphs also have a combinatorial
interpretation. Let G =(β ∪ γ,E) be a distance-biregular graph. If u ∈ β and v is a vertex
at some distance i from u, then the number of vertices adjacent to vertex v and at distance
i+ 1 from u is bβi , and is thus independent of the choice of vertices u, v. Similar arguments

hold for cβi , b
γ
i , and cγi .

Conversely, suppose that for any vertices u and v at distance i, the numbers of vertices
adjacent to v and at distance i − 1 and i + 1 from u depends only on i and the cell of
the partition that u lies in. Then for π ∈ {β, γ} and 0 ≤ i ≤ dπ, there exist coefficients
bπi−1, c

π
i+1 such that

AAiEπ = bπi−1Ai−1Eπ + cπi+1Ai+1Eπ.

We can use this to inductively define sequences of distance polynomials for each cell of
the partition. This establishes the equivalence of some of the notions of distance-biregular
graphs discussed in Remark 2.2.3.

We can derive bπi from bβ0 , b
γ
0 , and cπi . Following the notation of Delorme [55, 56], we

represent these coefficients in the intersection array for the distance-biregular graph∣∣∣∣∣k; cβ1 , , . . . , cβdβ
`; cγ1 , , . . . , cγdγ

∣∣∣∣∣ . (2.4.1)
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This is a slight abuse of notation– more accurately the expression in Equation 2.4.1 repre-
sents the two intersection arrays of a distance-biregular graph. However, it is more conve-
nient to refer to them collectively as the intersection array, and when we wish to speak of
one sequence of intersection coefficients in particular, we will refer to it as the line of the
intersection array.

2.4.4 Lemma. Let u be a locally distance-regular vertex of eccentricity e, and let F0, . . . , Fe+1

be the sequence of local distance polynomials satisfying

xFi(x) = bi−1Fi−1(x) + aiFi(x) + ci+1Fi+1(x)

for 0 ≤ i ≤ e. Let ki be the number of vertices at distance i from u. Then k0 = 1 and for
0 ≤ i ≤ e− 1, we have

ki+1 =
biki
ci+1

. (2.4.2)

Proof. Let Si be the set of vertices at distance i from u. Consider the edges between Si and
Si+1. Since u is locally distance-regular, then every vertex in Si is adjacent to bi vertices at
Si+1, and every vertex in Si+1 is adjacent to ci+1 vertices in Si. Thus we have

bi |Si| = ci+1 |Si+1|

or

ki+1 =
biki
ci+1

.

2.5 Spectral Decomposition

For distance-regular graphs, the distance adjacency matrices are polynomials of the adja-
cency matrix, so the eigenvalues of the distance adjacency matrix are determined by the
eigenvalues of the adjacency matrix. Similar relationships exist for locally distance-regular
vertices and distance-biregular graphs. It will be useful to work with the spectrum of the
adjacency matrix, and one of the primary tools to do that is the spectral decomposition.

Let G be a graph with adjacency matrix A. Since A is symmetric, it is diagonalizable,
so there exists a diagonal matrix D and an invertible matrix L such that

A = LDL−1.

The diagonal entries of D are the eigenvalues of A. Let θ0 > θ1 > · · · > θt be the distinct
eigenvalues of A. Then there exist 01-diagonal matrices D0, . . . , Dt such that

t∑
r=0

Dr = I
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and
t∑

r=0

θrDr = D.

For 0 ≤ r ≤ t, let
Er = LDrL

−1.

Then we have

A = LDL−1 =
t∑

r=0

θrLDrL
−1 =

t∑
r=0

θrEr.

Further,
t∑

r=0

Er = L

(
t∑

r=0

Er

)
L−1 = LL−1 = I.

For 0 ≤ r, s ≤ t, we have

ErEs = LDrL
−1LDsL

−1 = LDrDsL
−1 =

{
Er r = s

0 r 6= s
.

Thus E0, . . . , Et represent orthogonal projections. These are in fact orthogonal projec-
tions into the eigenspaces. Recall that we have AL = LD, and therefore

AEr = ALDrL
−1 = LDDrL

−1 = LθrDrL
−1 = θrEr.

We will refer to Er as the spectral idempotent for θr. Since the spectral idempotents are
pairwise orthogonal idempotent matrices, for any polynomial f we have

f(A) =
t∑

r=0

f(θr)Er,

so the spectral decomposition allows us to evaluate polynomials of a matrix by evaluating
the function at the eigenvalues of the matrix.

There are several particularly important consequences of the spectral decomposition.
The multiplicity mr of θr is the trace of the spectral idempotent for θr, since

tr(Er) = tr
(
LDrL

−1
)

= tr
(
DrLL

−1
)

= tr(Dr) = mr.

We also have that the spectral idempotents are polynomials of A, since for a fixed eigenvalue
θr, the polynomial

f(x) :=
∏
s 6=r

x− θs
θr − θs

satisfies f(A) = Er.
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Spectral decomposition is a key tool in algebraic graph theory, and more information
can be found in references such as Section 8. 12 of Godsil and Royle [84]. With a slight
abuse of notation, when we refer to the eigenvalues of a graph G, we mean the eigenvalues
of the adjacency matrix of G.

The spectrum of a graph G is the multi-set of eigenvalues with their multiplicities. If
θ0 > · · · > θt are the eigenvalues of G with multiplicities m1, . . . ,mt, we write the spectrum{

θ
(m0)
0 , . . . , θ

(mt)
t

}
.

Of particular importance is the largest eigenvalue and its corresponding idempotent.
Key to its importance is the following result.

2.5.1 Theorem (Perron-Frobenius). Let G be a connected graph with largest eigenvalue ρ.
Then ρ has multiplicity one, and there is an eigenvector with all positive entries. Further,
G is bipartite if and only if −ρ is an eigenvalue.

2.5.2 Remark. Perron [130] and Frobenius [78] were working in the more general context
of non-negative matrices. Since we are only considering the adjacency matrices of graphs,
we restrict our statement of the Perron-Frobenius theorem to this context. The work of
Perron [130] can be interpreted as saying that the largest eigenvalue of a graph is simple
if there exists some i such that there is a walk of length i between any two vertices of
the graph. Frobenius [78] extended Perron’s result to all connected graphs, characterizing
bipartite graphs in the process.

For a connected graph G, we will let ρ be the largest eigenvalue and the Perron vector
p be an eigenvector for ρ with norm one and all positive entries.

2.6 Spectral Decomposition of a Bipartite Graph

We will be working primarily with bipartite graphs in this thesis, so it is worth establishing
some of the spectral structure of bipartite graphs.

We can think of a bipartite graph as an incidence graph of some incidence structure.
If G = (β ∪ γ,E) is a bipartite graph, then β are the points and γ are the blocks. It will
sometimes be convenient to think of the blocks as subsets of the points, and the incidence
relation as containment.

We can represent the incidence relation by the biadjacency matrix N from β to γ. This
is the |β| × |γ| matrix where the (u, v) entry is one if u is contained in v and zero otherwise.
We can write the adjacency matrix of G as a block matrix of the form

A =

(
0 N
NT 0

)
.
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2.6.1 Example. An incidence structure is a 2−(v, k, λ)-design if it has v points, every block
contains k points, and any pair of points are contained in exactly λ blocks. We can fix a
point u and let ru be the number of blocks incident to u. Then by counting the collinear
points to u and the blocks containing both points, we have

ru =
λ(v − 1)

k − 1
,

and so the number of points incident to a block is independent of the choice of block. Thus
the incidence graph of a 2-design is semiregular.

We will denote the valency of the blocks by r, and the number of blocks by b. It is not
always true that every pair of blocks intersect in the same number of points, so the incidence
structure obtained by flipping points and blocks is not necessarily a design. Trivial designs
are the 2-designs with incidence graph Kv,b.

We have already seen that

v(v − 1)λ = v`(k − 1) , (2.6.1)

and by counting the number of incident point/blocks in two different ways, we see

bk = vr.

Let N be the biadjacency matrix of a bipartite graph G. Then G is the incidence graph
of a 2-design if and only if

NNT =(r − λ) I + λJ. (2.6.2)

To see this, we consider points u, v ∈ β and compute

eTuNN
Teu = |{w ∈ γ : u ∼ w,w ∼ v}| .

The block structure of the adjacency matrix for a bipartite graph extends to the spectral
decomposition. That is, if θr is an eigenvalue with spectral idempotent Er, we can write

Er =

(
Rr Dr

DT
r Lr

)
for matrices Rr, Dr, and Lr.

Let θr be a nonzero eigenvalue with spectral idempotent

Er =

(
Rr Dr

DT
r Lr

)
.

We have (
θRr θDr

θDT
r θLr

)
= AEr =

(
0 N
NT 0

)(
Rr Dr

DT
r Lr

)
=

(
NDT

r NLr
NTRr NTDr

)
.

29



2. BACKGROUND

Then (
0 N
NT 0

)(
Rr −Dr

−DT
r Lr

)
=

(
−NDT

r NLr
NTRr −NTDr

)
=

(
−θRr θDr

θDT
r −θLr

)
,

so the columns of

E−r :=

(
Rr −Dr

−DT
r Lr

)
are eigenvectors for −θr. We also have(

Rr Dr

DT
r Lr

)
= Er = E2

r =

(
R2
r +DrD

T
r RrDr +DrLr

DT
r Rr + LrD

T
r DT

r Dr + L2
r

)
,

so

E2
−r =

(
R2
r +DrD

T
r −RrDr −DrLr

−DT
r Rr − LrDT

r DT
r Dr + L2

r

)
=

(
Rr −Dr

−DT
r Lr

)
= E−r.

This tells us that E−r is the spectral idempotent of −θr.
The following linear algebraic result will be useful. It can be found, for instance, in

Section 10.3 of Godsil [80].

2.6.2 Lemma. For any matrix N, the nonzero eigenvalues of NNT and NTN are the same,
with the same multiplicity.

Suppose that N is a v × b matrix. Note that NNT has v eigenvalues and NTN has
b eigenvalues. By Lemma 2.6.2 we know that NNT and NTN share nonzero eigenvalues
with multiplicities. In particular, if b ≥ v, then 0 must be an eigenvalue of NTN with
multiplicity at least b − v. This leads us to the following result, which generalizes results
that can be found in Delorme [55, 56].

2.6.3 Lemma. Let G = (β ∪ γ,E) be a semiregular bipartite graph with diameter d and
d+ 1 eigenvalues. If d is odd, then G is regular and the covering radii of β and γ are d.

Proof. If d is odd, then we know there are vertices u ∈ β, v ∈ γ with d(u, v) = d, so the
covering radii of both β and γ are d. Further, the number of distinct eigenvalues is even.
Since the eigenvalues of a bipartite graph are symmetric about the real axis, the number of
eigenvalues can only be even if 0 is not an eigenvalue. By Lemma 2.6.2, we have that 0 is
an eigenvalue of G with multiplicity at least ||β| − |γ|| , from which we see |β| = |γ| . Since
G is semiregular and both cells of the partition have the same valency, we conclude that G
must be regular.

2.6.4 Example. We compute the spectrum of a 2-design. Let G =(β ∪ γ,E) be the incidence
graph of a 2-design with biadjacency matrix N. We have

A2 =

(
NNT 0

0 NTN

)
,
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so we can compute the eigenvalues of A by computing the eigenvalues of NNT .
Equation 2.6.2 relates the eigenvalues of NNT to the eigenvalues of J and I. The

eigenvalues of I are 1 with multiplicity v, and the eigenvalues of J are v with multiplicity
one and 0 with multiplicity v − 1. Thus NNT has r − λ as an eigenvalue with multiplicity
v − 1 and r − λ+ λv with multiplicity one. From Equation 2.6.1, we have

r − λ+ λv = r − λ(v − 1) = r − r(k − 1) = `k.

From Lemma 2.6.2 we know that NTN must have 0 as an eigenvalue with multiplicity
|γ| − |β| . Thus the spectrum of A2 is{

(kr)(2) ,(r − λ)(2(v−1)) , 0(|γ|−|β|)
}
.

Since the eigenvalues of a bipartite graph are symmetric about the real axis, we conclude
that A has spectrum{√

kr
(1)
,
√
r − λ(v−1)

, 0(|γ|−|β|),−
√
r − λ(v−1)

,−
√
r`

(1)
}
.

The incidence graph of a 2-design is a(k, r)-semiregular graph, and the largest eigenvalue
is
√
kr. This is true more generally. Let G = (β ∪ γ,E) be a bipartite (k, `)-semiregular

graph. Then
√
k` is the largest eigenvalue with Perron vector

p =
1√
2 |β|



1
...
1√
`
k

...√
`
k


=

1√
2 |γ|



√
k
`

...√
k
`

1
...
1


.

For positive integers i, j let 1i,j denote the i × j matrix of all ones, and let 1i denote
the i× i matrix of all ones. Then the spectral idempotent for

√
k` is

ppT =

 1
2|β|1|β|

√
`

2|β|
√
k
1|β|,|γ|

√
k

2|γ|
√
`
1|γ|,|β|

1
2|γ|1|γ|

 .

2.6.5 Lemma. If Er and Es are distinct spectral idempotents such that Er +Es is zero on
the off-diagonal blocks, then θs = −θr.

Proof. Since θr and θs are not both zero, we may assume without loss of generality that
θr 6= 0, so E−r is distinct from Er. Suppose it is also distinct from Es. Since Er is orthogonal
to E−r − Es, we have(

Rr(Rr −Rs) Dr(Lr − Ls)
DT
r (Rr −Rs) Lr(Lr − Ls)

)
=

(
Rr Dr

DT
r Lr

)(
Rr −Rs 0

0 Lr − Ls

)
=

(
0 0
0 0

)
.
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Since E−r and Es are distinct, they are orthogonal, so(
RrRs +DrD

T
r −RrDr −DrLs

−DT
r Rs − LrDT

r DT
r Dr + LrLs

)
=

(
Rr −Dr

−DT
r Lr

)(
Rs −Dr

−DT
r Ls

)
=

(
0 0
0 0

)
.

Since Er is idempotent, we have(
Rr Dr

DT
r Lr

)
=

(
R2
r +DrD

T
r RrDr +DrLr

DT
r Rr + LrD

T
r DT

r Dr + L2
r

)
.

Comparing the top left block gives us

Rr = R2
r +DrD

T
r = R2

r −RrRs = Rr(Rr −Rs) = 0.

Similarly, comparing the bottom right block gives us

Lr = L2
r +DT

r Dr = Lr(Lr − Ls) = 0.

This implies that Er = 0, which is impossible, and therefore Es = E−r.

2.7 Multiplicities

For a distance-regular graph, the spectrum is particularly important. Biggs [21] proved
that the intersection array determines the spectrum of a distance-regular graph, and Van
Dam and Haemers [45] gave the first written proof that for a distance-regular graph, the
spectrum determines the intersection array. In this section, we extend their results to
distance-biregular graphs.

Godsil and Shawe-Taylor [85] worked out the multiplicities of a distance-biregular graph
using a different method than the one used in this section. Their description was consid-
erably expanded by Shawe-Taylor [134] in Chapter 3 of his thesis. Since we are already
working with the distance polynomials of distance-biregular graphs, the adaptation here of
the proof of Biggs [21] is more convenient for our purposes, and the adaptation of the result
of Van Dam and Haemers [45] is new.

Let G =(β ∪ γ,E) be a bipartite graph and let θr be an eigenvalue. Let

mβ
r = tr(Rr)

and

mγ
r = tr(Lr) .

We will refer to mπ
r as the bipartite multiplicities, because they can be interpreted as the

multiplicity relative to cells of the partition.

32



2.7. MULTIPLICITIES

2.7.1 Lemma. Let G =(β ∪ γ,E) be a bipartite graph with adjacency matrix A. If θ is a
nonzero eigenvalue of A with multiplicity mθ, then

mβ
θ = mγ

θ =
1

2
mθ.

Further,

mβ
0 =

1

2
(|β| − |γ|+m0)

and

mγ
0 =

1

2
(|γ| − |β|+m0) .

Proof. Let θ be a nonzero eigenvalue of A. Note that θ2 is an eigenvalue of

A2 =

(
NNT 0

0 NTN

)
with multiplicity 2mθ, since the −θ eigenvalue of A also contributes multiplicity mθ to the
multiplicity of θ2 in A2. Using the spectral decomposition, we have(

NNT 0
0 NNT

)
=
∑
θr

θ2
rEr =

∑
θr
θr≥0

θ2
r(Er + E−r) =

∑
θr>0

θ2
r

(
2Rr 0
0 2Lr

)
.

By Lemma 2.6.2 we know that NNT and NTN share nonzero eigenvalues with multiplicity.
Thus

mβ
θ = tr(Rθ) = tr(Lθ) = mγ

θ ,

giving us

mβ
θ = mγ

θ =
1

2
mθ.

If 0 is an eigenvalue, we have

mβ
0 = |β| −

∑
θ 6=0

mβ
θ

and similarly for mγ
0 . Then we have

mβ
0 −m

γ
0 = |β| − |γ|

and
mβ

0 +mγ
0 = m0,

so

mβ
0 =

1

2
(|β| − |γ|+m0) ,

and similarly for mγ
0 .

33



2. BACKGROUND

2.7.2 Theorem. In a distance-biregular graph G, the intersection array determines and is
determined by the spectrum and the valencies.

Proof. Let G =(β ∪ γ,E) be a distance-biregular graph with valencies k, `.
Let f and g be polynomials. We have that

〈f, g〉β =
1

|β|
∑
u∈β

eTu f(A) g(A) eu =
d∑
r=0

f(θr) g(θr)
∑
u∈β

eTuEreu =
d∑
r=0

mβ
r f(θr) g(θr) .

An analogous result holds for γ. This shows that the inner product is determined by the
bipartite multiplicities. These are determined by the multiplicities of the eigenvalues and
the sizes of β, γ. Since G is (k, `)-semiregular, we have

k |β| = ` |γ|

and

|β|+ |γ| =
d∑
r=0

mr,

and so the sizes of β, γ are also determined by the spectrum and valencies. Thus the
spectrum and valencies determine the inner product.

Now consider the inner product 〈f, g〉β. We can use the Gram-Schmidt process to obtain
a unique sequence of orthogonal polynomials p0, . . . , pdβ normalized such that

〈p2i, p2i〉β = p2i

(√
k`
)

and

〈p2i+1, p2i+1〉β =

√
k√
`
p2i+1

(√
k`
)

Since G is distance-biregular, we know that there is also a sequence of distance polynomials
F0, . . . , Fdβ which are orthogonal with respect to 〈, 〉β. For any vertex u ∈ β, the distance
polynomials satisfy

〈Fi, Fi〉β =
1

|β|
∑
u∈β
|{v : d(u, v) = i}| = 1

|β|
∑
u∈β

(AiJ)u,u .

Since the spectral idempotent for
√
k` is a polynomial of A, there exists some polynomial

p such that

p(A) =

(
1|β|,|β|

√
`√
k
1|β|,|γ|√

`√
k
1|γ|,|β|

2|β|
2|γ|1|γ|,|γ|

)
.

Then
〈F2i, F2i〉β = 〈F2i, p〉β = F2i

(√
k`
)
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and

〈F2i+1, F2i+1〉β =

√
k√
`
〈F2i+1, p〉β =

√
k√
`
F2i+1

(√
k`
)
,

and so the orthogonal polynomials defined using the spectrum are the distance polynomials.
The same argument holds for γ.

Suppose conversely we have the intersection array. We compute the spectrum for one
cell of the partition from the distance polynomials F0, . . . , Fd+1 for that cell. First, note
that the eigenvalues are the roots of Fd+1.

Let θ be an eigenvalue, and let ki be defined recursively as in Equation 2.4.2. We define

ψ(x) =
d∑
i=0

Fi(θ)

ki
Fi(x) .

By the three-term recurrence, we have

Aψ(A) =

d∑
i=0

Fi(θ)

ki
AFi(A)

=

d∑
i=0

Fi(θ)

ki
(ci+1Fi+1(A) + bi−1Fi−1(A))

=
d+1∑
i=1

ciFi−1(θ)

ki−1
Fi(A) +

d−1∑
i=−1

biFi+1(θ)

ki+1
Fi(A)

=

d∑
i=0

(bi−1Fi−1(θ) + ci+1Fi+1(θ))

ki
Fi(A)

=
d∑
i=0

θFi(θ)

ki
Fi(A)

= θψ(A) .

The columns of ψ(A) are eigenvectors for θ, and therefore they must be orthogonal to
eigenvectors for any eigenvalue τ 6= θ. Then using the spectral decomposition, we get∑

u∈π
eTuψ(A) eu = mπ

θψ(θ) .

On the other hand, we also have

∑
u∈π

eTuψ(A) eu =
∑
u∈π

d∑
i=0

Fi(θ)

ki
eTuFi(A) eu =

∑
u∈π

d∑
i=0

Fi(θ)

ki
eTuAieu =

F0(θ)

ki
|π| .
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Therefore,

mπ
θ =

|π|
ψ(θ)

,

which is determined by the sequence of distance polynomials.

2.7.3 Remark. Theorem 2.7.2 needs the hypothesis that G is distance-biregular.
If a graph G is not distance-biregular, then the distance polynomials and intersection

array are not well-defined. This is possible even if G has the same spectrum as a distance-
biregular graph. We consider this further in Section 4.7.

Theorem 2.7.2 can also be used to prove that a distance-biregular graph with a particular
intersection array does not exist. For instance, from an intersection array, we can define
sequences of orthogonal polynomials, and use that to determine the spectrum of a putative
distance-biregular graph G. If G exists, then the multiplicity of every eigenvalue must be
a positive integer. This forms a strong necessary condition for the intersection array of a
distance-biregular graph. We will look closer at such conditions in the next chapter.
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Chapter 3

Distance-Biregular Graphs
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3. DISTANCE-BIREGULAR GRAPHS

Any three sequences of positive real coefficients define a sequence of polynomials satisfy-
ing a three-term recurrence. If this sequence of polynomials is the sequence of distance poly-
nomials for some graph, then there are additional combinatorial properties the coefficients
must satisfy. This is true for distance-regular graphs, and doubly true for distance-biregular
graphs. This leads us to the motivating question for this chapter.

3.0.1 Question. Given a potential intersection array, when does a distance-biregular graph
with this intersection array exist?

We are not expecting a full answer to this question, since the analogous question for
distance-regular graphs is open, even for the low diameter case of strongly regular graphs. In
general, the intersection array does not give us enough information to construct a distance-
regular or distance-biregular graph. However, any construction of distance-biregular graphs,
or any necessary properties that the intersection array must satisfy, gives a partial answer
to Question 3.0.1.

In this chapter, we will look at some of the constructions of distance-biregular graphs
coming from Delorme [55, 56] and Shawe-Taylor [134]. We will also consider feasibility
conditions, a set of bare-minimum conditions that the intersection array must satisfy to
avoid any obvious obstructions to a distance-biregular graph existing. We have already
seen several feasibility condition for distance-biregular graphs, since Lemma 2.4.4 and The-
orem 2.7.2 define quantities kπi and mπ

r which must be positive integers. We study further
feasibility conditions, which we use to compute tables of feasible intersection arrays of low
diameter and valency found in Appendix A and Appendix B.

3.1 Symmetric and Quasi-Symmetric 2-Designs

We begin by considering a well-known result in design theory, first shown by Fisher [76]

3.1.1 Lemma (Fisher’s Inequality). Let D be a 2−(v, k, λ) design with b blocks. If v > k,
then

b ≥ v.

Proof. Consider a 2−(v, k, λ) design with b blocks where every point is incident to r blocks.
If λ 6= r, then 0 is not an eigenvalue of NNT , so by Lemma 2.6.2, we must have that b ≥ v.
By Equation 2.6.1, we know that λ = r precisely when k = v.

Consider a 2 −(v, k, λ) design with b blocks where every point is incident to r blocks.
If any two blocks intersect in some number λ′ points, then the dual incidence structure
obtained by flipping points and blocks is a 2−(b, r, λ′) design. One consequence of Fisher’s
inequality is that if the dual of a design is a design, then b = v, and hence λ′ = λ. We
say that a 2-design is a symmetric design if b = v, or equivalently, if any two blocks have
exactly λ common points.
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3.1. SYMMETRIC AND QUASI-SYMMETRIC 2-DESIGNS

Cvetković, Doob, and Sachs [44] proved that a bipartite graph of diameter three is
distance-regular if and only if it is the incidence graph of a symmetric 2-design. They
used this to prove that a connected bipartite regular graph with four distinct eigenvalues
is distance-regular. This extends the well-known result that can be found in, for instance,
section 10.2 of Godsil and Royle [84] that a connected regular graph with diameter two is
distance-regular if it has three distinct eigenvalues. However, for d ≥ 4, there exist bipartite
regular graphs with diameter d and d+1 distinct eigenvalues which are not distance-regular.

By Lemma 2.6.3, a distance-biregular graph with odd diameter is regular, and thus the
characterization of Cvetković, Doob, and Sachs [44] is also a characterization of distance-
biregular graphs of diameter three. There is a similar equivalence between distance-biregular
graphs of diameter four where one cell of the partition has covering radius three and a
different class of 2-designs.

A weakening of the notion of symmetric 2-design gives quasi-symmetric 2-designs, 2-
designs where any two blocks intersect in either s or t points. We are particularly interested
in the case of quasi-symmetric 2-designs where t = 0, that is, any two blocks are either
disjoint, or they intersect in s points.

3.1.2 Example. Let G be a distance-biregular graph with intersection array∣∣∣∣r; 1, λ, k
k; 1, s, c3, k

∣∣∣∣ .
Then (

1v
0

)
= F β2 (A) Eβ =

1

λ

(
A2 − rI

)
Eβ =

1

λ

(
NNT − rIv

0

)
,

so the incidence structure is a 2-design. There also exists some 01-matrix Y1 such that(
0
Y1

)
= F γ2 (A) Eγ =

1

s

(
A2 − kI

)
Eγ =

1

s

(
0

NTN − kIb

)
or

NTN = sY1 + kIb.

This tells us that any two distinct blocks either share no common points, or they share s
common points, so G must be the incidence graph of a quasi-symmetric 2-design.

The converse is also true.

3.1.3 Lemma. The incidence graph of a quasi-symmetric 2 −(v, k, λ) design with block
intersection numbers s, 0 is distance-biregular.

Proof. Let G be the incidence graph, let b be the number of blocks, r the valency of the
points, and s the size of the intersection of two non-disjoint blocks. We define

F β2 (x) =
1

λ

(
x2 − r

)
,
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3. DISTANCE-BIREGULAR GRAPHS

and

F γ2 (x) =
1

s

(
x2 − k

)
.

