24,766 research outputs found

    Understanding the Limitations of CNN-based Absolute Camera Pose Regression

    Full text link
    Visual localization is the task of accurate camera pose estimation in a known scene. It is a key problem in computer vision and robotics, with applications including self-driving cars, Structure-from-Motion, SLAM, and Mixed Reality. Traditionally, the localization problem has been tackled using 3D geometry. Recently, end-to-end approaches based on convolutional neural networks have become popular. These methods learn to directly regress the camera pose from an input image. However, they do not achieve the same level of pose accuracy as 3D structure-based methods. To understand this behavior, we develop a theoretical model for camera pose regression. We use our model to predict failure cases for pose regression techniques and verify our predictions through experiments. We furthermore use our model to show that pose regression is more closely related to pose approximation via image retrieval than to accurate pose estimation via 3D structure. A key result is that current approaches do not consistently outperform a handcrafted image retrieval baseline. This clearly shows that additional research is needed before pose regression algorithms are ready to compete with structure-based methods.Comment: Initial version of a paper accepted to CVPR 201

    Learning to Convolve: A Generalized Weight-Tying Approach

    Get PDF
    Recent work (Cohen & Welling, 2016) has shown that generalizations of convolutions, based on group theory, provide powerful inductive biases for learning. In these generalizations, filters are not only translated but can also be rotated, flipped, etc. However, coming up with exact models of how to rotate a 3 x 3 filter on a square pixel-grid is difficult. In this paper, we learn how to transform filters for use in the group convolution, focussing on roto-translation. For this, we learn a filter basis and all rotated versions of that filter basis. Filters are then encoded by a set of rotation invariant coefficients. To rotate a filter, we switch the basis. We demonstrate we can produce feature maps with low sensitivity to input rotations, while achieving high performance on MNIST and CIFAR-10.Comment: Accepted to ICML 201

    Applications of the Wavelet Multiplicity Function

    Full text link
    This paper examines the wavelet multiplicity function. An explicit formula for the multiplicity function is derived. An application to operator interpolation is then presented. We conclude with several remarks regarding the wavelet connectivity problem.Comment: 9 pages, AMS-Late

    Weighted interpolation inequalities: a perturbation approach

    Get PDF
    We study optimal functions in a family of Caffarelli-Kohn-Nirenberg inequalities with a power-law weight, in a regime for which standard symmetrization techniques fail. We establish the existence of optimal functions, study their properties and prove that they are radial when the power in the weight is small enough. Radial symmetry up to translations is true for the limiting case where the weight vanishes, a case which corresponds to a well-known subfamily of Gagliardo-Nirenberg inequalities. Our approach is based on a concentration-compactness analysis and on a perturbation method which uses a spectral gap inequality. As a consequence, we prove that optimal functions are explicit and given by Barenblatt-type profiles in the perturbative regime

    Multiple sampling and interpolation in the classical Fock space

    Full text link
    We study multiple sampling, interpolation and uniqueness for the classical Fock space in the case of unbounded mul-tiplicities
    • …
    corecore