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Strongly Regular Designs and Coherent Configurations of Type [3 ~]

D. G. HIGMAN

1. INTRODUCTION

The strongly regular designs (srd's) considered in this paper are a class of I-designs which
arise in the investigation of coherent configurations (cc's) of 'small type'. We refer to [7] for
basics about cc's , where it is seen that the nontrivial types of cc's with two fibers each of
rank at most three are [2 ~], [2 il. [3 nand [3 n These can be interpreted as classes of
designs, the first type corresponding to symmetric designs, the second to quasi-symmetric
designs introduced by Goethals and Seidel [6], and the third to srd's, (The last type will be
considered elsewhere.) Srd's are involved, e.g., in connection with derived configurations of
certain quasisymmetric designs [8], and in the triality configurations introduced in [9]. Here
we consider them in some detail in their own right. We are interested in the connection with
cc's and use the method of [7] to obtain parameter conditions. The discussion of srd 's in
this paper can be made independent of cc's by the reader willing to provide counting and
matrix theoretic proofs of the parameter conditions of section 3.

Srd 's, defined in Section 2, are It-designs in the sense of Neumaier [11], and form a
self-dual class. They include those partial geometries which are neither 2-designs nor dual
2-designs . We refer to Brouwer and van Lint [4] for recent work on partial geometries and
strongly regular designs. An srd has a point graph and a block graph both of which are
strongly regular. In section 3 we apply the same procedure to srd's as was applied to
quasisymmetric designs in [7] to obtain parameter conditions and the connection with cc's ,
Our procedure gives a comprehensive list of parameter conditions and has the advantage
of being a routine one (to the extent thatmost details can be safely omitted here) applicable
to a variety of situations. The conditions amount to the existence of a feasible intersection
algebra in the sense of [7] for the associated c.c. Moreover, we want the precise equivalence
with srd's, e.g., in [9]. The Krein conditions and Calderbank's inequality [5; Theorem 1]are
effective in eliminating candidates for parameters for srd's. In Section 4 the parameters for
an srd are determined in terms of the number of points, the number of blocks, the block
size, the block intersections sizes, and one of the point join sizes, and the case of an equal
number of points and blocks is examined. There is a natural definition of symmetric srd,
and because the srd's form a self-dual class, the questions considered in Section 5 of
existence of polarities, dualities and absolute points arise. Some generalities about groups
associated with cc's in Section 6 place the considerations of Section 5 in a more general
setting (this will be useful , e.g. in [9]). The analogue for srd 's of the Geothal-Seidel problem
(Goethals and Seidel [6], NeumaierIl Zj) for quasi-symmetric designs, namely the determi­
nation of the srd's with given point graph, is considered in Section 7. In the final Section 8
we describe some examples, including the srd 's which we know on at most 50 points and
families of nonsymmetric srd's and self-polar srd 's, which are not partial geometries, but
we do not attempt to give a complete list of known examples.

The referee, to whom we are indebted for a number of remarks, points out that there is
earlier related work in [1-3, 10, 11, 13-15]; more explicit references will be made at
appropriate points in the text.
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2. STRONGLY REGULAR DESIGNS

The incidence structures (&', ffI, F) considered here will consist of a set [lj) of points, a set
ffI of blocks, and a set F of flags, such that &' n ffI = 0 and F s;; &' x ffI. A point x
and a block yare incident if (x, y) E F. The dual incidence structure is (ffI, &', FT

) ,

F T = {(y, x)l(x, y) E F}. A morphism 0':(&', fJl, F) ~ (&", fJl', F') of incidence struc­
tures is a map 0': [lj) u ffI -. &" u ffI' such that a(&') s;; &,',a(fJl) s;; fJl' and a(F) s;; F'. A
duality is an isomorphism of (&', fJl, F) onto its dual, and a polarity is a duality of period 2.
A class of incidence structures is self-dual if it contains the dual of every one of its members.
An incidence structure is self-dual or self-polar ifit admits a duality or polarity, respectively.

We define a strongly regular design to be a finite incidence structure with n l points and
n2 blocks which satisfies the following conditions (1), (2) and (3) together with their duals
(1'), (2') and (3').

