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Abstract

Herbrand structures have the advantage, computationally speaking, of being guided by the defin-

ability of all elements in them. A salient feature of the logics induced by them is that they internally

exhibit the induction scheme, thus providing a congenial, computationally-oriented framework for

formal inductive reasoning. Nonetheless, their enhanced expressivity renders any effective proof

system for them incomplete. Furthermore, the fact that they are not compact poses yet another proof-

theoretic challenge. This paper offers several layers for coping with the inherent incompleteness and

non-compactness of these logics. First, two types of infinitary proof system are introduced—one

of infinite width and one of infinite height—which manipulate infinite sequents and are sound and

complete for the intended semantics. The restriction of these systems to finite sequents induces a

completeness result for finite entailments. Then, in search of effectiveness, two finite approximations

of these systems are presented and explored. Interestingly, the approximation of the infinite-width

system via an explicit induction scheme turns out to be weaker than the effective cyclic fragment of the

infinite-height system.

1 Introduction

Herbrand structures are a particularly useful subclass of first-order structures due to their strong definitional

character. In these structures every element has a unique name, i.e. each semantical element is uniquely

definable by some closed term of the language. This strong definability property of the logic induced by

Herbrand structures offers both computational and pedagogical advantages over classical first-order logic.

For instance, it enables a convenient way of performing symbolic computations, its models can be reduced

to sets of atomic sentences, and it has a strong expressive power. It is for these reasons that Herbrand

structures are widely used in various subfields of computer science. In logic they are often used as a key

component in completeness proofs; in automated reasoning they are used for automated theorem proving

[12, 7]; in deductive databases and logic programming they provide semantics for logic programs [28, 1];

and in logic education [23] they provide a simplified semantics for first-order languages.

This paper studies the logics induced by Herbrand structures on their own merit, not solely as an

instrumental tool in subfields of artificial intelliegence and logic-related research.1 Thus, we start by

identifying the different components comprising Herbrand structures: (i) every element of the domain

has a name in the formal language; and (ii) every such name is unique. The latter property is called

“structure-definability”. Structures that satisfy only (i) are called semi-Herbrand structures, and those who

satisfy both (i) and (ii) are called Herbrand structures. We also consider the addition of equality to the

1Such line of research was suggested in [24], and the work presented here is an extension of [17].
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language, and thus obtain four variants of the logic, which we call “Herbrand logics”. Herbrand logics are

“super-classical”, in the sense that classical first-order logic is strictly contained in them.

There are some critical differences between Herbrand logics and first-order logic. First, the rich

expressive power of Herbrand logics entails that they are inherently incomplete, in the sense that there

cannot exist sound, effective proof systems for these logics that are also complete. Second, they are not

even compact and thus, for instance, from the possibly infinite set of assumptions {ϕ(t) : t ∈ cl(L)}
(where cl(L) is the set of closed terms of the language L) one can infer ∀xϕ, whereas in the general

case it cannot be inferred from any finite subset of the assumptions. Finally, while both downward

and upward Löwenheim-Skolem theorems hold for classical first-order logic, only the former holds for

Herbrand logics.2 The first two properties present major challenges in the development of a proof theory

for Herbrand logics.

Accordingly, the main contribution of this paper is in the introduction of several sequent calculi [25]

for (each of the variants of) Herbrand logics, as well as their comparison to one another. Sequent calculi

are widely used in automated reasoning, especially when one is interested in the computational aspects of

a logic (e.g., [33]). It has been employed in a variety of logical frameworks, e.g., many-valued and fuzzy

logics [30, 11], modal logics [40, 31], paraconsistent logics [4], and also logical argumentation [2].

The standard way to recover completeness for logics that are not compact is to forgo effectiveness and

develop an infinitary system (see, e.g., [37]). Thus, we present two approaches for developing infinitary

sequent calculi which are both sound and complete for the various Herbrand logics. The first is an infinite-

width system whose main component is a generalization of the ω-rule [37]. The fact that this well-known,

natural derivation rule suffices for a deductive characterization of Herbrand structures is non-trivial, as

evidenced by the construction employed in the completeness proofs. The second system is of infinite height,

i.e. a non-well-founded proof system adhering to the principle of infinite descent [8, 9, 10, 16, 18, 35, 39].

The non-compactness of the logic entails that one must allow both systems to manipulate infinite sequents.

Indeed, these systems are complete for their intended semantics. If the sequents permitted by the systems

are only finite, completeness is retained with respect to finite inferences.

In order for proof systems for Herbrand logics to serve as a baseline for useful automation in any

of the applications in computer science mentioned above one must consider effective approximations.

We present two such approximations corresponding to the two infinite approaches. Finitary and sound

approximations of the infinite-width systems are obtained by replacing the generalized ω-rule with a

generalization of its finitary counterpart, namely the standard induction rule for Peano Arithmetics [25].

For the infinite-height systems, finitary and sound approximations are obtained by restricting our attention

only to regular proofs, i.e. proofs that can be represented by finite, possibly cyclic, graphs. Interestingly,

these two natural approximations are not equivalent as we show that the cyclic subsystem is stronger than

the induction-based system.

The rest of this paper is organized as follows: In Section 2 variants of Herbrand structures are defined,

and the semantics they induce are investigated. Sound and complete infinite-width proof systems for

Herbrand logics are introduced in Section 3, followed by the equivalent infinite-height proof systems that

are presented in Section 4. Section 5 presents finitary approximations of these systems: the induction-based

system (Subsection 5.1) and the cyclic system (Subsection 5.2). Then, the latter is shown to be strictly

stronger than the former (Subsection 5.3). We conclude with Section 6, where other directions for further

research are suggested.

2Since Herbrand logics are super-classical, Lindström’s theorem (see, e.g., [21]) tells us that they cannot be both compact

and admit the downward Löwenheim-Skolem theorem. The fact that they do admit one of these properties makes Herbrand

logics closer to first-order logics than other super-classical logics.
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2 Herbrand Logics

This section is devoted to the various logics Herbrand structures induce. After the preliminary Section 2.1,

in Section 2.2 we study structures that admit two well-known variants of the Herbrand property, namely

Herbrand and semi-Herbrand structures. In Section 2.3 we add a distinguished equality symbol to the

language, and explore its effect on the results of Section 2.2.

2.1 Preliminaries

A first-order language L consists of a set of variables, the standard logical connectives ∧,∨,⊃ and ¬,

the logical quantifiers ∀ and ∃, and a signature that consists of a set func (L) of function symbols, and

a set pred (L) of predicate symbols. We use x, y, z, w (possibly with subscripts) to denote variables of

L. We also denote by consts (L) the set of 0-ary function symbols (constants), and by func+ (L) the

set func (L) \ consts (L). The arity of a function symbol f is denoted by ar(f). A term (formula) is

called closed if no free variable occurs in it, and is called open otherwise. The set of closed terms of L is

denoted by cl (L), and the set of its closed atomic formulas is denoted by catoms (L). We adopt standard

conventions for eliminating parentheses (e.g., when writing ϕ1 ∧ ϕ2 ⊃ ψ rather than (ϕ1 ∧ ϕ2) ⊃ ψ. We

write ϕ
{

t
x

}

to denote the formula obtained from ϕ by simultaneously substituting any free occurrence of

x in ϕ with t.
A first-order structure for L is a pair 〈D, I〉, such that D is a non-empty set and I is an interpretation

function, assigning an n-ary function (relation) over D to every n-ary function (predicate) symbol of L.

Given a first-order structure M = 〈D, I〉 for L, an M -valuation is a function v from the set of variables to

D. M -valuations are extended to be applied on arbitrary L-terms in the usual manner. The satisfaction

relation M, v |= ϕ is standardly defined. We write M |= ϕ if M, v |= ϕ for every M -valuation v.

In what follows, we fix a first-order language L which has at least one constant symbol.1 By a structure

we mean a first-order structure for L. We denote the classical satisfaction relation between structures and

formulas by |=, and its induced consequence relation by ⊢.

2.2 Herbrand and Semi-Herbrand Structures

We start the investigation of Herbrand structures by disassembling their standard definition into its two

components: the existence of a name for every domain element, and its uniqueness.2

Definition 2.1. A structureM = 〈D, I〉 is called semi-Herbrand if for every a ∈ D there is some t ∈ cl (L)
such that I (t) = a. If for each a ∈ D, there is a unique t ∈ cl (L) such that I (t) = a, M is called a

Herbrand structure.

Since in Herbrand structures every element has a unique name, it is possible (and beneficial from a

computational point of view) to fix the domain to consist solely of these names. Thus, in the reminder

of this paper, we utilize the more common definition of a Herbrand structure, requiring that D = cl (L)
and I (t) = t for every t ∈ D. It is routine to show that every Herbrand structure is isomorphic to such a

structure.

Herbrand structures allow for an even more computationally-oriented definition, as they admit a strong

notion of definability, which we call “structure-definability”. That is, every Herbrand structure is uniquely

1Dismissing this requirement yields a Herbrand counterpart of free-logic [27].
2These two components correspond to well-known concepts from inductive reasoning: a set of operators generating a set,

and the question whether each element is generated in a unique way [22].
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determined by a set of closed atoms, by setting I (P ) = {〈t1, . . . , tn〉 ∈ cl (L)n : P (t1, . . . , tn) ∈ A} for

every predicate symbol P .3

The fact that every element in the domain has a name allows for an equivalent, more convenient

definition of quantifier semantics and of satisfaction of open formulas.

Lemma 2.2. Let M be a semi-Herbrand structure.

• M |= ∃xψ iff M |= ψ
{

t
x

}

for some t ∈ cl (L).

• M |= ∀xψ iff M |= ψ
{

t
x

}

for every t ∈ cl (L).

Definition 2.3. Let ϕ (x1, . . . , xn) be an open formula whose free variables are a subset of {x1, . . . , xn}.

An L-instance of ϕ is a formula of the form ϕ
{

t1
x1
, . . . , tn

xn

}

, where t1, . . . , tn ∈ cl (L).

Lemma 2.4. Let M be a semi-Herbrand structure. Then M |= ϕ iff M |= ϕ′ for every L-instance ϕ′ of ϕ.

The consequence relations induced by (semi-)Herbrand structures are defined as follows:

Definition 2.5. Let T ∪ {ϕ} be a set of L-formulas. T ⊢H ϕ (T ⊢SH ϕ) if for every (semi-) Herbrand

structure M , M |= T (i.e. M |= ψ for every ψ ∈ T ) implies M |= ϕ.

Notice that the relations ⊢SH and ⊢H are parametrized by the underlying language L, and the answer

to derivability questions highly depends on the identity of L. For readability, we fix an arbitrary first-order

language L as the underlying language for the rest of this paper, unless specifically stated otherwise.

The next proposition summarizes the relations between the logics that are induced by Herbrand, semi-

Herbrand and arbitrary structures. Note that the proposition assumes L does not include a distinguished

equality symbol (such languages are the subject of the next subsection).