We can see from the definition of our quasi-symmetric 2-design that for π ∈ {β, γ} we
have

F π2 (A) Eπ = A2Eπ.

Let

Y1 =
1

s

(
NTN − kI

)
,

and note that it is the adjacency matrix of some graph H with vertex set γ.
Let

F β3 (x) =
1

kλ

(
x3 −(r + kλ)x

)
= F γ3 (x) .

Note that

F γ3 (A) Eγ =
1

k
AF β2 (A) Eγ −AEγ =

1

k

(
NT1b

0

)
−
(
NT

0

)
= A3Eγ .

Further, since A and A3 are symmetric, we must have

F γ3 (A) = A3,

so F γ3 is indeed the distance-three polynomial.
We define

F β4 (x) =(x− kr)(x− r + λ) .

Recall the spectrum of NNT is {
(kr)(1) ,(r − λ)(v−1)

}
,

from which we see

F β4 (A) Eβ =

(
0
0

)
= A4Eβ.

The graph H is a connected graph of diameter two with three distinct eigenvalues. This
means H is distance-regular. Letting Y2 be the distance-two graph of H, we know there
exist constants k∗, a∗, c∗ with c∗ positive such that

Y 2
1 = k∗I + a∗Y1 + c∗Y2.

We define

F γ4 =
1

c∗

(
F γ2 (x)2 − a∗F γ2 (x)− k∗

)
,

and note it satisfies

F γ4 (A) eγ =

(
Y2

0

)
= A4Eγ .

Finally, G has five distinct eigenvalues, so we can define F β5 = F γ5 to be the minimal
polynomial of G.
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The connection between distance-biregular graphs and quasi-symmetric 2-designs was
previously shown by Delorme [55, 56] and Shawe-Taylor [134] using a counting argument.
This new proof using orthogonal polynomials foreshadows ideas which we expand on in
Section 3.2 and Section 3.5.

3.1.4 Example. A Steiner system S(2, k, v) is a 2-design with v points where every block is
incident to k points and every pair of points intersect in a unique block. Note that the size
of the intersection of two blocks must be at most one, and therefore the incidence graph of
a Steiner system is distance-biregular with intersection array∣∣∣∣ v−1

k−1 ; 1, 1, k

k; 1, 1, k, k

∣∣∣∣ .
Steiner systems are a well-studied class of combinatorial designs, and more information

can be found, for instance, in the overviews by Beth, Jungnickel, and Lenz [19], Colbourn
and Mathon [40], and Colbourn and Rosa [41]. Of particular note are Steiner triple systems,
S(2, 3, v), which Kirkman [107] proved exist if and only if v ∼= 1, 3 (mod 6).

A Hadamard matrix H of order n is an n× n matrix with entries in {−1, 1} such that
HHT = nI. It is in standardized form if the first row and column are all positive.

A common construction gives a bipartite distance-regular graph of diameter four from
a Hadamard matrix. However, there is a second construction of distance-biregular graphs,
as noted by Delorme [55, 56].

3.1.5 Example. Let H be a Hadamard matrix of order 4n in standardized form. Deleting
the first row and column and replacing every −1 entry with 0, we get the incidence matrix
of a symmetric 2−(4n− 1, 2n− 1, n− 1) design. If instead we replace every 1 with a 0, we
get the incidence matrix of a symmetric 2−(4n− 1, 2n, n) design.

Let N be the incidence matrix of the 2−(4n− 1, 2n− 1, n− 1)-design, so J −N is the
incidence matrix of the complement 2-design. Wallis [154] observed that(

N J −N
1 0

)
is the incidence matrix of a 2−(4n, 4n− 1, 2n− 1)-design, since(

N J −N
1 0

)(
NT 1T

J −NT 0T

)
=

(
2nI +(2n− 1) J (2n− 1) 1T

(2n− 1) 1 4n− 1

)
.

Further, for a block b, there is a unique block that is disjoint from it, and every other block
shares n points. Thus it is a quasi-symmetric 2-design, which gives us a distance-biregular
graph with the array ∣∣∣∣4n− 1; 1, 2n− 1, 2n

2n; 1, n, 4n− 2, 2n

∣∣∣∣ .
The graph for the Hadamard matrix of order eight is shown in Figure 3.1.
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3. DISTANCE-BIREGULAR GRAPHS

Figure 3.1: Quasi-symmetric 2-design for 8× 8 Hadamard matrix

More information on quasi-symmetric 2-designs can be found in the overviews writ-
ten by Shrikhande [136] or Shrikhande and Sane [137], and and more information about
the connection to distance-biregular graphs can be found in Chapter 5 of Shawe-Taylor’s
thesis [134].

3.2 Even Distance Polynomials

Let G =(β ∪ γ,E) be a bipartite graph of diameter d. Since G is bipartite, we can write the
distance two graph G2 as the disjoint union of the subgraphs of G2 induced by the cells of
the partition, called the halved graphs. Then for any i, we see that G2i is the disjoint union
of the ith-distance graph of the halved graphs. If X0, . . . , Xb d

2
c are the distance matrices
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3.2. EVEN DISTANCE POLYNOMIALS

of the halved graph induced by β, and Y0, . . . , Yb d
2
c are the distance matrices of the halved

graph induced by γ, we have

A2i =

(
Xi 0
0 Yi

)
.

3.2.1 Remark. Shawe-Taylor [118, 134] called the connected components of the distance-two
graph the derived graphs. Brouwer, Cohen, and Neumaier [28] referred to these graphs as
the halved graphs, because in the case of regular bipartite graphs each component has half
the vertices of the original graph. Although the name is less accurate for semiregular graphs,
we will maintain consistency with the now standard terminology of Brouwer, Cohen, and
Neumaier. For an incidence structure, the halved graph induced by the point set is the
point graph, and the halved graph induced by the set of blocks is the block graph.

In the proof of Lemma 3.1.3, we used the fact that the block graph of a quasi-symmetric
2-design is strongly regular. More generally, it is true that the halved graphs of a distance-
biregular graph are distance-regular. This was shown by Delorme [55, 56] and Mohar and
Shawe-Taylor [118]. We prove it in a new way through orthogonal polynomials.

Let G =(β ∪ γ,E) be an infinite distance-biregular graph. Fix a cell of the partition π
and consider the associated distance polynomials (F πi )i≥0 .

3.2.2 Remark. In fact, the only infinite distance-biregular graphs are the biregular trees,
since Delorme [55, 56] and Shawe-Taylor [134] generalized the proof of Terwilliger [146] to
bound the diameter of a distance-biregular graph by its girth. The distance polynomials
of biregular trees are key to the results in Chapter 5, and by working with an arbitrary
distance-biregular graph of infinite diameter, we lay the groundwork for both those results
and the finite-diameter case.

For i ≥ 0, we define the even distance polynomials associated to the (k, `)-semiregular

tree P k,`i (x) by

P k,`i

(
x2
)

= F k,`2i (x) .

Since G is distance-biregular, we may let Zi be the distance matrix of the halved graph
induced by vertices of valency k and write

Pi
(
NNT

)
= Zi. (3.2.1)

Letting P−1(x) = 0, for i ≥ 0 we have

x2Pi
(
x2
)

= x(xF2i(x))

= xb2i−1F2i−1(x) + xc2i+1F2i+1

= b2i−1b2i−2F2i−2(x) +(b2i−1c2i + c2i+1b2i)F2i(x) + c2i+1c2i+2F2i+2(x)

= b2i−1b2i−2Pi−1

(
x2
)

+(b2i−1c2i + c2i+1b2i)Pi
(
x2
)

+ c2i+1c2i+2Pi+1

(
x2
)
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and so (Pi)i≥0 is a sequence of orthogonal polynomials.
Let H be the halved graph induced by π. By Equation 3.2.1 when i = 1, we have

constants c, k such that

NNT = cA(H) + k. (3.2.2)

For i ≥ 0, we define

F ∗i (x) = Pi

(
1

c
(x− k)

)
,

and note that

F ∗i (A(H)) = Pi
(
NNT

)
= Zi,

and so H is distance-regular.
This extends to finite distance-biregular graphs as well. If G is a distance-biregular

graph and F π1 , . . . , F
π
d are the distance polynomials for a cell of the partition π, we can

define

P πi (x) := F π2i
(
x2
)
.

The caveat is that if G is distance-biregular with diameter d, we cannot define

Pd+1(x) = F2d+2(x) .

However, with a bit of caution, we can define Pd+1 differently to give us the required
polynomial.

3.2.3 Theorem. Let G be a distance-biregular graph with cell π of covering radius d and
intersection coefficients b0, . . . , bd−1, c0, . . . , cd. Let d∗ = bd2c. Then the halved graph induced
by π is distance-regular with intersection array(

b0b1
c2

,
b1b2
c2

, . . . ,
b2d∗−2b2d∗−1

c2
;
c1c2

c2
,
c3c4

c2
, . . . ,

c2d∗−1c2d∗

c2

)
.

Proof. Let F0, . . . , Fd+1 be the sequence of polynomials associated to π, and let d′ = bd+1
2 c.

For 0 ≤ i ≤ d′, we define

Pi
(
x2
)

= F2i(x) .

For 0 ≤ i ≤ d′ − 1, we define

b∗i−1 =
b2i−1b2i−2

c2
,

a∗i =
b2i−1c2i + c2i+1b2i − b0

c2
,

and

c∗i+1 =
c2i+1c2i+2

c2
.
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3.3. DISTANCE-REGULAR HALVED GRAPHS

For 0 ≤ i ≤ d′ − 1, the polynomial F2i+2(x) is well-defined, so we use the three-term
recurrence to compute

P1(x)Pi(x) =
1

c2
(x− b0)Pi(x)

=
1

c2
(b2i−1b2i−2Pi−1(x) +(b2i−1c2i + c2i+1b2i − b0)Pi(x) + c2i+1c2i+2Pi+1(x))

= b∗i−1Pi−1(x) + a∗iPi(x) + c∗i+1Pi+1(x) .

For 0 ≤ i ≤ d∗, the matrix Pi
(
NNT

)
is the i-th distance adjacency matrix of the halved

graph. Note that the diameter of the halved graph is d∗. If d∗ ≤ d′ − 1, we have found all
the distance polynomials for the halved graph, so we are done. Otherwise, d is even so if
we fix a vertex u ∈ π, the number of vertices at distance d from u in G is the same as the
number of vertices at distance d

2 in the halved graph. Then by Lemma 2.4.4, we have

b0 · · · bd−1

c1 · · · cd
=
b∗0 · · · b∗d∗−1

c∗1 · · · c∗d∗
=
b∗d∗−1

c∗d∗

b0b1 · · · bd−4bd−3

c1c2 · · · cd−3cd−2
.

Note that c∗d =
cd−1cd
c2

, so

b∗d∗−1 =
bd−2bd−1

cd−1cd
c∗d =

bd−2bd−1

c2
.

Delorme [55, 56] and Mohar and Shawe-Taylor [118] also proved that the halved graph of
a distance-biregular graph is distance-regular. Mohar and Shawe-Taylor explicitly computed
the parameters of the halved graph, although there is an indexing error in their computation.

3.3 Distance-Regular Halved Graphs

Theorem 3.2.3 tells us that we can take a distance-biregular graph and obtain two distance-
regular graphs from it. It is natural to ask when we can go the other direction.

3.3.1 Problem. Given a distance-regular graph H, is H the halved graph of a distance-
biregular graph?

3.3.2 Remark. A related problem is the square root of a graph, studied by Mukhopad-
hyay [119]. The square of a graph G is the union of the G and the distance-two graph G2.
The square root of G is a subgraph H whose square is G. Mukhopadhyay [119] characterized
which graphs G have a square root in terms of the complete subgraphs of G.

45



3. DISTANCE-BIREGULAR GRAPHS

Every complete graph is the halved graph of a complete bipartite graph.
If H is strongly regular, then one special case of this problem is when a strongly regular

graph is the block graph of a quasi-symmetric 2-design. This problem was considered at
length in Chapter 5 of Shawe-Taylor’s thesis [134]. Another specific case of Problem 3.3.1
for strongly regular graphs predates the definition of distance-biregular graphs.

A partial geometry pg(s, t, α) is an incidence structure in which each block is incident to
s+ 1 points, each point is incident to t+ 1 blocks, any two points are in at most one block,
and if a point u and a block x are not incident, then there are α coincident pairs (v, y) such
that v is incident to x and y is incident to u.

Bose [25] introduced the notion of partial geometries to study strongly regular graphs.
They can also be thought of as the distance-biregular graphs with intersection array∣∣∣∣s+ 1; 1, 1, α, s+ 1

t+ 1; 1, 1, α, t+ 1

∣∣∣∣ .
A pg(s, t, s+ 1) is a Steiner system, and pg(s, t, 1) is a generalized quadrangle. Between

these two extremes are proper partial geometries. There are constructions of infinite families
given by De Clerck and Thas [151], De Clerck, Dye, and Thas [53], and Mathon [113], as
well as sporadic examples by De Clerck [52], Haemers [89, 90], Van Lint and Schrijver [111],
and Mathon [114]. More information on partial geometries can be found in the surveys of
Brouwer and Van Lint [30], De Clerck and Van Maldeghem [54], or Thas [150].

Leaving the small diameter examples, we can also ask Question 3.3.1 about infinite
diameter families of distance-biregular graphs. Examples that come up in the early work
on distance-biregular graphs [55, 56, 85, 118, 134] are bipartite analogues to the Johnson
and Grassmann graphs.

3.3.3 Example. Let n ≥ 2k + 2. The BiJohnson graph BJ(n, k) is the bipartite graph
G =(β ∪ γ,E) where β is the set of k-element subsets of [n] , γ is the set of (k + 1)-element
subsets of [n] , and v ∈ β is adjacent to w ∈ γ when v ⊂ w. The halved graphs of G are the
Johnson graph J(n, k) and the Johnson graph J(n, k + 1) .

Two vertices u, v ∈ β are at distance 2i when |u ∩ v| = k− i, and similarly, two vertices
u, v ∈ γ are at distance 2i when |u ∩ v| = k+ 1− i. Combined with the adjacency rule, this
tells us that u ∈ β and v ∈ γ are at distance 2i + 1 from each other when |u ∩ v| = k − i.
Thus β has covering radius 2k + 1 and γ has covering radius 2k + 2.

Fix a vertex u and a vertex v at distance i from u. Let π(u) denote the cell of the
partition containing u. Using the distances just derived, we have

c
π(u)
i = |{w ∼ v : d(u,w) = i− 1}| = |u \(u ∩ v)| =

⌊
i

2

⌋
.

This gives us the intersection array∣∣∣∣n− k; 1, 1, 2, . . . , p, k, k + 1
k + 1; 1, 1, 2, . . . , k, k, k + 1 k + 1

∣∣∣∣ .
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We can extend the definition of the BiJohnson graphs to n = 2k + 1, and the resulting
graphs are regular graphs of diameter 2k + 1. We are primarily interested in examples of
distance-biregular graphs that are not distance-regular, and so we will omit a more detailed
description.

3.3.4 Example. The BiGrassmann graphs are to the Grassmann graphs what the BiJohnson
graphs are to the Johnson graphs. Formally, let Fq be a field with q elements, and for n ≥
2k + 2, let V be the n-dimensional vector space over Fq. The BiGrassmann graph Jq(n, k)
is a bipartite graph with β the k-dimensional subspaces of V, γ the (k + 1)-dimensional
subspaces of V, and u ∈ β adjacent to v ∈ γ when u is a subspace of v. The halved graphs
are Grassmann graphs Jq(n, k) and Jq(n, k + 1) .

Let

[i]q =
qi − 1

q − 1
,

and note that this counts the number of (i− 1)-dimensional subspaces contained in a given
i-dimensional subspace. Then an analogous counting argument used for the BiJohnson
graphs gives us the intersection array∣∣∣∣[n− k]q ; [1]q , [1]q , [2]q , . . . , [k]q , [k]q , [k + 1]q

[k + 1]q ; [1]q , [1]q , [2]q , . . . , [k]q , [k]q , [k + 1]q , [k + 1]q

∣∣∣∣ .
As before, we can extend the definition of BiGrassmann graphs to n = 2k + 1, and the

resulting graphs are regular with diameter 2k + 1.

In Chapter 6 of his thesis, Shawe-Taylor [134] considered Problem 3.3.1 for other families
of distance-regular graphs. In particular, he proved that the Hamming graphs and dual-
space polar forms graphs do not generally occur as halved graphs of distance-biregular
graphs.

3.4 First Attempts at Feasibility

A working definition of feasibility for distance-regular graphs is as follows.

3.4.1 Definition. An intersection array
(
b∗0, b

∗
1, . . . , b

∗
d−1; c∗1, c

∗
2, . . . , c

∗
d

)
is feasible if:

(i) The intersection coefficients satisfy

b∗0 > b∗1 ≥ b∗2 ≥ · · · ≥ b∗d−1 ≥ b∗d

and

1 = c∗1 ≤ c∗2 ≤ · · · ≤ c∗d;
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3. DISTANCE-BIREGULAR GRAPHS

(ii) The numbers k∗0, . . . , k
∗
d defined recursively by

k∗i+1 =
b∗i k
∗
i

c∗i+1

.

are positive integers; and

(iii) The multiplicities of the eigenvalues, which can be computed from the intersection
array, are positive integers.

3.4.2 Remark. An intersection array being feasible for a distance-regular graph does not
mean that a graph with that intersection array exists. Rather, the feasibility conditions
are a set of necessary, but not sufficient, conditions an intersection array must satisfy.
Accordingly, the definition of feasibility criteria vary a fair amount in the literature. The
feasibility conditions described here are the intersection of the conditions in Chapter 21
of Biggs [20] and Section 4. 1 of Brouwer, Cohen, and Neumaier [28]. These conditions
are effective at eliminating impossible parameter sets while still being straightforward to
program.

Our first notion of feasibility for a distance-biregular graph is that an intersection array
is feasible if the halved intersection arrays satisfy Definition 3.4.1. However, we lose a lot
of information in only considering the halved graphs.

Let c1, . . . , cd be one line of the intersection array. Then the halved graph satisfies (i) if
for all 1 ≤ i ≤ bd−1

2 c we have

c2i−1c2i ≤ c2i+1c2i+2.

However, a stronger result is true for distance-biregular graphs, as observed by Delorme [55,
56] and Shawe-Taylor [85, 134].

3.4.3 Lemma. Let G =(β ∪ γ,E) be a distance-biregular graph with intersection array∣∣∣∣∣k; cβ1 , . . . , cβdβ
`; cγ1 , . . . , cγdγ

∣∣∣∣∣ .
For any 0 ≤ i ≤ dβ − 1, we have

cβi ≤ c
γ
i+i

and for any 0 ≤ i ≤ dγ − 1, we have

cγi ≤ c
β
i+1.

Proof. Let u be a vertex and let v be at distance i+ 1 from u. Let w be adjacent to u and
at distance i from v. We will let π(u) denote the cell of the partition that u lies in, and
similarly for w. Note that π(u) 6= π(w) .
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If x is adjacent to v and at distance i− 1 from w, it must be at distance i from u. Thus
we have

c
π(u)
i = |{x ∼ v : d(w, x) = i− 1}| ≤ |{x ∼ v : d(u, x) = i}| = c

π(w)
i+1 .

3.4.4 Example. Consider the intersection array∣∣∣∣8; 1, 1, 2, 4, 1, 8
9;

∣∣∣∣ .
We clearly see that c3 > c5, contradicting Lemma 3.4.3.

The halved intersection array is (64, 49, 32; 1, 8, 8), which does have the desired property
that c∗1 ≤ c∗2 ≤ c∗3 and b∗0 ≥ b∗1 ≥ b∗2. In fact, this intersection array satisfies all the criteria
in Definition 3.4.1, even though a distance-regular graph with these parameters does not
exist.

Condition (ii) is also weaker when computing k∗i for the halved graph rather than kπi
for the corresponding cell of the partition.

3.4.5 Example. Consider the intersection array∣∣∣∣2; 1, 1, 3, 2
6;

∣∣∣∣ .
We can see that

k3 =
2 · 5 · 1
1 · 1 · 3

=
10

3

is not an integer.

On the other hand, the halved graph has intersection array (10, 3; 1, 6), which is the
intersection array of the Clebsch graph.

Condition (iii) is equivalent whether we compute the multiplicities of the halved graphs
or the original distance-biregular graph.

Let G =(β ∪ γ,E) be a distance-biregular graph, let d be the covering radius of β, and
let d∗ = bd2c. Recall that

mπ
θ =

|β|
ψ(θ)

where

ψ(x) =

d∑
i=0

Fi(θ)

ki
Fi(x) .
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3. DISTANCE-BIREGULAR GRAPHS

If θ is a non-zero eigenvalue of G, then so is −θ, and F2(θ) = F2(−θ) is an eigenvalue of
the halved graph. We can compute the multiplicity of F2(θ) in the halved graph by defining

φ(x) =
d∗∑
i=0

F2i(θ)

k2i
F2i(x)

and proceeding the same way in the proof of Theorem 2.7.2 to get

m∗θ =
|β|
φ(θ)

+
|β|

φ(−θ)
=

2 |β|
φ(θ)

since F2(−θ) is the same eigenvalue of the halved graph with the same multiplicity. Note
that

ψ(θ) + ψ(−θ) = 2φ(θ) ,

so the multiplicity of F2(θ) is an integer in the halved graph if and only if the bipartite
multiplicity of θ is an integer in G.

There is an additional feasibility condition coming from the halved graphs that

b∗i−1 =
b2i−1b2i−2

c2

and
c∗i+1 =

c2i+1c2i+2

c2

are positive integers.
However, most of these criteria only consider a single cell of the partition at a time.

To have a better definition of feasible intersection arrays for distance-biregular graphs, we
want to know when the two lines of an intersection array are compatible.

3.5 Odd Distance Polynomials

The proof of Lemma 3.1.3 defined F γ3 to be equal to F β3 . This can be done more generally,
motivating the introduction of another families of polynomials.

Let G =(β ∪ γ,E) be a distance-biregular graph of diameter d with d possibly infinite.
Let d∗ = bd2c. Consider the sequence of distance polynomials F π0 , . . . , F

π
d+1 associated to

one cell of the partition π. For 0 ≤ i ≤ d∗, we define Ii(x), the odd distance polynomials
associated to π, by

Iπi
(
x2
)
x = F π2i+1(x) .

For 0 ≤ i ≤ d∗ − 1, we have

x2Ii
(
x2
)
x = x(xF2i+1(x))

= b2ixF2i(x) + c2i+2xF2i+2(x)

= b2ib2i−1F
π
2i−1(x) +(b2ic2i+1 + c2i+2b2i+1)F2i+1(x) + c2i+2c2i+3F2i+3(x)

= b2ib2i−1Ii−1

(
x2
)
x+(b2ic2i+1 + c2i+2b2i+1) Ii

(
x2
)
x+ c2i+2c2i+3Ii+1

(
x2
)
x.
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The distance biadjacency matrix N2i+1 is the |β| × |γ| matrix where the (u, v)-entry is
one if u and v are at distance 2i+ 1 and zero otherwise. Then

A2i+1 =

(
0 N2i+1

NT
2i+1 0

)
.

Let Iβ0 , . . . , I
β
d∗ be the odd distance polynomials associated to β, and Iγ0 , . . . , I

γ
d∗ be the

odd distance polynomials associated to γ. For 0 ≤ i ≤ d∗, we have

Iβi
(
NNT

)
N = N2i+1

and
Iγi
(
NTN

)
NT = NT

2i+1.

But since Iβi and Iγi are polynomials of A, and A is a symmetric matrix, they must be
symmetric too. Thus we have

Iβi
(
A2
)
A = A2i+1 = Iγi

(
A2
)
A.

This suggests a relationship between the intersection coefficients from the two cells of
the partition. This relationship can be proven combinatorially, as done by Delorme [55, 56]
and Shawe-Taylor [134].

3.5.1 Proposition (Delorme [55, 56], Shawe-Taylor [134]). LetG =(β ∪ γ,E) be a distance-
biregular graph of diameter d with intersection array∣∣∣∣∣k; 1, cβ2 , . . . , cβdβ

`; 1, cγ2 , . . . , cγdγ

∣∣∣∣∣ .
For all 1 ≤ i ≤ bd−1

2 c, we have

cβ2ic
β
2i+1 = cγ2ic

γ
2i+1

and
bβ2i−1b

β
2i = bγ2i−1b

γ
2i.

Proof. Let u and v be at distance 2i + 1. They lie in different cells of the partition, so
counting the number of paths of length 2i+ 1 between them gives us

cβ2 c
β
3 · · · c

β
2ic

β
2i+1 = cγ2c

γ
3 · · · c

γ
2ic

γ
2i+1,

which we can apply inductively to see that cβ2ic
β
2i+1 = cγ2ic

γ
2i+1.

Similarly, using Lemma 2.4.4 to count the number of pairs of vertices at distance 2i+ 1,
we have

|β|
kbβ1 b

β
2 · · · b

β
2i−1b

β
2i

cβ2 c
β
3 · · · c

β
2ic

β
2i+1

= |β| kβi = |γ| kγi = |γ|
`bγ1b

γ
2 · · · b

γ
2i−1b

γ
2i

cγ2c
γ
3 · · · c

γ
2ic

γ
2i+1

.

Since k |β| = ` |γ| , by our previous work we can use induction to establish that bβ2i−1b
β
2i =

bγ2i−1b
γ
2i.
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3. DISTANCE-BIREGULAR GRAPHS

As noted by Shawe-Taylor [134] in Chapter 3 of his thesis, this allows us to compute
one set of intersection coefficients from the other.

3.5.2 Theorem. Let G =(β ∪ γ,E) be a distance-biregular graph with intersection array∣∣∣∣∣k; 1, cβ2 , . . . , cβdβ
`; 1, cγ2 , . . . , cγdγ

∣∣∣∣∣ .
Then cγ2 , . . . , c

γ
dγ

can be expressed in terms of k, `, and cβ2 , . . . , c
β
dβ
.

Proof. We have that bγ0 = `, cγ1 = 1, and bγ1 = k − 1, so we may suppose by induction that

bγ0 , . . . , b
γ
2i−1, c

γ
1 , . . . , c

γ
2i−1 are determined by k, `, and cβ1 , . . . , c

β
2i−1. If i ≤ bdβ−1

2 c, we use
Proposition 3.5.1 to compute that

cγ2i = `− bγ2i = `−
bβ2ib

β
2i−1

bγ2i−1

and

cγ2i+1 =
cβ2ic

β
2i+1

cγ2i

are determined by k, `, and cβ1 , . . . , c
β
2i+1.