(1) Each block is incident with SI points.
(2) Two distinct blocks are incident with either al or b, points, al > hi, and both cases

occur.
Given (2) we define the block graph 12 to be the graph whose vertices are the blocks, two

distinct blocks being adjacent if they are incident with a l common points.
(3) The number of blocks incident with a point x and adjacent to a block y is N2 or P2

according as x and yare incident or not.
Our convention is to use a subscript 1 in connection with a number of points and a

subscript 2 in connection with a number of blocks. The duals (1'), (2') and (3') give rise to
parameters S2,a2 > b2, N 1 and PI' Condition (3') refers to the point graph r; defined by
declaring two distinct points to be adjacent if they are incident with a2 common blocks. We
call an srd symmetric if the subscripts can be dropped from the parameters n., S;, a., b., IV; ,
1'; (see sections 4 and 5 below).

The class of srd's is included in the class of 1t-designs as defined by Neumaier [11], and
the srd's with al = 1, or equivalently with a2 = 1, are precisely those partial geometries
which are neither 2-designs nor dual 2-designs. The srd's form a self-dual class of designs,
so results about srd's come in dual pairs of which we frequently only mention one member.

2.1. Let C be the incidence matrix of an incidence structure (rows indexed by points,
columns by blocks). Then (1) is equivalent to
(4) JC = SIJ.
Assuming (1), (2) is equivalent to
(5) CTC = (SI - bl)1 + (al - bl)A2 + blJ,
where A2 is a (0, 1)-matrix with °diagonal, and then A2 is the adjacency matrix of 12.
Assuming (1) and (2), (3) is equivalent to
(6) CA2 = (N2 - P2) C + P2J .
(Here as always in what follows, J denotes the 'all l' matrix of appropriate size).

Now we can see that:

2.2. Assuming (1), (1'), (2) and (3), the block graph 12 is strongly regular.

Namely, by (4) and (5), A2 has constant column sum and A~ E «(CTC)2, I, A2, J). But
by (4), (5) and (6), (CTC)2 = CT((SI - bl)C + (al - bdCA2 + b1CJ) E CT(C, J) s;;
(I, A2 , J).

These facts show that an srd is precisely the same as a It-design satisfying (2) and (2').
Let us now observe that

2.3. If (1) and (2) and their duals (1') and (2') hold, then (3) and (3') are equivalent.
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For we then have (al - b, )CA2 = CCT C - (SI - bl)C - b, S2J and dually
(a2 - b2)A I C = CCTC - (S2 - b2)C - b-S, J whence (at - b, )CA 2 - (a2 - b2)A I C E

<C, J). Hence CA2 E <C, J) if and only if Al C E <C, J).

Note that (3) is not a consequence of (1), (2), (1') and (2') as is seen by the example of lines
and colines in PGAq), d ~ 4, with inclusion as incidence. Designs satisfying (1), (2), (3), (1')
and (3') are in fact just the specialbalancedpartial designs (Bridges and Shrikhande [3]; see
also Bose and Shrikhande [2]).

The parameter conditions implicit in the proofs of2.2 and 2.3 are not recorded here because
3.2 in section 3 includes conditions equivalent to these.

From our discussion so far we know in particular that

2.4. IfC is the adjacencymatrix ofan srd, then (4), (5) and (6) hold togetherwith their duals
(4') CJ = S2J,
(5') CCT = (S2 - b2)I + (a2 - b2)A2 + b2J,
and
(6') AtC = (NI - PJ)C + PJJ,
whereA J is the adjacencymatrix of the point graph and A2 is the adjacencymatrix of the block
graph.

For an srd, the usual parameters of 1"; will be denoted by k., t., Aj , Ili' r., s., /; and gj
(i = 1, 2); we refer to Brauer and van Lint [4] for the meaning of these parameters and for
recent work on strongly regular graphs and partial geometries. As we will see in Section 4,
the subscripts can be dropped for symmetric srd's.

It will be convenient to call an srd primitive if its point and block graphs are both primitive,
i.e., connected with connected complements. In Section 9 the primitive srd's that we know
with at most 50 points are described in 'Examples (A)' of Section 8, and infinite families of
primitive srd's which are not partial geometries are described in 'Examples (B) and (C)', the
srd's of 'Examples (C)' being self-dual. The sporadic partial geometry pg(6, 6, 2) (which is
primitive in the present sense) is self-dual; see Smits and van Vroonhoven [15].