Proposition 2.6. ⊢ ( ⊢SH = ⊢H .

Proof. Since every Herbrand structure is also semi-Herbrand, and every semi-Herbrand structure is a

classical structure, we have that ⊢ ⊆ ⊢SH ⊆ ⊢H . To see that ⊢ 6= ⊢SH , consider e.g. the case where

L consists of one constant symbol c, and a unary predicate P . Clearly, P (c) ⊢SH ∀xP (x), whereas

P (c) 6⊢ ∀xP (x).4 As for ⊢SH and ⊢H , for every semi-Herbrand structure M = 〈D, I〉, an equivalent

Herbrand structure HM = 〈cl (L) , I ′〉 can be constructed by taking I ′ (t) = t for every t ∈ cl (L), and

I ′ (P ) = {〈t1, . . . , tn〉 : 〈I (t1) , . . . , I (tn)〉 ∈ I (P )} for each predicate symbol P . It can be shown using

structural induction on the formulas of L that M and HM satisfy the same formulas.

2.3 Handling Equality

In this section we use the classical axiomatization of equality to study equality in Herbrand logics.

Throughout, we assume L includes a binary predicate symbol =, and abbreviate ¬ (s = t) by (s 6= t). A

structure M = 〈D, I〉 is called normal if I (=) is {〈a, a〉 | a ∈ D}.

Definition 2.7. ⊢H= (⊢SH=) is defined similarly to ⊢H (⊢SH), but is restricted to normal Herbrand (semi-

Herbrand) structures.

The addition of equality to the signature separates the consequence relations induced by Herbrand and

semi-Herbrand structures.

3This is how Herbrand structures were defined in [24].
4A more general argument was given in [24] for the proper inclusion of ⊢ in ⊢H , which amounts to the failure of the

compactness theorem for ⊢H .
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Proposition 2.8. For languages with at least two distinct closed terms, ⊢SH= ( ⊢H= .5

Proof. For t1 and t2 two distinct closed terms we have ⊢H= t1 6= t2, while 0SH= t1 6= t2.

Semi-Herbrand structures allow for the same axiomatization of equality that is used in classical logic.

Definition 2.9. Let Equiv = {x = x, x = y ⊃ y = x, x = y ∧ y = z ⊃ x = z}, and let E (L) be the set

consisting of the following formulas:

• x1 = y1 ∧ . . . ∧ xn = yn ⊃ f (x1, . . . , xn) = f (y1, . . . , yn) for every n-ary (n > 0) function

symbol f .

• x1 = y1 ∧ . . . ∧ xn = yn ⊃ (P (x1, . . . , xn) ⊃ P (y1, . . . , yn)) for every n-ary predicate symbol P .

Finally, let Eq (L) be the set Equiv ∪ E (L). For normal semi-Herbrand structures, we have:

Proposition 2.10. T ⊢SH= ϕ iff T ∪ Eq (L) ⊢SH ϕ.

Eq (L), however, is insufficient for characterizing normal Herbrand structures. For example,

⊢H= t1 6= t2, but Eq (L) 6⊢H t1 6= t2, whenever t1 and t2 are distinct closed terms. Interestingly,

in Herbrand structures, capturing equality requires also the inequalities of the language, which are suc-

cinctly described using the following inequality axioms. Together with the equality axioms above, we

obtain a variant of Clark equality theory [13].

Definition 2.11. Let inE (L) be the set consisting of the following formulas:

• f (x1, . . . , xn) 6= g (y1, . . . , ym) for every distinct function symbols f and g with arities n and m,

respectively.6

• xi 6= yi ⊃ f (x1, . . . xi, . . . , xn) 6= f (x1, . . . yi, . . . , xn) for every n-ary (n > 0) function symbol f
and 1 ≤ i ≤ n.

Notice that inE (L) is determined solely by func (L). Therefore, whenever this set is finite, so is

inE (L). This is in contrast to Eq (L), which also depends on pred (L).

Example 2.12. [24] defines a theory (which is here denoted by NAT) in a language (which is here

denoted by LNAT) for arithmetics, that consists of a constant 0, a unary function s, two ternary predicate

symbols plus and times, and a binary predicate symbol equal. For this particular language, we have

inE (LNAT) = {0 6= s (x) , s (x) 6= 0, x 6= y ⊃ s (x) 6= s (y)}. These axioms, together with x = x, are

essentially the axioms that were used for the predicate equal in NAT.

Lemma 2.13. The following hold:

• inE (L) ⊢H s 6= t for every distinct closed terms s and t.

• Let M be a Herbrand structure. M |= inE (L) ∪ {x = x} iff M is normal.

• Let M be a semi-Herbrand structure. M |= inE (L) iff M is Herbrand.

With inE (L), we obtain the following counterpart of Proposition 2.10.

Proposition 2.14. T ⊢H= ϕ iff T ∪ inE (L) ∪ {x = x} ⊢H ϕ.

5If the language has only one closed term the consequence relations are identical.
6Note that f and g may be constant symbols.
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Figure 1: Rules of the Basic Calculus G

(id)
Γ, ϕ⇒ ϕ,∆

(weak)
Γ ⇒ ∆

Γ,Γ′ ⇒ ∆′,∆
(cut)

Γ ⇒ ϕ,∆ Γ, ϕ⇒ ∆

Γ ⇒ ∆

(∧⇒)
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(⇒∧)

Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆

Γ ⇒ ϕ ∧ ψ,∆

(∨⇒)
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(⇒∨)

Γ ⇒ ϕ, ψ,∆

Γ ⇒ ϕ ∨ ψ,∆

(⊃⇒)
Γ ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ ⊃ ψ ⇒ ∆
(⇒⊃)

Γ, ϕ⇒ ψ,∆

Γ ⇒ ϕ ⊃ ψ,∆

(¬⇒)
Γ ⇒ ϕ,∆

Γ,¬ϕ⇒ ∆
(⇒¬)

Γ, ϕ⇒ ∆

Γ ⇒ ¬ϕ,∆

(∀⇒)
Γ, ϕ{ t

x
} ⇒ ∆

Γ, ∀xϕ⇒ ∆
(⇒∃)

Γ ⇒ ϕ{ t
x
},∆

Γ ⇒ ∃xϕ,∆

Corollary 2.15. T ⊢H= ϕ iff T ∪ inE (L) ⊢SH= ϕ.

To conclude this section, we make a brief remark about the axiomatization of arithmetics within

the framework of Herbrand structures. The theory NAT, mentioned in Example 2.12, provides an

axiomatization that categorically characterizes the natural numbers under Herbrand structures. This

axiomatization is actually (the relational version of) Peano Arithmetics (PA) without the induction scheme,

called Π2 (see, e.g., [29]). Robinson [34] added to this system the axiom ∀x.x 6= 0 ⊃ ∃y.x = s (y), thus

forming his famous system Q. When only considering Herbrand structures for LNAT, this additional axiom

is valid, and thus the induction-free part of PA suffices. Moreover, the induction scheme itself is also valid

in such structures. Therefore, Π2, Q and PA are equivalent in Herbrand structures.

It was already shown in [24] that ⊢H is not recursively enumerable, and the same holds for the other

variants of Herbrand logics (due to the above translations between them). Consequently, Herbrand logics

are inherently incomplete. Nevertheless, as shown below, there are natural formal systems which allow for

infinitary proofs, that are sound and complete for Herbrand logics.

3 Infinite-width Systems

In this section we provide derivation systems for Herbrand logics that do not make use of free variables.

This provides a proof-theoretical counterpart of Lemma 2.2, in which an alternative semantics were given

for quantified formulas without using free variables.

3.1 Manipulating Infinite Sequents

The proof-theoretic mechanism we use is that of sequent calculi [25]. To obtain completeness for our

systems, however, the standard definition of a sequent must be relaxed to allow infinite sequents.

Definition 3.1. A sequent is an expression of the form Γ ⇒ ∆, where Γ and ∆ are (possibly infinite) sets

of formulas. A sequent containing only closed formulas is called closed; otherwise, it is called open.

6



Figure 2: Derivation Rules for Herbrand and semi-Herbrand Logics

(⇒∀)H

{

Γ ⇒ ϕ
{

t
x

}

,∆ : t ∈ cl (L)
}

Γ ⇒ ∀xϕ,∆
(∃⇒)H

{

Γ, ϕ
{

t
x

}

⇒ ∆ : t ∈ cl (L)
}

Γ, ∃xϕ⇒ ∆

(PM1)
Γ ⇒ ϕ

{

s
x

}

,∆

Γ, s = t⇒ ϕ
{

t
x

}

,∆
(PM2)

Γ ⇒ ϕ
{

t
x

}

,∆

Γ, s = t⇒ ϕ
{

s
x

}

,∆

(⇒=)
Γ ⇒ t = t,∆

t ∈ cl (L) (=⇒)
Γ, s = t⇒ ∆

s 6= t ∈ cl (L)

Let LK denote a variant of Gentzen’s calculus for classical logic [25], in which sequents are taken

to be pairs of finite sets, rather than pairs of lists (in particular, contraction, expansion and permutation

are not needed). Denote by G the calculus that consists of the rules in Figure 1. Derivations in G are

restricted to closed (possibly infinite) sequents. Note that the rules of G are obtained from those of LK
by dismissing (⇒∀) and (∃⇒) (which are the ∀-introduction rule and ∃-elimination rule, respectively),

replacing the axiom ϕ⇒ ϕ by Γ, ϕ⇒ ϕ,∆ for every closed sequent Γ, ϕ⇒ ϕ,∆, and also replacing the

two original weakening rules by the following single weakening rule.

Γ ⇒ ∆

Γ,Γ′ ⇒ ∆′,∆

The key idea behind capturing the essence of Herbrand logics in a formal proof system is to formalize

the syntactic restriction on the domain. This is obtained by replacing the standard (⇒∀) rule by a language-

based introduction rule for ∀, which is a generalization of the ω-rule employed in some proof systems

for arithmetic (see, e.g., [37]). Similar modification is required in the (∃⇒) rule. The adjustments in the

axiom and weakening rules allow the introduction of infinite sequents.

Definition 3.2. We define the following proof systems using the derivation rules in Figs. 1 and 2.

1. GH = G+ (⇒∀)H + (∃⇒)H .

2. GSH=
= GH + (⇒=) + (PM1) + (PM2).

3. GH=
= GH + (⇒=) + (=⇒).

Note that (PM1) and (PM2) are not included in GH=
since they are derivable using (⇒=) and (=⇒).

Let G be one of the three calculi in the above definition. A derivation of a sequent s in G is a (possibly

infinite) tree with a finite height, rooted with s, in which every node in the tree is the result of an application

of some rule of X on the set of its predecessors. We write ⊢G s if there is a derivation of s in G.