It remains to show this applies to the entire sequence cγ1 , . . . , c
γ
dγ
. We have

2

⌊
dβ + 1

2

⌋
+ 1 ≥ dβ − 1 + 1 ≥ dγ − 1,

and we can define cdγ to be k if dγ is odd and ` if dγ is even.

3.6 Feasibility Conditions

We are now ready to give a working definition of feasible intersection array for distance-
biregular graphs.

3.6.1 Definition. The intersection coefficients 0 = c0, c1, c2, . . . , cd are feasible for a (k, `)-
distance-biregular graph if:

(i) The numbers k0, . . . , kd defined recursively by

k2i+1 =
(k − c2i) k2i

c2i+1

and

k2i+2 =
(`− c2i+1) k2i+1

c2i+2

are positive integers;
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(ii) For any 0 ≤ i ≤ bd2c, the numbers

(k − c2i)(`− c2i+1)

c2

and
c2i+1c2i+2

c2

are positive integers;

(iii) The multiplicities as defined in Theorem 2.7.2 are positive integers;

(iv) The second array(c′1, c
′
2, . . . , c

′
d) as defined in Theorem 3.5.2 has positive integer values

c′1, c
′
2, . . . , c

′
d;

(v) Swapping the place of k and `, the values of (c′1, c
′
2, . . . , c

′
d) satisfy (i), (ii), and (iii);

and

(vi) For any 1 ≤ i ≤ d− 1, we have
ci ≤ c′i+1

and
c′i ≤ ci+1.

This is comparable to the definition of feasible intersection arrays given by Godsil and
Shawe-Taylor [85] and Shawe-Taylor [134]. Condition (ii) is not included in either of those
feasibility criteria, and Chapter 3 of Shawe-Taylor’s thesis [134] includes an additional
spectral condition.

The feasibility conditions we’ve given here are relatively minimal, but they are powerful.
We demonstrate this by using Definition 3.4.1 to characterize distance-biregular graphs
where one cell of the partition has valency two. This characterization was previously given
by Mohar and Shawe-Taylor [118] using combinatorial arguments about the halved graphs.
We show it more directly using our definition of feasibility.

3.6.2 Theorem. Let G be a distance-biregular graph. If G has vertices of valency two,
then G is K2,k or the subdivision graph of either a Moore graph or a generalized polygon.

Proof. Let G = (β ∪ γ,E) be a distance-biregular graph, and suppose without loss of
generality that vertices in γ have valency two. Then cγ2 is either one or two.

If cγ2 = 2, then the intersection array must have the form∣∣∣∣k; 1, k
2; 1, 2

∣∣∣∣ ,
so G = K2,k.
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3. DISTANCE-BIREGULAR GRAPHS

Otherwise let H be the halved graph of G induced by the vertex set of β. We can think
of elements of γ as two-element subsets of β, where two vertices are adjacent in H if and
only if they belong to the same element of γ. In other words, γ is the set of edges of H.
Then G, the incidence graph of vertices and edges of H is equivalent to the subdivision
graph of H.

We can write the intersection array for G as either∣∣∣∣k; 1, 1, cβ3 , . . . , cβ2d
2; 1, 1, cγ3 , . . . , cγ2d

∣∣∣∣ (3.6.1)

or ∣∣∣∣k; 1, 1, cβ3 , . . . , cβ2d−1

2; 1, 1, cγ3 , . . . , cγ2d−1 cγ2d

∣∣∣∣ . (3.6.2)

By Theorem 3.2.3 we know H is distance-regular, and we let its intersection array be(
b∗0, b

∗
1, . . . , b

∗
d−1; c∗1, . . . , c

∗
d

)
. For 1 ≤ i ≤ d, since bβ2i−1 6= 0, we see that

bβ2i−1 = 1 = cβ2i−1.

By Theorem 3.2.3 we have

c∗i =
cβ2ic

β
2i−1

cβ2
= c2i.

Then for 0 ≤ i ≤ d− 1, we have

b∗i =
bβ2ib

β
2i+1

cβ2
= bβ2i = k − cβ2i = k − c∗i .

This tells us that a∗i = 0 for 0 ≤ i ≤ d− 1.
Now, for 1 ≤ i ≤ d, since bγ2i 6= 0, we know that

bγ2i = 1 = cγ2i.

By Proposition 3.5.1, we have

cγ2i+1 = cγ2ic
γ
2i+1 = cβ2ic

β
2i+1 = cβ2i

and
cγ2i+1 = k − bγ2i+1 = k − bγ2i+1b

γ
2i+2 = k − bβ2i+1b

β
2i+2 = k − bβ2i+2 = cβ2i+2.

This gives us
1 = cβ2 = cβ4 = · · · = cβ2d−2.

If the intersection array is in the form of Equation 3.6.2, we can apply Proposition 3.5.1
once more to get cβ2d = cβ2d−2 = 1. Then we have

1 = c∗1 = · · · = c∗d,
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and since
0 = a∗0 = · · · = a∗d−1,

we see that G is a Moore graph.
If the intersection array is in the form of Equation 3.6.1, we have

c∗d = cβ2dc
β
2d−1 = k.

Then since
0 = a∗0 = · · · = a∗d−1 = a∗d,

we know G is bipartite, and since

1 = c∗1 = · · · = c∗d−1,

we conclude that G is a generalized polygon.

This proof takes repeated advantage of the fact that, since bi 6= 0 and one of the valencies
is two, we know that half the intersection coefficients must be one. For larger valencies,
we would not have that information. However, since Biggs, Boshier, and Shawe-Taylor [22]
have characterized distance-regular graphs with valency three, there is hope for a similar
characterization for distance-biregular graphs.

3.6.3 Problem. Characterize the distance-biregular graphs where one cell of the partition
has valency three.

Besides allowing us to characterize special cases of distance-biregular graphs, the other
main use for a notion of feasibility is to let us generate tables of feasible intersection arrays.
Specifically, given valencies k and ` and a diameter d, we can use a computer to generate
all the possible intersection arrays that satisfy the conditions of Definition 3.6.1. A table of
feasible intersection arrays with d = 4 and 3 ≤ k, ` ≤ 12 is found in Appendix A.

Of particular interest are the intersection arrays for distance-biregular graphs that are
not partial geometries or distance-regular, since they have been considered far less. A table
of feasible intersection arrays with d = 4, cβ2 ≥ 2, and 3 ≤ k < ` ≤ 36 is found in Appendix B

3.7 Constructions from Finite Geometry

Several of the parameter sets in Appendix B belong to infinite families of distance-biregular
graphs arising from finite geometry. The definitions and results here are standard, and can
be found in references such as Ball and Weiner [12] or Van Lint and Wilson [112].

For a prime power q and a positive integer n, let V (n, q) be a vector space of dimension
n over GF (q). The projective geometry PG(n− 1, q) is the geometry where the points are
1-dimensional subspaces of V (n, q), the lines are 2-dimensional subspaces, the planes are
3-dimensional subspaces, etc.
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The affine geometry AG(n, q) is the geometry where the points are the cosets of V (n, q)
of dimension 0, the lines are cosets of dimension 1, the planes are cosets of dimension 2,
and so on to the hyperplanes, which are cosets of dimension n− 1.

Affine geometries lead to another well-known family of quasi-symmetric 2-designs.

3.7.1 Example. Let q be a prime power and consider the affine geometry AG(n, q). Let β
be the set of the points, and let γ be the set of hyperplanes, with the obvious incidence
relation of inclusion. Every hyperplane contains qn−1 points, and the number of hyperplanes
incident to a point is equal the number of (n− 1)-dimensional subspaces of V, which is [n]q .

The number of hyperplanes containing a pair of points is the number of hyperplanes
containing the unique line between them, which is [n− 1]q . Additionally, any non-disjoint

hyperplanes intersect each other in an (n− 2)-dimensional affine space, so there are qn−2

common points.
Let u be a point and let v be a point at distance four from u. There is a unique line

containing u and v, and there is a unique (n− 1)-dimensional subspace U that does not
contain this line. This gives us a unique coset that contains v but not u. It follows there
are

[n]q − 1 =
qn − 1

q − 1
− q − 1

q − 1
= q

(
qn−1 − 1

q − 1

)
= q [n− 1]q

affine hyperplanes incident to v and at distance three from u.
From this, we get the intersection array∣∣∣∣ [n]q ; 1, [n− 1]q , qn−1

qn−1; 1, qn−2, q [n− 1]q , qn−1

∣∣∣∣ .
An arc A of degree r is a set of r + 1 points in PG(2, q) with the property that every

line is incident with at most r points of A. If A is an arc, we can fix a point p in A. There
are q+ 1 lines through p, each of which is incident to at most r− 1 other points of A. Thus
an arc can have at most

1 +(q + 1)(r − 1) = rq − q + r

points in it. If equality holds, we call A a maximal arc, and every line meets A at 0 or r
points.

Maximal arcs lead to a construction of distance-biregular graphs defined by Delorme [55].
The description here has been been considerably expanded.

3.7.2 Example. Consider GF (q). Let V be a three-dimensional vector space over GF (q),
let A be a maximal arc in PG(2, q) of degree r, and let s = rq − q + r. Let Â be the dual
of the maximal arc, that is, Â is a set of s two-dimensional subspaces of V such that any
one-dimensional subspace of V is incident with 0 or r elements of Â.

We define a bipartite graph where the points are the q3 points of V and the blocks are
the qs elements formed by the cosets of the two-dimensional subspaces of Â. Note that
each block contains q2 points, and each point lies in s blocks.
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Fix a block x0. Without loss of generality, we can assume it is an element of Â. Suppose
that x2 is at distance two from x0, so x0 and x2 share a point u1. Note that x0 − u1 and
x2− u1 are two-dimensional subspaces, so they intersect in a one-dimensional vector space,
and therefore x0 and x2 have q points in common. Let u3 be a point not on x0. The blocks
at distance four from x0 are the cosets of x0, and u3 lies in the unique coset x0 + u3. This
gives us the line in the intersection array∣∣q2; 1, q, s− 1, q2

∣∣ .
Fix a point u0. Without loss of generality, we can assume it is the origin. Then the

blocks at distance one from u0 are the elements of Â and the blocks at distance three are
the cosets. If u2 is a point at distance two from u0, then u0 and u2 define a one-dimensional
subspace of V, so by definition, we know that both points lie in r common elements of Â.

Let x3 be at distance three from u0. Since x3 is a coset of Â, we may write it x1 + u,
where x1 ∈ Â and u lies in the one-dimensional subspace dual to x1. Then if y1 6= x1 is
another element of Â, we must have u ∈ y1, so y1 − u and x3 − u are both two-dimensional
subspaces, and thus they intersect in a line. On the other hand, each line that meets
elements of Â meet them r times. Therefore, x3 − u, and by extension x3, are incident to
q(s−1)
r points incident to elements of Â.
Pulling this together, we get the intersection array∣∣∣∣ s; 1, r, q(s− 1) /r, s

q2; 1, q, s− 1, q2

∣∣∣∣ .
Clearly, a requirement for a maximal arc to exist is that r divides q. Denniston [60]

proved that a maximal arc exists whenever q and r are both powers of two. Ball, Blokhuis,
and Mazzocca [11, 10] showed that these were in fact the only maximal arcs.
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Chapter 4

Characterizations of
Distance-Biregular Graphs
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Any characterization of locally distance-regular vertices applied globally gives a charac-
terization of distance-regular or distance-biregular graphs. The problem with this approach
is that local distance-regularity is a strong property, and it can be difficult to come up
with alternate characterizations. One solution is to come up with a weaker notion of local
distance-regularity that, applied globally, is still strong enough to force the graph to be
distance-regular or distance-biregular.

Fiol, Garriga, and Yebra [74] introduced the notion of pseudo-distance-regular vertices,
and proved that if every vertex in a graph is pseudo-distance-regular, then every vertex is
locally distance-regular. Thus Theorem 2.4.1 of Godsil and Shawe-Taylor [85] applies to
prove that the graph is distance-regular or distance-biregular. More recently, Fiol [71] gave
a direct proof that if every vertex is pseudo-distance-regular, the graph is distance-regular
or distance-biregular. Fiol, Garriga, and Yebra [74] gave an alternate characterization
of pseudo-distance-regular vertices to characterize distance-regular graphs, and Fiol and
Garriga [73] built on that work to give another characterization of pseudo-distance-regular
vertices, and another characterization of distance-regular graphs.

In this chapter, we set up pseudo-distance-regular vertices in a different way, which
we use to derive new proofs of the results in Fiol [71], Fiol, Garriga and Yebra [74], and
Fiol and Garriga [73]. We further extend their results to obtain new characterizations of
distance-biregular graphs.

Fiol [70] asked for a distance-biregular analogue to the characterization of Fiol, Garriga,
and Yebra [74]. We provide that with Theorem 4.4.3. Using this characterization, we
investigate the problem of when a bipartite graph with distance-regular halved graphs is
distance-biregular. We also observe that a counterexample of Delorme [55] gives a negative
answer to another question of Fiol [70].

Fiol [72] previously extended the characterization of Fiol and Garriga [73] to distance-
biregular graphs. We improve on that characterization in Theorem 4.6.4. Further, we
use our characterization to consider the problem of when a graph with the spectrum of
a distance-biregular graph is itself distance-regular, an analogue of a problem studied by,
among others, Abiad, Van Dam, and Fiol [3], Van Dam and Haemers [45, 46], Haemers [88],
and Haemers and Spence [91].

The results in this chapter can also be found in the author’s paper [109].

4.1 Spectrally Extremal Vertices

Let G be a graph with a vertex u. The eigenvalue support of u, denoted Φu, is the set

{θr : Ereu 6= 0} .

The eccentricity of a vertex bounds the size of the eigenvalue support, a result that can
be found, for example, in Section 5.2 of Coutinho and Godsil [42]. This result can also be
found in Fiol, Garriga, and Yebra [74], though the set-up and proof are different.
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4.1. SPECTRALLY EXTREMAL VERTICES

4.1.1 Lemma. Let u be a vertex in graph G with eccentricity e. Then

|Φu| ≥ e+ 1.

Proof. Let U be the cyclic A-module generated by eu, and let

S := {Ereu : θr ∈ Φu} .

Note that S is a set of eigenvectors corresponding to distinct eigenvalues in the support of
u.

Recall that for any eigenvalue θr, there exists a polynomial fr such that fr(A) = Er,
and therefore S is contained in U . For i ≥ 0, we use the spectral decomposition to see that

Aieu =
∑
θr∈Φu

Ereu,

and the elements of S span U . Since the elements of S are linearly independent, they form
a basis for U .

Let 0 ≤ r ≤ e, and let v be at distance r from u. Then

evA
reu 6= 0,

but for all s < r, we have

evA
seu = 0.

Thus Areu cannot be expressed as a linear combination of A0eu, . . . , A
r−1eu. It follows that

eu, Aeu, . . . , A
eeu are linearly independent, so U has dimension at least e+ 1.

The global version of this result is even better known and can be found, for instance, in
Section 2. 5 of Godsil [80].

4.1.2 Corollary. A graph with diameter d has at least d+ 1 distinct eigenvalues.

Let u be a vertex with eccentricity e. The vertex u is spectrally extremal if |Φu| = e+ 1.
Equivalently, u is spectrally extremal if there exists a polynomial pe+1 of degree e+ 1 such
that

pe+1(A) eu =
∑
θr∈Φu

pe+1(θr)Ereu = 0.

This allows us to rewrite our definition of locally distance-regular vertices by replacing
the condition that F ue+1 exists with the condition that |Φu| = e + 1. In other words, u is
locally distance-regular if it is spectrally extremal and there exists a sequence of orthogonal
polynomials F u0 , . . . , F

u
e such that for all 0 ≤ i ≤ e, the polynomial F ui (x) satisfies

F ui (A) eu = Aieu.
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

4.2 Pseudo-Distance-Regular

One way to prove Theorem 2.4.1, sketched by Godsil [81], relies on the following result.

4.2.1 Lemma. Let G be a graph and let u be a locally distance-regular vertex with valency
ku. If v is adjacent to u, then for i ≥ 0 we have

〈eu, Aiev〉 =
1

ku
〈eu, Ai+1eu〉.

Proof. Let U be the cyclic A-module generated by eu. Let F0, . . . , Fe be the sequence of
local distance polynomials associated to u. For 0 ≤ i ≤ e, let zi = Fi(A) eu. Because U has
dimension |Φu| , the linearly independent vectors z0, . . . , ze form a basis for U .

If v is adjacent to u, then the projection of v on U is

e∑
i=0

〈ev, zi〉
〈zi, zi〉

zi =
1

〈z1, z1〉
z1 =

1

ku
Aeu.

Therefore, for all i ≥ 0, we have

〈ev −
1

ku
Aeu, A

ieu〉 = 0,

and so

〈ev, Areu〉 =
1

ku
〈eu, Ai+1eu〉.

In the proof, we used the fact that u was spectrally extremal to obtain the basis
z0, . . . , ze. We also used the fact that u was locally distance-regular when we concluded
that 〈eu, zi〉 = 0 unless i = 1. This conclusion doesn’t require that zi be a 01-vector.

A vertex u of eccentricity e is pseudo-distance-regular if |Φu| = e + 1 and there exists
a sequence of polynomials fu0 , . . . , f

u
e such that for all 0 ≤ i ≤ e, the polynomial fui (x) has

degree i, and the nonzero entries of fui (A) eu are precisely the entries indexed by vertices
at distance i from u. Note that this sequence of pseudo distance polynomials is orthogonal
under the u-local inner product. Pseudo-distance-regular vertices were introduced by Fiol,
Garriga, and Yebra [74] with a different definition.

In truth, the nonzero entries are not as arbitrary as our definition makes them sound.
Let u be a pseudo-distance-regular vertex of eccentricity e, and for 0 ≤ i ≤ e let

zi = fui (A) eu

be nonzero precisely on the entries indexed by vertices at distance i from u. Let U be the
cyclic A-module generated by eu. Clearly z0, . . . , ze forms a basis for U, but so too do a set
of eigenvectors with distinct eigenvalues. In particular, we can write the Perron vector p as
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4.2. PSEUDO-DISTANCE-REGULAR

Figure 4.1: Pseudo-distance-regular

a linear combination of z0, . . . , ze. Since p has all positive entries, and the nonzero entries
of z0, . . . , ze are disjoint, it follows that for all 0 ≤ i ≤ e, the nonzero entries of zi must be
some scalar multiple of p.

Fiol, Garriga, and Yebra [74] defined pseudo-distance-regular vertices by fixing this
scalar and giving a combinatorial interpretation of the intersection coefficients. Later in the
same paper, they proved that a vertex was pseudo-distance-regular if and only if a sequence
of pseudo-distance-polynomials with a fixed normalization exists. Although we don’t fix
the normalization in our definition, a vertex is pseudo-distance-regular in the sense defined
here if and only if it is pseudo-distance-regular as defined by Fiol, Garriga, and Yebra [74].

Every locally distance-regular vertex is pseudo-distance-regular, and we will show that
if every vertex in a graph is pseudo-distance-regular, they are all locally distance-regular.
However, there are vertices which are pseudo-distance-regular and not locally distance-
regular.

4.2.2 Example. Consider the graph obtained by taking the path on five vertices and cloning
the centre vertex n times. Figure 4.1 shows the result of cloning the centre vertex twice.

Let u be one of the cloned centre vertices. We define

fu1 (x) = x,

fu2 (x) = x2 − 2,

and
fu3 (x) = xfu2 (x)−(2n+ 1) fu1 (x) .

For a vertex v, we have

eTv f
u
2 (A) eu =


1 v end vertex

2 v centre vertex

0 otherwise

.

Further, since
fu3 (A) eu = 0,

we see that v is pseudo-distance-regular.
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

4.3 Globally Pseudo-Distance-Regular

We wish to give a new proof that if every vertex in a graph is pseudo-distance-regular,
then the graph is distance-regular or distance-biregular. Key to the proof is a variation of
Lemma 4.2.1 and the notion of cospectrality.

Two graphs are cospectral if they share the same spectrum. Two vertices u and v of
a graph G are cospectral if G \ u is cospectral to G \ v. There is a long list of equivalent
characterizations of cospectral vertices that can be found in Godsil and Smith [86], but we
are primarily interested in the following equivalence.

4.3.1 Theorem (Godsil and Smith [86]). Let G be a graph with vertices u, v. The following
are equivalent:

(a) Vertices a and b are cospectral;

(b) For all i ≥ 0, we have

eTuA
ieu = eTv A

iev;

and

(c) For every spectral idempotent Er, we have

eTuEreu = eTv Erev.

By condition (c), we know that cospectral vertices u and v have the same eigenvalue
support. Further, for any polynomials f, g we have

〈f, g〉u =
∑
θr∈Φ

eTuEreuf(θr) g(θr) =
∑
θr∈Φ

eTv Erevf(θr) g(θr) = 〈f, g〉v.

Thus, cospectral vertices have the same inner product.

The proof of Lemma 4.2.1 goes through with pseudo-distance-regular vertices.

4.3.2 Lemma. Let G be a graph and let u be a pseudo-distance-regular vertex. Let ku be
the valency of u. If v is adjacent to u, then for i ≥ 0 we have

〈eu, Aiev〉 =
1

ku
〈eu, Ai+1eu〉.

This gives us the following corollaries.

4.3.3 Corollary. Let G be a graph that is pseudo-distance-regular at vertices u and v,
with v adjacent to u. If the valency of u is the same as the valency of v, then u and v are
cospectral.
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4.3. GLOBALLY PSEUDO-DISTANCE-REGULAR

Proof. For all i ≥ 0, we have

1

ku
〈eu, Ai+1eu〉 = 〈ev, Aieu〉 = 〈eu, Aiev〉 =

1

kv
〈ev, Ai+1ev〉.

Since ku = kv, by Theorem 4.3.1, vertices u and v are cospectral.

4.3.4 Corollary. Let G be a graph that is pseudo-distance-regular at vertices u, v and w,
with u adjacent to v and w. If the valency of v is the same as the valency of w, then v and
w are cospectral.

Proof. Let k be the valency of u, and let ` be the valency of vertices v and w. Since u is
pseudo-distance-regular, for i ≥ 0, we have

〈eu, Aiev〉 =
1

k
〈eu, Ai+1eu〉 = 〈eu, Aiew〉.

On the other hand, since v is pseudo-distance-regular, we have

〈eu, Aiev〉 = 〈ev, Aieu〉 =
1

`
〈ev, Ai+1ev〉.

Since w is also pseudo-distance-regular, we have

1

`
〈ev, Ai+1ev〉 = 〈eu, Aiew〉 =

1

`
〈ew, Ai+1ew〉,

and by Theorem 4.3.1, v and w are cospectral.

We are now ready to prove the main result of this section.

4.3.5 Theorem. Let G be a graph that is pseudo-distance-regular at every vertex. Then
G is distance-regular or distance-biregular.

Proof. Let u be a vertex of eccentricity e. We can assume without loss of generality that if
u has pseudo-distance polynomials fu0 , . . . , f

u
e and v is at distance i from u, then

eTv f
u
i (A) eu = eTv p.

Then every vertex adjacent to u has the same entry of the Perron vector. Since our choice
of u was arbitrary, either the Perron vector is constant, or there is a partition of the vertices
into two independent sets such that the Perron vector is constant on the cells of the partition.
For a vertex v, we let kv denote the valency of v.

If the Perron vector is constant, we have

ρeTv p = eTv Ap =
∑
w∼v

eTwp = kve
T
v p,
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

so the graph is ρ-regular. By Corollary 4.3.3, every vertex of G is cospectral and since every
vertex is spectrally extremal, every vertex has the same eccentricity d. Further, the graph
inner product is the same as the vertex inner product for any vertex.

Consider the sequence of polynomials F0, . . . , Fd defined by

Fi(x) =
√
|V (G)|fui (x)

for 0 ≤ i ≤ d. This is, up to normalization, the unique sequence of orthogonal polynomials
with respect to the G-inner product, so it is also a sequence of pseudo-distance polynomials
for every vertex. The normalization for u tells us that for any 0 ≤ i ≤ d, we have

||Fi||2u = |{v ∈ V (G) : d(u, v) = i}| = eTuAi1eu = Fi(ρ)

since G is regular and thus 1 is a polynomial of A. Since the normalization does not depend
on the choice of vertex, we must have that F0, . . . , Fd are the distance-polynomials for G.
Thus G is distance-regular.

Now suppose that G is bipartite and the Perron vector is constant on the cells of the
partition. For u ∈ β we have

ρeTup = eTuAp = kue
T
v p,

so letting pβ be the value on the vertices in β, and pγ be the value of p on the vertices in
γ, we have

ρ

ku
=
pβ
pγ
,

and in particular the valency of vertices in β are constant. The same argument applies for
γ, so G is semiregular.

By Corollary 4.3.4, every vertex in the same cell of the partition is cospectral. Let d be
the covering radius of β, let u ∈ β, and let F β0 , . . . , F

β
d be the sequence of pseudo-distance

polynomials for u normalized such that for all 0 ≤ i ≤ d, we have

||F β2i||
2

u =
1

2 |β|
F β2i(ρ)

and

||F β2i+1||
2

u
=

√
`

2 |β|
√
k
F β2i+1(ρ) .

We can similarly let d′ be the covering radius of γ, let v ∈ γ, and define the sequence of
pseudo-distance polynomials for v normalized such that

||F γ2i+1||
2

v
=

√
k

2 |γ|
√
`
F γ2i+1(ρ)
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4.3. GLOBALLY PSEUDO-DISTANCE-REGULAR

Figure 4.2: Maximal eccentricity, minimal eigenvalue support

and

||F γ2i||
2
u =

1

2 |γ|
F γ2i(ρ) .

These are the distance polynomials for the cells of the partition, so G is distance-
biregular.

It is not difficult to distinguish between when a graph is distance-regular and when it is
distance-biregular. In particular, if every vertex is pseudo-distance-regular and the graph
is regular, then it is distance-regular. If it is bipartite, then it is distance-biregular. If it is
regular and bipartite, it is both distance-regular and distance-biregular.

The condition that every vertex is spectrally extremal is not strong enough to force the
graph to be distance-regular or distance-biregular.