Concerning imprimitivity we remark first that an srd has repeated points, i.e., S2 = a2'
if and only if its point graph r; is not connected, i.e., IlJ = 0. In that case (£?4, B),
B = {F(x)Ix E PJ}, is a dual quasisymmetric design, so these srd's are obtained by repeat­
ing the points of dual quasi-symmetric designs in the obvious way. Second, an extensive
class of symmetric srd's for which T; is not connected is provided by the symmetric nets for
which we refer to Beth, Jungnickle and Lenz [1; 7.18/19 in ch. I, with further theory and
constructions in ch. II, sect. 8, ch. VII, sect. 3 and ch. XII, sect. 6]. Also there is a family
of partial geometries of this kind consisting of the points off and the lines not meeting a
given coline in PGd(q), d ~ 3.

The complement of an srd with adjacency matrix C is an srd with adjacency matric
J - C and the same adjacency matrices AI and A2 for the point and block graphs respectively
as the original srd. The parameters are n; = n., S; = n, - Sj, a; = n, - 2Sj + a.,
b; = n, - 2Sj + b., N; = k, - 1'; and 1';' = k, - N, (i = 1, 2).

3. COHERENT CONFIGURATIONS OF TYPE [3 j]

The essential equivalence of srd's with cc's is given in 3.1 and 3.3. The terminology and
notation for cc's is that if [7]. For srd's the main results of this section are the parameter
conditions in 3.2 and 3.4.
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We begin with the observation that given an srd (gP, f!4, F), the obvious relations on
X = gP u ffI constitute a configuration which is coherent. Sepcifically we have the con­
figuration C = (X, (fJjEJ), f = {I, 2, ... ,10}, with

it = diag gP2, hand.h the subsets of [JJJ2 consisting of the (x, y) such that x and yare
incident with a2 and b2 common blocks respectively,
~,is and j, the dually defined relations on ffI, and
f7 = F, Is = [JJJ x f!4 - F, h = P and ito = 1sT

• Then by 2.4 we have

3.1. C is a cc of type [3 n
We remark in passing that C is the coherent closure of (X, {F}) in the sense of [7]. It is

interesting to think ofdistance-biregular graphs of diameter 4, which are equivalent to srd's
with b, = b2 = 0, from this point of view; for distance-biregular graphs we refer to Mohar
and Shawe-Taylor [10].

In the notation of[7], Q = {I, 4}, XI = [JJJ, X4 = ffI, fll = {I, 2, 3}, f44 = {4, 5, 6},
fl4 = p, 8}, f41 = {9, 10}, and 7* = 9, 8* = 10. The point and block diagrams are
T; = (XI' h) and r; = (X4 , is)· The intersection numbers of C are determined by the
parameters of the srd. In particular VI = I, V2 = k-, V3 = II' V4 = I, Vs = k«. V6 = 12,
V7 = S2' Vg = n2 - S2' V9 = SI, VIO = nl - SI, pg2 = Nt, p~g = PI> P~7 = al> P~7 = b.,
P~s = N2, P~s = P2, P~9 = a2 and P~9 = b-,

Now consider a cc of type [3 j] with notation consistent with that of the preceding
paragraph. Using the formulas following 3.1 to define k., l., Sj, ... , etc., apply the
procedure of section 9B of [7] (applied there to cc's of type [2 m. This involves working
out the intersection matrices and the irreducible representations (of which there are two of
degree 2 and two of degree 1, with multiplicities I, it = h, gl and g2' respectively. The
details, which are routine, will be omitted here. The result is the list of parameter conditions
3.2 below (so these hold for srd's by 3.1). It is an easy consequence that a, > b., i = 1,2,
and therefore (XI' X4 , fj), j E f14, is an srd, giving 3.3 below. The point here is that we
must have two distinct block intersection sizes and two distinct point join sizes in the design
(XI' X4 , fj). Our convention that 1; for an srd is defined by a., a, > b., i = 1, 2, corre­
sponds to the condition it = h.

