9,294 research outputs found

    B\'ezier curves that are close to elastica

    Full text link
    We study the problem of identifying those cubic B\'ezier curves that are close in the L2 norm to planar elastic curves. The problem arises in design situations where the manufacturing process produces elastic curves; these are difficult to work with in a digital environment. We seek a sub-class of special B\'ezier curves as a proxy. We identify an easily computable quantity, which we call the lambda-residual, that accurately predicts a small L2 distance. We then identify geometric criteria on the control polygon that guarantee that a B\'ezier curve has lambda-residual below 0.4, which effectively implies that the curve is within 1 percent of its arc-length to an elastic curve in the L2 norm. Finally we give two projection algorithms that take an input B\'ezier curve and adjust its length and shape, whilst keeping the end-points and end-tangent angles fixed, until it is close to an elastic curve.Comment: 13 pages, 15 figure

    3D ball skinning using PDEs for generation of smooth tubular surfaces

    Get PDF
    We present an approach to compute a smooth, interpolating skin of an ordered set of 3D balls. By construction, the skin is constrained to be C1 continuous, and for each ball, it is tangent to the ball along a circle of contact. Using an energy formulation, we derive differential equations that are designed to minimize the skin’s surface area, mean curvature, or convex combination of both. Given an initial skin, we update the skin’s parametric representation using the differential equations until convergence occurs. We demonstrate the method’s usefulness in generating interpolating skins of balls of different sizes and in various configurations

    Relativistic calculations of the U91+(1s)-U92+ collision using the finite basis set of cubic Hermite splines on a lattice in coordinate space

    Full text link
    A new method for solving the time-dependent two-center Dirac equation is developed. The approach is based on the using of the finite basis of cubic Hermite splines on a three-dimensional lattice in the coordinate space. The relativistic calculations of the excitation and charge-transfer probabilities in the U91+(1s)-U92+ collisions in two and three dimensional approaches are performed. The obtained results are compared with our previous calculations employing the Dirac-Sturm basis sets [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)]. The role of the negative-energy Dirac spectrum is investigated within the monopole approximation

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization

    Get PDF
    We introduce a new variational method for the numerical homogenization of divergence form elliptic, parabolic and hyperbolic equations with arbitrary rough (LL^\infty) coefficients. Our method does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution space and a new variational approach to homogenization. The approximation space is generated by an interpolation basis (over scattered points forming a mesh of resolution HH) minimizing the L2L^2 norm of the source terms; its (pre-)computation involves minimizing O(Hd)\mathcal{O}(H^{-d}) quadratic (cell) problems on (super-)localized sub-domains of size O(Hln(1/H))\mathcal{O}(H \ln (1/ H)). The resulting localized linear systems remain sparse and banded. The resulting interpolation basis functions are biharmonic for d3d\leq 3, and polyharmonic for d4d\geq 4, for the operator -\diiv(a\nabla \cdot) and can be seen as a generalization of polyharmonic splines to differential operators with arbitrary rough coefficients. The accuracy of the method (O(H)\mathcal{O}(H) in energy norm and independent from aspect ratios of the mesh formed by the scattered points) is established via the introduction of a new class of higher-order Poincar\'{e} inequalities. The method bypasses (pre-)computations on the full domain and naturally generalizes to time dependent problems, it also provides a natural solution to the inverse problem of recovering the solution of a divergence form elliptic equation from a finite number of point measurements.Comment: ESAIM: Mathematical Modelling and Numerical Analysis. Special issue (2013

    Thinplate Splines on the Sphere

    Get PDF
    In this paper we give explicit closed forms for the semi-reproducing kernels associated with thinplate spline interpolation on the sphere. Polyharmonic or thinplate splines for Rd{\mathbb R}^d were introduced by Duchon and have become a widely used tool in myriad applications. The analogues for Sd1{\mathbb S}^{d-1} are the thin plate splines for the sphere. The topic was first discussed by Wahba in the early 1980's, for the S2{\mathbb S}^2 case. Wahba presented the associated semi-reproducing kernels as infinite series. These semi-reproducing kernels play a central role in expressions for the solution of the associated spline interpolation and smoothing problems. The main aims of the current paper are to give a recurrence for the semi-reproducing kernels, and also to use the recurrence to obtain explicit closed form expressions for many of these kernels. The closed form expressions will in many cases be significantly faster to evaluate than the series expansions. This will enhance the practicality of using these thinplate splines for the sphere in computations
    corecore