4.3.6 Example. Consider the graph G in Figure 4.2. Its spectrum is
(

1

2
+

√
33

2

)(1)

, 2(2),(−1)(5) ,

(
1

2
−
√

33

2

)(1)
 ,

and every vertex has eccentricity three even though the graph is not distance-regular or
distance-biregular.
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

4.4 Diametral Characterization

Characterizations of pseudo-distance-regular vertices extend to distance-regular and distance-
biregular graphs. Our characterization for distance-regular graphs improves the characteri-
zation of Fiol, Garriga, and Yebra [74], and our characterization of distance-biregular graphs
is new. The following characterization of pseudo-distance-regular vertices was proved by
Fiol, Garriga, and Yebra [74], though our formulation and proof are new.

4.4.1 Theorem. Let G be a connected graph with vertex u of eccentricity e. Then u is
pseudo-distance-regular and only if |Φu| = e + 1 and there exists a polynomial p of degree
e such that p(A) eu is nonzero precisely on the vertices at distance e from u.

Proof. By definition, if G is pseudo-distance-regular at u then the pseudo-distance polyno-
mial pe(A) eu has the desired property. Thus we may let u be a spectrally extremal vertex
with eccentricity e and suppose there exists a polynomial p of degree e such that p(A) eu is
nonzero precisely on the vertices at distance e from u.

Let p0, . . . , pe−1 be a sequence of orthogonal polynomials with respect to the u-inner
product. If 0 ≤ i < e then for any vertex v at distance e from u, we have eTv A

ieu = 0, and
therefore

〈p, pi〉 = eTu p(A) pi(A) eu = 0,

Since p is orthogonal to p0, . . . , pe−1, we may append it to our sequence of polynomials as
pe. We also append

pe+1(x) =
∏
θr∈Φu

(x− θr) .

to our sequence.
It is true by our definitions that the only nonzero entries of pe+1(A) eu and pe(A) eu are

indexed by vertices at distance, respectively, e + 1 and e from u. Proceeding inductively,
we may assume that there exists some i ≤ e such that for all j ≥ i, the only nonzero entries
of pj(A) eu are at distance j from u.

Then by the three-term recurrence for orthogonal polynomials, there exist coefficients
bi−1, ai, ci+1 such that

Api(A) eu = bi−1pi−1(A) eu + aipi(A) eu + ci+1pi+1(A) eu.

On the other hand,

eTv Api(A) eu =
∑
w∼v

eTwpi(A) eu.

By the inductive hypothesis, the nonzero entries of pi+1(A) eu and pi(A) eu, are indexed by
vertices at distance, respectively, i+ 1 and i from u. Thus, we must have that the nonzero
entries of pi−1(A) eu can only be at distance i − 1 from u. Since pi−1 is a polynomial of
degree i − 1, we conclude pi−1(A) eu is nonzero precisely on the vertices at distance i − 1
from u.
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Fiol, Garriga, and Yebra [74] applied this globally to prove that a graph with diameter
d is distance-regular if and only if every vertex has eccentricity d and eigenvalue support of
size d + 1, and there exists a polynomial p of degree d such that p(A) = Ad. We improve
this characterization.

4.4.2 Theorem. Let G be a connected graph with diameter d. Then G is distance-regular
if and only if G has d + 1 distinct eigenvalues and there exists a polynomial f of degree d
such that f(A) = Ad.

Proof. A distance-regular graph clearly has the desired properties, so assume that G has
d+ 1 distinct eigenvalues and a polynomial f of degree d exists such that f(A) = Ad.

We first prove that every vertex in G has eccentricity d. Suppose otherwise, and let u
be a vertex of eccentricity d− 1. Then we have

0 = Adeu = f(A) eu =
∑
θr∈Φu

f(θr)Ereu,

and since Ereu are eigenvectors for distinct eigenvalues, they must be linearly independent.
Thus every eigenvalue in Φu is a root of f. By Lemma 4.1.1 we know that |Φu| ≥ d, and
since f(A) is nonzero, there must be precisely one eigenvalue θs of G which is not a root of
f . Thus we have

f(A) = f(θs)Es.

Let v be a vertex of eccentricity d. By Lemma 4.1.1, all d+ 1 eigenvalues are in Φv. On the
other hand, we have

f(θs) eTv Esev = eTv f(A) ev = eTv Adev = 0.

Since f(θs) 6= 0, this implies that eTv Esev = 0, and since the spectral idempotents are
positive semidefinite, this means that θs /∈ Φv, which is a contradiction. Thus every vertex
in G has eccentricity d.

Let u be an arbitrary vertex. Since there are only d+ 1 distinct eigenvalues, u must be
spectrally extremal, and by assumption we have

f(A) eu = Adeu,

so by Theorem 4.4.1, we see u is pseudo-distance-regular. Thus every vertex is pseudo-
distance-regular. In fact, if we apply the proof of Theorem 4.4.1 using the graph inner
product instead of the vertex inner product, we see that not only is every vertex pseudo-
distance-regular, but it has the same sequence of pseudo-distance polynomials. Then by
Theorem 4.3.5, the graph G is distance-regular.

Fiol [70] gave several characterizations of distance-regular graphs, including the charac-
terization of Theorem 4.4.2, and asked for distance-biregular analogues. We give such an
analogue with the following theorem.
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

4.4.3 Theorem. Let G = (β ∪ γ,E) be a connected bipartite graph with diameter d.
Then G is distance-biregular if and only if G has d+ 1 distinct eigenvalues and there exist
polynomials fβ and fγ of degree d such that for π ∈ {β, γ} , we have

fπ(A) Eπ = AdEπ.

Proof. These conditions clearly hold if G is distance-biregular, so we may assume that G
is a graph with d + 1 distinct eigenvalues and polynomials fβ, fγ . Assume without loss of
generality that d is the covering radius of β, and let d′ be the covering radius of γ.

We begin by showing that every vertex in β has eccentricity d and every vertex in γ has
eccentricity d′. If d′ = d, then the same argument as in the proof of Theorem 4.4.2 applies,
and so every vertex has eccentricity d. Thus, we can assume d′ = d− 1 and d is even.

Suppose there exists a vertex u ∈ β with eccentricity d− 2. Then since

0 = Adeu = fβ(A) eu,

we again see that every eigenvalue in Φu is a root of fβ. Since fβ(A) is nonzero, there must
be at most two eigenvalues θr, θs of G which are not roots of fβ. Then

fβ(A) = fβ(θr)Er + fβ(θs)Es.

Since d is even, the off-diagonal blocks of fβ(A) are zero and Lemma 2.6.5 tells us that
θr = −θs.

Let v ∈ β have eccentricity d. Then all d + 1 eigenvalues of G must be in Φv. On the
other hand, we have

0 = eTv f
β(A) ev = 2fβ(θr) eTvRrev 6= 0.

Therefore every vertex in β has eccentricity d, from which it immediately follows that every
vertex in γ has eccentricity d− 1.

Since there are only d+ 1 distinct eigenvalues, every vertex in β is spectrally extremal,
and for any vertex u ∈ β, we know

fβ(A) eu = Adeu,

so by Theorem 4.4.1, every vertex in β is pseudo-distance-regular.
If d′ = d, an analogous argument shows γ is pseudo-distance-regular. Otherwise, d′ =

d− 1. Because
fγ(A) Eγ = 0,

we see that for any vertex v ∈ γ, we must have |Φv| ≤ d = d′+1, so vertices in γ are spectrally
extremal. Further, since we have already shown that the set β is pseudo-distance-regular,
we know that there exists a polynomial pβd−1 of degree d−1 such that pβd−1(A) Eβ is nonzero

precisely on the vertices at distance d − 1 from vertices in β. But pβd−1 is symmetric, so

pβd−1(A) Eγ must also be nonzero precisely on the vertices at distance d− 1 from vertices in
γ. Then by Theorem 4.4.1 every vertex in γ is pseudo-distance-regular, so by Theorem 4.3.5,
the graph G is distance-biregular.
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4.5 Distance-Regular Halved Graphs

In Theorem 3.2.3, we proved that a distance-biregular graph has distance-regular halved
graphs. A natural question is to ask if the converse of Theorem 3.2.3 holds. That is, if
a bipartite graph has distance-regular halved graphs, is it distance-biregular? The short
answer is no, but there is a longer answer that uses the characterization of Theorem 4.4.3.

The path on four vertices has distance-regular halved graphs, but is not distance-
biregular. More generally, given a distance-biregular graph, we can remove an edge in
a four-cycle. The halved graphs are the same, but the resulting graph is not distance-
biregular.

Let G =(β ∪ γ,E) be a distance-biregular graph with biadjacency matrix N and halved
graphs Hβ, Hγ respectively. The adjacency matrix of the halved graphs are related to the
original graph by

NNT = cβ2A(Hβ) + k (4.5.1)

and

NTN = cγ2A(Hγ) + `. (4.5.2)

The earlier construction of breaking four-cycles no longer preserves this relationship, leading
to a rephrasing of our original question.

4.5.1 Question. If a bipartite graph has distance-regular halved graphs satisfying Equa-
tions 4.5.1 and 4.5.2, is it distance-biregular?

The short answer is still no.

4.5.2 Example. Consider the graph in Figure 4.3. It has spectrum{
3(1),
√

3
(4)
, 1(3),(−1)(3) ,

(
−
√

3
)(4)

,(−3)(1)

}
.

Since it has diameter 4, but 6 distinct eigenvalues, it cannot be distance-regular.

The halved graphs are isomorphic, so we speak of them with the singular H. Let N be
the biadjacency matrix. We have

NNT = 3I +A(H) ,

so the halved graph satisfies Equation 4.5.1.

Further, H has spectrum {
6(1), 0(4), (−2)(3)

}
,

so since it is a connected, regular graph with diameter two and three distinct eigenvalues,
it is strongly regular.
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Figure 4.3: 4K2 Halved Graphs

4.5.3 Example. Consider the graph in Figure 4.4, where the vertices on the opposite sides of
the grid with the same label are identified. This graph was first described by Delorme [55].

The graph has diameter five, and spectrum{
3(1),
√

5
(6)
, 1(9),(−1)(9) ,

(
−
√

5
)(6)

,(−3)(1)

}
,

so the halved graph has diameter two and spectrum{
6(1), 2(6),(−2)(9)

}
,

and therefore the halved graph is strongly regular.
However, there are two paths of length 3 from the black vertex (2, 2) to the gold vertex

(2, 1) , but only one walk of length 3 from black (2, 2) to gold (2, 1). Therefore G is not
distance-biregular.

4.5.4 Remark. The graph in Figure 4.4 is notable for another reason. Fiol [70] asked whether
a graph of diameter d and d + 1 distinct eigenvalues is distance-regular if there exists an
orthogonal sequence of polynomials F0, . . . , Fd such that Fd−1(A) = Ad−1. The answer is
no, since the graph of Figure 4.4 has an orthogonal sequence of polynomials with F4 defined
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Figure 4.4: Shrikhande Halved Graphs

by

F4(x) :=
1

2
x4 − 4x2 +

9

2

satisfying F4(A) = A4, but is not distance-regular.

Both the graph of Figure 4.3 and Figure 4.4 are regular. This turns out to be necessary
to counterexamples to Question 4.5.1.

4.5.5 Theorem. Let G =(β ∪ γ,E) be a (k, `) semiregular bipartite graph with k < ` and
biadjacency matrix N . If the halved graphs Hβ and Hγ are distance-regular and there exist
r, s satisfying

NNT = rA(Hβ) + k (4.5.3)

and
NTN = sA(Hγ) + `,
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

then G is distance-biregular.

Proof. Let θ0 > · · · > θt−1 be the positive eigenvalues of G. Note that G has 2t + 1
eigenvalues. Then the t+ 1 distinct eigenvalues of A(Hβ) are{

1

r

(
θ2
i − k

)
: 0 ≤ i ≤ t

}⋃{
−k
r

}
since |β| > |γ| . Similarly, the distinct eigenvalues of A(Hγ) are{

1

s

(
θ2
i − `

)
: 0 ≤ i ≤ t− 1

}

and possibly − `
s depending on whether 0 is an eigenvalue of NTN or not.

Since Hβ is distance-regular, we know that it has diameter t. Similarly, Hγ has diameter
t or t−1 depending on whether or not 0 is an eigenvalue of NTN. Therefore, G has diameter
2t or 2t+ 1. Since G only has 2t+ 1 distinct eigenvalues, it must have diameter 2t.

Now, since Hβ is distance-regular, we know there exists a polynomial F βt of degree t
such that

F βt (A(Hβ)) = At(Hβ) .

Then using Equation 4.5.3, we have a polynomial fβ of degree 2t satisfying

fβ(A(G)) Eβ = A2t(G) Eβ.

We can similarly obtain fγ satisfying

fγ(A(G)) = A2t(G) Eγ

from the t-th distance polynomial for Hγ . Then by Theorem 4.4.3, we know G is distance-
biregular.

4.5.6 Remark. The assumption that k < ` let us conclude that 0 is an eigenvalue of NNT .
Otherwise, it is possible that G has 2t + 2 distinct eigenvalues. If G has diameter 2t and
2t+2 distinct eigenvalues, then we cannot apply Theorem 4.4.3, because the vertices are not
spectrally extremal. This is what happens with the graph in Figure 4.3. If G has diameter
2t+ 1 and 2t+ 2 distinct eigenvalues, then we cannot use the even distance polynomials to
compute the diametral distance adjacency matrix, so we cannot apply Theorem 4.4.3, as is
the case with the graph in Figure 4.4.
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4.6 Spectral Excess

Let G be a connected graph with vertex u of eccentricity e. Let ρ be the largest eigenvalue
with corresponding Perron vector p. For 0 ≤ i ≤ e, we define the vector pi by

eTv pi =

{
eTv p d(u, v) ≤ i
0 d(u, v) > i

.

We say that a polynomial gui (x) of degree i is the u-local i-excess polynomial if it satisfies

gui (A) eu = pi.

4.6.1 Remark. The i-excess of a vertex u is the number of vertices that are at distance at
least i+ 1 from u. Fiol and Garriga [73] gave a bound on the excess of a vertex in terms of
the largest eigenvalue and the Perron vector. This motivates the spectral excess theorem, a
characterization of distance-regular graphs when the excess of a vertex matches a spectral
value. Although the connection between the spectrum and the excess is less obvious in our
treatment, we ultimately derive spectral excess theorems for distance-regular and distance-
biregular graphs.

If u is spectrally extremal and has a sequence of excess polynomials g0, . . . , ge, then the
sequence g0, g1−g0, g2−g1, . . . , ge−ge−1 gives us a sequence of pseudo-distance polynomials.
In fact, by Theorem 4.4.1, vertex u is pseudo-distance-regular if and only if is spectrally
extremal and the(e− 1)-excess polynomial ge−1 exists. Fiol and Garriga [73] used the notion
of excess polynomials to give a spectral excess theorem for distance-regular graphs. Our
set-up is different, and we expand their results to a characterization of distance-biregular
graphs.

Let Ni(u) denote the set of vertices at distance at most i from u. We combine and
reformulate several results from Fiol and Garriga [73] to obtain the following result.

4.6.2 Proposition. Let u be a vertex of eccentricity e. Let 0 ≤ i ≤ e, and let Gi be a
polynomial of degree i with ||Gi||u = 1. Then

Gi(ρ) ≤ 1

eTup

√ ∑
v∈Ni(u)

(eTup)2 (4.6.1)

with equality if and only if the i-excess polynomial exists.

Proof. Consider

〈Gi(A) eu,p〉.

By the spectral decomposition, we see this equals Gi(ρ) eTup.
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

On the other hand, we can view Gi(A) eu as a vector indexed by vertices. Since Gi is a
polynomial of degree i, we know the entries of the vector indexed by vertices at distance at
least i+ 1 from u must be zero. By Cauchy-Schwarz, we see

〈Gi(A) eu,p〉 ≤ ||Gi||u||pi|| =
√ ∑
v∈Ni(u)

(eTv p)2

If equality holds, then Gi(A) eu is a scalar multiple of pi. In particular, to have the
correct norm, we must have

Gi(A) eu =
1√∑

v∈Ni(u)(e
T
v p)2

pi.

so

eTupGi(ρ)Gi(A) eu = pi

and the i-excess polynomial exists.
Conversely, if the i-excess polynomial gi exists, then by the spectral decomposition

gi(ρ) eTup = pT gi(ρ) ppTeu = pT gi(A) eu = pTpi =
∑

v∈Ni(u)

(
eTv p

)2
,

so gi(x)
||gi||u

is a polynomial of u-norm one achieving the bound of Equation 4.6.1.

Applied globally, this gives us a characterization of distance-regular graphs, as obtained
by Fiol and Garriga [73]. We reprove it here using a different formulation, because it gives
us a preview of the main ideas used to prove a distance-biregular analogue with less involved
casework.

4.6.3 Theorem (Fiol and Garriga [73]). Let G be a regular connected graph with diameter
d and largest eigenvalue ρ. It is distance-regular if and only if it has d+1 distinct eigenvalues
and there exists a polynomial f of degree d such that for all vertices u, we have

||f ||2G = f(ρ) = |{v ∈ V (G) : d(u, v) = d}| . (4.6.2)

Proof. If G is distance-regular, then the distance polynomial Fd has the desired properties.
Otherwise, suppose f is a polynomial satisfying Equation 4.6.2. Let n be the number of
vertices of G and let t = f(ρ) be the number of vertices at distance d from any vertex in
the graph. Let fd(x) = f(x) and fd+1(x) be the minimal polynomial of G. We extend this
to an orthogonal sequence fd+1, fd, . . . , f0.

Define

q(x) = n
∏
θr 6=ρ

x− θr
ρ− θr

.
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We have

||q||2G =
1

n

∑
u∈V(G)

eTu q(A)2 eu =
1

n

d∑
r=0

mrq(θr)
2 = n

and

〈q, f〉G =
1

n

d∑
r=0

mrq(θr) f(θr) = t.

The projection of q onto f is (
〈q, f〉G
||f ||2G

)
f = f,

and so we must be able to write q − f as a linear combination of f0, . . . , fd−1. Thus

Q(x) :=
1√
n− t

(q(x)− f(x))

is a polynomial of degree at most d− 1. Note that

||Q||2G =
1

n− t

(
||q||2G − 2〈q, f〉G + ||f ||2G

)
= 1.

Since G is regular, the Perron vector is 1√
n
1, thus for any vertex u, we have

Q(ρ) =
1√
n− t

(n− t) =
√
n− t =

1

eTup

√ ∑
v∈Nd−1(u)

(eTv p)2.

By Proposition 4.6.2 we know that ||Q||u ≥ 1. Therefore

n ≤
∑

u∈V(G)

||Q||2u =
∑

u∈V(G)

d∑
r=0

eTuEreuQ(θr)
2 =

d∑
r=0

mrQ(θr)
2 = n||Q||2G = n.

and since equality holds, it must be the case that ||Q||u = 1 for all vertices u. Then by
Proposition 4.6.2, we know the(d− 1)-excess polynomial exists, so by Theorem 4.4.1, every
vertex is pseudo-distance-regular. Therefore by Theorem 4.3.5, G is distance-regular.

We can use similar techniques to give a new characterization of distance-biregular graphs.

4.6.4 Theorem. Let G be a semiregular bipartite connected graph with diameter d and
largest eigenvalue ρ. It is distance-biregular if and only if it has d + 1 distinct eigenvalues
and there exist polynomials fβ, fγ of degree d such that for π ∈ {β, γ} and all vertices
u ∈ π, we have

||fπ||2π = fπ(ρ) = |{v ∈ V (G) : d(u, v) = d}| . (4.6.3)
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

Proof. If G is distance-biregular, then the distance polynomials F βd , F
γ
d have the desired

property. If d is odd and G has d + 1 distinct eigenvalues, then by Lemma 2.6.3 the
graph G is regular, and so the inner products determined by β and γ are the same. Thus
the polynomials fβ and fγ must be the same, so we use Theorem 4.6.3 to conclude G is
distance-regular.

Now, assume without loss of generality that β has covering radius d with d even and
fβ satisfies Equation 4.6.3. As before, we let fβd = fβ and expand this to an orthogonal

sequence of polynomials fβd+1, f
β
d , . . . , f

β
0 . Let t = fβ(ρ) be the number of vertices at distance

d from any vertex in β.

Let

qβ(x) = |β|
∏
θr 6=ρ

x− θr
ρ− θr

.

Note ||qβ||β = |β| and 〈qβ, fβ〉 = t, so

qβ − fβ = qβ −
〈fβ, qβ〉β
||fβ||β

fβ

is orthogonal to fβd . We define

Qβ(x) :=
1√
|β| − t

(
qβ(x)− fβ(x)

)
and note that Qβ is a polynomial of degree at most d− 1 satisfying

||Qβ||2β =
1

|β| − t

(
||qβ||2β − 2〈qβ, fβ〉β + ||fβ||2β

)
= 1.

Since G is bipartite semiregular, for any vertex u ∈ β, we have

eTup =
1√
2 |β|

,

so since d is even,

Qβ(ρ) =
1√
|β| − t

(|β| − t) =
1

eTup

√ ∑
v∈Ni(u)

(eTv p)2.

By Proposition 4.6.2, we know that ||Q||u ≥ 1, and so

|β| ≤
∑
u∈β
||Q||2u =

d∑
r=0

mβ
rQ(θr)

2 = |β| ||Qβ||2β = |β| ,
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Figure 4.5: Cospectral graphs, not both semiregular

and since equality holds it must be the case that ||Q||u = 1 for every vertex u ∈ β. Then by
Proposition 4.6.2 and Theorem 4.4.1, every vertex in β is pseudo-distance-regular.

If γ also has covering radius d, the same argument tells us every vertex in γ is pseudo-
distance-regular. Otherwise we know that for every vertex u ∈ γ, we have∑

θr∈Φu

mγ
rf

γ(θr)
2 = 0,

and so every vertex in γ is spectrally extremal. Further, since every vertex in β is pseudo-
distance-regular, we know that the polynomial fβd−1 from our orthogonal sequence is a

polynomial of degree d − 1 such that fβd−1(A) Eβ is nonzero precisely on the vertices at

distance d− 1 from vertices in β. Since fβd−1(A) is symmetric, it follows that fβd−1(A) Eγ is
nonzero precisely on the vertices at distance d−1 from vertices in γ. Thus by Theorem 4.4.1,
every vertex in γ is pseudo-distance-regular. Then since every vertex in the bipartite graph
G is pseudo-distance-regular, Theorem 4.3.5 tells us that G is distance-biregular.

Fiol [72] previously proved a spectral excess theorem for distance-biregular graphs with
three cases and four different polynomials. Theorem 4.6.4 is much cleaner, and a closer
analogue to the spectral excess theorem of Fiol and Garriga [73].

4.7 Spectrum of a Distance-Biregular Graph

Recall that the inner product used in Theorem 4.6.3 is determined by the spectrum. Thus,
the characterization of Theorem 4.6.3 is spectral in nature, since it shows that a graph is
distance-regular if and only the number of vertices at maximal distance matches a particular
spectral quantity. A well-known result which can be found, for instance, in Cvetković, Doob,
and Sachs [44], says that any graph with the spectrum of a connected regular graph is regular
with the same valency. However, the same is not true for connected semiregular graphs, as
evident by Figure 4.5.
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4. CHARACTERIZATIONS OF DISTANCE-BIREGULAR GRAPHS

Figure 4.6: Graph cospectral to Q4

Van Dam and Haemers [45] proved that for a distance-regular graph, the spectrum
determined the intersection array, and we extended that to distance-biregular graphs in
Theorem 2.7.2. However, our extension used the additional information of the valencies of
the cells of the partition. It is unclear if knowing the valencies is necessary to determine a
feasible array from the spectrum.

4.7.1 Problem. If two distance-biregular graphs are cospectral, do they have the same
intersection array?

Even in the better-studied case where intersection array of a distance-regular graph is
determined by the spectrum, it is not true that any graph cospectral to a distance-regular
is itself distance-regular.

4.7.2 Example. Consider the graph in Figure 4.6. Hoffman [97] constructed this graph, and
showed that it is cospectral to the bipartite distance-regular hypercube of Figure 2.1, even
though the graph in Figure 4.6 is not distance-regular. Thus neither distance-regularity nor
distance-biregularity are determined by the spectrum.

Recall that a connected bipartite regular graph with diameter three and four distinct
eigenvalues is distance-regular. The graph of Figure 4.6 has diameter four, so in general
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4.7. SPECTRUM OF A DISTANCE-BIREGULAR GRAPH

there is no additional spectral information that allows us to completely characterize which
graphs of diameter four are distance-biregular.

The example of Hoffman [97] and characterization of Cvetković, Doob, and Sachs [44]
led Brouwer, Cohen, and Neumaier [28] to ask whether a graph cospectral to a distance-
regular graph of diameter three is distance-regular. Haemers [88] answered that question
in the negative, but provided certain spectral or structural conditions that force distance-
regularity.

Theorem 4.6.3 gives us one condition, but we have seen a more tangible condition in
Proposition 2.1.5 with Moore graphs. If G is a k-regular graph, then the girth of G is the
smallest positive integer i such that

tr
(
F ki (A)

)
=
∑
r

mrF
k
i (θr) 6= 0,

and as such is determined by the spectrum. Thus we know that any graph with the spectrum
of a Moore graph is distance-regular.

Brouwer and Haemers [29] extended this by proving that any graph cospectral with a
distance-regular with diameter d and girth 2d − 1 is distance-regular. Subsequently, Van
Dam and Haemers [46] gave an alternate proof that used Theorem 4.6.3. This was improved
on more recently by Abiad, Van Dam, and Fiol [3] who proved that any graph with diameter
d, d+ 1 distinct eigenvalues, and girth 2d− 1 is distance-regular.

More generally, the question of when a graph with the spectrum of a distance-regular
graph is distance-regular has also been considered by Van Dam and Haemers [45] and
Haemers and Spence [91]. However, the corresponding question for distance-biregular
graphs has barely been considered.

4.7.3 Problem. When is a graph with the spectrum of a distance-biregular graph distance-
biregular?

Example 2.2.7 showed us that any semiregular bipartite graph with diameter d and girth
2d is a distance-biregular. For regular graphs, Van Dam and Haemers [45] proved that any
graph cospectral to a bipartite distance-regular graph of diameter d and girth 2d − 2 is
distance-regular. Abiad, Van Dam, and Fiol [3] loosened the conditions and considered a
bipartite graph G with diameter d and d+1 distinct eigenvalues. They proved that if G has
girth at least 2d − 2, then G is distance-regular. We can extend this to distance-biregular
graphs.