3.2. The parameters of an srd satisfy the following equations and their duals:
(1) it = h,
(2) n l S2 = n2SI ,

(3) PI (n l - SI) = (k, - N I)SI>
(4) a-k, = N IS2 ,

(5) b2/1 = (SI - N I - I)S2'
(6) N; + PI(kl - Nt) = k, + AINI + I1I(SI - N I - I),
(7) NtPt + PI(kl - PI) = AIPI + I1I(SI - PI),
(8) N la2 + PI(S2 - a2) = S2 + a2AI + b2(kl - Al - I),
(9) N, b2 + PI(S2 - b2) = a2111 + b2(k l - J1.,),

(10) SI + a.N; + bl(S2 - N2 - I) = S2 + a2NI + b2(SI - N I - I),
(11) a.P, + bl(S2 - P2) = a2PI + biSI - PI),
(12) P I(k2 - N2 ) = P2(k1 - N I ) ,

(13) St + al k2 + b.l, = S2 + a2k l + b2 / 1 = SIS2,
(14) SI + alr2 - bl(r2 + I) = S2 + a2rl - b2(rl + 1),
(15) SI + alS2 - bl(S2 + I) = S2 + a2S1 - b2(s\ + 1) = 0.

3.3. Every cc of type P j] arises from an srd by the above construction.

An srd and its complement give rise to the same cc. We usually identify a complementary
pair of srd's with the corresponding cc.
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An action of type [3 ~] of a group G on a finite setX affords a cc of type [3 ~] and hence
gives rise to an srd. This is the group case.

To the list of conditions in 3.2 we add the following.

3.4. For an srd:
(16) r l = N, - PI
(17) bz(nl - 1)<Sz(S, - 1)
(18) azn, ~ SI Sz with equality if and only if J11 = k, i.e., the srd is group divisible,
(19) nzL ~ n l (nl - 1)(S, - al)(SI - bt>, where L = alblni - «al + b, - I)S~ +

a\ b, )nl + S~(S~ - 2S , + al + b,).

PROOF. (16), (17) and (18) can be derived from 3.2.
To prove (16) put IX = N I - PI' then by (6)

(PI + IX)Z + PI (k l - PI - IX) = (A, - J11 )PI + (AI - J11)1X + J11 S, + k, - J11

and by (7) (PI + IX)P1 + PI (k , - PI) = (AI - J1, )PI + J11 S, from which follows ri ­
(AI - J11)1X - tk, - J11) = 0 and hence IX = r l or Sl' If IX = s., then by (15),
(az - bz)(NI - PI) = - (Sz - bz)· But by (8), (NI - PI )az + PI Sz = Sz - bz +
(az - bz)J1 1 + bzk

"
and by (9), (NI - PI)bz + PISZ = (az - bz)J11 + bzk" so

(az - bz)(N, - PI) = Sz - bz + (az - b2)(AI - J11)' and hence Sl = (az - bz)rl, which is
impossible. This proves (16).

By (13), (az - bz)k, = SZ(SI - 1) - bz(n - 1) from which the inequality (17) follows.
By (16), (4) and (3), r l = N, - PI = [(azn l - SI Sz)kl /SI (Sz - az)], which implies

(18).
(19) is equivalent to Calderbank's inequality [5; Theorem 1] in the context of srd's.

4. ANALYSIS OF PARAMETERS

By (4), (10) we have

a.k,
S, + (al - bl)T + bl(Sz - 1)

which by (13) becomes
(20) az[Sz(S, - 1) - bz(nl - 1)]SI

= al[(SI(SZ - 1) - bl(nz - 1)]Sz + [SI - Sz + bl(Sz - 1) - bz(SI - 1)]SISz,
Now we see that

4.1. The parameters of an srd are determined by nl, nz, SI, aI' b, and one of az, bz.

More precisely, the feasible parameter sets for primitive srd's (up to duality and comple­
ments) can be generated as follows:

Startwithintegersn"nz,S,a"blandazsuchthatn, ~ nz,SI ~ n,/2, 0 ~ b, < a, < S,
and 0 ~ bz. Put Sz = nZSI/nZ, and determine az from (20). Determine the rest of the
parameters from the following formulas and their duals.

k l
1

[SZ(SI - 1) - bz(n, - 1)], N ,
a.k,

PI
(k , - N,)S,

= ,
az - bz Sz n, - S,

N I - PI'
Sz - bz

k, + rlst. AI J11 + r l + s"r l SI
az - bz'

J11 =
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The feasibility conditions are (a) integrality of bz, Sz, k., Ni, Piand};; (b) the inequalities
az > bz, a1nj > S?, b, (nz - 1) < S, (Sz - 1), Al ~ 0, 11 = n - 2k + Jlj - 2 ~ 0,
JlI > 0, JlI = n - 2k + Aj > °and their duals, (c) Calderbank's inequality (19) and its
dual, and (d) the Krein conditions applied to the strongly regular parameters.