It is important to note that every derivation in the above calculi does not contain occurrences of free

variables. Also note that, in general, the above calculi are not effective as they allow for both infinite

derivations (by using (⇒∀)H or (∃⇒)H when cl (L) is infinite) and infinite sequents (by using an instance

of (id) with an infinite sequent, or introducing one with (weak)).
First we show that all three calculi extend LK. For this we consider L-instances of sequents.

Definition 3.3. A substitution is a function σ assigning an element of cl (L) to every variable. Given a

formula ϕ, ϕσ is obtained from ϕ by substituting every free occurrence of a variable x with σ (x). An L-

instance of a sequent Γ ⇒ ∆ is any sequent of the form Γσ ⇒ ∆σ for some σ, whereXσ = {ϕσ | ϕ ∈ X}.

Proposition 3.4. Let s be a finite closed sequent derivable in LK. Then s is derivable in GH .
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Proof. Denote by (Γ ⇒ ∆)σ the sequent Γσ ⇒ ∆σ (see Definition 3.3). We prove by induction on the

length of the proof of s in LK that ⊢GH
sσ for every substitution σ and any finite (possibly open) sequent

s. Proposition 3.4 then immediately follows.

1. The cases where s was derived using a structural rule (id, cut, weakening) or an introduction rule of a

propositional connective are routine. We explicitly show the case where the last rule in the derivation

of s was (⊃⇒): in this case, s has the form Γ, ϕ ⊃ ψ ⇒ ∆, and there are shorter derivations of

Γ ⇒ ϕ,∆ and Γ, ψ ⇒ ∆. Let σ be a substitution. By the induction hypothesis, ⊢GH
Γσ ⇒ ϕσ,∆σ

and ⊢GH
Γσ, ψσ ⇒ ∆σ, and thus ⊢GH

sσ.

2. If s was derived by introducing ∀ on the right side, then s has the form Γ ⇒ ∀xϕ,∆, and there is

a shorter derivation of Γ ⇒ ϕ
{

y

x

}

,∆ for some variable y that does not occur free in Γ ∪∆. Let

σ be a substitution. We prove that ⊢GH
Γσ ⇒ (∀xϕ)σ ,∆σ. For every t ∈ cl (L), denote by σy 7→t

the substitution defined by: σy 7→t(z) = t if z = y, and σy 7→t(z) = σ(z) otherwise. By the induction

hypothesis, ⊢GH
Γσt ⇒

(

ϕ
{

y

x

})σt
,∆σt for every t ∈ cl (L). Now, let t ∈ cl (L). Since y does not

occur free in Γ ∪∆, we must have Γσt = Γσ and ∆σt = ∆σ. Moreover,
(

ϕ
{

y

x

})σt
=

(

ϕ
{

t
x

})σ
.

Denote by ϕ′ the formula obtained from ϕ by substituting all free occurrences of variables z in

ϕ by σ (z), except for x, which is left free in ϕ′. Since t is a closed term,
(

ϕ
{

t
x

})σ
= ϕ′

{

t
x

}

.

Thus for every t ∈ cl (L), we have ⊢GH
Γσ ⇒ ϕ′

{

t
x

}

,∆σ. Using (⇒∀)H , we obtain that

⊢GH
Γσ ⇒ ∀xϕ′,∆σ. Clearly, ∀xϕ′ = (∀xϕ)σ, and so we have ⊢GH

Γσ ⇒ (∀xϕ)σ ,∆σ.

3. If s was derived by introducing ∀ on the left side, then s has the form Γ, ∀xϕ⇒ ∆, and there is a

shorter derivation of Γ, ϕ
{

α
x

}

⇒ ∆ for some (possibly open) term α that can be substituted for x
in ϕ. Let σ be a substitution. We prove that ⊢GH

Γσ, (∀xϕ)σ ⇒ ∆σ. By the induction hypothesis,

⊢GH
Γσ,

(

ϕ
{

α
x

})σ
⇒ ∆σ. Let ασ denote the closed term obtained from α by substituting every

free occurrence of a variable z in α by σ (z). Let ϕ′ be defined as in the previous case. Then
(

ϕ
{

α
x

})σ
= ϕ′

{

ασ

x

}

. Thus we have ⊢GH
Γσ, ϕ′

{

ασ

x

}

⇒ ∆σ. ασ is a closed term, and thus can be

substituted for x in ϕ′. Using (∀⇒), we obtain ⊢GH
Γσ, ∀xϕ′ ⇒ ∆σ. Clearly, ∀xϕ′ = (∀xϕ)σ, and

so we have ⊢GH
Γσ, (∀xϕ)σ ⇒ ∆σ.

4. The cases where the last rule in the derivation introduces ∃ are symmetric.

We now prove that all three calculi are sound and complete with respect to their corresponding

Herbrand logics. We begin with the soundness results.

Definition 3.5. Let M be a structure for L and s = Γ ⇒ ∆ a closed sequent. M |= s if M 6|= ϕ for some

ϕ ∈ Γ or M |= ψ for some ψ ∈ ∆. We write ⊢GH
s if M |= s for every Herbrand structure M for L, and

use this notation similarly for ⊢GSH=
and ⊢GH=

.

Theorem 3.6 (Soundness). Let s be a closed sequent. The following hold:

1. ⊢GH
s only if ⊢H s.

2. ⊢GH=
s only if ⊢H= s.

3. ⊢GSH=
s only if ⊢SH= s.

Proof.
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1. Let s be a closed sequent, and assume ⊢GH
s. We prove that every Herbrand structure is a model

of s. The proof is carried out by induction on the proof tree of s in GH . The base cases are trivial,

and the rules in G are proven to be sound just as in the classical case. We here consider the (⇒∀)H
rule. The case for (∃⇒)H is symmetric. Let Γ ⇒ ∀xϕ,∆ and

{

Γ ⇒ ϕ
{

t
x

}

,∆ : t ∈ cl (L)
}

be

the conclusion and set of premises, respectively of an application of (⇒∀)H and M a Herbrand

structure. We prove that M |= Γ ⇒ ∀xϕ,∆. By the induction hypothesis, M |= Γ ⇒ ϕ
{

t
x

}

,∆
for every t ∈ cl (L). If M |= Γ ⇒ ∆, then we have that M |= Γ ⇒ ∀xϕ,∆. Otherwise, using

Lemma 2.2, we must have M |= ϕ
{

t
x

}

for every t ∈ cl (L). In such a case, M |= ∀xϕ, and in

particular, M |= Γ ⇒ ∀xϕ,∆.

2. For GSH=
, the additional rules are proved to be sound similarly to the classical case.

3. For GH=
, (⇒=) is proved to be sound similarly to the classical case. As for (=⇒), let s = t⇒ be

an application of (=⇒). Since s and t are distinct and M is a Herbrand structure, M 6|= s = t, and

so M |= s = t⇒.

We now turn to completeness. The main challenge in the completeness proofs is the unavailability

of Lindenbaum’s lemma, due to the infinitary nature of the systems. This, in turn, renders the standard

construction of a maximal unprovable sequent inapplicable. To solve this problem, we employ a similar

method to the one used in [20, 38], and generate a sequent that admits all the necessary properties for

inducing a countermodel, without necessarily being maximal-unprovable. This is achieved by the addition

of Henkin witnesses from L itself (unlike in the classical case, where the language is extended with new

constant symbols that serve as Henkin witnesses). We first describe the constructions for the system GH ,

and then consider their amendments for the GH=
and GSH=

.

Lemma 3.7.

1. If 6⊢GH
Γ ⇒ ∆ and ∀xϕ ∈ ∆, then there exists t ∈ cl (L) such that 6⊢GH

Γ ⇒ ϕ
{

t
x

}

,∆.

2. If 6⊢GH
Γ ⇒ ∆ and ∃xϕ ∈ Γ, then there exists t ∈ cl (L) such that 6⊢GH

Γ, ϕ
{

t
x

}

⇒ ∆.

Proof.

1. Assume otherwise. Then ⊢GH
Γ ⇒ ϕ

{

t
x

}

,∆ for every t ∈ cl (L). Using (⇒∀)H , ⊢GH
Γ ⇒ ∆

which is a contradiction.

2. Assume otherwise. Then ⊢GH
Γ, ϕ

{

t
x

}

⇒ ∆ for every t ∈ cl (L). Using (∃⇒)H , ⊢GH
Γ ⇒ ∆

which is a contradiction.

For the following constructions and properties, we assume some given sequent Γ ⇒ ∆ that is

unprovable, and an enumeration ψ0, ψ1, . . . of the closed formulas of L. We inductively define a sequence

s0 = Γ0 ⇒ ∆0, s1 = Γ1 ⇒ ∆1, . . . of sequents as follows.

s0 = Γ ⇒ ∆

s2i+1 =

{

Γ2i, ψi ⇒ ∆2i if 6⊢GH
Γ2i, ψi ⇒ ∆2i

Γ2i ⇒ ψi,∆2i otherwise

s2i+2 =











Γ2i+1 ⇒ ϕ
{

t
x

}

,∆2i+1 if ψi = ∀xϕ ∈ ∆2i+1

Γ2i+1, ϕ
{

t
x

}

⇒ ∆2i+1 if ψi = ∃xϕ ∈ Γ2i+1

si+1 otherwise
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where t is taken to be the minimal closed term given by Lemma 3.7 w.r.t. a chosen well-ordering on cl(L).
This construction follows the usual construction of a maximal unprovable sequent, with the crucial change

that the so-called “Henkin-witnesses” (added to sequents with even indexes) consist of closed terms in the

language, and not new constant symbols.

This sequence contains each of the closed formulas of L.

Lemma 3.8. ψi ∈ Γ2i+1 ∪∆2i+1 for every i ∈ N.

Moreover, when the sequent Γ ⇒ ∆ is unprovable, so are all the sequents in the sequence.

Lemma 3.9. 6⊢GH
Γi ⇒ ∆i for every i ∈ N.

Proof. By induction on i. The base case follows from the assumption regarding Γ ⇒ ∆. Let i ≥ 0.

Assume that 6⊢GH
s2i. We prove that 6⊢GH

s2i+1 and 6⊢GH
s2i+2. We start with 6⊢GH

s2i+1. If

6⊢GH
Γ2i, ψi ⇒ ∆2i, then 6⊢GH

s2i+1. Otherwise, ⊢GH
Γ2i, ψi ⇒ ∆2i, and then using cut, we must

have that 6⊢GH
s2i+1, as otherwise the induction hypothesis would be contradicted. Now for s2i+2. If

ψi = ∀xϕ ∈ ∆2i+1 then the fact that 6⊢GH
si+2 follows from the choice of t according to Lemma 3.7,

using the fact that 6⊢GH
s2i+1. If ψi = ∃xϕ ∈ Γ2i+1 then this is similar. Otherwise, si+2 = si+1, and we

have already shown that 6⊢GH
si+1.

Let L =
⋃

i∈N Γi and R =
⋃

i∈N ∆i.

Lemma 3.10. {L,R} is a partition of the set of closed formulas.