4.7.4 Theorem. Let G be a connected semiregular bipartite graph with diameter d and
d+ 1 distinct eigenvalues. If G has girth g ≥ 2d− 2, then G is distance-biregular.

Proof. Suppose without loss of generality that β has covering radius d. Let u ∈ β.
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Since g ≥ 2d− 2, for all 0 ≤ i ≤ d− 2 we know that there is a unique non-backtracking
walk of length at most i from u to a vertex at distance i from u. Then by Lemma 2.2.4, we
have

F k,`i (A) eu = Aieu

for all 0 ≤ i ≤ d− 2. Similarly, for v ∈ γ we have

F `,ki (A) ev = Aiev.

If d is even, we define

fβd (x) := |β|
∏
θr>0
θr 6=
√
k`

x2 − θ2
r

k`− θ2
r

−

d
2
−1∑
i=0

F k,`2i (x) .

Note that fβd is a polynomial of degree d such that

fβd (A) EB =

(
1|β|
0

)
−

d
2
−1∑
i=0

A2iEβ = A2dEβ.

The same argument applies to

fγd (x) := |γ|
∏
θr>0
θr 6=
√
k`

x2 − θ2
r

k`− θ2
r

−

d
2
−1∑
i=0

F `,k2i (x) ,

so by Theorem 4.4.3, G is distance-biregular.
If d is odd, then by Lemma 2.6.3 we know k = `, so we can define

fd(x) := |β|x
∏
θr>0
θr 6=
√
k`

x2 − θ2
r

k`− θ2
r

−

d−1
2
−1∑

i=1

F k,`2i+1(x) ,

and we have

fβd (A) =

(
0 1|β|,|γ|

1|γ|,|β| 0

)
−

d−1
2
−1∑

i=1

A2i+1 = Ad,

so by Theorem 4.4.2, G is distance-regular.
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Chapter 5

Spectral Moore Bound
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Besides their nice combinatorial and algebraic properties, one of the reasons distance-
regular graphs are so well studied is that they arise as extremal examples of graphs with
particular structural or spectral conditions. The canonical text on distance-regular graphs
by Brouwer, Cohen and Neumaier [28] spends multiple sections in the first chapter setting
up families of distance-regular graphs as extremal examples. In this chapter, we extend
this extremal perspective to distance-biregular graphs, with an emphasis on variants of the
Moore problem.

Cioabă, Koolen, Nozaki, and Vermette [37] obtained an upper bound on the number of
vertices a graph with fixed valency and second-largest eigenvalue could have, and proved
that when the bound is tight, the graph is distance-regular. This problem can be seen as
a spectral version of the Moore problem, as described by Cioabă [34]. Cioabă, Koolen,
and Nozaki [36] strengthened this spectral Moore bound for bipartite regular graphs, and
Cioabă, Koolen, Mimura, Nozaki, and Okuda [35] proved a hypergraph version of the bound.
The motivating question for this chapter is to extend the spectral Moore bound, and the
characterization of when the bound is tight, to bipartite semi-regular graphs.

5.0.1 Question. What is the maximum number of vertices that a semiregular bipartite
graph with fixed valencies and second-largest eigenvalue can have? What graphs meet this
bound?

We will answer Question 5.0.1 by deriving a bound on the size of the cells of a bipartite
semiregular graph, and prove that when the bound is tight, the graph is distance-biregular.
The eigenvalues of the halved graphs are determined by the eigenvalues of a distance-
biregular graph, and the halved graphs are regular, so we can compare this bound to the
bound obtained by Cioabă, Koolen, Nozaki, and Vermette [37] for regular graphs. Further,
a hypergraph can be represented as a bipartite incidence graph, where one cell of the
partition is the vertices and the other cell is the hyperedges. Thus, as noted by Cioabă,
Koolen, Mimura, Nozaki, and Okuda [35], the hypergraph bound can also be interpreted
as an answer to Question 5.0.1. However, in Section 5.7 we describe infinite families of
distance-biregular graphs which are tight for the bound we derive in this chapter, but are
not tight when considering the halved graphs or the associated hypergraphs.

Many of the results in this chapter can be found in the author’s paper [110].

5.1 Moore Graphs Revisited

Let G be a k-regular graph of diameter d. If we fix a vertex u, there are k vertices at
distance one from u, and at most k(k − 1)i−1 vertices at distance i from u. Summing over
all possible distances gives us an upper bound on the number of vertices,

|V (G)| ≤ 1 +

d∑
i=1

k(k − 1)i−1 . (5.1.1)
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This bound was obtained by Moore, who asked for a characterization of graphs that
meet the bound [98]. Trivial examples come from the complete graphs and the odd cycles.
Although the Moore bound is structural, the extremal examples are characterized by alge-
braic graph theory. Hoffman and Singleton [98] observed that Petersen graph is a Moore
graph, and also constructed the eponymous Hoffman-Singleton graph. By computing the
multiplicities of the eigenvalues, they proved that the only other possible Moore graphs of
diameter two would be 57-regular graphs on 3,250 vertices. The existence of such graphs is
still open.

Hoffman and Singleton [98] also proved that there are no nontrivial Moore graphs of
diameter three. Damerell [49] and independently Bannai and Ito [17] proved the more
general result that the only Moore graphs of diameter at least three are the odd cycles. The
idea behind both proofs is to define a notion of feasibility similar to Definition 3.4.1, then
prove that no Moore graph with diameter at least three is feasible.

Variations of the Moore bound and Moore graphs have been considered to describe
graphs with close to a maximal number of vertices for the valency and diameter, or to
consider the Moore bound in a restricted setting. Miller and S̆irán̆ [116] gave an overview
of these variations. One variation of particular interest to our work is a bipartite version of
the Moore bound.

If G is bipartite, then there are many edges from a vertex at distance d to vertices
at distance d − 1, so the bound of Equation 5.1.1 significantly overcounts the number of
vertices. We can improve this by bounding one cell of the partition at a time. Specifically,
we fix a vertex u and bound the size of the cell of the partition which does not contain
vertices at distance d from u.

Let G = (β ∪ γ,E) be a (k, `)-semiregular graph where β has covering radius d. If d is
odd, we bound β by choosing a vertex u ∈ β and bounding the vertices at an even distance
from u. This gives us

|β| ≤ 1 +

d−3
2∑
i=0

k(`− 1)i+1(k − 1)i . (5.1.2)

If d is even, we bound β by choosing a vertex u ∈ γ and counting the vertices at an odd
distance from u to get

|β| ≤ `

d−2
2∑
i=0

(k − 1)i(`− 1)i . (5.1.3)

When these bounds are tight for both cells of the partition, G is a generalized polygon.
If Equation 5.1.3 holds for both cells of the partition, then k = `, leading Yebra, Fiol, and
Fábrega [157] to propose a semiregular version of the Moore bound for odd diameter. More
recently, Araujo-Pardo, Dalfó, Fiol, and López [8] improved these bounds, and, for certain
choices of k and `, constructed families of infinite (k, `)-semiregular graphs meeting these
bounds.
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One way to improve on the Moore bound uses the eigenvalues and the sequence of
polynomials associated to k-regular trees described in Example 2.1.1. The following result
was observed by several authors, see, for instance, Dinitz, Schapira, and Shahaf [62] or
Section 3. 2 of Miller and S̆irán̆ [116].

5.1.1 Theorem. [Dinitz, Schapira, and Shahaf [62]]Let G be a connected, k-regular graph
of diameter d with distinct eigenvalues k = θ0 > θ1 > · · · > θt. Let λ = max {|θ1| , |θt|} .
Then

|V (G)| ≤
d∑
i=0

F ki (k)−
d∑
i=0

F ki (λ) .

As discussed by Cioabă [34], when λ is large,
∑d

i=0 F
k
i (λ) is positive so Theorem 5.1.1

provides an improvement over the Moore bound, though when λ is small, the Moore bound
is better, even if it is rarely tight. Thus a spectral version of the Moore bound asks for an
upper bound on the number of vertices where λ is small. Towards that direction, we have
the following question.

5.1.2 Question. What is the maximum number of vertices that a regular graph with given
valency and second-largest eigenvalue can have?

The answer to Question 5.1.2 has more than motivational connections to Moore graphs.
As we shall see, the bound itself and the extremal examples have strong similarities to the
Moore bound and Moore graphs.

5.2 Spectral Moore Bounds

Cioabă, Koolen, Nozaki, and Vermette [37] proved a spectral Moore bound to answer Ques-
tion 5.1.2 for regular graphs, and characterized when the bound is tight. Subsequently,
Cioabă, Koolen, and Nozaki [36] improved the bound for bipartite regular graphs, and
Cioabă, Koolen, Mimura, Nozaki, and Okuda [35] extended the bound to hypergraphs. In
this section, we sketch the major ideas in the proof of the spectral Moore bound to set up
for our own extension to semiregular bipartite graphs.

One of the major ideas is the linear programming bound of Nozaki [125]. It was in-
troduced to study extremal expanders, graphs that minimize the second-largest eigenvalue
over all regular graphs on a fixed number of vertices. Using the linear programming bound,
he proved that any regular graph with girth at least twice the diameter is an extremal
expander. By the work of Abiad, Van Dam, and Fiol [3], any such graph is also distance-
regular. The linear programming bound is also a key tool in the spectral Moore bound of
Cioabă, Koolen, Nozaki, and Vermette [37].
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5.2.1 Theorem. [Linear Programming Bound [125]]Let G be a connected k-regular graph
with distinct eigenvalues k = θ0 > θ1 > · · · > θt. If there exists a polynomial

f(x) :=

s∑
i=0

hiF
k
i (x)

such that

• For eigenvalues θr 6= θ0, we have f(θr) ≤ 0;

• The coefficient h0 is positive; and

• For 1 ≤ i ≤ t, the coefficient hi is non-negative,

then

|V (G)| ≤ f(k)

h0
.

Proof. If there exists such a polynomial, we have

tr(f(A)) =

t∑
i=0

hitr
(
F ki (A)

)
≥ h0tr

(
F k0 (A)

)
= h0 |V (G)| .

Using the spectral decomposition, we also have

tr(f(A)) =

t∑
r=0

mrf(θr) ≤ f(k) .

Combining this gives us the desired result.

When the bound of Theorem 5.2.1 is tight, we have that f(θr) = 0 for all r 6= 0, and
for all 1 ≤ i ≤ s, we have hi tr

(
F ki (A)

)
= 0. In particular, if for some 1 ≤ i ≤ s we have

hi > 0, then tr
(
F ki (A)

)
= 0. By Lemma 2.1.4, we know tr

(
F ki (A)

)
counts the closed non-

backtracking walks on length i. Thus if hi > 0 for all 1 ≤ i ≤ s, the graph G must have
girth at least s.

We can now outline the steps involved in the proof of the spectral Moore bound.

5.2.2 Theorem (Spectral Moore Bound [37]). Let G be a k-regular graph with second-
largest eigenvalue θ1 < 2

√
k − 1. Let t, c > 0 be constants determined by the choice of k

and λ. Then

|V (G)| ≤ 1 +

t−3∑
i=0

k(k − 1)i +
k(k − 1)t − 2

c
.

If equality holds, G is distance-regular.
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Proof. For a positive integer t and some positive number c, let T (k, t, c) be the t × t
tridiagonal matrix 

0 k
1 0 k − 1

. . .
. . .

. . .

1 0 k − 1
c k − c

 .

Using properties of the orthogonal polynomials
(
F ki
)
i≥0

, Cioabă, Koolen, Nozaki, and Ver-

mette [37] proved that there exists some t, c such that T (k, t, c) has second-largest eigenvalue
θ1.

Now, let k = λ0 > λ1 > · · · > λt−1 be the distinct eigenvalues of T (k, t, c) . We claim
that

f(x) :=
1

c
(x− λ1)

t−1∏
r=2

(x− λr)2

satisfies the conditions of Theorem 5.2.1. The non-trivial step is showing that the hi are
non-negative. In fact, Cioabă, Koolen, Nozaki, and Vermette [37] proved that the hi were
all positive.

The third step is to show that Theorem 5.2.1 gives the desired bound.

The fourth step is to characterize what happens when the bound is tight. Since all the
coefficients hi are positive, we know that G has girth at least 2t − 3. Then by showing
that G has at most t distinct eigenvalues, we can apply the result of Abiad, Van Dam, and
Fiol [3] to conclude that G is distance-regular.

This outline also applies to prove other spectral Moore bounds, with a different sequence
of orthogonal polynomials. Cioabă, Koolen, and Nozaki [36] described the even and odd
distance polynomials for a k-regular tree and used that to improve the linear programming
bound and spectral Moore bound when the graph is bipartite. Cioabă, Koolen, Mimura,
Nozaki, and Okuda [35] used a family of polynomials that counted the non-backtracking
walks on a uniform regular hypergraph to develop a version of the linear programming
bound and spectral Moore bound for hypergraphs. In the remainder of this chapter, we
develop a linear programming bound and spectral Moore bound for semiregular bipartite
graphs.

As noted by Cioabă, Koolen, and Nozaki [37], one consequence of the spectral Moore
bound is the following famous result.

5.2.3 Corollary (Alon-Boppana [6]). If k ≥ 3 and θ < 2
√
k − 1, there are only finitely

many k-regular graphs with second-largest eigenvalue at most θ.

The result of Alon and Boppana [6] is a major asymptotic result in the study of graph
expanders. Alternative proofs have been given by, for instance, Friedman [77] and Nilli [122,
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123], and strengthenings and generalizations have been given by, for instance, Serre [131],
Cioabă [33], and Mohar [117].

5.3 Linear Programming Bound for Semiregular Graphs

We begin by proving a version of Nozaki’s [125] linear programming bound, given in The-
orem 5.2.1, for semiregular bipartite graphs. To do so, we consider the sequence of even
distance polynomials associated to the semiregular tree described in Section 3.2.

5.3.1 Theorem. Let G =(β ∪ γ,E) be a semiregular graph with valencies k, `. Let
√
k` =

θ0 > θ1 > · · · > θt be the set of distinct, non-negative eigenvalues in the eigenvalue support
of vertices of β. Suppose there exists a polynomial

f(x) =
s∑
i=0

hiP
k,`
i (x)

such that

• For eigenvalues θr 6= θ0, we have f
(
θ2
r

)
≤ 0;

• The coefficient h0 is positive;

• For 1 ≤ i ≤ s, the coefficient hi is non-negative.

Then

|β| ≤ f(k`)

h0
.

Proof. Using the block decomposition of a bipartite graph, we have

F k,`2i (A) Eβ = P k,`i

(
A2
)
Eβ =

(
P k,`i

(
NNT

)
0

)
.

Then by Lemma 2.2.5, P k,`i

(
NNT

)
counts the number of non-backtracking walks of length

2i beginning in β, so in particular it must have non-negative entries. Then we have

f(k`) ≥
t∑

r=0

mβ
r f
(
θ2
r

)
= tr

(
f
(
NNT

))
=

t∑
i=0

hitr
(
P k,`i

(
NNT

))
≥ h0 |β| ,

or

|β| ≤ f(k`)

h0
.

Similar to the regular case, if equality holds and the coefficients hi are all positive, then
the girth of G must be at least 2s+2. When k = `, this is the linear programming bound of
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Cioabă, Koolen, and Nozaki [36]. Because the sequence of polynomials used is different, the
bound is different than the linear programming bound for hypergraphs of Cioabă, Koolen,
Mimura, Nozaki, and Okuda [35].

In Theorem 5.2.1, we can replace the condition that h0 > 0 with the condition that
h0 = 1. Then as observed by Nozaki [125], we use the bound to get the linear program.

Minimize F k1 (k)h1 + F k2 (k)h2 + · · ·+ F ks (k)hs

Subject to−
s∑
i=1

F ki (θr)hi ≥ 1 1 ≤ r ≤ t

hi ≥ 0 1 ≤ i ≤ s.

Taking the dual gives us the linear program

Maximize m1 + · · ·+mt

Subject to−
d∑
r=1

Fi(θr)mj ≤ F ki (k) 1 ≤ i ≤ s

mr ≥ 0 1 ≤ r ≤ d.

Previously, Delsarte, Goethals, and Seidel [58] used different sequences of orthogonal poly-
nomials coming from coding theory and spherical designs to derive this dual bound.

We could similarly set up Theorem 5.3.1 as a linear program, and consider the bound
that comes from taking the dual linear program. The hope is that, as with regular graphs,
this bound could also be interpreted in terms of designs.

5.3.2 Problem. In the context of designs, how can we interpret the dual linear program-
ming bounds for semiregular bipartite graphs of Theorem 5.3.1? What about the dual of
hypergraph linear programming bound [35]?

Nozaki [125] gave a thorough overview of the linear programming bound for regular
graphs, the bound on spherical designs from Delsarte, Goethals, and Seidel [58], and related
results in design theory and coding theory, with an emphasis on the algebraic structure
linking the two. The more recent work on spectral Moore bounds has been focused on the
graphs, but it would be worth investigating some of the deeper connections back to coding
theory.

The linear programming bound of Nozaki [125] was originally developed to study ex-
tremal expanders. We extend the notion of extremal expanders to semiregular bipartite
graphs in Section 5.5, for which we need to develop some further theory.
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5.4 Further Properties of Orthogonal Polynomials

Many of the same ideas used by Nozaki [125] to study extremal expanders were used in the
proof of the spectral Moore bound [37]. In this section, we set up some of these common
ideas.

One well-known tool in the theory of both graph spectra and orthogonal polynomials
is interlacing. A polynomial f interlaces the polynomial g if between any two zeros of g,
there is a zero of f . It is well known that if (pi)i≥0 is a sequence of orthogonal polynomials,
then for any positive integer n, the polynomial pn interlaces pn+1. A close modification of
the proof, such as the one that can be found in Beals and Wong [18], gives the following
result.

5.4.1 Proposition. Let (pi)i≥0 be a sequence of orthogonal polynomials. Then for any
α ∈ R, the polynomial pn−1 interlaces pn + αpn−1.

Proof. Let n ≥ 1 and let r1 < r2 be two consecutive zeros of pn. By Corollary 2.3.3, we
have

pn−1(x) p′n(x)− p′n−1(x) pn(x) > 0,

so

pn−1(x)
(
p′n(x) + αp′n−1(x)

)
− p′n−1(x)(pn(x) + αpn−1(x)) > 0.

For r1, r2 this simplifies as

(pn−1(pn + αpn−1))′(r1) > 0

and

(pn−1(pn + αpn−1))′(r2) > 0

Since r1 and r2 are consecutive zeros, (pn(r1) + αpn−1(r1))′ and (pn(r2) + αpn−1(r2))′

have different signs. Therefore, pn−1(r1) and pn−1(r2) have different signs, and so by the
intermediate value theorem, pn−1 has a zero in the interval (r1, r2).

This leads to the following result, which was proven in a more general case by Cohn and
Kumar [38].

5.4.2 Theorem. Let p0, . . . , pn be a sequence of orthogonal polynomial such that pn has
a positive leading coefficient. Let α ∈ R, and let r1 > · · · > rn be the roots of pn(x) +
αpn−1(x) . Then

pn(x) + αpn−1(x)

x− r1

has positive coefficients in terms of p0, . . . , pn−1.
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Proof. Since r1 is a root of pn + αpn−1 we have α = −pn(r1)
pn−1(r1) . By Lemma 5.4.1 we know r1

is not a root of pn−1. Then we have

pn(x) + αpn−1(x)

x− r1
=
pn−1(r1)(pn(x) + αpn−1(x))

pn−1(r1)(x− r1)
=
pn−1(r1) pn(x)− pn(r1) pn−1(x)

pn−1(r1)(x− r1)
.

By Lemma 2.3.2

pn−1(r1) pn(x)− pn(r1) pn−1(x)

x− r1
=

1

cn

n−1∑
i=0

b̂i,n−1pi(r1) pi(x) .

and thus
pn(x) + αpn−1(x)

x− r1
=

1

cn

n−1∑
i=0

b̂i,n−1
pi(r1)

pn−1(r1)
pi(r1) pi(x) . (5.4.1)

By the condition on our three-term recurrence, b̂i,n−1 is positive for all 0 ≤ i ≤ n − 1.
Since pn has a positive leading coefficient, cn is also positive. By Lemma 5.4.1, pn−1

interlaces pn + αpn−1, and, since 0 is a real number, pi−1 interlaces pi for all 1 ≤ i ≤ n− 1.
In particular, r1, the largest root of pn +αpn−1, must be greater than the largest root of pi,
so pi(r1) > 0. Thus the coefficient of pi(x) in Equation 5.4.1 is positive for all 0 ≤ i ≤ n−1.

There are also a couple more properties that will be useful for the families of polynomials
associated to semiregular trees.

Note that
P k,`1 (x) = x− k,

P k,`2 (x) = x2 −(2k + `− 2)x+ k(k − 1) ,

and, for all i ≥ 2, the sequence satisfies the three-term recurrence

P k,`i+1(x) =(x−(k + `− 2))Pi(x)−(k − 1)(`− 1)Pi−1(x) .

Similarly,
Ik,`1 (x) = x−(k + `− 1)

and, for i ≥ 1, we have

Ik,`i+1(x) =(x−(k + `− 2)) Ik,`i (x)−(k − 1)(`− 1) Ik,`i−1(x) . (5.4.2)

Let G =(β ∪ γ,E) be a distance-biregular graph and let π ∈ {β, γ}. Let u ∈ π and let
v be at distance h from u. The intersection number pπ(i, j;h) is the number of vertices at
distance i from u and distance j from v. Note that this is equal to

eTuAiAjev = eTuF
π
i (A)F

π(v)
j ev,

so it is independent of the specific choice of u.
In particular, since semiregular trees are distance-biregular, we get the following result.
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5.4.3 Lemma. For i, j ≥ 0, there exist positive coefficients pk,`(i, j;h) such that:

P k,`i

(
x2
)
P k,`j

(
x2
)

=

i+j∑
h=|i−j|

pk,`(2i, 2j; 2h)P k,`h

(
x2
)
,

P k,`i

(
x2
)
Ik,`j
(
x2
)
x =

i+j∑
h=|i−j|

pk,`(2i, 2j + 1; 2h+ 1) Ik,`h
(
x2
)
x,

Ik,`i
(
x2
)
xP k,`j

(
x2
)

=

i+j∑
h=|i−j|

pk,`(2i+ 1, 2j; 2h+ 1) Ik,`h
(
x2
)
x,

and

Ik,`i
(
x2
)
xP k,`j

(
x2
)
x =

i+j+1∑
h=|i−j|

pk,`(2i+ 1, 2j + 1; 2h)P k,`h

(
x2
)
.

We wish to introduce two more families of polynomials. For i ≥ 0, we define

Qk,`i (x) =
i∑

j=0

P k,`j (x) .

Note that

Qk,`1 (x) = x−(k − 1)

and, for i ≥ 1, we have

Qk,`i+1(x) =(x−(k + `− 2))Qi(x)−(k − 1)(`− 1)Qi−1(x) .

Similarly

Jk,`i (x) =
i∑

j=0

Ik,`j (x) ,

satisfies

Jk,`1 (x) = x−(k + `− 2)

and

Ik,`i+1(x) =(x−(k + `− 2))Pi(x)−(k − 1)(`− 1)Pi−1(x)

for i ≥ 1.
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5.5 Semiregular Extremal Expanders

Let G = (β ∪ γ,E) be a (k, `) semiregular bipartite graph. If the second-largest eigenvalue
of G is minimal over all (k, `)-semiregular bipartite graphs on cells of size |β| and |γ|, then
G is an semiregular extremal expander . Nozaki [125] proved that a regular graph with girth
twice the diameter is an extremal expander. We extend that result for semiregular bipartite
graphs.

5.5.1 Theorem. Let G =(β ∪ γ,E) be a bipartite semiregular graph with diameter d and
d+1 distinct eigenvalues. If the girth of G is at least 2d−2, then G is an extremal expander.

Proof. Suppose the covering radius dβ of β is odd and let d∗ =
dβ−1

2 . Let θ0 > θ1 > · · · > θd∗

be the distinct positive eigenvalues in the eigenvalue support of vertices in β. In other words,
θ0, . . . , θd∗ are the eigenvalues for which ErEβ is nonzero.

We define

fβ(x) =
(
x− θ2

1

) d∗∏
r=2

(
x− θ2

r

)2
.

We wish to compute the coefficients of fβ(x) when it is written in the basis of P k,`0 , . . . , P k,`2d∗−1.
Recall that Xi is the i distance matrix of the halved graph of G induced by β. Since G

has girth at least 2d− 2 for 0 ≤ i ≤ d∗ − 1, we have

P k,`i

(
NNT

)
= Xi.

Further, there must be some constant c such that

P k,`d∗
(
NNT

)
= cXd∗ .

Let

H(x) = 2 |β|
d∗∏
r=1

x− θ2
r

k`− θ2
r

.

Note that

H
(
NNT

)
= 1|β| =

d∗−1∑
i=0

P k,`i

(
NNT

)
+

1

c
P k,`d∗

(
NNT

)
.

Then there exists a constant

e := 2 |β|
d∗∏
r=1

1

k`− θ2
r

> 0

such that

fβ(x) =
1

e2

H(x)2

x− θ2
1

=
1

ce2

Qk,`d∗ (x)−(c− 1)Qk,`d∗−1(x)

x− θ2
1

(
d∗−1∑
i=0

P k,`i (x) +
1

c
P k,`d∗ (x)

)
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By Theorem 5.4.2, we know that

Qk,`d∗ (x)−(c− 1)Qk,`d∗−1(x)

x− θ2
1

has positive coefficients in terms of Qk,`0 , . . . , Qk,`d∗−1, and therefore it has positive coefficients

in terms of P k,`0 , . . . , P k,`d∗−1. Then by Lemma 5.4.3, we know that f(x) has positive coeffi-

cients in terms of P k,`0 , . . . , P k,`d−2. Thus we may apply Theorem 5.3.1. Since f
(
θ2
r

)
= 0 for all

θr 6= ±
√
k`, and since G has girth at least 2d− 2, we see that the bound of Theorem 5.3.1

is tight.

If dβ is even, we let d∗ =
dβ
2 and let θ0 > θ1 > · · · > θd∗−1 be the distinct positive of in

the eigenvalue support of vertices in β. Let

fβ(x) =
(
x− θ2

1

)
x2

d∗−1∏
r=2

(
x− θ2

r

)2
.

We once again have constants c, e > 0 such that

d∗−2∑
i=0

Ii(x)
√
x+

1

c
Id∗−1(x)

√
x = e

√
x
d∗−1∏
r=1

(
x− θ2

r

)
.