Calderbank's inequality (19) gives a bound on nz in terms of nl, SI, al and b, in case
L > 0. We know no such practical bound in case L ~ 0.

Now consider the case on which n l = nz, so that SI = Sz, and denote these numbers by
nand S, respectively. Then (20) becomes
(21) (az - a j + bz - bdS(S - 1) = (azbz - albj)(n - 1).
Assuming n, S, ai' b, and bz are given, we can determine az from (A) and the rest of the
parameters as before. We remark without proof that when nl = nz, the intersection
numbers are interlaced, namely, if az ~ ai' then az ~ at ~ bz ~ b..

It is an easy consequence of 3.2 that an srd is symmetric as defined in Section 2 if and
only if the subscripts can be dropped from all the parameters. An initial examination of
feasible parameter sets suggested that an srd with an equal number of points and blocks
must be symmetric. But it turns out that this cannot be a consequence of our parameter
conditions. There are exactly the three sets of feasible srd parameters given in Table 1 with
n l = nz ~ 500 which are not symmetric.

TABLE 1.
The three sets of feasible srd parameterswith n = n2 < 500whichare not symmetric.

n S OJ hj N; P, k, t, Jlj A. j r, s, f g

351 126 63 42 85 70 210 140 129 120 15 -6 90 260
51 36 25 14 50 300 13 6 11 -4

352 144 64 56 130 126 312 39 276 280 4 -8 208 143
60 48 52 45 117 234 36 40 7 -11

496 216 104 90 196 189 441 54 392 392 7 -7 216 279
96 76 65 54 135 360 38 36 11 -9

We have no information about the existence of strongly regular graphs for any of the
parameter sets in Table 1 nor do we know any srd with m j = mz which is not symmetric.

5. SYMMETRIC STRONGLY REGULAR DESIGNS

We observe that

5.1. Ifni = nz, then anyone of
(i) a j = az,

(ii) b, = bz, or
(iii) k, = k z and r l = rz
implies that the srd is symmetric

PROOF. Drop subscripts as appropriate in the respective cases. Assume (i), then by (21)

(bz - bl)[S(S - 1) - oib, - bj)](n - 1) = 0,

so b, = bz by (18). The rest of the required equalities follow easily. The sufficiency of
(ii) is seen similarly. Assume (iii), then by (4), (3) and (16), N 1 = a-k lS, P, =
k(S - az)/(n - S), and dually, and r = N] - PI = N, - Pz. It follows that az = al'

The feasible parameters of symmetric srd's can be generated by the formulas of Section 4
without the subscripts (of course (20) is trivial here). For symmetric srd's (19) becomes
abn: - [(a + b)SZ - (a + b)S + 2ab]n + (SZ - S + a)(SZ - S + b) ~ 0, which is a
consequence of the other feasibility conditions.
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We will have occasion, e.g., in [9], to consider symmetric srd's in which the blocks are
cliques in ~,i.e., b = O. These are the thin near octagons; see Shad [14]. In this case we start
with integers n, m and a such that 2 ~ m ~ Jii, 1 ~ a ~ nlm", and put:

K = m(am - 1),

P

S = am,

am(am - l)(m - 1)
n - am

r = N - P

N = S - 1,

am(am - l)(n - am2)

n - am

s <m, f.l = mP, f
(n + am - 2)(n - am)

a(am - 1)(n - am 2) + (n - am)'

Finally in this section we remark on the absolute points of a polarity, and more generally
of an isomorphism of the point graph onto the block graph.