Proof. By Lemma 3.8, for every formula ψi, ψi ∈ Γ2i+1 ∪∆2i+1 ⊆ L∪R. Now assume L∩R 6= ∅. Then

there are i, j ∈ N such that ψ ∈ Γi∩∆j . Let k = max {i, j}. Then ψ ∈ Γk∩∆k, contradicting Lemma 3.9.

Finally, neither L nor R can be empty, as L contains all tautologies and R all contradictions.

Given the sequence of sequents from Γ ⇒ ∆ defined above, we then define the following

Herbrand structure: M = 〈D, I〉, where D = cl (L), I (t) = t for every t ∈ cl (L), and

I (P ) = {〈t1, . . . , tn〉 ∈ Dn | P (t1, . . . , tn) ∈ L}. This structure has the following property.

Lemma 3.11. ϕ ∈ L iff M |= ϕ.

Proof. By induction on ϕ.

1. If ϕ ∈ catoms (L) then this follows by the definition of M .

2. If ϕ = ϕ1 ⊃ ϕ2 then:

(a) Suppose ϕ ∈ L, and assume for contradiction that M 6|= ϕ. Then M |= ϕ1 and M 6|= ϕ2. By

the induction hypothesis, ϕ1 ∈ L and ϕ2 /∈ L, that is, ϕ2 ∈ R. Thus there exists k ∈ N such

that ϕ1, ϕ ∈ Γk, while ϕ2 ∈ ∆k, contradicting Lemma 3.9 using (⊃⇒).

(b) Suppose ϕ /∈ L. Then ϕ ∈ R. Assume for contradiction that M |= ϕ. Then either M 6|= ϕ1

or M |= ϕ2. By the induction hypothesis, either ϕ1 /∈ L (that is, ϕ1 ∈ R) or ϕ2 ∈ L. Thus

there exists k ∈ N such that ϕ ∈ ∆k, and either ϕ2 ∈ Γk or ϕ1 ∈ ∆k. Either way, we obtain a

contradiction to Lemma 3.9 using (⇒⊃).

3. If ϕ has one of the forms ϕ1 ∧ ϕ2, ϕ1 ⊃ ϕ2 or ¬ψ then this is shown similarly.

4. If ϕ = ∀xψ then:
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(a) Suppose ϕ ∈ L, and assume for contradiction that M 6|= ϕ. Then M 6|= ψ
{

t
x

}

for some

t ∈ cl (L). By the induction hypothesis, ψ
{

t
x

}

/∈ L, that is, ψ
{

t
x

}

∈ R, which means that

there exists k ∈ N such that ϕ ∈ Γk and ψ
{

t
x

}

∈ ∆k, which contradicts Lemma 3.9 using

(∀⇒).

(b) Suppose ϕ /∈ L. Then ϕ ∈ R. Assume for contradiction that M |= ϕ. Then M |= ψ
{

t
x

}

for

every t ∈ cl (L). By the induction hypothesis, ψ
{

t
x

}

∈ L for every t ∈ cl (L). Let k ∈ N

such that ϕ = ψk. By Lemma 3.8, ϕ ∈ Γ2k+1 ∪ ∆2k+1. ϕ /∈ L and thus ϕ ∈ ∆2k+1. By

definition, there exists some t ∈ cl (L) such that ψ
{

t
x

}

∈ ∆2k+2. Thus there exists some

n ∈ N such that ψ
{

t
x

}

∈ Γn ∩∆n, which contradicts Lemma 3.9.

5. If ϕ = ∃xψ then this is shown similarly.

We now describe the necessary modifications in the above arguments for GSH=
and GH=

.

For GSH=
, the definition of L and R, as well as the amended Lemmas 3.9 and 3.10, are analogues.

The definition of M , however, is changed as follows. Define a binary relation ∼ over cl (L) by: s ∼ t
iff s = t ∈ L. The fact that this is an equivalence relation can be shown using (⇒=), (PM1), (PM2),
and some inessential cuts (cuts on equations). We define a countermodel M = 〈D, I〉 by setting

D = cl (L) / ∼ (that is,D is the quotient set of cl (L) by ∼), (I (f)) ([t1]∼ , . . . , [tn]∼) = [f (t1, . . . , tn)]∼
for every f ∈ func (L), and I (P ) is given by: {〈[t1]∼ , . . . , [tn]∼〉 ∈ Dn | P (t1, . . . , tn) ∈ L} for every

P ∈ pred (L). First, let us show that the definitions of I (f) and I (P ) do not depend on the chosen

representatives. If ti ∼ t′i for every 1 ≤ i ≤ n, then ti = t′i ∈ L for every such i, and using (⇒=)
and repeated applications of (PM1) and (PM2), we obtain that f (t1, . . . , tn) = f (t′1, . . . , t

′
n) ∈ L, and

thus f (t1, . . . , tn) ∼ f (t′1, . . . , t
′
n). It is similarly shown that P (t1, . . . , tn) ∈ L iff P (t′1, . . . , t

′
n) ∈ L.

Also, we have that I (t) = [t]∼ for every t ∈ cl (L). This is shown by induction on t. If t is a constant

then this is immediate from the definition of I . If t = f (t1, . . . , tn), then we have by the induction

hypothesis that I (ti) = [ti]∼ for every 1 ≤ i ≤ n. Since I does not depend on the representatives, we have

that I (f (t1, . . . , tn)) = (I (f)) ([t1]∼ , . . . , [tn]∼) = [f (t1, . . . , tn)]∼. For the amended Lemma 3.11, we

prove the two base cases, for equations and atomic formulas.

1. If ϕ is s = t then we have that ϕ ∈ L iff s ∼ t, iff I (s) = I (t), which holds iff M |= ϕ.

2. If ϕ = P (t1, . . . , tn) then we have that ϕ ∈ L iff 〈[t1]∼ , . . . , [tn]∼〉 ∈ I (P ) iff M |= P (t1, . . . , tn).

For GH=
, we adjust M to be normal by setting I (=) to be {〈t, t〉 | t ∈ cl (L)}. In Lemma 3.11, a

second base case, in which ϕ is s = t, has to be considered:

1. If s = t ∈ L, then there exists some k ∈ N such that s = t ∈ Γk. Assume for contradiction

that M 6|= s = t. Then s and t are distinct terms, as M is a Herbrand structure. This contradicts

Lemma 3.9 using (=⇒).

2. If s = t /∈ L, then s = t ∈ R, and so there exists some k ∈ N such that s = t ∈ ∆k. Assume for

contradiction that M |= s = t. Then since it is a Herbrand structure, s and t are the same term.

Using (⇒=), we get a contradiction to Lemma 3.9.

We now prove the completeness results.

Theorem 3.12 (Completeness). Let s be a closed sequent. The following hold:

1. ⊢GH
s if ⊢H s.

2. ⊢GH=
s if ⊢H= s.
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3. ⊢GSH=
s if ⊢SH= s.

Proof. We show the contrapositive. Assume s is not provable. Then, by (the appropriate variant of)

Lemma 3.11, for every ϕ ∈ Γ ⊆ L we have M |= ϕ, and for every ψ ∈ ∆ ⊆ R we have ψ /∈ L and so

M 6|= ϕ. Therefore, M 6|= s.

Note that Theorem 3.12 provides an alternative, less constructive proof of Proposition 3.4 (together

with Proposition 2.6 and the classical soundness theorem).

Due to Proposition 2.6, GH is also sound and complete for ⊢SH .

3.2 Manipulating Finite Sequents

The proof systems introduced in this section are not effective, as they manipulate both infinite sequents

and infinite proof trees. Are these two sources of non-effectiveness tightly coupled? Consider, for example,

a finite sequent s. Although s is finite, it may still have infinite derivations, that involve applications of

(⇒∀)H with a finite context sequent Γ ⇒ ∆. However, do we at least have that all sequents that occur in

its (possibly infinite) proof are finite? The answer is positive, as shown in the following proposition:

Proposition 3.13. Let s be a finite sequent and let G be one of the systems GH , GH=
, or GSH=

. If s is

provable in G, then s has a derivation in G that consists solely of finite sequents.

Proof. By induction on the height of the proof of s, using the fact that no rule in these systems concludes

a finite sequent if an infinite sequent exists in the assumptions.

4 Infinite-height Systems

In this section, we explore infinite-height (but finite-width) proof systems for Herbrand logics. The

soundness of such infinitary proof theories is underpinned by the principle of infinite descent [8, 9, 10,

16, 18, 35, 39]: proofs are permitted to be infinite, non-well-founded trees, but subject to the restriction

that every infinite path in the proof admits some infinite descent. In our case the descent is witnessed by

tracing terms descending via the subterm ordering, which is sound precisely because elements in Herbrand

structures are identified by some (finite) term. For this reason, the systems we describe below can be

considered systems of implicit induction, as opposed to those which employ explicit rules for applying

induction principles, like those presented in the previous section.

A basic feature of our infinite-height systems is that they replace the infinite width (⇒∀)H and (∃⇒)H
rules with ‘case-split’ rules. In contrast to the systems of Section 3, the infinite-height systems crucially

rely on the presence of free variables in sequents, in order to form traces from which to construct infinite

descent arguments. Moreover, in order to obtain systems of finite width we assume func(L) is finite. Note

that, as in Definition 3.1 above, the systems we consider in this section contain infinite sequents but that,

similarly to the infinite-width systems, proofs of finite sequents require finite sequents only.

Definition 4.1. The infinitary proof systems G∞
H , G∞

H=
and G∞

SH=
are obtained from GH , GH=

and GSH=
,

respectively, by removing (⇒∀)H and (∃⇒)H , allowing open sequents, adding the following substitution

rule:
Γ ⇒ ∆

Γ
{

t
x

}

⇒ ∆
{

t
x

} (subst)

restoring the standard (⇒∀) and (∃⇒) rules of LK:

(⇒∀)
Γ ⇒ ϕ{ y

x
},∆

Γ ⇒ ∀xϕ,∆
(∃⇒)

Γ, ϕ{ y

x
} ⇒ ∆

Γ, ∃xϕ⇒ ∆
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where in both rules y does not occur free in the lower sequent, and then adding the following case-split

rules, (case L) to G∞
H , and (case L=) to both GH=

and GSH=
:

{

Γ
{

f(x1,...,xn)
y

}

⇒ ∆
{

f(x1,...,xn)
y

}

: f ∈ func(L)
}

Γ
{

t
y

}

⇒ ∆
{

t
y

}
(case L)

{Γ, t = f(x1, . . . , xn) ⇒ ∆ : f ∈ func(L)}

Γ ⇒ ∆
(case L=)

where in both rules, each variable xi is distinct and does not occur in t or any formula in Γ ∪∆.

Example 4.2. For LNAT, with nullary and unary function symbols 0 and s, respectively, the case split rules

are the following:

Γ
{

0
y

}

⇒ ∆
{

0
y

}

Γ
{

s(x)
y

}

⇒ ∆
{

s(x)
y

}

Γ
{

t
y

}

⇒ ∆
{

t
y

} (case LNAT)

Γ, t = 0 ⇒ ∆ Γ, t = s(x) ⇒ ∆

Γ ⇒ ∆
(case LNAT=)

where x is a fresh variable not occurring in the conclusion.