Thus

fβ(x) =
1

ce2

Jd∗−1(x)
√
x−(c− 1) Jd∗−2(x)

√
x

x− θ2
1

(
√
x

d∗−2∑
i=0

Ik,`i (x) +

√
x

c
Ik,`d∗−1(x)x

)
,

so by Theorem 5.4.2 and Lemma 5.4.3, we know that fβ has positive coefficients in terms
of P0, . . . , Pd−2. Thus we can apply Theorem 5.3.1, and the bound is tight.

Suppose that G is not an extremal expander. Then let G′ =(β′, γ′) be a(k, `) semiregular
bipartite graph with |β′| = |β| and |γ′| = |γ| , but second-largest eigenvalue θ′1 < θ1. Then
fβ still satisfies the conditions of Theorem 5.3.1, so it must attain the bound. In particular,
G′ must have girth at least 2d−2, and every nontrivial eigenvalue of G′ must be the square
root of a root of fβ. By construction, this means that the eigenvalues of G′ are a subset of
the eigenvalues of G, and since θ′1 < θ1, they must be a proper subset. This implies that G′

has at most d − 1 distinct eigenvalues, so it has diameter at most d − 2. This contradicts
the fact that G′ has girth at least 2d− 2, and therefore G must be an extremal expander.

Nozaki [125] used the linear programming bound to prove that any graph with girth at
least twice the diameter is an extremal expander. Damerell and Georgiacodis [50] showed
that graphs with this property must have diameter at most six. For bipartite regular graphs,
Cioabă, Koolen, and Nozaki [36] proved that if g ≥ 2d− 2, then d 6= 11 and d ≤ 14. Similar
restrictions on the diameter presumably exist for semiregular graphs.

5.5.2 Problem. Let G be a distance-biregular graph with minimum valency at least three,
diameter d, and girth g ≥ 2d− 2. What are the possible values of d?
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5.6 Spectral Moore Bound for Semiregular Graphs

Let b(k, `, θ) be the maximum number of vertices of valency k in a(k, `)-semiregular bipartite
graph with second-largest eigenvalue at most θ. We wish to use the linear programming
bound to upper bound b(k, `, θ) . The idea is to use a similar function as in Theorem 5.5.1,
though the numerical evaluations matter more.

Let B(k, `, 2t+ 1, c) be the (2t+ 1) × (2t+ 1) tridiagonal matrix with lower diagonal
(1, . . . , 1, c, `), zero along the main diagonal, and row sum alternating between k and `.
Then B(k, `, 2t+ 1, c) has the form

0 k
1 0 `− 1

1 0 k − 1
. . .

. . .
. . .

1 0 `− 1
c 0 k − c

` 0


.

For i ≤ 2t−1, it follows from induction that the determinant of the principal i×i matrix
formed by the first i rows and i columns is F k,`i (x) . Expanding along the bottom two rows
and right column of xI −B(k, `, 2t+ 1, c), the determinant is

x2F k,`2t−1(x)− c(k − 1)xF k,`2t−2(x)− k(`− c)F k,`2t−1(x) .

This is equivalent to

x
(
x2Ik,`t−1

(
x2
)
− c(k − 1)

(
Ik,`t−1

(
x2
)
−(`− 1) Ik,`t−2

(
x2
))
− k(`− c) Ik,`t−1

(
x2
))
,

which simplifies to

x
((
x2 − k`

)
Ik,`t−1

(
x2
)

+ c
(
Ik,`t−1

(
x2
)
−(k − 1)(`− 1) Ik,`t−2

(
x2
)))

. (5.6.1)

Using Equation 5.4.2, we compute that

Ik,`t−1

(
x2
)
−(k − 1)(`− 1) Ik,`t−2

(
x2
)

=
(
x2 − k`+ 1

)
Ik,`t−2

(
x2
)
−(k − 1)(`− 1) Ik,`t−3

(
x2
)
.

We can inductively rewrite Equation 5.6.1 as

x
(
x2 − k`

)(
Ik,`t−1

(
x2
)

+ c
t−2∑
i=0

Ik,`i
(
x2
))

,

which simplifies to
x
(
x2 − k`

)(
(c− 1) Jt−2

(
x2
)

+ Jt−1

(
x2
))
.
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The eigenvalues of B(k, `, 2t+ 1, c) are the roots of det(xI −B(k, `, 2t+ 1, c)). There-
fore, the nontrivial, nonzero eigenvalues of B(k, `, 2t+ 1, c) are the square roots of the roots
of the expression

(c− 1) Jt−2(z) + Jt−1(z) .

We can similarly define B(k, `, 2t, c) to be the 2t × 2t tridiagonal matrix with lower
diagonal (1, . . . , 1, c, k), zero along the main diagonal, and row sum alternating between k
and `. We wish to use the eigenvalues of B(k, `, t, c) to define a function and apply the
semiregular linear programming bound. The following result relates the second-largest
eigenvalue of the graph to the second-largest eigenvalue of B(k, `, t, c) .

5.6.1 Proposition. Let k, ` ≥ 3 and let 0 < θ <
√
k − 1 +

√
`− 1. Then there exists a

matrix B(k, `, t, c) with second-largest eigenvalue θ.

Proof. Similar to McKay’s approach [115] to Example 2.3.7, Godsil and Mohar [83] derived
the weight function for semiregular trees. Letting p =

√
(k − 1)(`− 1), their results gives

us a weight function

α(x) =

k`

√
−
(
x2 − k`+(p− 1)2

)(
x2 − k`+(p+ 1)2

)
π(k + `)(k`− x2) |x|

on the interval
[
−
√
k − 1−

√
`− 1,

√
k − 1 +

√
`− 1

]
.

As we saw in the proof of Theorem 2.3.1, for i ≥ 0 the polynomial F k,`i defines a discrete

measure and an interval containing the roots of F k,`i . These measures converge to the mea-
sure obtained by Godsil on Mohar on the interval

[
−
√
k − 1−

√
`− 1,

√
k − 1 +

√
`− 1

]
.

Thus there exists some s such that Fs(θ) < 0 but Fi(θ) ≥ 0 for i ≤ s− 1.

Suppose s is odd, and let t = s−1
2 . Then Ik,`t

(
θ2
)
< 0 but Ik,`i

(
θ2
)
≥ 0 for i ≤ t− 1.

Let

c =
−Ik,`t

(
θ2
)

Jt−1(θ2)
.

Note that by construction, c > 0.
We have that

Jt
(
θ2
)

+(c− 1) Jt−1

(
θ2
)

= Jt
(
θ2
)
− Jt−1

(
θ2
)

+ cJt−1

(
θ2
)

= Ik,`t
(
θ2
)
−
Ik,`t
(
θ2
)

Jt−1(θ2)
Jt−1

(
θ2
)

= 0,

so θ is a root of Jt
(
z2
)

+(c− 1) Jt−1

(
z2
)
, and thus an eigenvalue of B(k, `, 2t+ 3, c) .

It remains to show that θ is in fact the second-largest eigenvalue. We have

Ik,`2 (x)−(k − 1)(`− 1) Ik,`1 (x) =(x− k) J1(x) ,
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so we may inductively assume that, for i ≥ 2, we have

Ik,`i (x)−(k − 1)(`− 1) Ik,`i−1 =(x− k`) Ji−1(x) .

Expanding out using Equation 5.4.2, we see that

Ik,`i+1(x)−(k − 1)(`− 1) Ik,`i (x) =(x− k`) Ik,`i (x) + Ik,`i (x)−(k − 1)(`− 1) Ik,`i−1(x)

=(x− k`) Ik,`i (x) +(x− k`) Ji−1(x)

=(x− k`) Ji(x) .

By Lemma 5.4.1, the zeros of It−1 interlace Ik,`t − (k − 1)(`− 1) Ik,`t−1, and the nontrivial

eigenvalues of Ik,`t −(k − 1)(`− 1) Ik,`t−1 interlace the zeros of Jt−1. In turn, the zeros of Jt−1

interlace the zeros of Jt−1 +(c− 1) Jt. In particular, if θ is not the second-largest eigenvalue

of B(k, `, 2t+ 3, c), then it must be strictly less than the second-largest zero of Ik,`t−1

(
x2
)
,

which contradicts our choice of t. Thus we have found a matrix B(k, `, 2t+ 3, c) with
second-largest eigenvalue θ.

The proof if s is even is identical, only using the families of polynomials P k,` and Qk,`

instead of Ik,` and Jk,`.

We can now prove a spectral Moore bound for semiregular bipartite graphs.

5.6.2 Theorem. If θ is the second-largest eigenvalue of B(k, `, 2t+ 1, c), then

b(k, `, θ) ≤ `
t−2∑
i=0

(`− 1)i(k − 1)i +
`(`− 1)t−1(k − 1)t−1

c
.

The graph obtaining this bound is distance-biregular.

Proof. Consider the matrix xI −B(k, `, 2t+ 1, c). The determinant is

x
(
x2 − k`

)(
(c− 1) Jt−2

(
x2
)

+ Jt−1

(
x2
))
.

Let
√
k` = λ0 > λ1 > · · · > λt−1 be the positive eigenvalues of B(k, `, 2t+ 1, c) . Then

t−1∏
r=1

(
x− λ2

r

)
=(c− 1) Jt−2(x) + Jt−1(x) .

Therefore, we can define

f(x) = x
(
x− θ2

) t−1∏
r=2

(
x− λ2

r

)2
=

(c− 1) Jt−2(x) + Jt−1(x)

x− θ2

(
c
√
x
t−2∑
i=0

Ik,`i (x) +
√
xIk,`t−1(x)

)
.
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For all eigenvalues θr of G, we have f
(
θ2
r

)
≤ 0.

By Proposition 5.4.2 and the definition of Ji, we know there exists positive coefficients
j0, . . . , jt−2 such that

(c− 1)
√
xJt−2(x) +

√
xJt−1(x)

x− θ2
=
√
x
t−2∑
i=0

jiI
k,`
i (x) . (5.6.2)

Thus we may write

f(x) =

(
√
x

t−2∑
i=0

jiI
k,`
i (x)

)(
c
√
x

t−2∑
i=0

Ik,`i (x) +
√
xIk,`t−1(x)

)
for ji > 0.

By Lemma 5.4.3, we get that hi > 0 for all i = 0, . . . , 2t− 2. We further note that

pk,`(2i+ 1, 2j + 1; 0) = k(`− 1)i(k − 1)i δi,j = kIk,`i (k`) δi,j ,

so by Equation 5.6.2 we have

h0 = ck
t−2∑
i=0

jiI
k,`
i (k`) = ck

(c− 1) Jt−2(k`) + Jt−1(k`)

k`− θ2

Applying Theorem 5.3.1, we then get

|B| ≤ f(k`)

h0

= `
t−2∑
i=0

Ik,`i (k`) + `
Ik,`t−1(k`)

c

= `

t−2∑
i=0

(`− 1)i(k − 1)i +
`(`− 1)t−1(k − 1)t−1

c
.

If equality holds, it must hold in Theorem 5.3.1. This implies every nonzero, nontrivial
eigenvalue of G is a square root of a zero of a t − 1 degree polynomial. It follows that G
must have at most 2t + 1 distinct eigenvalues, and thus G has diameter d ≤ 2t. Further,
G has girth at least 4t− 2, which means d ≥ 2t− 1. If d = 2t− 1, then G is a generalized
polygon, which is distance-biregular. Otherwise we can use Theorem 4.7.4 to conclude G is
distance-biregular.

A close variation of this proof gives us an analogue for even matrices.

5.6.3 Theorem. If θ is the second-largest eigenvalue of B(k, `, 2t, c), then

b(k, `, θ) ≤ 1 + k
t−2∑
i=1

(`− 1)i(k − 1)i−1 +
k(`− 1)t−1(k − 1)t−2

c
.
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Proof. Apply Theorem 5.3.1 with

f(x) =

(
(c− 1)Qk,`t−2(x) +Qk,`t−1(x)

)2

x− θ2
.

The same way that the spectral Moore bound for regular graphs gave a new proof of
the Alon-Boppana theorem, our semiregular spectral Moore bound leads to a new proof of
the following result of Feng and Li [67] in bipartite expanders.

5.6.4 Theorem (Feng-Li [67]). If k, ` ≥ 3 and θ <
√
k − 1 +

√
`− 1, then there are only

finitely many bipartite(k, `)-semiregular graphs that have second-largest eigenvalue at most
θ.

5.7 Comparison to Previous Bounds

The semiregular spectral Moore bound is tight for partial geometries.

5.7.1 Example. Let 1 < α < ` be an integer such that a partial geometry pg (`− 1, k − 1, α)
exists with k, ` ≥ 2. Then pg(`− 1, k − 1, α) has second-largest eigenvalue

√
k + `− α− 1,

which is also the second-largest eigenvalue of
0 k
1 0 `− 1

1 0 k − 1
α 0 `− α

k 0

 .

Applying the bound of Theorem 5.6.2, we get that

b
(
k, `,
√
k + `− α− 1

)
≤ `+

`(`− 1)(k − 1)

α
=
`((`− 1)(k − 1) + α)

α
,

which is precisely the number of points in a partial geometry, so this bound is tight.

However, the regular spectral Moore bound of Cioabă, Koolen, Nozaki, and Vermette [37]
is not tight for the halved graphs of proper partial geometries.

5.7.2 Example. Let 1 < α < ` be an integer such that a partial geometry pg (`− 1, k − 1, α)
exists with k, ` ≥ 2. The second-largest eigenvalue of the point graph is `− 1−α. Using the
bound in [37], we see the number of points is at most

b(k(`− 1) , `− 1− α) ≤ 1 + k(`− 1) +
k(`− 1)(k(`− 1)− 1)(`− α)

k(`− 1)− 1−(`− 1− α)2 .

Note that, since 2 ≤ α ≤ `− 1, and 2 ≤ k, we have

k(α− 1)(k(`− 1)− 1) +(k(`− 1)− 1) +(k − 1)(`− 1− α)2 > 0.
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Therefore,

αk(k(`− 1)− 1) >(k − 1)
(
k(`− 1)− 1−(`− 1− α)2

)
,

which we can rewrite as

k(k(`− 1)− 1)

k(`− 1)− 1−(`− 1− α)2 >
k − 1

α
.

Multiplying both sides by (`− 1)(`− α) gives us

k(`− 1)(k(`− 1)− 1)(`− α)

k(`− 1)− 1−(`− 1− α)2 >
(k − 1)(`− 1)(`− α)

α
.

We compute that

1 + k(`− 1) +
(k − 1)(`− 1)(`− α)

α
=
`((k − 1)(`− 1) + α)

α
.

This in turn implies that

1 + k(`− 1) +
k(`− 1)(k(`− 1)− 1)(`− α)

k(`− 1)− 1−(`− 1− α)2 >
`(`− 1)(k − 1) + α

α
,

and therefore, the bound given in [37] by considering the point graph is not tight.

We can also view partial geometries as hypergraphs, but the hypergraph bound of
Cioabă, Koolen, Mimura, Nozaki, and Okuda [35] is not tight for partial geometries.

5.7.3 Example. Let 1 < α < ` be an integer such that a partial geometry pg (`− 1, k − 1, α)
exists with k, ` ≥ 2. The point graph is the same as before, with second eigenvalue `−1−α.
Using the bound from [35], we have that the number of points is bounded above by

1 + k(`− 1) +
k(k − 1)(`− 1)2(`− α)

k(`− 1) +(α− 1)(`− 1− α)
.

Since α, k, ` ≥ 2, we have that

(α− 1)(k − 1)(`− 1) + α(α− 1) > 0.

Therefore,

αk(`− 1) > k(`− 1) +(α− 1)(`− 1− α) ,

which we can rewrite as

k(`− 1)

k(`− 1) +(α− 1)(`− 1− α)
>

1

α
.
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Multiplying both sides by (k − 1)(`− 1)(`− α) gives us

k(k − 1)(`− 1)2(`− α)

k(`− 1) +(α− 1)(`− 1− α)
>

(k − 1)(`− 1)(`− α)

α
.

We compute that

1 + k(`− 1) +
(k − 1)(`− 1)(`− α)

α
=
`((k − 1)(`− 1) + α)

α
.

It follows that

1 + k(`− 1) +
k(k − 1)(`− 1)2(`− α)

k(`− 1) +(α− 1)(`− 1− α)

and therefore, the bound given in [35] is also not tight for partial geometries.

Thus, using constructions of infinite families such as those by De Clerck, Dye, and
Thas [53] or Mathon [113], we have infinite families of distance-biregular graphs where the
bound in Theorem 5.6.2 is tight, but the bounds by Cioabă et al [35, 37] are not.
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6. FUTURE WORK

Throughout this thesis, we have made use of the bipartite structure for both the distance
adjacency matrices and the spectral idempotents. In Section 2.6, we saw that we could write
the distance adjacency matrices in terms of the spectral idempotents, and in the proof of
Theorem 4.7.4 we wrote the spectral idempotent for the largest eigenvalue in terms of
the distance adjacency matrices. In fact, it is generally true that we can write the spectral
idempotents in terms of the distance adjacency matrices, giving us two bases for the algebra

〈
(

0 N
0 0

)
,

(
0 0
NT 0

)
〉.

For distance-regular graphs, the equivalent algebra generalizes to an association scheme.
Association schemes are commutative and contain the identity, so the algebra of distance-
biregular graphs is not an association schemes. However, there is a similarly nice algebraic
structure of a coherent configuration associated to distance-biregular graphs, proposed by
Delorme [55, 56], which we expand on in this chapter. We conclude with some problems
for further research, including the problems that have been posed throughout the thesis, as
well as additional problems suggested by the coherent configuration.

6.1 Coherent Configurations

LetG be a distance-regular graph of diameter d, and letA0, . . . , Ad be the distance adjacency
matrices. We have

(a) A0 = I;

(b)
∑d

i=0Ai = J ;

(c) ATi = Ai for 0 ≤ i ≤ d; and

(d) AiAj ∈ span {A0, . . . , Ad} for 0 ≤ i, j ≤ d.

Thus, the distance adjacency matrices of a distance-regular graph satisfy the necessary for
properties of an association scheme.

Association schemes are a useful tool in algebraic combinatorics. They were introduced
by Bose and Shinamoto [27] in the study of designs. The use of association schemes in
the context of coding theory was developed by Delsarte [57], and the connections between
distance-regular graphs and association schemes has been given considerable attention in
the books of Brouwer, Cohen, and Neumaier [28] and Bannai and Ito [15].

Unless the graph is regular, the distance adjacency matrices of a distance-biregular
graph will not form an association scheme. However, distance-biregular graphs still have a
strong algebraic structure.

Let A be a set of 01-matrices. They form a coherent configuration if they satisfy the
following:
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6.1. COHERENT CONFIGURATIONS

(a) There exists a subset S ⊆ A such that∑
M∈S

M = I;

(b)
∑

M∈AM = J ;

(c) If M ∈ A, then MT ∈ A; and

(d) For any M1,M2 ∈ A, the matrix M1M2 is a linear combination of matrices in A.

Recall from Section 3.2 that X0, X1, . . . , and Y0, Y1, . . . are the distance adjacency ma-
trices for the halved graph. From Section 3.5, we further have that N1, N3, . . . are the
distance-biadjacency matrices. We claim that, for a distance-biregular graph, the set of
matrices

A =

{(
Xi 0
0 0

)
,

(
0 0
0 Yi

)
: 0 ≤ i ≤ d

2

}⋃{(
0 N2i+1

0 0

)
,

(
0 0

NT
2i+1 0

)
: 0 ≤ i ≤ d− 1

2

}
is a coherent configuration. It is clear that(

X0 0
0 0

)
+

(
0 0
0 Y0

)
= I,

and ∑
M∈A

M =

b d
2
c∑

i=0

(
Xi 0
0 Yi

)
+

b d−1
2
c∑

i=0

(
0 N2i+1

NT
2i+1 0

)
=

d∑
i=0

Ai = J,

establishing (a) and (b). The set A is partitioned into the distance adjacency matrices of
the halved graph induced by β and γ, which are symmetric, and the distance biadjacency
matrices, where the transpose is explicitly included. Thus (c) holds.

The proof of (d) is morally similar to the distance-regular case, but it breaks into more
involved casework. We need to prove that for any i, j we have(

Xi 0
0 0

)(
Xj 0
0 0

)
∈ span(A) , (6.1.1)

(
Xi 0
0 0

)(
0 N2j+1

0 0

)
∈ span(A) , (6.1.2)

(
0 N2i+1

0 0

)(
0 0

NT
2j+1 0

)
∈ span(A) , (6.1.3)

and the remaining cases follow from symmetry or by switching β and γ.
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Equation 6.1.1 follows from Theorem 3.2.3, since the halved graphs form an association
scheme.

Let d̂ = bd−1
2 c. Suppose by induction there exists some k ≥ 0 such that(

NNT
)k
Ij
(
NNT

)
N ∈ span

{
N1, . . . , N2d̂+1

}
for all 0 ≤ j ≤ d̂. Now consider(

NNT
)k+1

Ij
(
NNT

)
N =

(
NNT

)k(
NNT Ij

(
NNT

))
N.

Since I0

(
NNT

)
, . . . , Id̂

(
NNT

)
form a sequence of orthogonal polynomials, they satisfy a

three-term recurrence and we can writeNNT Ij
(
NNT

)
as a linear combination of Ij−1

(
NNT

)
,

Ij
(
NNT

)
, and Ij+1

(
NNT

)
. Then the inductive hypothesis proves that(

NNT
)k+1

Ij
(
NNT

)
N ∈ span

{
N1, . . . , N2d̂+1

}
Since Pi

(
NNT

)
is a polynomial in NNT , this establishes Equation 6.1.2.

We could also prove Equation 6.1.1 directly using this same method by replacing Ij with
Pj .

Equation 6.1.3 is equivalent to the statement that, for 0 ≤ i, j ≤ d̂ we have

Ii
(
NNT

)
NNT Ij

(
NNT

)
∈ span

{
X0, . . . , Xb d

2
c

}
.

Note that for any 0 ≤ j ≤ d̂, we can write Ij as a linear combination of P0, . . . , Pj . Thus we

may suppose by induction that for any 0 ≤ j ≤ d̂, there exists k ≥ 0 such that(
NNT

)k+1
Pj
(
NNT

)
∈ span

{
X0, . . . , Xb d

2
c

}
,

and the same argument used above establishes 6.1.3.

6.2 Adjacency Algebra

Consider the set of spectral idempotents, split into block matrices as described in Section 2.6.
This gives us the set

A =

{(
2Rr 0
0 0

)
,

(
0 2Dr

0 0

)
,

(
0 0

2DT
r 0

)
,

(
0 0
0 2Lr

)
: θr ≥ 0

}
.

Let 0 ≤ 2i ≤ d. Recall that F β2i, F
γ
2i are even functions, so we have(

Xi

0

)
= F β2i(A) Eβ =

∑
θr

F β2i(θr)ErEβ =
∑
θr≥0

F β2i(θr)

(
2Rr
0

)
(6.2.1)
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and similarly (
0
Yi

)
= F γ2i(A) Eγ =

∑
θr≥0

F γ2i(θr)

(
0

2Lr

)
. (6.2.2)

Now let 0 ≤ 2i+ 1 ≤ d. Since F2i+1 is an odd function, we have(
0

N2i+1

)
= F2i+1(A) Eβ =

∑
θr

F2i+1(θr)ErEβ =
∑
θr≥0

F2i+1(θr)

(
0

2Dr

)
, (6.2.3)

and by symmetry (
NT

2i+1

0

)
=
∑
θr≥0

F2i+1(θr)

(
2DT

r

0

)
. (6.2.4)

Thus we have
A ⊆ span(B) .

The scalars F βi (θr) , F
γ
i (θr) are the eigenvalues of the configuration.

Now, let θr ≥ 0 be an eigenvalue. Recall that there exists a polynomial of degree d

f(x) :=
∏
s 6=r

x− θs
θr − θs

such that

f(A) = Er =

(
Rr Dr

DT
r Lr

)
.

Since f(x) is a polynomial of degree d, we can write it in the basis F β0 , . . . , F
β
d . This

tells us there exist coefficients qβr (0) , . . . , qβr (d) such that(
2Rr
0

)
=

1

|β|

d∑
2i=0

qβr (2i)

(
Xi

0

)
, (6.2.5)

and (
0

2Dr

)
=

√
`√

k |β|

d∑
2i+1=0

qβr (2i+ 1)

(
0

N2i+1

)
. (6.2.6)

We can similarly write f(x) in the basis of F γ0 , . . . , F
γ
d to conclude that(

2DT
r

0

)
=

√
k√
` |γ|

d∑
2i+1=0

qγr (2i+ 1)

(
NT

2i+1

0

)
, (6.2.7)

and (
0

2Lr

)
=

1

|γ|

d∑
2i=0

qγr (2i)

(
0
Yi

)
. (6.2.8)
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The coefficients qβr (i) , qγr (i) are called the dual eigenvalues. Note that as with the eigenval-

ues, qβr (2i+ 1) = qγr (2i+ 1) .
Pulling everything together, we see that

span(A) = span(B) ,

and we have two distinguished sets of bases for this algebra.
We have(

2Rr 0
0 2Lr

)
= Er + E−r =(Er − E−r)2 =

(
0 2Dr

2DT
r 0

)2

=

(
4DrD

T
r 0

0 4DT
r Dr

)
For θr 6= ±θs, then since ErEs = 0, we must have

RrRs +DrD
T
s = 0.

Since 2Rr, 2Rs are distinct spectral idempotents of NNT , they are orthogonal. Thus
RrRs = 0, from which it follows DrD

T
s = 0.

The Scur product of two matricesA andB is the entry-wise product defined by(A ◦B)i,j =
Ai,jBi,j . Note that the distance matrices of our coherent configuration are idempotent un-
der Schur multiplication, and therefore our coherent configuration is closed under Schur
multiplication. Switching from the distance basis and normal matrix multiplication to the
spectral basis and the Schur product gives us dual version of definitions and results.

One useful result is that the dual eigenvalues can be computed from the eigenvalues. To
see this, we let 0 ≤ 2i, r ≤ d. Using the spectral basis, we have

tr(Xi2Rr) = tr
(
F β2i(θr) 2Rr

)
= mβ

rF
β
2i(θr) ,

whereas under the basis of adjacency matrices we have

tr(Xi2Rr) = sum(Xi ◦ 2Rr) =
1

|β|
sum

(
qβr (2i)Xi

)
= kβ2iq

β
r (2i) .