A polarity amounts to an arrangement of the points and blocks so that Al = A2 and C
is symmetric. Then the eigenvalues of Care S, ()1/2, - ()1/2 and 0, with the respective
multiplicities 1, a.]' - rx and g, where () = (a - b)(r - s) and 0 ~ rx ~ f. The absolute
points of the polarity b are the points x such that x and b(x) are incident. With C as above,
their number is equal to the trace of C, and we have

5.2. The number of absolute points of a polarity is S + (f - 2rxW/2, where () =
(a - b)(r + m) and rx is the multiplicity of()'/2 as an eigenvalue ofC. In particular, therefore,
a self-polar srd with odd f must have () a square.

More generally we can define the absolute (or auto-conjugate) points of an isomorphism
of the point graph onto the block graph as the points which are incident with their images,
so that in case a is included by a polarity or duality these are the usual absolute points. An
isomorphism a of T; onto ~ amounts to an arrangement of the points and the blocks so
that Al = A2 , and then since the srd is symmetric by 5.1, the incidence matrix C must be
normal. This situation will arise in [9].

6. THE CHROMATIC GROUP

This section is not essential for the rest of the present paper, but it places Section 5 above
in a more general setting and will be useful in [9]. By an isochromism of one coherent algebra
onto another we mean an algebra isomorphism which preserves hadamard multiplication
and maps the all 1 matrix onto the all 1 matrix. By an isochromism of a cc C onto a cc D
we mean an isochromism of the adjacency algebra A of C onto the adjacency algebra B of
D. Thus the isochromisms (J of C onto D are the isomorphisms of A onto B which map the
standard basis (AJiEJ of A onto the standard basis (Bj)jE/ of B, i.e., with the property that
(i) a(A;) = Bn(i) , iE §,

where 1t : § --+ ,I is a bijection such that
(

" ' ) k _ n(k) • " k ~ d
11 Pij - qn(i)n(j) , 1, J, -..:: of,

(pt) and (q~b) being the intersection numbers of C and D. Conversely, given a bijection
1t : § --+ ,I satisfying (ii), (i) defines an isochromism of C onto D; in this sense we can speak
of isochromic coherent algebras or configurations as those having the same intersection
numbers. Our terminology seems reasonably natural in terms of the interpretation of § and
,I as sets of colors (see e.g., [7]).

We call the group of autochromisms of C the chormatic group of C, and denote it by
Chr C. Observe that ChrC ~ {1t E ~J Ipt = p~~~inU)} and that an autochromism induces a
permutation of the indexing set n £; § of the standard partition. We have the group Aut) C
of automorphisms of C which fix the fibres, the group Chr, C of autochromisms of C
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which induce the trivial permutation ofn,and the following commutative diagram ofgroup
homorphisms with exact rows and columns

1
! !

Aut.C = AutjC
! !

1 -+ Aut, C -+ AutC -+ ~f.I

! !
1 -+ Chr, C -+ ChrC -+ ~f.I

Certainly an element of AutC which is not in Aut] C induces an automorphism of Aut.C
whichis not inner.

An srd f0 can be identified with the corresponding cc C, and then dualities of f0 are the
automorphisms of C which interchange the fibers, and polarities are the automorphisms of
period 2 with this property. Clearly Aut, C = Aut.C, so f0 is self dual if and only if
AutCjAutoC ~ 7L2 • For f0 to be symmetric means the existence of an autochromism of C
which interchanges the elements of n. Since Chr, C is the trivial group, this means
ChrC ~ 7L2 • An isomorphism of r; onto Ii is an isomorphism between the corresponding
fibers of C. For r; and Ii to have the same parameters means the existence of an isochromism
between the fibers of C.

7. STRONGLY REGULAR DESIGNS WITH GIVEN POINT GRAPH

Analogous to the problem initiated by Goethals and Seidel [6] for quasisymmetric designs
(see also Neumaier [12]) we have the problem of determining the srd's with a given strongly
regular graph r; as point graph. Examples are given in 'Examples (A)' of Section 8 of
nonisomorphic rds's with the same point graph. Furthermore the parameter conditions
show that it is relatively rare for a strongly regular graph to be the point graph of an srd
(see also 7.2 below).