We allow derivations in this system to be non-well-founded (i.e. have infinite height). However, not all

such derivations yield valid conclusions, so we use the terminology ‘pre-proof’.

Definition 4.3 (Pre-proofs). A pre-proof is a possibly infinite (i.e. non-well-founded) derivation tree formed

using the inference rules. A path in a pre-proof is a possibly infinite sequence of sequents s0, s1, . . . (, sn)
such that s0 is the root sequent of the proof, and si+1 is a premise of si for each i < n.

To distinguish the pre-proofs that derive valid conclusions from those that don’t, we use the following

notion of a trace of terms through a pre-proof.

Definition 4.4 (Trace Pairs). Let t and t′ be terms occurring (possibly as subterms) in the conclusion s and

a premise s′, respectively, of (an instance of) an inference rule; then (t, t′) is said to be a trace pair for

(s, s′) when the following conditions hold:

• t and t′ only contain free variables (i.e. they do not contain variables that are bound by any quantifiers

under whose scope they occur);

• if the rule is an instance of the substitution rule, then t is the result of applying the substitution of

the instance to t′;

• if the rule is an instance of any other rule and t and t′ are not identical, then either:

– the rule is an instance of (case L=), with t the left-hand term and t′ one of the variables xi in

the equality formula eliminated from the premise; or

– the rule is an instance of (case L), with t the term substituted in the conclusion and t′ one of

the variables xi in the term f(x1, . . . , xn) substituted in the premise.

In both these cases, we say that (t, t′) is progressing.

We use trace pairs to construct traces along paths in a pre-proof.

13



Definition 4.5 (Traces). A trace is a (possibly infinite) sequence of terms. We say that a trace t1, t2, . . . (, tn)
follows a path s1, s2, . . . (, sm) in a pre-proof if, for some k ≥ 0, each consecutive pair of terms (ti, ti+1)
is a trace pair for (si+k, si+k+1). If (ti, ti+1) is progressing then we say that the trace progresses at i, and

we say that the trace is infinitely progressing if it progresses at infinitely many points.

Proofs, then, are pre-proofs which satisfy a global trace condition.

Definition 4.6 (Infinite Proofs). A proof is a pre-proof in which every infinite path is followed by some

infinitely progressing trace.

The soundness of the non-well-founded systems is a consequence of a strong form of local soundness

of the inference rules. This strength relates to the fact that we can endow the domains of the underlying

(semi-)Herbrand structures with a well-ordering as follows. First, we take some well-founded path ordering

on the set of (closed) terms, e.g. the lexicographic path ordering induced by some total ordering on the

function symbols of the signature [19]. A crucial point is that this includes the subterm relation. Now,

since every element of a semi-Herbrand structure has some representation as a closed term we can then lift

this ordering to the domain of the structure by taking the smallest term representation corresponding to

each element. That is, for a semi-Herbrand structure 〈D, I〉, d ∈ D is smaller than d′ ∈ D iff the smallest

closed term t such that d = I(t) is smaller than the smallest closed term u such that d′ = I(u). Let us

denote this ordering as ⊏ and its non-strict counterpart as ⊑.

Lemma 4.7 (Trace Pair Local Soundness). Let G be one of the systems G∞
H , G∞

H=
, or G∞

SH=
, M = 〈D, I〉 a

(semi-)Herbrand structure appropriate for G, and σ a substitution such that M 6|= sσ for the conclusion s
of an instance of an inference rule in G; then there is a substitution σ′ such thatM 6|= si

σ′

for some premise

si of the rule and, moreover, for all trace pairs (t, ti) for (s, si), I(ti
σ′

) ⊑ I(tσ) and I(ti
σ′

) ⊏ I(tσ) when

(t, t′) is progressing.

Proof. The cases for the standard logical inference rules, (PM1), (PM2), (⇒=), and (=⇒) are straight-

forward. We give the proof for the case-split rules.

(case L=): Suppose M 6|= (Γ ⇒ ∆)σ; that is, M |= ϕσ for every ϕ ∈ Γ but M 6|= ψσ for

each ψ ∈ ∆. Now, I(tσ) has some term representation and, in particular, it has a small-

est one w.r.t. ⊏. That is I(tσ) = I(f(t1, . . . , tn)) for some f ∈ func(L) and closed terms

t1, . . . , tn with I(f(t1, . . . , tn)) ⊑ I(u) for all closed terms u such that I(tσ) = I(u). So

let σ′ = σ[x1 7→ t1, . . . , xn 7→ tn]. Then, since each xi does not occur in t, we have

I(tσ
′

) = I(tσ) = I(f(t1, . . . , tn)) = I(f(x1
σ′

, . . . , xn
σ′

)) = I(f(x1, . . . , xn)
σ′

). That is,

M |= (t = f(x1, . . . , xn))
σ′

. Moreover, since each xi does not occur in Γ or ∆, we have that

I(ϕσ′

) = I(ϕσ) for each ϕ ∈ Γ ∪ ∆. Therefore, M |= ϕσ′

for each ϕ ∈ Γ and M 6|= ψσ′

for

each ψ ∈ ∆. Hence M 6|= (Γ, t = f(x1, . . . , xn) ⇒ ∆)σ
′

. Now, each (t, xi) is a progressing trace

pair, so we must show that I(xi
σ′

) ⊏ I(tσ). Notice that I(xi
σ′

) = I(ti) and so, by definition, the

smallest closed term u such that I(xi
σ′

) = I(u) satisfies u ⊑ ti. Furthermore, ti ⊏ f(t1, . . . , tn),
by the subterm ordering. Therefore u ⊏ f(t1, . . . , tn) and since the latter term is the smallest closed

representation of I(tσ) we have that I(xi
σ′

) ⊏ I(tσ), as required. Finally, I(tσ) = I(uσ
′

) for every

other trace pair (t, u) since each xi does not occur in t or u, thus trivially I(tσ) ⊑ I(uσ
′

).

(case L): This case is similar to the above, except that we reason that M |= ϕ
{

f(x1,...,xn)
y

}σ′

for each ϕ ∈ Γ

and M 6|= ψ
{

f(x1,...,xn)
y

}σ′

from the assumption that M |= ϕ
{

t
y

}σ
for each ϕ ∈ Γ and M 6|= ψ

{

t
y

}σ
.

This of course follows from that fact that I(tσ) = I(f(x1, . . . , xn)
σ′

) as shown above.

Given a non-well-founded proof (i.e. a pre-proof satisfying the global trace condition), this property

allows us to construct an infinite descent-style argument that the conclusion is valid.

14



Theorem 4.8 (Soundness). Let s be a sequent. The following hold:

1. ⊢G∞

H
s only if ⊢H s.

2. ⊢G∞

H=
s only if ⊢H= s.

3. ⊢G∞

SH=
s only if ⊢SH= s.

Proof. The structure of the proof is the same in each case. Suppose we have a proof of s and suppose, for

contradiction, that s is not valid (w.r.t. the appropriate class of structures). Thus, by Lemma 2.4, there is a

structure M = 〈D, I〉 (of the appropriate class) and substitution σ (cf. Definition 3.3) such that M 6|= sσ.

By Lemma 4.7, we can then construct an infinite path s1, s2, . . . through the proof along with an infinite

sequence of substitutions σ1, σ2, . . . such that M 6|= si
σi for each i > 0. Since we have a proof, there is an

infinitely progressing trace t1, t2, . . . following this path; that is, there is some k ≥ 0 such that (ti, ti+1)
is a trace pair for (si+k, si+k+1) for each i > 0. Thus, again from Lemma 4.7, it follows that we have a

descending chain I(t1
σk+1) ⊒ I(t2

σk+1) ⊒ . . . which, moreover, is infinitely descending since the trace is

infinitely progressing. However, we have that ⊏ is well-founded, and thus we have derived a contradiction.

We therefore conclude that Γ ⇒ ∆ is valid (w.r.t. the appropriate class of structures) after all.

Moreover, we can show for closed sequents that the non-well-founded proof systems are complete for

the Herbrand semantics. This is due to the fact that we can simulate the (⇒∀)H and (∃⇒)H rules in the

infinite height systems as the limit of an iteratively constructed sequence of open derivations.

Definition 4.9 (Simulation of (⇒∀)H and (∃⇒)H). Take an instance of (⇒∀)H or (∃⇒)H with conclusion

Γ ⇒ ∀xϕ,∆ or Γ, ∃xϕ⇒ ∆, respectively. Notice we may assume w.l.o.g. that x does not appear free in

Γ or ∆. Fix an enumeration x, x1, x2, . . . of the variables not occurring free in the conclusion, starting

with x, and let < denote the corresponding induced ordering on variables. Let the function symbols of L
be f1, . . . , fn, of arities k1, . . . , kn, respectively. We define infinite sequences D0, D1, . . . and D′

0, D
′
1, . . .

of open derivations inductively. We start with an application of the (⇒∀) or (∃⇒) rule.

D0 =
Γ ⇒ ϕ,∆

(⇒∀)
Γ ⇒ ∀xϕ,∆

D′
0 =

Γ, ϕ⇒ ∆
(∃⇒)

Γ, ∃xϕ⇒ ∆

The derivations Di+1 and D′
i+1 are defined by applying inference rules to the open leaves of the derivations

Di and D′
i, respectively. The construction maintains the invariant that the sequents of the open leaves of

each derivation Di+1 and D′
i+1 are of the form Γ ⇒ ψ,∆ and Γ, ψ ⇒ ∆, respectively, with the formula ψ

being ϕ
{

t
x

}

for some (possibly open) term t. The derivation Di+1 is defined by applying the following

inference rules to each open leaf Γ ⇒ ψ,∆ in Di containing free variables ≤-related to x, where xj and

xq denote, respectively, the <-smallest and <-largest free variables in ψ.

Γ ⇒ ψ
{

f1(xq+1,...,xq+k1
)

xj

}

,∆
(PM2)

Γ, xj = f1(xq+1, . . . , xq+k1) ⇒ ψ,∆ . . .

Γ ⇒ ψ
{

fn(xq+1,...,xq+kn )

xj

}

,∆
(PM2)

Γ, xj = fn(xq+1, . . . , xq+kn) ⇒ ψ,∆
(case L=)

Γ ⇒ ψ(xj, . . . , xq),∆
·
·
·
·
·
Di

Γ ⇒ ∀xϕ∆
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Similarly, each D′
i+1 is obtained from D′

i be applying the following inference rules to each open leaf.

Γ, ψ
{

f1(xq+1,...,xq+k1
)

xj

}

⇒ ∆
(‡f1 )

Γ, xj = f1(xq+1, . . . , xq+k1), ψ ⇒ ∆ . . .

