1,448 research outputs found

    Kinematic interpolation of movement data

    Get PDF
    Mobile tracking technologies are facilitating the collection of increasingly large and detailed data sets on object movement. Movement data are collected by recording an object’s location at discrete time intervals. Often, of interest is to estimate the unknown position of the object at unrecorded time points to increase the temporal resolution of the data, to correct erroneous or missing data points, or to match the recorded times between multiple data sets. Estimating an object’s unknown location between known locations is termed path interpolation. This paper introduces a new method for path interpolation termed kinematic interpolation. Kinematic interpolation incorporates object kinematics (i.e. velocity and acceleration) into the interpolation process. Six empirical data sets (two types of correlated random walks, caribou, cyclist, hurricane and athlete tracking data) are used to compare kinematic interpolation to other interpolation algorithms. Results showed kinematic interpolation to be a suitable interpolation method with fast-moving objects (e.g. the cyclist, hurricane and athlete tracking data), while other algorithms performed best with the correlated random walk and caribou data. Several issues associated with path interpolation tasks are discussed along with potential applications where kinematic interpolation can be useful. Finally, code for performing path interpolation is provided (for each method compared within) using the statistical software R.PostprintPeer reviewe

    Dynamic-parinet (D-parinet) : indexing present and future trajectories in networks

    Get PDF
    While indexing historical trajectories is a hot topic in the field of moving objects (MO) databases for many years, only a few of them consider that the objects movements are constrained. DYNAMIC-PARINET (D-PATINET) is designed for capturing of trajectory data flow in multiple discrete small time interval efficiently and to predict a MO’s movement or the underlying network state at a future time. The cornerstone of D-PARINET is PARINET, an efficient index for historical trajectory data. The structure of PARINET is based on a combination of graph partitioning and a set of composite B+-tree local indexes tuned for a given query load and a given data distribution in the network space. D-PARINET studies continuous update of trajectory data and use interpolation to predict future MO movement in the network. PARINET and D-PARINET can easily be integrated into any RDBMS, which is an essential asset particularly for industrial or commercial applications. The experimental evaluation under an off-the-shelf DBMS using simulated traffic data shows that DPARINET is robust and significantly outperforms the R-tree based access methods

    Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae

    Full text link
    We report the discovery of three stars that, along with the prototype LP40-365, form a distinct class of chemically peculiar runaway stars that are the survivors of thermonuclear explosions. Spectroscopy of the four confirmed LP 40-365 stars finds ONe-dominated atmospheres enriched with remarkably similar amounts of nuclear ashes of partial O- and Si-burning. Kinematic evidence is consistent with ejection from a binary supernova progenitor; at least two stars have rest-frame velocities indicating they are unbound to the Galaxy. With masses and radii ranging between 0.20-0.28 Msun and 0.16-0.60 Rsun, respectively, we speculate these inflated white dwarfs are the partly burnt remnants of either peculiar Type Iax or electron-capture supernovae. Adopting supernova rates from the literature, we estimate that ~20 LP40-365 stars brighter than 19 mag should be detectable within 2 kpc from the Sun at the end of the Gaia mission. We suggest that as they cool, these stars will evolve in their spectroscopic appearance, and eventually become peculiar O-rich white dwarfs. Finally, we stress that the discovery of new LP40-365 stars will be useful to further constrain their evolution, supplying key boundary conditions to the modelling of explosion mechanisms, supernova rates, and nucleosynthetic yields of peculiar thermonuclear explosions.Comment: 22 pages, 14 figures, 6 tables. Accepted for publication on MNRA

    Modeling and manipulating spacetime objects in a true 4D model

    Get PDF
    The concept of spacetime has long been used in physics to refer to models that integrate 3D space and time as a single 4D continuum. We argue in this paper that it is also advantageous to use this concept in a practical geographic context by realizing a true 4D model, where time is modeled and implemented as a dimension in the same manner as the three spatial dimensions. Within this paper we focus on 4D vector objects, which can be implemented using dimension-independent data structures such as generalized maps. A 4D vector model allows us to create and manipulate models with actual 4D objects and the topological relationships connecting them, all of which have a geometric interpretation and can be constructed, modified, and queried. In this paper we discuss where such a 4D model fits with respect to other spatiotemporal modeling approaches, and we show concretely how higher-dimensional modeling can be used to represent such 4D objects and topological relationships. In addition, we explain how the 4D objects in such a system can be created and manipulated using a small set of implementable operations, which use simple 3D space and 1D time inputs for intuitiveness and which modify the underlying 4D model indirectly