We remark that if the parameters of r; together with the block size SI and the number
n2 of blocks are specified, then the remaining srd parameters are determined. Namely by
Section 3 we have S2 = n2S\/n l,P] = (k, - r\)S\/nJ,N\ = P, + r\,o2 = N\S2/kl,and
b2 = (S\ - N\ - 1)S2//I' According to the dual of 5.2, the rest of the parameters are
determined. Unfortunately we do not have a practical bound for n2 in terms of the
parameters of r; and the block size. Observe that the parameters of an symmetric srd are
determined by the parameters of the point graph and the block size; for instance, the
strongly regular parameters can be given in terms of k, r, s, then specifying S determines
the rest starting with

P = (k - r) S = (k + rs)(k - r) S.
n (k + r)(k + s)

Let us now determine the srd's with the d x d lattice graph L2(d) point graph. A block
of such an srd is a regular subgraph of L2(d) with valency N1 such that each point outside
it is adjacent to PI of its points. We see that a connected component of a block must be
either a clique of size N\ + 1 or an L2(e), e = Ntl2 + 1. If a clique of size < d is a
component, then PI ~ N I + 1, which is impossible, hence there are no such components.
If a clique of size d is a component of a block, then the blocks are the cliques of size d and
the srd is the grid. The remaining possibility is that all the components are L2(e)'s, and
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clearly e < d in this case. But there at least two components and PI ~ 2[(Nd2) + 1],
which is impossible. Thus:

7.1. The only srd with point graph Lid), d ~ 2, is the d x d grid.

For the same question for the complement of L2(d), the components of a block viewed
as subgraphs of L2(d) are again either cliques or L2(e)s. A somewhat tedious but straight
forward analysis of the case gives

7.2. If an srd has the complement of Lid) as point graph, then either d = 2 or 4. If
d = 4, then there are 18 blocks of size 8 and these are the subgraphs of L2(4) having two
components isomorphic with L2(2).

8. EXAMPLES

We describe here some of the examples referred to at various points in the text.

EXAMPLES (A). Up to complements and duals we know just 13 examples of primitive
srd's with n t :::; nz and n t :::; 50. Of these, all but the two partial geometries pg(5, 7, 3)
belong to the group case, coming from the group actions given in Table 2. Concerning the
pg(5, 7, 3)'s see Brouwer and van Lint [4].

TABLE 2.
Group case examples n l .;;; n2 , n l .;;; 50.

Group Orbit lengths and type

27 36 45 40 40
3 2 2 I I

3 2 2 2

322

3 2

3

50 50 50

[3 : :]

Concerning the examples of Table 2 see Neumaier [13]. The action ofU3(5) is on two of
the three classes of A7'So Since these are automorphic, there is just one srd up to isomorphism.
The configuration afforded by the action on all three classes is a triality configuration as
defined in [9].

The parameters are given in Table 3.
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TABLE 3.
Known primitive srd's, n, ,,;; n2 , nt ,,;; 50

n

15

27
36

27
45

28
35

36
40

36
45

40

40
45

45
63

50

s

3

12
16

3
5

12
15

9
10

12
15

4

16
18

5
7

15

a

1

6
8

1
1

6
7

3
4

6
6

1

7
9

1
1

5

b

o
4
6

o
o
4
5

o
1

3
3

o
4
6

o
o
o

N

2

5
10

2
4

7
8

6
9

8
6

3

4
12

4
6

14

P

1

4
8

1
1

6
6

3
6

6
3

1

4
12

3
3

12

k

6

10
20

10
12

15
16

15
27

20
12

12

12
32

28
30

42

8

16
15

16
32

12
18

20
12

15
32

27

27
12

16
32

7

1

1
10

1
3

6
6

6
18

10
3

2

2
22

15
13

35

3

5
12

5
3

10
8

6
18

12
3

4

4
24

21
15

36

r

1

1
2

1
3

1
2

3
3

2
3

2

2
2

1
3

2

s

-3

-5
-4
-5
-3

-5
-4
-3
-3

-4
-3

-4

-4
-4

-7
-5

-3

f

9

20
20

20
20

20
20

15
25

20
20

24

24
24

35
35

21

g

5

6
15

6
24

7
14

20
24

15
24

15

15
20

9
27

28

GQ(2,2)

GQ(2,4)

TWO

GQ(3,3)

TWO

pg(5, 7, 3)
TWO

EXAMPLES (B). One ofthe two examples with n l = 40 and n2 = 45 can be viewed as the
dual of the srd afforded by the action ofU4(2) on the 45 absolute points and the 40 ordinary
points. More generally, the action of Um(2), m ~ 4, on the absolute and ordinary points
of unitary PGm _ 1(4) provides a generic family of primitive srd's which are not partial
geometries, and which can realized by taking the absolute points as the points, the ordinary
points as the blocks, and orthogonality as incidence. Equivalently we can take the non­
degenerate hyperplanes as the blocks, with incidence as in PGm_ 1(2). We give the par­
ameters.