Γ, ψ
{

fn(xq+1,...,xq+kn )

xj

}

⇒ ∆
(‡fn )

Γ, xj = fn(xq+1, . . . , xq+kn), ψ ⇒ ∆
(case L=)

Γ, ψ(xj, . . . , xq) ⇒ ∆
·
·
·
·
·
D′

i

Γ, ∃xϕ⇒ ∆

The inferences marked (‡fi) abbreviate the following schema.

(axiom)
ψ ⇒ ψ

{

xj

xj

}

(PM1)
xj = fi(xq+1, . . . , xq+ki), ψ ⇒ ψ

{

fi(xq+1,...,xq+ki
)

xj

}

Γ, ψ
{

fi(xq+1,...,xq+ki
)

xj

}

⇒ ∆
(cut)

Γ, xj = fi(xq+1, . . . , xq+ki), ψ ⇒ ∆

Thus each derivationDi (resp.D′
i) is a prefix ofDi+1 (resp.D′

i+1). The limits of the sequencesD0, D1, . . .
and D′

0, D
′
1, . . . are the smallest derivations D∞ and D′

∞ such that each Di and D′
i are prefixes of D∞

and D′
∞, respectively, for every i ≥ 0. The derivations D∞ and D′

∞ simulate, in both G∞
H=

and G∞
SH=

,

the (⇒∀)H and (∃⇒)H rules, respectively. To simulate the rules in G∞
H , we adapt this construction by

using the (case L) rule instead of (case L=) and eliding the paramodulation steps, the effects of which are

instead carried out directly by the substitutions in the (case L) rule.

Example 4.10. Figures 3a and 3b show the derivations simulating the (⇒∀)H and (∃⇒)H rules for the

language LNAT, with nullary and unary function symbols 0 and s, respectively.

Theorem 4.11 (Completeness). Let s be a closed sequent. The following hold:

1. ⊢G∞

H
s if ⊢H s.

2. ⊢G∞

H=
s if ⊢H= s.

3. ⊢G∞

SH=
s if ⊢SH= s.

Proof. By completeness of the infinite-width proof systems (Theorem 3.12), it suffices to show that the

(⇒∀)H and (∃⇒)H rules are derivable in each of the infinite-height proof systems, and that any pre-

proof corresponding to an infinite-width proof via these derived rules satisfies the global trace condition.

Derivability of the (⇒∀)H and (∃⇒)H rules in the infinite-height systems is shown in Definition 4.9. We

now show that any pre-proofs using these derived rules satisfy the global trace condition. For languages

with at least one constant the simulations of these rules have a possibly infinite (and non-zero) number

of branches, but each path from the conclusion to an open leaf is of finite (although unbounded) height.

Thus pre-proofs simulating GH=
and GSH=

proofs using these derivation schemes will not contain any

infinite paths, and so trivially satisfy the global trace condition. Languages without constants actually

have no closed terms, and thus the (⇒∀)H and (∃⇒)H rules are 0-premise rules. For these languages, the

derivation schemes described in Definition 4.9 will also not contain any open leaves, but instead admit an

infinite number of infinite paths. Notice, however, that along each of these infinite paths we can construct

a trace following the variables x, x1, x2, . . . that progresses at each case-split rule, of which there are

infinitely many.
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Γ ⇒ ϕ
{

0
x

}

,∆
(PM2)

Γ, x = 0 ⇒ ϕ(x),∆

Γ ⇒ ϕ
{

s(0)
x

}

,∆
(PM2)

Γ, x1 = 0 ⇒ ϕ
{

s(x1)
x

}

,∆

Γ ⇒ ϕ
{

s(s(0))
x

}

,∆ . . . Γ ⇒ ϕ
{

sn(0)
x

}

,∆ . . .

·
·
·

Γ ⇒ ϕ
{

s(s(x2))
x

}

,∆
(PM2)

Γ, x1 = s(x2) ⇒ ϕ
{

s(x1)
x

}

,∆
(case LNAT=)

Γ ⇒ ϕ
{

s(x1)
x

}

,∆
(PM2)

Γ, x = s(x1) ⇒ ϕ(x),∆
(case LNAT=)

Γ ⇒ ϕ(x),∆
(⇒∀)

Γ ⇒ ∀xϕ,∆

(a) Simulation of the (⇒∀)H rule.

Γ, ϕ
{

0
x

}

⇒ ∆
(‡0)

Γ, x = 0, ϕ(x) ⇒ ∆

Γ, ϕ
{

s(0)
x

}

⇒ ∆
(‡0)

Γ, x1 = 0, ϕ
{

s(x1)
x

}

⇒ ∆

Γ, ϕ
{

s(s(0))
x

}

⇒ ∆ . . . Γ, ϕ
{

sn(0)
x

}

⇒ ∆ . . .

·
·
·

Γ, ϕ
{

s(s(x2))
x

}

⇒ ∆
(‡s)

Γ, x1 = s(x2), ϕ
{

s(x1)
x

}

⇒ ∆
(case LNAT=)

Γ, ϕ
{

s(x1)
x

}

⇒ ∆
(‡s)

Γ, x = s(x1), ϕ(x) ⇒ ∆
(case LNAT=)

Γ, ϕ(x) ⇒ ∆
(∃⇒)

Γ, ∃xϕ ⇒ ∆

(b) Simulation of the (∃⇒)H rule.

Figure 3: Simulations of the infinite width rules in G∞
H=

/G∞
SH=

for the language LNAT.

Lastly, a counterpart of Proposition 3.13 can be obtained for the proof systems of this section.

Proposition 4.12. Let s be a finite sequent and let G be one of the systems G∞
H , G∞

H=
, or G∞

SH=
. If s is

provable in G, then s has a derivation in G that consists solely of finite sequents.

Proof. By Theorem 4.8 and Proposition 3.13, there is an infinite-width proof using only finite sequents.

The constructions of Definition 4.9 that simulate the infinite width rules do not introduce infinite sequents

if the root sequent is finite. Therefore, we can construct an infinite-height proof containing only finite

sequents.

The purpose of studying the infinitary systems in the previous two sections, in particular the com-

pleteness results, is two-fold. Firstly, it provides a solid foundation for the effective approximations

that we present in the next section: the induction-based system of Section 5.1, which approximates the

infinite-width system, and the cyclic system of Section 5.2, which approximates the infinite-height system.

We would like our approximations to capture as much as possible; there is therefore little point in starting

with an already incomplete system. Secondly, it provides a context for the comparison of the effective

systems. In Section 5.3 we show that, for some languages, the cyclic approximation is more expressive

than the induction-based approximation. One might suppose that this is due to some intrinsic difference in

expressiveness between infinite width and infinite height. Our soundness and completeness results show
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Figure 4: Effective Derivation Rules for Herbrand and semi-Herbrand Logics

(⇒∀)IND

{

Γ, ϕ
{

x1

x

}

, . . . , ϕ
{

xn

x

}

⇒ ϕ
{

f(x1,...,xn)
x

}

,∆ : f ∈ func (L)
}

Γ ⇒ ∀xϕ,∆

(∃⇒)IND

{

Γ, ϕ
{

f(x1,...,xn)
x

}

⇒ ϕ
{

x1

x

}

, . . . , ϕ
{

xn

x

}

,∆ : f ∈ func (L)
}

Γ, ∃xϕ⇒ ∆

In (⇒ ∀)IND and (∃ ⇒)IND, x1, . . . , xn do not occur free in Γ ∪∆.

(⇒=)IND
Γ ⇒ x = x,∆

(=⇒)1
Γ, f (x1, . . . , xn) = g (y1, . . . , ym) ⇒ ∆

f 6= g ∈ func (L)

(=⇒)2
Γ, xi = yi ⇒ ∆

Γ, f (x1 . . . , xi, . . . , xn) = f (x1, . . . , yi, . . . , xn) ⇒ ∆
f ∈ func+ (L)

that this is not the case: both infinitary systems capture the full expressivity of Herbrand logics. Thus we

can pin-point the difference in expressiveness between the approximations as lying in the nature of the

respective gaps between effectiveness and non-effectiveness in each case.

5 Effective Approximations

While the proof systems presented in Sections 3 and 4 are sound and complete with respect to Herbrand

logics, they are not effective, in the sense that proofs cannot be verified. What is more, the set of proofs

cannot even be enumerated. Thus, for systems that are more suitable for automated reasoning, one needs

to sacrifice completeness for the sake of effectiveness. Accordingly, in this section, we provide finitary

counterparts of the infinitary systems presented in Sections 3 and 4.

5.1 Induction-Based Systems

The finitary inductive systems that we introduce in this section can be seen as natural restrictions of the

infinite-width systems of Section 3 above. However to recover some of the strength of those systems, they

must incorporate free variables in sequents. Accordingly, let GIND be the sequent calculus obtained from

G (cf. Page 7) by allowing only finite sequents in applications of rules, and permitting open sequents. To

obtain finitary systems, in this section we assume func (L) is finite.

Definition 5.1. Figure 4 includes the additional derivation rules employed.

1. GIND

H = GIND + (⇒∀)IND + (∃⇒)IND + (subst).

2. GIND

SH=
= GIND

H + (⇒=)IND + (PM1) + (PM2).

3. GIND

H=
= GIND

SH=
+ (=⇒)1 + (=⇒)2
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The key idea in constructing the above systems is to replace the infinitary rules (⇒∀)H and (∃⇒)H by

finitary approximations. This is achieved by taking PA’s induction scheme as a finite approximation of

the ω-rule. Accordingly, we replace (⇒∀)H , which is a language-based version of the ω-rule, with a new

rule, (⇒∀)IND , which is a language-based version of Gentzen’s induction rule for PA. (∃⇒)IND is treated

symmetrically.

Following Example 2.12, we note that for LNAT, applications of (⇒∀)IND have the form

Γ ⇒ ϕ
{

0
x

}

,∆ Γ, ϕ
{

x1

x

}

⇒ ϕ
{

s(x1)
x

}

,∆

Γ ⇒ ∀xϕ,∆
(1)

Actually, Gentzen’s original induction scheme for PA is easily derivable in the above systems, using (1)

and (∀⇒). What enables the effective formulation of PA’s induction rule is the fact that the language of

PA is finite. The above systems can manipulate languages which are more expressive than that of PA,

since they allow multiple constant symbols, as well as function symbols with arbitrary arities. However,

we still assume that there are finitely many basic constructs for terms. This explains the requirement

employed in this section that func (L) is finite. The fact that func (L) is finite entails that GIND

H , GIND

SH=

and GIND

H=
are finitary, in the sense that their proof trees are always finite.

In search of effectiveness, we replace (=⇒) in the system for Herbrand logics with equality by two

rules (=⇒)1 and (=⇒)2, that correspond to sequent rules for disequalities in [36]. Those achieve precisely

the same power, while being actual finite sets of rules, rather than schemes. In order to be able to derive in

GIND

H=
all instances of the rule (=⇒) of GH=

we include (PM1) and (PM2) in GIND

H=
(unlike in the original

system GH=
).