    A Novel Framework for Online Amnesic Trajectory Compression in Resource-constrained Environments

    Full text link
    State-of-the-art trajectory compression methods usually involve high space-time complexity or yield unsatisfactory compression rates, leading to rapid exhaustion of memory, computation, storage and energy resources. Their ability is commonly limited when operating in a resource-constrained environment especially when the data volume (even when compressed) far exceeds the storage limit. Hence we propose a novel online framework for error-bounded trajectory compression and ageing called the Amnesic Bounded Quadrant System (ABQS), whose core is the Bounded Quadrant System (BQS) algorithm family that includes a normal version (BQS), Fast version (FBQS), and a Progressive version (PBQS). ABQS intelligently manages a given storage and compresses the trajectories with different error tolerances subject to their ages. In the experiments, we conduct comprehensive evaluations for the BQS algorithm family and the ABQS framework. Using empirical GPS traces from flying foxes and cars, and synthetic data from simulation, we demonstrate the effectiveness of the standalone BQS algorithms in significantly reducing the time and space complexity of trajectory compression, while greatly improving the compression rates of the state-of-the-art algorithms (up to 45%). We also show that the operational time of the target resource-constrained hardware platform can be prolonged by up to 41%. We then verify that with ABQS, given data volumes that are far greater than storage space, ABQS is able to achieve 15 to 400 times smaller errors than the baselines. We also show that the algorithm is robust to extreme trajectory shapes.Comment: arXiv admin note: substantial text overlap with arXiv:1412.032

    Towards an Efficient, Scalable Stream Query Operator Framework for Representing and Analyzing Continuous Fields

    Get PDF
    Advancements in sensor technology have made it less expensive to deploy massive numbers of sensors to observe continuous geographic phenomena at high sample rates and stream live sensor observations. This fact has raised new challenges since sensor streams have pushed the limits of traditional geo-sensor data management technology. Data Stream Engines (DSEs) provide facilities for near real-time processing of streams, however, algorithms supporting representing and analyzing Spatio-Temporal (ST) phenomena are limited. This dissertation investigates near real-time representation and analysis of continuous ST phenomena, observed by large numbers of mobile, asynchronously sampling sensors, using a DSE and proposes two novel stream query operator frameworks. First, the ST Interpolation Stream Query Operator Framework (STI-SQO framework) continuously transforms sensor streams into rasters using a novel set of stream query operators that perform ST-IDW interpolation. A key component of the STI-SQO framework is the 3D, main memory-based, ST Grid Index that enables high performance ST insertion and deletion of massive numbers of sensor observations through Isotropic Time Cell and Time Block-based partitioning. The ST Grid Index facilitates fast ST search for samples using ST shell-based neighborhood search templates, namely the Cylindrical Shell Template and Nested Shell Template. Furthermore, the framework contains the stream-based ST-IDW algorithms ST Shell and ST ak-Shell for high performance, parallel grid cell interpolation. Secondly, the proposed ST Predicate Stream Query Operator Framework (STP-SQO framework) efficiently evaluates value predicates over ST streams of ST continuous phenomena. The framework contains several stream-based predicate evaluation algorithms, including Region-Growing, Tile-based, and Phenomenon-Aware algorithms, that target predicate evaluation to regions with seed points and minimize the number of raster cells that are interpolated when evaluating value predicates. The performance of the proposed frameworks was assessed with regard to prediction accuracy of output results and runtime. The STI-SQO framework achieved a processing throughput of 250,000 observations in 2.5 s with a Normalized Root Mean Square Error under 0.19 using a 500×500 grid. The STP-SQO framework processed over 250,000 observations in under 0.25 s for predicate results covering less than 40% of the observation area, and the Scan Line Region Growing algorithm was consistently the fastest algorithm tested

    Plan-view Trajectory Estimation with Dense Stereo Background Models

    Get PDF
    In a known environment, objects may be tracked in multiple views using a set of back-ground models. Stereo-based models can be illumination-invariant, but often have undefined values which inevitably lead to foreground classification errors. We derive dense stereo models for object tracking using long-term, extended dynamic-range imagery, and by detecting and interpolating uniform but unoccluded planar regions. Foreground points are detected quickly in new images using pruned disparity search. We adopt a 'late-segmentation' strategy, using an integrated plan-view density representation. Foreground points are segmented into object regions only when a trajectory is finally estimated, using a dynamic programming-based method. Object entry and exit are optimally determined and are not restricted to special spatial zones
    • …
    corecore