The numbers of absolute points and ordinary points are respectively u.; =
(2m - (-It)(2m- 2

- (-l)m-I)/3andvm = 2m- '(2
m - (-l)m)/3.Theparametersforthe

orthogonality graphs on the absolute the ordinary points are as given in Table 4. These

TABLE 4.
Parameters of the orthogonality graphs.

n

k

I

A.

r

s

f

g

m even
m odd

m even
modd

m even
m odd

m even
modd

Absolute points

4um _ 2 - (22m - 5 + 1)

_(2m - 3 + 1)
_(2m - 2 + 1)

H2m
-

t - 1)(2m - 3 + 1)
Wm

-
t - 1)(2m - 2 + 1)

Wm
-

t + 1)(2m - 2 - 1)
Wm + 1)(2m - 3 - 1)

Ordinary points

3vm _ , - 1

4v m _ 3

2m - 3

2m - 2

_2m - 2

_2m - 3

!(2m
-

t + 1)(2m - 2 - 1)
Wm + 1)(2m

-
t - 1)

wm - 1)(2m-t + 1)
&<2m

-
t _ 1)(2m - 2 + 1)
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m even
m odd

m even
m odd

Strongly regular designs

TABLE 5.
Remaining parameters of srd.

i = 1

2m - 5

4um _ J

2m - J(2m- 2 - 1)
Um-2

421

i = 2

16vm _ 4

2m - 2(2m - J + I)
4vm _ J - 1

2m- J(2m - 2 - I)
V m_ 2

graphs are respectively the complement of the point graph and the block graph if m is even
and the point graph and complement of the block graph if m is odd. The remaining
parameters of the srd are given in Table 5.

We can easily reconstruct unitary PGm _ t(4) from the above srd. This suggests consider­
ation of srd's for which the analogous construction produces a self-polar design. This is
done in [8].

EXAMPLES (C). Two families of self-polar srd's are obtained by taking as points and
blocks the points in PG2d- 1(3), d ~ 3, represented by vectors x with Q.(x) = 1 and - I,
respectively, where Q.(x) is a nondegerate quadratic form of maximal or nonmaximal index
according as e = 1 or - 1. Incidence is taken to be orthogonality. The case d = 2, s = - 1
is isomorphic with the generalized quadrangle G(2, 2) corresponding to the isomorphism
0 4 (3) ~ Sp(2)'.

The orthogonality graphs on the points <x), with Q.(x) = 1 and - 1, respectively, are
isomorphic strongly regular graphs with the following parameters:

n, = t3d- 1(3d - e), k, = Pd-l(3d- 1 - e), I, = 32d- 2 _ 1,

A, = tY-2(3d- 1 + e), IJ., = t3d- 1(3d- 2 - e),

r+ -s 3d- 1 r -s+ = Y-2, ,

f+ H3d- t
- 1)(3d - I), f- = ~(32d-2 _ 1),

g+ ~(32d-2 _ 1), g- H3d- 1 + 1)(3d + 1).

In the case e = + 1, the point and block graphs are the complements of the orthogonal­
ity graphs, and the remaining parameters of the srd are

s+ = Pd-l(Y-1 + 1),

a+ t3d-I(3d-2 + 1), b; = t3d- 2(Y-l + I),

N+ (3d- 1
- 1)(3d

-
2 + 1), P+ = 3d- 2(3d- t + 1).

In the case e = - 1, the point graphs are the orthogonality graphs, and

s_ = t3d - 1(y - t - 1),

a Pd-2(3d- t _ 1),

Pd-?(3d- 1 + 1),

b: = t3d
-

I(3d
-

2
- 1),

P_ = P d - 2 (3d - 1 _ I).
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