An analogous argument gives us

mγ
rF

γ
2i(θr) = kγ2iq

γ
r (2i) .

For 1 ≤ 2i+ 1 ≤ d and 0 ≤ r ≤ d, we have

tr
(
N2i+12DT

r

)
= tr

(
F β2i+1(θr) 2RTr

)
= mβ

rF
β
2i+1(θr)

and

tr
(
N2i+12DT

r

)
= sum

(
NT

2i+1 ◦ 2DT
r

)
=

√
k√
` |γ|

sum
(
qγr (2i+ 1)NT

2i+1

)
=

√
k√
`
kγ2i+1q

γ
r (2i+ 1) .
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6.3. INTERSECTION NUMBERS

6.3 Intersection Numbers

The intersection numbers defined in Section 5.4 also arise in the coherent configuration. If

(
Xi 0
0 0

)
,

(
Xj 0
0 0

)
∈ A,

then we have (
Xi 0
0 0

)(
Xj 0
0 0

)
=

d∑
2h=0

pβ(2i, 2j; 2h)

(
Xh 0
0 0

)
,

and similarly for pβ(2i, 2j + 1; 2h+ 1) , pβ(2i+ 1, 2j; 2h+ 1) , pβ(2i+ 1, 2j + 1; 2h) . We can
also use γ instead of β to get the corresponding intersection numbers for the other cell of
the partition.

We can write the intersection numbers recursively to express them in terms of the
parameters of the distance-biregular graph. Let π ∈ {β, γ}. Note that pπ(0, i;h) = δih and
pπ(0, j;h) = δjh. Further,

bπi = pπ(i, 1; i+ 1)

and

cπi = pπ(i, 1, i− 1) .

6.3.1 Lemma. Let G =(β ∪ γ,E) be a distance-biregular graph with diameter d. For i ≥ 1
and j ≥ 2, we have

pβ(i, j + 1; 2h) =
1

cβj+1

(
cβi+1p

β(i+ 1, j; 2h) + bβi−1p
β(i− 1, j; 2h)− bβj−1p

β(i, j − 1; 2h)
)

and

pβ(i, j + 1; 2h+ 1) =
1

cγj+1

(
cβi+1p

β(i+ 1, j; 2h+ 1) + bβi−1p
β(i− 1, j; 2h+ 1)

)
− 1

cγj+1

bγj−1p
β(i, j − 1; 2h+ 1) .
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Proof. Let u ∈ β and let v be at distance 2h from u. Then we have

pβ(i, j + 1; 2h) = eTuF
β
i (A)F βj+1(A) ev

=
1

cβj+1

eTu

(
F βi (A)

(
AF βj (A)− bβj−1F

β
j−1(A)

))
ev

=
1

cβj+1

eTu

(
AF βi (A)F βj (A)− bβj−1F

β
2i(A)F βj−1(A)

)
ev

=
1

cβj+1

eTu

(
cβi+1F

β
i+1(A)F βj (A) + bβi−1F

β
i−1(A)F βj (A)− bβj−1F

β
i (A)F βj−1(A)

)
ev

=
1

cβj+1

(
cβi+1p

β(i+ 1, j; 2h) + bβi−1p
β(i− 1, j; 2h)− bβj−1p

β(i, j − 1; 2h)
)
.

Similarly, if v is at distance 2h+ 1 from u then

pβ(i, j + 1; 2h+ 1) = eTuF
β
i (A)F γj+1(A) ev

=
1

cγj+1

eTu

(
AF βi (A)F βj (A)− bβj−1F

β
i (A)F γj−1(A)

)
ev

=
1

cγj+1

(
cβi+1p

β(i+ 1, j; 2h+ 1) + bβi−1p
β(i− 1, j; 2h+ 1)

)
− 1

cγj+1

bγj−1p
β(i, j − 1; 2h+ 1) .

Since the intersection numbers count vertices in a graph, they must be non-negative
integers.

6.4 Krein Parameters

We can define duals to the intersection numbers and, even though they do not have a
combinatorial interpretation, they still give us a feasibility condition for distance-biregular
graphs.

Let θr, θs be eigenvalues. Then since the coherent configuration is closed under Schur
multiplication, there exist coefficients ρrs(t) , λrs(t) ,∆rs(t) called Krein parameters such
that (

2Rr 0
0 0

)
◦
(

2Rs 0
0 0

)
=

1

|β|

d∑
t=0

ρrs(t)

(
2Rt 0
0 0

)
; (6.4.1)

(
0 2Dr

0 0

)
◦
(

0 2Ds

0 0

)
=

√
`√

k |β|

d∑
t=0

∆rs(t)

(
0 2Dt

0 0

)
; (6.4.2)
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(
0 0

2DT
r 0

)
◦
(

0 0
2DT

s 0

)
=

√
k√
` |γ|

d∑
t=0

∆rs(t)

(
0 0

2DT
t 0

)
; (6.4.3)

and (
0 0
0 2Lr

)
◦
(

0 0
0 2Ls

)
=

1

|γ|

d∑
t=0

λrs(t)

(
0 0
0 2Lt

)
. (6.4.4)

Let θt be a non-negative eigenvalue in the support of β. We have

ρrs(t)

(
2Rt 0
0 0

)
= |β|

(
2Rt 0
0 0

)((
2Rr 0
0 0

)
◦
(

2Rs 0
0 0

))
.

Taking the trace of both sides gives us

ρrs(t) =
|β|
mβ
t

tr(2Rt(2Rr ◦ 2Rs)) =
|β|
mβ
t

sum(2Rt ◦ 2Rr ◦ 2Rs) .

Using Equation 6.2.5, we have

2Rt ◦ 2Rr ◦ 2Rs =
1

|β|3
d∑

2i=0

qβt (2i) qβr (2i) qβs (2i)Xi,

so

ρrs(t) =
1

|β|mβ
t

d∑
2i=0

qβr (2i) qβs (2i) qβt (2i) kβ2i.

An analogous argument gives

λrs(t) =
1

|γ|mγ
t

d∑
2i=0

qγr (2i) qγs (2i) qγt (2i) kγ2i.

Letting θt be a positive eigenvalue, we have(
0 0

2DT
t 0

)((
0 2Dr

0 0

)
◦
(

0 2Ds

0 0

))
=

√
`√

k |β|
∆rs(t)

(
0 0
0 Lt

)
.

Taking the trace of both sides gives us

∆rs(t) =

√
k |β|√
`mγ

t

tr
(
2DT

t (2Dr ◦ 2Ds)
)

=

√
k |β|√
`mγ

t

sum(2Dr ◦ 2Ds ◦ 2Dt) .

Using Equation 6.2.7, we have

2Dr ◦ 2Ds ◦ 2Dt =

( √
`√

k |β|

)3 d∑
2i+1=1

qβr (2i+ 1) qβs (2i+ 1) qβt (2i+ 1)

(
0 N2i+1

0 0

)
,
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so

∆rs(t) =
`

k |β|

d∑
2i+1=1

qβr (2i+ 1) qβs (2i+ 1) qβt (2i+ 1) kβ2i+1.

We are now ready to compute the Krein inequalities for distance-biregular graphs. This
was previously done by Delorme [55, 56], and the proof is similar to the standard proofs for
distance-regular graphs.

6.4.1 Proposition. Let G be a distance-biregular graph of diameter d. For all 0 ≤ r, s, t ≤
d, the Krein parameters satisfy

ρrs(t) ≥ 0,

λrs(t) ≥ 0,

and
ρrs(t)λrs(t) ≥ ∆rs(t)

2 .

Proof. Let 0 ≤ r, s ≤ d. Since Er, Es are positive semidefinite, so too is Er ◦ Es. Because
Rr ◦Rs and Lr ◦ Ls are principal submatrices, they are also positive semidefinite. Since

Rr ◦Rs =
∑
t

ρrs(t)Rt,

we see that ρrs(t) are the eigenvalues of Rr ◦ Rs, and thus they must be non-negative. A
similar argument applies for λrs(t) .

We also have

Er ◦ Es =
∑
t

(
ρrs(t)

(
2Rt 0
0 0

)
+ λrs(t)

(
0 0
0 2Lt

)
+ ∆rs(t)

(
0 2Dt

2DT
t 0

))
,

from which we get the positive-semidefinite quadratic form

ρrs(t)x
2
1 + λrs(t)x

2
2 + 2∆rs(t)x1x2,

which in turn gives us the inequality

ρrs(t)λrs(t) ≥ ∆2
rs.

6.5 Feasibility and Examples

In Chapter 3, we proposed a set of feasible criteria for distance-biregular graphs, which
we used to prepare the tables in Appendix A and Appendix B. We have annotated those
tables with the constructions of graphs from Chapter 3, citations to other constructions,
and notes of which graphs fail to meet the conditions on the intersection numbers or Krein
parameters. It would be nice to have more constructions and necessary conditions to add
to the table.

We highlight one intersection array of particular interest.
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6.5.1 Problem. Does a distance-biregular graph with intersection array∣∣∣∣ 8; 1, 2, 21, 8
36; 1, 6, 7, 36

∣∣∣∣
exist?

The halved intersection arrays are (140, 45; 1, 84) and (42, 5; 1, 42) . The complement of
eight disjoint copies of K6 has intersection array(42, 5; 1, 42), but the existence of a strongly
regular graph with intersection array (140, 45; 1, 84) is unknown. Thus finding a distance-
biregular graph with the intersection array in Problem 6.5.1 would lead to the existence of
a new strongly regular graph.

There is another reason why the tables in Appendix B are of particular interest. Let
G =(β ∪ γ,E) be a bipartite graph such that β has covering radius d. Let u ∈ β and let v be
at distance two from u. The graph G is 2-β-homogeneous if for all w at distance i from both
u and v, the number of vertices which are neighbours of u and v and at distance i− 1 from
w is independent of the choice of u, v, and w. Fernández and Penjić [69] studied distance-
biregular graphs which were 2-β-homogeneous, and characterized the intersection arrays.
As a consequence, they proved that the only 2-β-homogeneous graphs with cβ2 = 1 are
the generalized polygons. They also characterized the 2-β-homogeneous distance-biregular
graphs with d = 3, so the next smallest case to look at is the graphs with diameter four
and cβ2 6= 1.

Several of the problems that we’ve posed throughout the thesis can also fall under the
rough category of proving or disproving the existence of distance-biregular graphs. For the
sake of completeness, we restate the problems here.

3.3.1 Problem. Given a distance-regular graph H, is H the halved graph of a distance-
biregular graph?

In chapter 6 of his thesis, Shawe-Taylor [134] proved that several infinite families, in-
cluding the Hamming graphs and dual polar space graphs, do not arise as halved graphs
of distance-biregular graphs. Similar techniques of looking at the subgraphs of distance-
biregular graphs were considered by Suzuki [144] and Hiraki [96, 95], and could likely be
applied to other families of distance-biregular graphs.

3.6.3 Problem. Characterize the distance-biregular graphs where one cell of the partition
has valency three.

Biggs, Boshier, and Shawe-Taylor [22] characterized distance-regular graphs of valency
three. To do so, they used the fact that b∗0 ≥ b∗1 ≥ · · · ≥ b∗d−1 and c∗1 ≤ c∗2 ≤ · · · ≤ c∗d to break
the structure of cubic distance-regular graphs into several cases and systematically describe
the graphs in each case. Note that there are only 13 cubic distance-regular graphs, but the
Steiner triple systems give an infinite family of distance-biregular graphs where one cell of
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the partition has valency three. Thus a similar approach as the one used by Biggs, Boshier,
and Shawe-Taylor [22] to Problem 3.6.3 would be more involved, since it would require
dealing with infinite families rather than concrete graphs. Some cases have already been
considered by Suzuki [143] and Yamazaki [155]. Easier subcases of Problem 3.6.3 would
ask for characterizations of the distance-biregular graphs where one cell of the partition has
valency three and the other cell has some other fixed valency.

4.7.1 Problem. If two distance-biregular graphs are cospectral, do they have the same
intersection array?

An intersection array being feasible imposes strong numerical conditions on the intersec-
tion coefficients. The additional criteria that two feasible intersection arrays have the same
spectrum imposes even stronger numerical conditions, but it’s not clear if these conditions
are strong enough to force the intersection arrays to be the same. Even for distance-regular
graphs, where the intersection array is determined by the spectrum, there are still cospectral
pairs of non-isomorphic distance-regular graphs with the same intersection array.

6.5.2 Problem. How many non-isomorphic distance-biregular graphs have the intersection
arrays listed in Appendix A and Appendix B?

This problem has been considered for partial geometries and bipartite distance-regular
graphs, but not the distance-biregular graphs in Appendix B. One hopeful family is the
Hadamard semi-symmetric designs. For higher orders, there are many non-equivalent
Hadamard matrices, and it is likely that they would lead to non-isomorphic distance-
biregular graphs.

6.6 Extensions of Distance-Regular Results

Any result on distance-regular graphs that does not assume the existence of odd cycles can
be turned into a problem for distance-biregular graphs. Such questions led us to Theo-
rem 4.4.3 and Theorem 4.6.4, which in turn led to to the following problem:

4.7.3 Problem. When is a graph with the spectrum of a distance-biregular graph distance-
biregular?

Other results on distance-regular graphs were adapted to distance-biregular graphs by
Delorme [55, 56] and Shawe-Taylor [134]. In particular, they both adapted the proof of
Terwilliger [146] to bound the diameter of a distance-biregular graph of valency k with
given girth.

In 1984, Bannai and Ito [15] conjectured that for k ≥ 3, there are only finitely many
distance-regular graphs of valency k. The proof of Terwilliger [146] can be seen as a step
towards that conjecture, since it proves that for k, g ≥ 3, there are only finitely many
distance-regular graphs of valency k and girth g. Working in the same time span, it was
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logical that Delorme [56] and Shawe-Taylor [134] would extend this to distance-biregular
graphs. Since then, the Bannai-Ito conjecture has been settled by Bannai and Ito for
bipartite graphs [16] and more recently for all graphs by Bang, Dubickas, Koolen, and
Moulton [14]. The bipartite case is much simpler than the general case, motivating the
following question.

6.6.1 Problem. Prove that for all k, ` ≥ 3, there are only finitely many distance-biregular
graphs with valencies k and `.

If we fix k and `, then there are only finitely many valencies that the halved graphs of
a (k, `)-distance-biregular graph can have, so by the result of Bang, Dubickas, Koolen, and
Moulton [14], we know there are only finitely many halved graphs. It follows that there
are only finitely many distance-biregular graphs with valencies (k, `) , and so we have solved
Problem 6.6.1. However, we are looking for a more direct proof. For the regular case, the
additional structure of bipartite graphs make for a simpler proof, and it is likely that similar
structure would be useful for distance-biregular graphs.

We could also take a more algebraic perspective and, instead of asking for extensions of
distance-regular graphs to distance-biregular analogues, ask for extensions of results from
association schemes to the coherent configuration described in Section 6.1.

The distance adjacency matrices of a distance-regular graph have a stronger property
than just forming an association scheme. For all 0 ≤ i ≤ d, the matrix Ai is a polynomial
in A1 of degree i, so a distance-regular graph forms a P -polynomial association scheme.
Since association schemes have two products, and two bases idempotent under one of the
products, we can define a dual notion to P -polynomial.

Let M be a matrix. For i ≥ 0, we define the Schur power M◦i as the Schur product of
M with itself i times. Then if we have a polynomial

q(x) =
t∑
i=0

hix
i,

we define

q ◦M :=
t∑
i=0

hiM
◦i.

An association scheme is Q-polynomial if there exists an ordering of the spectral idem-
potents E0, . . . , Ed such that, for 0 ≤ i ≤ d, there exists a polynomial qi such that

qi ◦ E1 = Ei.

The definition we have been using for distance-biregular graphs gives us a notion of P -
polynomial for a coherent configuration with the bipartite structure set up in Section 6.1.
It is thus natural to ask for a dual version.
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6.6.2 Problem. Investigate Q-polynomial coherent configurations with a bipartite struc-
ture.

Notions of Q-polynomial have been proposed for general coherent configurations [142],
and for graphs that are not distance-regular [147], but it would be nice to have a definition
for distance-biregular graphs that unifies these two perspectives, as well as more examples.
Part of Problem 6.6.2 would be studying when distance-biregular graphs are and are not
Q-polynomial, but it would also be interesting to have examples of bipartite coherent con-
figurations that are not P -polynomial. This brings us back to one of our earlier problems.

5.3.2 Problem. How can we interpret the dual linear programming bounds for semiregular
bipartite graphs of Theorem 5.3.1?

Recall that the linear programming bound of Nozaki [125] has a dual bound for spherical
codes. Delsarte, Goethals, and Seidel [58] proved the dual bound. They also proved that
certain spherical codes have the structure of a Q-polynomial association scheme, a result
that Nozaki [125] called dual to the result of Abiad, Van Dam, and Fiol [3] that a graph with
diameter d, d+ 1 distinct eigenvalues, and girth at least 2d− 1 is distance-regular. Thus an
interpretation for Problem 5.3.2 would give us a plausible place to look for Q-polynomial
coherent configurations which are not necessarily distance-biregular.

6.7 Extremal Examples

Given a bound, a natural question is what happens when the bound is tight. Often, the
extremal examples have particularly strong algebraic or combinatorial structure. In the case
of regular graphs, this leads to examples of distance-regular graphs as extremal examples. In
the context of bipartite graphs, similar bounds lead to distance-biregular graphs as extremal
examples.

We have seen some examples of this already. Bipartite graphs with large girth are
distance-biregular, and they arose as extremal examples both with respect to the spectral
Moore bound and as extremal expanders. We investigated these connections in Chapter 5,
and our study leaves us with the following problem.

5.5.2 Problem. Let G be a distance-biregular graph with minimum valency at least three,
diameter d, and girth g ≥ 2d− 2. What are the possible values of d?

Cioabă, Koolen, and Nozaki [36] answered this question for regular graphs. Their proof
followed a similar strategy to the one employed by Fuglister [79] using orthogonal polyno-
mials. A similar approach, adapted to use the orthogonal polynomials for a semiregular
tree, would likely let us solve Problem 5.5.2.

One idea for studying extremal distance-biregular graphs would be to take extremal
problems for distance-regular graphs and adapt them to the distance-biregular case. An
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example comes from a dual version of Problem 6.6.1. For distance-regular graphs, we have
the following result.

6.7.1 Theorem (Godsil [82]). Let G be a connected distance-regular graph of valency k and
diameter d that is not complete bipartite. Let θ be a nontrivial eigenvalue with multiplicity
m > 2. Then d ≤ 3m− 4 and k ≤ 1

2(m− 1)(m− 2) .

Godsil [82] further proved that the only graph with d = 3m − 4 is the dodecahedron.
We would like an extension to distance-biregular graphs.

6.7.2 Problem. Let G be a connected distance-biregular graph of valency k and diameter
d > 2. Let θ be a nontrivial eigenvalue with multiplicity m > 2. What are the bounds on
the diameter and the valencies in terms of m? What graphs meet these bounds?

Another way to study distance-biregular graphs as extremal graphs is to look at extremal
problems where the known examples are distance-biregular, or closely related to families of
distance-biregular graphs. One such possibility comes from a problem originally posed by
Zarankiewicz [158] on the principal submatrix of a 01-matrix. Viewing the matrix as the
biadjacency matrix of a graph gives the following common formulation.

6.7.3 Problem (Zarankiewicz [158]). Let m,n, r, s be positive integers with m ≥ r and
n ≥ s. Given a bipartite graph G = (β ∪ γ,E) with |β| = m and |γ| = n, what is the
maximum number of edges that G can have without containing Kr,s as a subgraph?

An overview of the major bounds for the Zarankiewicz problem can be found in the first
half of Section VI. 2 of Bollobas [24]. Many of the known extremal examples of graphs for the
Zarankiewicz problem come from modifications of incidence structures such as generalized
polygons [48] or designs [87] with a highly regular structure. Distance-biregular graphs
provide a unifying structure behind some of these constructions that might lead to new
examples, particularly in the unbalanced case where r 6= s.
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|β| |γ| Intersection Array Notes

15.0 15.0

∣∣∣∣3; 1, 1, 1, 3
3; 1, 1, 1, 3

∣∣∣∣ GQ(2, 2) Exists and is unique [129]

9.0 9.0

∣∣∣∣3; 1, 1, 2, 3
3; 1, 1, 2, 3

∣∣∣∣ Pappus Graph [28]

16.0 12.0

∣∣∣∣3; 1, 1, 2, 3
4; 1, 1, 2, 4

∣∣∣∣ OA(3, 4) Exists [1]

12.0 9.0

∣∣∣∣3; 1, 1, 3, 3
4; 1, 1, 3

∣∣∣∣ S(2, 3, 9) Exists [107]

45.0 27.0

∣∣∣∣3; 1, 1, 1, 3
5; 1, 1, 1, 5

∣∣∣∣ GQ(2, 4) Exists and is unique [148]

25.0 15.0

∣∣∣∣3; 1, 1, 2, 3
5; 1, 1, 2, 5

∣∣∣∣ OA(3, 5) Exists [1]

36.0 18.0

∣∣∣∣3; 1, 1, 2, 3
6; 1, 1, 2, 6

∣∣∣∣ OA(3, 6) Exists [1]

26.0 13.0

∣∣∣∣3; 1, 1, 3, 3
6; 1, 1, 3

∣∣∣∣ S(2, 3, 13) Exists [107]

49.0 21.0

∣∣∣∣3; 1, 1, 2, 3
7; 1, 1, 2, 7

∣∣∣∣ OA(3, 7) Exists [1]

35.0 15.0

∣∣∣∣3; 1, 1, 3, 3
7; 1, 1, 3

∣∣∣∣ S(2, 3, 15) Exists [107]

64.0 24.0

∣∣∣∣3; 1, 1, 2, 3
8; 1, 1, 2, 8

∣∣∣∣ OA(3, 8) Exists [1]

81.0 27.0

∣∣∣∣3; 1, 1, 2, 3
9; 1, 1, 2, 9

∣∣∣∣ OA(3, 9) Exists [1]

57.0 19.0

∣∣∣∣3; 1, 1, 3, 3
9; 1, 1, 3

∣∣∣∣ S(2, 3, 19) Exists [107]

100.0 30.0

∣∣∣∣ 3; 1, 1, 2, 3
10; 1, 1, 2, 10

∣∣∣∣ OA(3, 10) Exists [1]

70.0 21.0

∣∣∣∣ 3; 1, 1, 3, 3
10; 1, 1, 3

∣∣∣∣ S(2, 3, 21) Exists [107]

231.0 63.0

∣∣∣∣ 3; 1, 1, 1, 3
11; 1, 1, 1, 11

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

121.0 33.0

∣∣∣∣ 3; 1, 1, 2, 3
11; 1, 1, 2, 11

∣∣∣∣ OA(3, 11) Exists [1]

144.0 36.0

∣∣∣∣ 3; 1, 1, 2, 3
12; 1, 1, 2, 12

∣∣∣∣ OA(3, 12) Exists [1]

100.0 25.0

∣∣∣∣ 3; 1, 1, 3, 3
12; 1, 1, 3

∣∣∣∣ S(2, 3, 25) Exists [107]
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40.0 40.0

∣∣∣∣4; 1, 1, 1, 4
4; 1, 1, 1, 4

∣∣∣∣ GQ(3, 3) Exactly two exist [63]

16.0 16.0

∣∣∣∣4; 1, 1, 3, 4
4; 1, 1, 3, 4

∣∣∣∣ OA(4, 4) Exists [1]

10.0 10.0

∣∣∣∣4; 1, 2, 2, 4
4; 1, 2, 2, 4

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

8.0 8.0

∣∣∣∣4; 1, 2, 3, 4
4; 1, 2, 3, 4

∣∣∣∣ Hypercube Graph Figure 2.1

35.0 28.0

∣∣∣∣4; 1, 1, 2, 4
5; 1, 1, 2, 5

∣∣∣∣ PG(3, 4, 2) Does not exist [30]

25.0 20.0

∣∣∣∣4; 1, 1, 3, 4
5; 1, 1, 3, 5

∣∣∣∣ OA(4, 5) Exists [1]

20.0 16.0

∣∣∣∣4; 1, 1, 4, 4
5; 1, 1, 4

∣∣∣∣ S(2, 4, 16) Exists [93]

96.0 64.0

∣∣∣∣4; 1, 1, 1, 4
6; 1, 1, 1, 6

∣∣∣∣ GQ(3, 5) Exists and is unique [129]

36.0 24.0

∣∣∣∣4; 1, 1, 3, 4
6; 1, 1, 3, 6

∣∣∣∣ OA(4, 6) Does not exist [1]

133.0 76.0

∣∣∣∣4; 1, 1, 1, 4
7; 1, 1, 1, 7

∣∣∣∣ GQ(3, 6) Does not exist [63]

49.0 28.0

∣∣∣∣4; 1, 1, 3, 4
7; 1, 1, 3, 7

∣∣∣∣ OA(4, 7) Exists [1]

14.0 8.0

∣∣∣∣4; 1, 2, 6, 4
7; 1, 3, 4

∣∣∣∣ Points/Hyperplanes of AG(2,3): Example 3.7.1

Hadamard design of order 8: Example 3.1.5

64.0 32.0

∣∣∣∣4; 1, 1, 3, 4
8; 1, 1, 3, 8

∣∣∣∣ OA(4, 8) Exists [1]

50.0 25.0

∣∣∣∣4; 1, 1, 4, 4
8; 1, 1, 4

∣∣∣∣ S(2, 4, 25) Exists [93]

81.0 36.0

∣∣∣∣4; 1, 1, 3, 4
9; 1, 1, 3, 9

∣∣∣∣ OA(4, 9) Exists [1]

63.0 28.0

∣∣∣∣4; 1, 1, 4, 4
9; 1, 1, 4

∣∣∣∣ S(2, 4, 28) Exists [93]

280.0 112.0

∣∣∣∣ 4; 1, 1, 1, 4
10; 1, 1, 1, 10

∣∣∣∣ GQ(3, 9) Exists and is unique [63]

100.0 40.0

∣∣∣∣ 4; 1, 1, 3, 4
10; 1, 1, 3, 10

∣∣∣∣ OA(4, 10) Exists [7]

176.0 64.0

∣∣∣∣ 4; 1, 1, 2, 4
11; 1, 1, 2, 11

∣∣∣∣ PG(3, 10, 2)
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121.0 44.0

∣∣∣∣ 4; 1, 1, 3, 4
11; 1, 1, 3, 11

∣∣∣∣ OA(4, 11) Exists [1]