Lemma 5.2. If t1 and t2 are two distinct closed terms of L, then ⊢GIND
H=

t1 = t2 ⇒.

Proof. This is shown using induction on the sums of complexities of t1 and t2. The only interesting case

is when t1 = f (s1, . . . , sn) and t2 = f (r1, . . . , rn) for some n-ary function symbol f . Since t1 and t2 are

distinct, we must have some 1 ≤ i ≤ n such that si 6= ri. By the induction hypothesis, ⊢GIND
H=

si = ri ⇒.

It is easy to verify that the sequent x = si, y = ri, xi = yi ⇒ si = ri is derivable in GH=
. This, in turn,

enables the proof of t1 = t2 ⇒ in GIND

H=
, using cuts on the conclusion of the following derivation:

xi = si, yi = ri, xi = yi ⇒ si = ri
xi = si, yi = ri, f (x1, . . . , xi, . . . xn) = f (x1, . . . , yi, . . . , xn) ⇒ si = ri

(=⇒)2

si = si, ri = ri, f (x1, . . . , si, . . . , xn) = f (x1, . . . , ri, . . . , xn) ⇒ si = ri
(subst)

All the effective systems are complete for classical logic (as the rules (⇒∀) and (∃⇒) of LK are

derivable in them). They are, however, not sound for it (since they include consecutions that are only valid

in Herbrand logics). As a consequence of the finitary nature of the systems, one cannot expect that they

are complete with respect to Herbrand logics. For example, in the case of the language of the natural

numbers we obtain exactly the difference between the provable theorems of PA and the true statements

of arithmetics. Notwithstanding, the effective systems are both sound and expressive enough to capture

meaningful Herbrand-valid statements.

Theorem 5.3 (Soundness). Let s be a sequent. The following hold:

1. ⊢GIND
H

s only if ⊢H s.

2. ⊢GIND
SH=

s only if ⊢SH= s.
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3. ⊢GIND
H=

s only if ⊢H= s.

Proof. We extend Definition 3.5 by setting M |= s iff M satisfies every L-instance of s. For GIND

H , the

only non-trivial cases are (⇒∀)IND and (∃⇒)IND . We here provide the proof for the first, as the second is

symmetrical.

Let M be a Herbrand model of the premises of (⇒∀)IND . We prove M |= Γ ⇒ ∀xϕ,∆. If

M |= Γ ⇒ ∆, this clearly holds. Otherwise, M |= ϕ
{

x1

x

}

, . . . , ϕ
{

xn

x

}

⇒ ϕ
{

f(x1,...,xn)
x

}

for every

f ∈ func (L). Thus, M satisfies every L-instance of such sequents. To show that M |= ∀xϕ, we consider

an arbitrary L-instance ∀xϕ′ of ∀xϕ, and prove that M |= ϕ′
{

t
x

}

for every t ∈ cl (L), by inner induction

on t. If t ∈ consts (L), then this follows from the induction hypothesis (in this case, n = 0 and hence

the premise has the form Γ ⇒ ϕ
{

t
x

}

,∆). Otherwise, t = f (t1, . . . , tn) for some f ∈ func+ (L) and

t1, . . . , tn ∈ cl (L) such that t1, . . . , tn all have lower complexities than t. By the induction hypothesis,

M |= ϕ′
{

ti
x

}

for every 1 ≤ i ≤ n. Since M |= ϕ′
{

x1

x

}

, . . . , ϕ′
{

xn

x

}

⇒ ϕ′
{

f(x1,...,xn)
x

}

, we also have

that M |= ϕ′
{

t
x

}

.

Soundness for GIND

SH=
is obtained similarly, with the addition of the same arguments for equality as in

the classical case. For GIND

H=
, the fact that only Herbrand structures are considered is used to show the

validity of the rules (=⇒)1 and (=⇒)2.

Example 5.4. Following Example 2.12, consider GH=
in the language LNAT. This system is also sound

w.r.t. the LNAT version of PA (with multiplication and addition as predicates). This can be shown by

induction on derivations in GH=
, where the main case is the straightforward simulation of the induction

rule of PA with (⇒∀)IND .

Generalizing Example 5.4, consider the following generalized induction scheme for languages L with

finitely many function symbols, where each variable xi is distinct and fresh for ϕ:









∧

c∈consts(L)

ϕ
{ c

x

}



 ∧
∧

f∈func+(L)

∀x1 . . . ∀xar(f)





∧

1≤i≤ar(f)

ϕ
{xi

x

}



 ⊃ ϕ
{

f(x1, . . . , xn)

x

}



 ⊃ ∀xϕ (INDL)

Lemma 5.5. The following hold:

1. GIND

H is sound w.r.t. first-order structures for L that satisfy (INDL).

2. GIND

SH=
is sound w.r.t. normal first-order structures for L that satisfy (INDL).

3. GIND

H=
is sound w.r.t. normal first-order structures 〈D, I〉 for L that satisfy (INDL) and, furthermore,

in which: (a) the images of I(f) and I(g) in D are disjoint for each pair of distinct function symbols

f, g ∈ func(L); and (b) the interpretation I(f) of each function symbol f ∈ func(L) is injective.

5.2 Cyclic Systems

The infinite-height proof systems presented in Section 4 can also be restricted to retrieve effectiveness

by considering a subset of finitely representable proofs, namely the regular infinite proofs. These are

(possibly) infinite derivations that have only a finite number of distinct subtrees. They can be represented

by finite, possibly cyclic, graphs.

Definition 5.6 (Cyclic Pre-Proofs). A cyclic pre-proof is a pair (P, f) consisting of:

• a finite derivation tree P possibly containing open leaves (i.e. which are not conclusions of an axiom

schema) called buds; and
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(†) Γ ⇒ ϕ(x),∆
.

.
.

.
.

.
.

.
.

(subst)
Γ ⇒ ϕ

{

x1

x

}

,∆

(†) Γ ⇒ ϕ(x),∆
(subst)

Γ ⇒ ϕ
{

xn

x

}

,∆ Γ, ϕ
{

x1

x

}

, . . . , ϕ
{

x1

xn

}

⇒ ϕ
{

f(x1,...,xn)
x

}

,∆
(cut)

Γ, ϕ
{

x1

x

}

, . . . , ϕ
{xn−1

x

}

⇒ ϕ
{

f(x1,...,xn)
x

}

,∆
·
·
·

Γ, ϕ
{

x1

x

}

⇒ ϕ
{

f(x1,...,xn)
x

}

,∆
(cut)

Γ ⇒ ϕ
{

f(x1,...,xn)
x

}

,∆
(PM2)

Γ, x = f(x1, . . . , xn) ⇒ ϕ(x),∆ : f ∈ func(L)
(case L=)

(†) Γ ⇒ ϕ(x),∆
(⇒∀)

Γ ⇒ ∀xϕ(x),∆

Figure 5: A derivation of the (⇒∀)IND rule in Gω
H=

/Gω
SH=

.

• a function f assigning to each bud an internal node of the tree, called its companion, with a

syntactically identical sequent.

The graph associated with a pre-proof is the one induced by identifying each bud with its companion.

For effectiveness, we here again consider only finite sequents.

Definition 5.7. The cyclic subsystems Gω
H , Gω

H=
, and Gω

SH=
are obtained by restricting to only the regular

pre-proofs of G∞
H , G∞

H=
and G∞

SH=
, respectively, containing finite sequents and satisfying the global trace

condition.

For cyclic pre-proofs the global trace condition, being an ω-regular property, is decidable. Since they

are a special case of the non-well-founded proofs, they are also sound for Herbrand semantics.

Corollary 5.8 (Soundness). The cyclic systems Gω
H , Gω

H=
and Gω

SH=
are sound with respect to their

corresponding Herbrand semantics.

5.3 Comparison Between the Approximations

This section establishes the connections between the two approaches described above. As in other systems

for inductive reasoning, we show that the cyclic systems are strictly stronger than the induction-based

ones. We start by showing that the cyclic proof systems subsume the explicit induction systems containing

rules (⇒∀)IND and (∃⇒)IND . This is a result of the following lemma.

Lemma 5.9. The rules (⇒∀)IND and (∃⇒)IND are derivable in each of Gω
H , Gω

H=
and Gω

SH=
.

Proof. The derivations in Figs. 5 and 6 simulate rules (⇒∀)IND and (∃⇒)IND in each of the cyclic

systems. In these derivations we assume (w.l.o.g.) that x does not occur free in Γ ∪∆. We show a generic

subderivation for the case x = f(x1, . . . , xn) of f ∈ func(L). Note that in the case f ∈ consts(L), for

the simulation of (⇒∀)IND the premise of the (PM2) rule is already the corresponding premise of the

(⇒∀)IND rule and so the remainder of the subderivation is not required. Similarly, in the simulation of

(∃⇒)IND instead of the subderivation concluding with (Cut), we may simply use the following:
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(id)
ϕ(x) ⇒ ϕ(x)

(PM1)
ϕ(x), x = f(x1, . . . , xn) ⇒ ϕ

{

f(x1,...,xn)
x

}

.

.

.

.

.

.

.

.

Γ, ϕ
{

f(x1,...,xn)
x

}

⇒ ϕ
{

x1

x

}

, . . . , ϕ
{

xn

x

}

,∆
·
·
· (⇒∨)× n

Γ, ϕ
{

f(x1,...,xn)
x

}

⇒ ϕ
{

x1

x

}

∨ . . . ∨ ϕ
{

xn

x

}

,∆

(cut)
Γ, ϕ(x), x = f(x1, . . . , xn) ⇒ ϕ

{

x1

x

}

∨ . . . ∨ ϕ
{

xn

x

}

,∆

(†) Γ, ϕ(x) ⇒ ∆
. . . . . . . . . .

(subst)
Γ, ϕ

{

x1

x

}

⇒ ∆

(†) Γ, ϕ(x) ⇒ ∆
(subst)

Γ, ϕ
{

xn

x

}

⇒ ∆
·
·
·

Γ, ϕ
{

x2

x

}

∨ . . . ∨ ϕ
{

xn

x

}

⇒ ∆
(∨⇒)

Γ, ϕ
{

x1

x

}

∨ . . . ∨ ϕ
{

xn

x

}

⇒ ∆
(cut)

Γ, ϕ(x), x = f(x1, . . . , xn) ⇒ ∆ : f ∈ func(L)
(case L=)

(†) Γ, ϕ(x) ⇒ ∆
(⇒∃)

Γ, ∃xϕ(x) ⇒ ∆

Figure 6: A derivation of the (∃⇒)IND rule in Gω
H=

/Gω
SH=

.