144.0 48.0

∣∣∣∣ 4; 1, 1, 3, 4
12; 1, 1, 3, 12

∣∣∣∣ OA(4, 12) Exists [104]

111.0 37.0

∣∣∣∣ 4; 1, 1, 4, 4
12; 1, 1, 4

∣∣∣∣ S(2, 4, 37) Exists [93]

85.0 85.0

∣∣∣∣5; 1, 1, 1, 5
5; 1, 1, 1, 5

∣∣∣∣ GQ(4, 4) Exists and is unique [127, 128]

25.0 25.0

∣∣∣∣5; 1, 1, 4, 5
5; 1, 1, 4, 5

∣∣∣∣ OA(5, 5) Exists [1]

36.0 30.0

∣∣∣∣5; 1, 1, 4, 5
6; 1, 1, 4, 6

∣∣∣∣ OA(3, 4) Does not exist [1]

30.0 25.0

∣∣∣∣5; 1, 1, 5, 5
6; 1, 1, 5

∣∣∣∣ S(2, 5, 25) Exists [93]

175.0 125.0

∣∣∣∣5; 1, 1, 1, 5
7; 1, 1, 1, 7

∣∣∣∣ GQ(4, 6) Exists [129]

63.0 45.0

∣∣∣∣5; 1, 1, 3, 5
7; 1, 1, 3, 7

∣∣∣∣ PG(4, 6, 3) Exactly two exist [114]

49.0 35.0

∣∣∣∣5; 1, 1, 4, 5
7; 1, 1, 4, 7

∣∣∣∣ OA(5, 7) Exists [1]

120.0 75.0

∣∣∣∣5; 1, 1, 2, 5
8; 1, 1, 2, 8

∣∣∣∣ PG(4, 7, 2)

64.0 40.0

∣∣∣∣5; 1, 1, 4, 5
8; 1, 1, 4, 8

∣∣∣∣ OA(5, 8) Exists [1]

297.0 165.0

∣∣∣∣5; 1, 1, 1, 5
9; 1, 1, 1, 9

∣∣∣∣ GQ(4, 8) Exists [129]

81.0 45.0

∣∣∣∣5; 1, 1, 4, 5
9; 1, 1, 4, 9

∣∣∣∣ OA(5, 9) Exists [1]

190.0 95.0

∣∣∣∣ 5; 1, 1, 2, 5
10; 1, 1, 2, 10

∣∣∣∣ PG(4, 9, 2)

100.0 50.0

∣∣∣∣ 5; 1, 1, 4, 5
10; 1, 1, 4, 10

∣∣∣∣ OA(5, 10)

82.0 41.0

∣∣∣∣ 5; 1, 1, 5, 5
10; 1, 1, 5

∣∣∣∣ S(2, 5, 41) Exists [93]

121.0 55.0

∣∣∣∣ 5; 1, 1, 4, 5
11; 1, 1, 4, 11

∣∣∣∣ OA(5, 11) Exists [1]

99.0 45.0

∣∣∣∣ 5; 1, 1, 5, 5
11; 1, 1, 5

∣∣∣∣ S(2, 5, 45) Exists [93]
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540.0 225.0

∣∣∣∣ 5; 1, 1, 1, 5
12; 1, 1, 1, 12

∣∣∣∣ GQ(4, 11)

144.0 60.0

∣∣∣∣ 5; 1, 1, 4, 5
12; 1, 1, 4, 12

∣∣∣∣ OA(5, 12) Exists [104]

156.0 156.0

∣∣∣∣6; 1, 1, 1, 6
6; 1, 1, 1, 6

∣∣∣∣ GQ(5, 5) Exists [59]

81.0 81.0

∣∣∣∣6; 1, 1, 2, 6
6; 1, 1, 2, 6

∣∣∣∣ Exists [111]

36.0 36.0

∣∣∣∣6; 1, 1, 5, 6
6; 1, 1, 5, 6

∣∣∣∣ OA(6, 6) Does not exist [1]

36.0 36.0

∣∣∣∣6; 1, 2, 2, 6
6; 1, 2, 2, 6

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

26.0 26.0

∣∣∣∣6; 1, 2, 3, 6
6; 1, 2, 3, 6

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

18.0 18.0

∣∣∣∣6; 1, 2, 5, 6
6; 1, 2, 5, 6

∣∣∣∣ Hexacode Graph [28]

16.0 16.0

∣∣∣∣6; 1, 3, 3, 6
6; 1, 3, 3, 6

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

12.0 12.0

∣∣∣∣6; 1, 3, 5, 6
6; 1, 3, 5, 6

∣∣∣∣ Does not exist [55, 56]

112.0 96.0

∣∣∣∣6; 1, 1, 2, 6
7; 1, 1, 2, 7

∣∣∣∣ PG(5, 6, 2)

49.0 42.0

∣∣∣∣6; 1, 1, 5, 6
7; 1, 1, 5, 7

∣∣∣∣ OA(6, 7) Exists [1]

42.0 36.0

∣∣∣∣6; 1, 1, 6, 6
7; 1, 1, 6

∣∣∣∣ S(2, 6, 36) Does not exist [100]

288.0 216.0

∣∣∣∣6; 1, 1, 1, 6
8; 1, 1, 1, 8

∣∣∣∣ GQ(5, 7)

64.0 48.0

∣∣∣∣6; 1, 1, 5, 6
8; 1, 1, 5, 8

∣∣∣∣ OA(6, 8) Exists [1]

189.0 126.0

∣∣∣∣6; 1, 1, 2, 6
9; 1, 1, 2, 9

∣∣∣∣ PG(5, 8, 2)

99.0 66.0

∣∣∣∣6; 1, 1, 4, 6
9; 1, 1, 4, 9

∣∣∣∣ PG(5, 8, 4) Does not exist [30]

81.0 54.0

∣∣∣∣6; 1, 1, 5, 6
9; 1, 1, 5, 9

∣∣∣∣ OA(6, 9) Exists [1]

69.0 46.0

∣∣∣∣6; 1, 1, 6, 6
9; 1, 1, 6

∣∣∣∣ S(2, 6, 46) Does not exist [100]
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160.0 96.0

∣∣∣∣ 6; 1, 1, 3, 6
10; 1, 1, 3, 10

∣∣∣∣ PG(5, 9, 3)

100.0 60.0

∣∣∣∣ 6; 1, 1, 5, 6
10; 1, 1, 5, 10

∣∣∣∣ OA(6, 10)

85.0 51.0

∣∣∣∣ 6; 1, 1, 6, 6
10; 1, 1, 6

∣∣∣∣ S(2, 6, 51)

561.0 306.0

∣∣∣∣ 6; 1, 1, 1, 6
11; 1, 1, 1, 11

∣∣∣∣ GQ(5, 10)

121.0 66.0

∣∣∣∣ 6; 1, 1, 5, 6
11; 1, 1, 5, 11

∣∣∣∣ OA(6, 11) Exists [1]

22.0 12.0

∣∣∣∣ 6; 1, 3, 10, 6
11; 1, 5, 6

∣∣∣∣ Hadamard design of order 12: Example 3.1.5

342.0 171.0

∣∣∣∣ 6; 1, 1, 2, 6
12; 1, 1, 2, 12

∣∣∣∣ PG(5, 11, 2)

144.0 72.0

∣∣∣∣ 6; 1, 1, 5, 6
12; 1, 1, 5, 12

∣∣∣∣ OA(6, 12) Exists [104]

122.0 61.0

∣∣∣∣ 6; 1, 1, 6, 6
12; 1, 1, 6

∣∣∣∣ S(2, 6, 61)

259.0 259.0

∣∣∣∣7; 1, 1, 1, 7
7; 1, 1, 1, 7

∣∣∣∣ GQ(6, 6)

70.0 70.0

∣∣∣∣7; 1, 1, 4, 7
7; 1, 1, 4, 7

∣∣∣∣ PG(6, 6, 4)

49.0 49.0

∣∣∣∣7; 1, 1, 6, 7
7; 1, 1, 6, 7

∣∣∣∣ OA(7, 7) Exists [1]

176.0 154.0

∣∣∣∣7; 1, 1, 2, 7
8; 1, 1, 2, 8

∣∣∣∣ PG(6, 7, 2)

64.0 56.0

∣∣∣∣7; 1, 1, 6, 7
8; 1, 1, 6, 8

∣∣∣∣ OA(7, 8) Exists [1]

56.0 49.0

∣∣∣∣7; 1, 1, 7, 7
8; 1, 1, 7

∣∣∣∣ Points and hyperplanes of AG(2, 7) Example 3.7.1

441.0 343.0

∣∣∣∣7; 1, 1, 1, 7
9; 1, 1, 1, 9

∣∣∣∣ GQ(6, 8) Exists [5]

153.0 119.0

∣∣∣∣7; 1, 1, 3, 7
9; 1, 1, 3, 9

∣∣∣∣ PG(6, 8, 3)

81.0 63.0

∣∣∣∣7; 1, 1, 6, 7
9; 1, 1, 6, 9

∣∣∣∣ OA(7, 9) Exists [1]

550.0 385.0

∣∣∣∣ 7; 1, 1, 1, 7
10; 1, 1, 1, 10

∣∣∣∣ GQ(6, 9)
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280.0 196.0

∣∣∣∣ 7; 1, 1, 2, 7
10; 1, 1, 2, 10

∣∣∣∣ PG(6, 9, 2)

100.0 70.0

∣∣∣∣ 7; 1, 1, 6, 7
10; 1, 1, 6, 10

∣∣∣∣ OA(7, 10)

341.0 217.0

∣∣∣∣ 7; 1, 1, 2, 7
11; 1, 1, 2, 11

∣∣∣∣ PG(6, 10, 2)

231.0 147.0

∣∣∣∣ 7; 1, 1, 3, 7
11; 1, 1, 3, 11

∣∣∣∣ PG(6, 10, 3)

143.0 91.0

∣∣∣∣ 7; 1, 1, 5, 7
11; 1, 1, 5, 11

∣∣∣∣ PG(6, 10, 5)

121.0 77.0

∣∣∣∣ 7; 1, 1, 6, 7
11; 1, 1, 6, 11

∣∣∣∣ OA(7, 11) Exists [1]

144.0 84.0

∣∣∣∣ 7; 1, 1, 6, 7
12; 1, 1, 6, 12

∣∣∣∣ OA(7, 12) Exists [104]

400.0 400.0

∣∣∣∣8; 1, 1, 1, 8
8; 1, 1, 1, 8

∣∣∣∣ GQ(7, 7) Exists [59]

64.0 64.0

∣∣∣∣8; 1, 1, 7, 8
8; 1, 1, 7, 8

∣∣∣∣ OA(8, 8) Exists [1]

64.0 64.0

∣∣∣∣8; 1, 2, 3, 8
8; 1, 2, 3, 8

∣∣∣∣ Folded 8-cube [28]

50.0 50.0

∣∣∣∣8; 1, 2, 4, 8
8; 1, 2, 4, 8

∣∣∣∣ Distance-regular (8, 7, 6, 4; 1, 2, 4, 8)

32.0 32.0

∣∣∣∣8; 1, 2, 7, 8
8; 1, 2, 7, 8

∣∣∣∣ Incidence Graph of STD2 [8; 4] [9]

16.0 16.0

∣∣∣∣8; 1, 4, 7, 8
8; 1, 4, 7, 8

∣∣∣∣ Hadamard Graph on 32 vertices [28]

261.0 232.0

∣∣∣∣8; 1, 1, 2, 8
9; 1, 1, 2, 9

∣∣∣∣ PG(7, 8, 2)

135.0 120.0

∣∣∣∣8; 1, 1, 4, 8
9; 1, 1, 4, 9

∣∣∣∣ PG(7, 8, 4)

81.0 72.0

∣∣∣∣8; 1, 1, 7, 8
9; 1, 1, 7, 9

∣∣∣∣ OA(8, 9) Exists [1]

72.0 64.0

∣∣∣∣8; 1, 1, 8, 8
9; 1, 1, 8

∣∣∣∣ Points and hyperplanes of AG(2, 8) Example 3.7.1

640.0 512.0

∣∣∣∣ 8; 1, 1, 1, 8
10; 1, 1, 1, 10

∣∣∣∣ GQ(7, 9) Exists [5, 92]

325.0 260.0

∣∣∣∣ 8; 1, 1, 2, 8
10; 1, 1, 2, 10

∣∣∣∣ PG(7, 9, 2)
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220.0 176.0

∣∣∣∣ 8; 1, 1, 3, 8
10; 1, 1, 3, 10

∣∣∣∣ PG(7, 9, 3)

100.0 80.0

∣∣∣∣ 8; 1, 1, 7, 8
10; 1, 1, 7, 10

∣∣∣∣ OA(8, 10)

121.0 88.0

∣∣∣∣ 8; 1, 1, 7, 8
11; 1, 1, 7, 11

∣∣∣∣ OA(8, 11) Exists [1]

144.0 96.0

∣∣∣∣ 8; 1, 1, 7, 8
12; 1, 1, 7, 12

∣∣∣∣ OA(8, 12)

585.0 585.0

∣∣∣∣9; 1, 1, 1, 9
9; 1, 1, 1, 9

∣∣∣∣ GQ(8, 8) Exists [59]

81.0 81.0

∣∣∣∣9; 1, 1, 8, 9
9; 1, 1, 8, 9

∣∣∣∣ OA(9, 9) Exists [1]

57.0 57.0

∣∣∣∣9; 1, 3, 3, 9
9; 1, 3, 3, 9

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

27.0 27.0

∣∣∣∣9; 1, 3, 8, 9
9; 1, 3, 8, 9

∣∣∣∣ Incidence Graph of STD3 [9; 4] [9]

250.0 225.0

∣∣∣∣ 9; 1, 1, 3, 9
10; 1, 1, 3, 10

∣∣∣∣ PG(8, 9, 3)

130.0 117.0

∣∣∣∣ 9; 1, 1, 6, 9
10; 1, 1, 6, 10

∣∣∣∣ PG(8, 9, 6)

100.0 90.0

∣∣∣∣ 9; 1, 1, 8, 9
10; 1, 1, 8, 10

∣∣∣∣ OA(9, 10)

90.0 81.0

∣∣∣∣ 9; 1, 1, 9, 9
10; 1, 1, 9

∣∣∣∣ Points and hyperplanes of AG(2, 9) Example 3.7.1

891.0 729.0

∣∣∣∣ 9; 1, 1, 1, 9
11; 1, 1, 1, 11

∣∣∣∣ GQ(8, 10) Exists [5]

231.0 189.0

∣∣∣∣ 9; 1, 1, 4, 9
11; 1, 1, 4, 11

∣∣∣∣ PG(8, 10, 4)

121.0 99.0

∣∣∣∣ 9; 1, 1, 8, 9
11; 1, 1, 8, 11

∣∣∣∣ OA(9, 11) Exists [1]

540.0 405.0

∣∣∣∣ 9; 1, 1, 2, 9
12; 1, 1, 2, 12

∣∣∣∣ PG(8, 11, 2)

144.0 108.0

∣∣∣∣ 9; 1, 1, 8, 9
12; 1, 1, 8, 12

∣∣∣∣ OA(9, 12)

820.0 820.0

∣∣∣∣10; 1, 1, 1, 10
10; 1, 1, 1, 10

∣∣∣∣ GQ(9, 9) Exists [59]

100.0 100.0

∣∣∣∣10; 1, 1, 9, 10
10; 1, 1, 9, 10

∣∣∣∣ OA(3, 4) Does not exist [1]
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190.0 190.0

∣∣∣∣10; 1, 2, 2, 10
10; 1, 2, 2, 10

∣∣∣∣ Distance-regular (10, 9, 8, 8; 1, 2, 2, 10)

100.0 100.0

∣∣∣∣10; 1, 2, 4, 10
10; 1, 2, 4, 10

∣∣∣∣ Distance-regular (10, 9, 8, 6; 1, 2, 4, 10)

82.0 82.0

∣∣∣∣10; 1, 2, 5, 10
10; 1, 2, 5, 10

∣∣∣∣ Distance-regular (10, 9, 8, 5; 1, 2, 5, 10)

50.0 50.0

∣∣∣∣10; 1, 2, 9, 10
10; 1, 2, 9, 10

∣∣∣∣ Distance-regular (10, 9, 8, 1; 1, 2, 9, 10)

28.0 28.0

∣∣∣∣10; 1, 5, 5, 10
10; 1, 5, 5, 10

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

25.0 25.0

∣∣∣∣10; 1, 5, 6, 10
10; 1, 5, 6, 10

∣∣∣∣ Non-integral intersection numbers

Fails Krein Inequality: Proposition 6.4.1

20.0 20.0

∣∣∣∣10; 1, 5, 9, 10
10; 1, 5, 9, 10

∣∣∣∣ Distance-regular (10, 9, 5, 1; 1, 5, 9, 10)

506.0 460.0

∣∣∣∣10; 1, 1, 2, 10
11; 1, 1, 2, 11

∣∣∣∣ PG(9, 10, 2)

209.0 190.0

∣∣∣∣10; 1, 1, 5, 10
11; 1, 1, 5, 11

∣∣∣∣ PG(9, 10, 5)

121.0 110.0

∣∣∣∣10; 1, 1, 9, 10
11; 1, 1, 9, 11

∣∣∣∣ OA(10, 11) Exists [1]

110.0 100.0

∣∣∣∣10; 1, 1, 10, 10
11; 1, 1, 10

∣∣∣∣ S(10, 100)

1200.0 1000.0

∣∣∣∣10; 1, 1, 1, 10
12; 1, 1, 1, 12

∣∣∣∣ GQ(9, 11)

408.0 340.0

∣∣∣∣10; 1, 1, 3, 10
12; 1, 1, 3, 12

∣∣∣∣ PG(9, 11, 3)

210.0 175.0

∣∣∣∣10; 1, 1, 6, 10
12; 1, 1, 6, 12

∣∣∣∣ PG(9, 11, 6)

144.0 120.0

∣∣∣∣10; 1, 1, 9, 10
12; 1, 1, 9, 12

∣∣∣∣ OA(10, 12)

1111.0 1111.0

∣∣∣∣11; 1, 1, 1, 11
11; 1, 1, 1, 11

∣∣∣∣ GQ(10, 10)

121.0 121.0

∣∣∣∣11; 1, 1, 10, 11
11; 1, 1, 10, 11

∣∣∣∣ OA(11, 11) Exists [1]

672.0 616.0

∣∣∣∣11; 1, 1, 2, 11
12; 1, 1, 2, 12

∣∣∣∣ PG(10, 11, 2)

144.0 132.0

∣∣∣∣11; 1, 1, 10, 11
12; 1, 1, 10, 12

∣∣∣∣ OA(11, 12)
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132.0 121.0

∣∣∣∣11; 1, 1, 11, 11
12; 1, 1, 11

∣∣∣∣ Points and hyperplanes of AG(2, 11) Example 3.7.1

1464.0 1464.0

∣∣∣∣12; 1, 1, 1, 12
12; 1, 1, 1, 12

∣∣∣∣ GQ(11, 11) Exists [59]

144.0 144.0

∣∣∣∣12; 1, 1, 11, 12
12; 1, 1, 11, 12

∣∣∣∣ OA(12, 12)

342.0 342.0

∣∣∣∣12; 1, 2, 2, 12
12; 1, 2, 2, 12

∣∣∣∣ Distance-regular (12, 11, 10, 10; 1, 2, 2, 12)

144.0 144.0

∣∣∣∣12; 1, 2, 5, 12
12; 1, 2, 5, 12

∣∣∣∣ Leonard Graph [28]

122.0 122.0

∣∣∣∣12; 1, 2, 6, 12
12; 1, 2, 6, 12

∣∣∣∣ Distance-regular (12, 11, 10, 6; 1, 2, 6, 12)

72.0 72.0

∣∣∣∣12; 1, 2, 11, 12
12; 1, 2, 11, 12

∣∣∣∣ Distance-regular (12, 11, 10, 1; 1, 2, 11, 12)

144.0 144.0

∣∣∣∣12; 1, 3, 3, 12
12; 1, 3, 3, 12

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

111.0 111.0

∣∣∣∣12; 1, 3, 4, 12
12; 1, 3, 4, 12

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

48.0 48.0

∣∣∣∣12; 1, 3, 11, 12
12; 1, 3, 11, 12

∣∣∣∣ Distance-regular (12, 11, 9, 1; 1, 3, 11, 12)

36.0 36.0

∣∣∣∣12; 1, 4, 11, 12
12; 1, 4, 11, 12

∣∣∣∣ Suetake Graph [9]

24.0 24.0

∣∣∣∣12; 1, 6, 11, 12
12; 1, 6, 11, 12

∣∣∣∣ Hadmard Graph on 48 vertices [28]

GQ(s, t): Generalized quadrangle. See Example 2.2.7.
S(2, k, v): Steiner system. See Example 3.1.4.
PG(s, t, α): Partial Geoemtry. See Section 3.3.
OA(k, n): Orthogonal array of degree k and order n. This is equivalent to PG(k − 1, n− 1, k − 1)
and a set of k − 2 mutually orthogonal Latin squares. See [1].
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Appendix B

Feasible Parameters for Diameter
Four with c2 6= 1
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B. FEASIBLE PARAMETERS FOR DIAMETER FOUR WITH C2 6= 1

|β| |γ| Intersection Array Notes

14.0 8.0

∣∣∣∣4; 1, 2, 6, 4
7; 1, 3, 4

∣∣∣∣ Points/Hyperplanes of AG(2,3): Example 3.7.1

Hadamard matrix of order 8: Example 3.1.5

36.0 9.0

∣∣∣∣ 4; 1, 2, 12, 4
16; 1, 6, 4

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

22.0 12.0

∣∣∣∣ 6; 1, 3, 10, 6
11; 1, 5, 6

∣∣∣∣ Hadamard matrix of order 12: Example 3.1.5

96.0 36.0

∣∣∣∣ 6; 1, 2, 6, 6
16; 1, 4, 3, 16

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

64.0 24.0

∣∣∣∣ 6; 1, 2, 10, 6
16; 1, 4, 5, 16

∣∣∣∣ Arc of degree 2 in PG(2, 4): Example 3.7.2

56.0 21.0

∣∣∣∣ 6; 1, 2, 12, 6
16; 1, 4, 6

∣∣∣∣ Example 1. 2. 10 in Shawe-Taylor [134]

77.0 22.0

∣∣∣∣ 6; 1, 2, 15, 6
21; 1, 5, 6

∣∣∣∣
78.0 13.0

∣∣∣∣ 6; 1, 3, 30, 6
36; 1, 15, 6

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

225.0 120.0

∣∣∣∣ 8; 1, 2, 3, 8
15; 1, 3, 2, 15

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

120.0 64.0

∣∣∣∣ 8; 1, 2, 6, 8
15; 1, 3, 4, 15

∣∣∣∣ Example in Delorme [55, 56]

30.0 16.0

∣∣∣∣ 8; 1, 4, 14, 8
15; 1, 7, 8

∣∣∣∣ Points/Hyperplanes of AG(2,4): Example 3.7.1

Hadamard matrix of order 16: Example 3.1.5

288.0 64.0

∣∣∣∣ 8; 1, 2, 15, 8
36; 1, 6, 5, 36

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

216.0 48.0

∣∣∣∣ 8; 1, 2, 21, 8
36; 1, 6, 7, 36

∣∣∣∣
39.0 27.0

∣∣∣∣ 9; 1, 3, 12, 9
13; 1, 4, 9

∣∣∣∣ Points/Hyperplanes of AG(3,3): Example 3.7.1

38.0 20.0

∣∣∣∣10; 1, 5, 18, 10
19; 1, 9, 10

∣∣∣∣ Hadamard matrix of order 20: Example 3.1.5

784.0 280.0

∣∣∣∣10; 1, 2, 4, 10
28; 1, 4, 2, 28

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

280.0 100.0

∣∣∣∣10; 1, 2, 12, 10
28; 1, 4, 6, 28

∣∣∣∣
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196.0 70.0

∣∣∣∣10; 1, 2, 18, 10
28; 1, 4, 9, 28

∣∣∣∣
46.0 24.0

∣∣∣∣12; 1, 6, 22, 12
23; 1, 11, 12

∣∣∣∣ Hadamard matrix of order 24: Example 3.1.5

729.0 378.0

∣∣∣∣14; 1, 2, 6, 14
27; 1, 3, 4, 27

∣∣∣∣
378.0 196.0

∣∣∣∣14; 1, 2, 12, 14
27; 1, 3, 8, 27

∣∣∣∣
54.0 28.0

∣∣∣∣14; 1, 7, 26, 14
27; 1, 13, 14

∣∣∣∣ Hadamard matrix of order 28: Example 3.1.5

66.0 45.0

∣∣∣∣15; 1, 5, 21, 15
22; 1, 7, 15

∣∣∣∣
540.0 225.0

∣∣∣∣15; 1, 3, 10, 15
36; 1, 6, 5, 36

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

456.0 190.0

∣∣∣∣15; 1, 3, 12, 15
36; 1, 6, 6, 36

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

288.0 120.0

∣∣∣∣15; 1, 3, 20, 15
36; 1, 6, 10, 36

∣∣∣∣
216.0 90.0

∣∣∣∣15; 1, 3, 28, 15
36; 1, 6, 14, 36

∣∣∣∣
204.0 85.0

∣∣∣∣15; 1, 3, 30, 15
36; 1, 6, 15

∣∣∣∣
84.0 64.0

∣∣∣∣16; 1, 4, 20, 16
21; 1, 5, 16

∣∣∣∣ Points/Hyperplanes of AG(4,3): Example 3.7.1

62.0 32.0

∣∣∣∣16; 1, 8, 30, 16
31; 1, 15, 16

∣∣∣∣ Points/Hyperplanes of AG(2,5): Example 3.7.1

Hadamard matrix of order 32: Example 3.1.5

1225.0 630.0

∣∣∣∣18; 1, 3, 5, 18
35; 1, 5, 3, 35

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

630.0 324.0

∣∣∣∣18; 1, 3, 10, 18
35; 1, 5, 6, 35

∣∣∣∣ Fails Krein Inequality: Proposition 6.4.1

70.0 36.0

∣∣∣∣18; 1, 9, 34, 18
35; 1, 17, 18

∣∣∣∣
93.0 63.0

∣∣∣∣21; 1, 7, 30, 21
31; 1, 10, 21

∣∣∣∣
155.0 125.0

∣∣∣∣25; 1, 5, 30, 25
31; 1, 6, 25

∣∣∣∣
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