(id)
ϕ(x) ⇒ ϕ(x)

(PM1)
ϕ(x), x = f(x1, . . . , xn) ⇒ ϕ

{

f(x1,...,xn)
x

}

Γ, ϕ
{

f(x1,...,xn)
x

}

⇒ ∆
(cut)

Γ, ϕ(x), x = f(x1, . . . , xn) ⇒ ∆

In the case that f ∈ func+(L), the subderivation will have a non-zero number of buds, corresponding to

each subterm xi and marked by (†) in Figs. 5 and 6, which all link back to the conclusion of the (case L=)
instance.

As in the proof of Theorem 4.11, we can adapt the derivation schemes in Figs. 5 and 6 for the system

Gω
H without equality by simply eliding the paramodulation rules, whose effect is achieved via substitutions

in the (case L) rule.

Theorem 5.10. The following inclusions hold:

1. GIND

H ⊆ Gω
H .

2. GIND

H=
⊆ Gω

H=
.

3. GIND

SH=
⊆ Gω

SH=
.

Proof. Consider the cyclic pre-proof obtained from an explicit induction proof by replacing each instance

of (⇒∀)IND and (∃⇒)IND by the derivations given in Lemma 5.9. Any infinite path in this proof must

eventually remain in a strongly connected component. However, notice that each such strongly connected

component is contained in an instance of these derived rules. It is easy to see that we can construct a trace

following this path. Notice that we can split the tail of this path into an infinite sequence of segments, each

corresponding to a path from the companion (†) up to one of the buds. Along the segment we construct a

trace as follows: start with x in the conclusion of the (case L) or (case L=) rule; in the premise of the rule

we then choose the xi corresponding to the branch taken by the segment, which is a progressing trace pair;

we may then trace xi all the way to the bud, which then becomes x again via the substitution rule. Each

segment contains a progression point, thus the trace is infinitely progressing.

Next, we show that there are languages for which the converse inclusion does not hold. For this we

can adapt the ‘Hydra’ counter-example given in [5] to establish the corresponding result for the explicit

and cyclic systems for first-order logic with inductive definitions. Note that we do not here derive any
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.

.

.

.

.

.

.

.

(id)
H ⇒ P (0, 0)

(id)
H ⇒ P (s(0), 0)

(†) H ⇒ P (x, y)
(subst)

H ⇒ P (s(x′′), x′′)
(H6)

H ⇒ P (s(s(x′′)), 0)
(case L)

H ⇒ P (s(x′), 0)
(case L)

H ⇒ P (x, 0)
(id)

H,P (x, s(0)) ⇒ P (x, s(0))
(∀⇒)

H ⇒ P (x, s(0))

(†) H ⇒ P (x, y)
(subst)

H ⇒ P (s(y′′), y′′)
(H5)

H ⇒ P (0, s(s(y′′)))

(†) H ⇒ P (x, y)
(subst)

H ⇒ P (x′, y′′)
(H4)

H ⇒ P (s(x′), s(s(y′′)))
(case L)

H ⇒ P (x, s(s(y′′)))
(case L)

H ⇒ P (x, s(y′))
(case L)

(†) H ⇒ P (x, y)
(∧⇒), (⇒∀)

H1 ∧ . . . ∧H6 ⇒ ∀x∀yP (x, y)
(⇒⊃)

⇒ (H1 ∧ . . . ∧H6) ⊃ ∀x∀yP (x, y)

Figure 7: A Gω
H proof of (2-Hydra).

essentially new results: we simply demonstrate that the constructions and results of [5] apply in the

Herbrand setting.

Consider a language that consists of a constant symbol 0, a unary function s, and a binary predicate P .

The Hydra statement is formalized as follows:











P (0, 0) ∧ P (s(0), 0) ∧ ∀xP (x, s(0))

∧ ∀x∀y(P (x, y) ⊃ P (s(x), s(s(y))))

∧ ∀x∀y(P (s(y), y) ⊃ P (0, s(s(y))))

∧ ∀x∀y(P (s(x), x) ⊃ P (s(s(y)), 0))











⊃ ∀x∀yP (x, y) (2-Hydra)

The antecedent of this implication characterises how the predicate P must be interpreted. It is

essentially an inductive definition. We denote by H the sequence H1, . . . , H6 of the conjuncts of the

antecedent. Note that in [5], to reason over the domain an inductive unary predicate N was used, thus

requiring quantifications in the Hydra statement to be bounded over N . However, since induction over the

domain is a built-in feature in the Herbrand setting we do not need to bound the quantifications here.

Lemma 5.11. (2-Hydra) is provable in the cyclic systems Gω
H , Gω

H=
, and Gω

SH=
.

Proof. Figure 7 shows a cyclic proof of (2-Hydra) in Gω
H , adapted from [5]. The buds, labelled with (†),

all have the same companion, which is the internal node of the proof labelled (†). The rule applications

labelled H4, H5, H6 abbreviate applications of (cut) that ‘unfold’ the right-hand side of the sequent

according to the named component of H . For example, the derivation abbreviated by H4 is the following:

H ⇒ P (x′, y′′)

(id)

H,P (x′, y′′), P (s(x′), s(s(y′′))) ⇒ P (s(x′), s(s(y′′)))

(id)

H,P (x′, y′′) ⇒ P (x′, y′′), P (s(x′), s(s(y′′)))

(⊃⇒)

H,P (x′, y′′), P (x′, y′′) ⊃ P (s(x′), s(s(y′′))) ⇒ P (s(x′), s(s(y′′)))

(∀⇒)

H,P (x′, y′′) ⇒ P (s(x′), s(s(y′′)))

(cut)

H ⇒ P (s(x′), s(s(y′′)))

The traces along each segment of the proof consist of variables: x, . . . , x′, . . . , x′′ and y, . . . , y′, . . . , y′′.
For any infinite path through the proof, the instances of substitution in the proof (whose premises comprise
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the buds) allow these segments to be ‘glued together’ so as to form an infinitely progressing trace. More

details may be found in [5]. Note that we straightforwardly obtain a proof in Gω
H=

/Gω
SH=

by simulating the

instances of (case L) with an instance of (case L=) followed by applying paramodulation to each of the

premises.

To show that (2-Hydra) is not provable in the induction-based systems, we demonstrate appropriate

models for each system that satisfy (INDL) but falsify the Hydra statement. Then, by the soundness

in Lemma 5.5 we obtain that the Hydra statement is not provable in the induction-based systems.

The structure underlying the models is that constructed in [5, §4] consisting of a disjoint sum of two

domains, namely the natural numbers and the integers. The constant 0 is interpreted as the zero contained

in the natural numbers, and the interpretation of s is the standard successor function over these domains.

Notice that this structure is not a Herbrand structure for the language over the signature {0, s, P} (nor

is it even a semi-Herbrand structure): it contains a non-standard part consisting of elements that do not

correspond to any closed term of the language (i.e. the integers).

The interpretation of the predicate P in this structure includes all pairs of elements in the domain,

apart from a particular subset of pairs of integers carefully chosen so as to ensure that P still satisfies the

properties defining the induction scheme H . Thus, this interpretation of P does not satisfy (2-Hydra),

since it does not contain all pairs of elements. The pairs of elements ‘missing’ from P all contain at

least one integer (i.e. lie outside the fully Herbrand part of the structure). Indeed, this must be the case

since provability of (2-Hydra) in the cyclic system implies that any interpretation of P satisfying H must

contain all pairs in which both elements are Herbrand for {0, s, P} (i.e. are named by a closed term).

Finally, the results in [5] entail that this model satisfies (INDL) for the signature {0, s, P}. They also

further entail that the extended (normal) model obtained by adding equality also satisfies (INDL) for the

signature {0, s, P,=}. Furthermore, the underlying structure has the properties that the successor function

is injective, and (natural number) zero is not in the image of the successor function. That is, the normal

model also satisfies the conditions in Lemma 5.5(3). Thus, we have that (2-Hydra) is not provable in any

of the systems GIND

H , GIND

SH=
, or GIND

H=
.

In the language LNAT, where addition, multiplication and equality are taken as relations, and with the

appropriate additional axioms of PA, the cyclic and induction-based systems are equivalent to the implicit

and explicit systems for PA (respectively). Thus, in this case the two systems become equivalent as shown

in [6].7

6 Conclusion and Further Research

In this paper we provided a modular proof-theoretic study of Herbrand logics by considering Herbrand

and semi-Herbrand structures, with and without equality. Sound and complete infinitary sequent-based

proof systems were introduced for the various logics corresponding to two infinitary proof theoretic

approaches. The first adopts an infinite rule and thus results in infinite-width proofs, and the second allows

for non-well-founded proofs that admit the principle of infinite-descent. Sound finitary approximations of

those infinitary systems were given as well, and the connections between them have been investigated. The

adequacy of Herbrand logics as a convenient logical framework is supported by the naturality of the rules

employed in all of these systems. The correspondence between Herbrand structures and the suggested

systems is however non-trivial, as evident by the methods employed in order to achieve completeness.

We have shown that both approaches (infinite-width and infinite-height) are equivalent (for closed

sequents) over languages with a finite number of function symbols. However this equivalence was shown

7This is also true for extensions of the language by new predicates, but not by new function symbols.
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using the completeness theorem, going through the semantics. A first avenue for further research is to

obtain a constructive translation between these two systems that will be purely syntactic. Such a translation

would potentially reveal deeper connections between the approaches.

Further study is required to find appropriate counterparts (whenever such exist) to central proof-

theoretical and meta-logical properties in the context of Herbrand logics. For example, it seems non-trivial

to find a suitable notion of an interpolant that would entail some meaningful version of Craig interpolation.

A possible direction for finding such a notion could potentially be obtained by translation to related

systems [32]. Other standard properties that could be explored in this context are function elimination,

extension by definitions, etc.

The work presented here offers a proof-theoretical interpretation of Herbrand structures that we believe

will lay the foundations for further developments and applications of Herbrand logics that are more

naturally handled proof-theoretically. One such application is in the realm of logic programming (see,

e.g., [28]). The expressiveness of Herbrand logics allows for a finite axiomatization of the minimal model

of any safe stratified logic program [24]. Reasoning about such programs can thus gain from the proof

systems proposed here, by replacing validity checking in the minimal model with efficient proof search,

having the aforementioned axiomatization as the set of premises. Other potential applications of Herbrand

logics are described in [26]. Such applications could also gain from the availability of the corresponding

proof systems presented here.

Lastly, we note that Herbrand structures are a robust concept, not limited only to the usual first-order

structures of classical logic. The structure-definability property embedded in Herbrand logics can be

studied in every logic that employs structures, including first-order modal and temporal logics, intuitionistic

logic, second order logic, many-valued logics and more. Due to the computational aspect of Herbrand

logics, as well as their expressiveness, it seems that the study of Herbrand structures in the context of

computationally useful logics is of special interest for automated reasoning and AI. Two such prominent

logics seem to be intuitionistic first-order logic which by itself already carries constructive computational

content, and ancestral logic (or transitive closure logic) which is an extension of first-order logic that has

been established as a congenial framework for inductive reasoning (see, e.g., [3, 15, 14]).
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