
New Jersey Institute of Technology
Digital Commons @ NJIT

Theses Theses and Dissertations

Spring 2011

Dynamic-parinet (D-parinet) : indexing present
and future trajectories in networks
Mou Nandi
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion
in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Recommended Citation
Nandi, Mou, "Dynamic-parinet (D-parinet) : indexing present and future trajectories in networks" (2011). Theses. 92.
https://digitalcommons.njit.edu/theses/92

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232274402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Ftheses%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Ftheses%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/92?utm_source=digitalcommons.njit.edu%2Ftheses%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DYNAMIC-PARINET (D-PARINET):
INDEXING PRESENT AND FUTURE TRAJECTORIES IN NETWORKS

By

Mou Nandi

While indexing historical trajectories is a hot topic in the field of moving objects (MO)

databases for many years, only a few of them consider that the objects movements are

constrained. DYNAMIC-PARINET (D-PATINET) is designed for capturing of trajectory

data flow in multiple discrete small time interval efficiently and to predict a MO’s

movement or the underlying network state at a future time.

The cornerstone of D-PARINET is PARINET, an efficient index for historical

trajectory data. The structure of PARINET is based on a combination of graph

partitioning and a set of composite B+-tree local indexes tuned for a given query load and

a given data distribution in the network space. D-PARINET studies continuous update of

trajectory data and use interpolation to predict future MO movement in the network.

PARINET and D-PARINET can easily be integrated into any RDBMS, which is an

essential asset particularly for industrial or commercial applications. The experimental

evaluation under an off-the-shelf DBMS using simulated traffic data shows that D-

PARINET is robust and significantly outperforms the R-tree based access methods.

DYNAMIC-PARINET (D-PARINET):

INDEXING PRESENT AND FUTURE TRAJECTORIES IN NETWORKS

by

Mou Nandi

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

April 2011

APPROVAL PAGE

DYNAMIC-PARINET (D-PARINET):
INDEXING PRESENT AND FUTURE TRAJECTORIES IN NETWORKS

Mou Nandi

Dr. Vincent Oria, Thesis Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Cristian M Borcea, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Mou Nandi

Degree:	 Master of Science

Date:	 May 2011

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, USA, April, 2011

• Bachelor of Engineering in Production Engineering,
Jadavpur University, Kolkata, India, MAY, 2000

Major:	 Computer Science

v

ACKNOWLEDGMENT

I would like to express my gratitude to my advisor Professor Vincent Oria for accepting

me as his student, his guidance, time, contribution and most importantly keeping his

patience for getting this work done. I am greatly thankful to Dr. Iulian Sandu Popa from

PRiSM Laboratory, University of Versailles, France, one of the author of PARINET

work for his detail guidance on the experimental set up, historical data and pre-

configured queries, figures and tables used in original PARINET work, which would

have cost me lot more time to create from scratch. I also want to express my gratitude to

my co-advisors, Dr. Cristian M Borcea and Dr. Dimitrios Theodoratos for their time and

valuable guidance during the course of this work. All credits for this work go to them.

I also want to thank my fellow student, Mr. Chris Zizac, who was kind enough to

extract the New Jersey highway’s loop sensor data from NJDOT database in a custom

format and send to me whenever I wanted, without that I would not have to do this work.

I am grateful to my husband, Mr. Krishanu Banerjee for being very supportive

and enthusiastic for last two years. I would not be able to complete the degree without

him. I want to extend my thanks to my mother-in-law, Ms. Swapna Banerjee, who took

care of my son, Ujan Ray, when I travelled cross-country every week for the whole

semester and of course, my husband paid for my travel.

At the end, it will be an injustice if I do not mention my four year’s old son for

sacrificing his park-time in the weekends and (happily) watching Netflix movies for

hours to let me do this work.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION……............................………………..…………………………. 1

 1.1 Objective ……............................………………..……………………………... 1

 1.2 Background Information …………….…………………………………….…... 6

 1.2.1 Indexing Moving Objects in Network…………………………………... 6

 1.2.2 Indexing MO Trajectory Data Flow ……...…………………………….. 7

2 THE CONTEXT OF PARINET …………………………………………………… 10

 2.1 Network Model ………………………………………………………………... 10

 2.2 Data Model …………………………………………………………………….. 13

 2.3 Query Types ………………………………………………………………........ 14

 2.4 Observations …………………………………………………………………… 15

3 PARINET AND D-PARINET INDEX STARUCTURE ………………………….. 19

 3.1 Index Structure ………………………………...………………………………. 19

 3.2 Query Search Processing ………………………………...…………………….. 20

 3.3 Data Partitioning ………………………………...…………………………….. 22

 3.3.1 Problem Statement …………………………………………………........ 22

 3.3.2 PARINET Cost Model ……...…………………………………………... 23

 3.3.3 Using Graph Partitioning ……...………………………………………... 26

 3.4 T-PARINET and D-PARINET……………………...…………………………. 28

 3.5 D-PARINET Structure and Operations ………………………………………... 29

 3.5.1 Search Algorithm…………………………………………………......... 30

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

 3.5.2 Index Evolution in Time ...…………………………………………..... 31

 3.5.3 Optimizing Update Operations……...…………………………………. 32

 3.5.4 D-PARINET Cost Model………………………………………………... 34

 3.5.5 Temporal Partitioning Algorithm……………………………………….. 38

4 MODELING VEHICLE DISTRIBUTION ON ROUTE……………....................... 41

 4.1 Data Gathering ……………………………………………………………….... 41

 4.2 Pre-processing of Data ………………………………………….……………... 42

 4.3 Average Vehicle Speed Data ………………………………………….………. 43

 4.4 Modeling the data………………………………………………………………. 43

 4.4.1 Homogeneous Poisson Process………………………………………….. 43

 4.4.2 Baseline Model and Limitation ………………………………………..... 43

5 TRAFFIC SIMULATION MODEL IN SUMO .…………….…………………….. 45

 5.1 Traffic Model in SUMO ………………………………………….…………… 45

 5.1.1 SUMO Model and Application on Freeway Data ………………………. 46

 5.1.2 Classic Car Following Model …………………………………………... 46

 5.1.3 Lane Changes …………………………………………………………… 47

 5.1.4 Using a Probabilistic Data Distribution Model in SUMO………………. 47

6 EXPERIMENTAL DETAILS .…………….………………………………………. 48

 6.1 SUMO features………………………………………….……………………… 48

 6.1.1 Simulation ……………………….………………………........................ 48

 6.1.2 Network …………………………………………..................................... 49

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

 6.1.3 Routing ………………………………………………………………….. 49

 6.2 SUMO Network ………………………………………….……………………. 49

 6.2.1 Generating Network Diagram ……………………….………………….. 49

 6.2.2 Create SUMO Compatible Network ……………………………………. 50

 6.3 Route Generation For I-80 Highway…………………………………………… 51

 6.4 Simulation Output ……………………………………………………………... 51

7 PREDICTION USING D-PARINET.…………….……………………………….... 54

 7.1 Continuous Indexing of Incoming Trajectory Data……………………………. 54

 7.2 D-PARINET Cost model………………………………………………………. 54

 7.3 Prediction using D-PARINET………………………………………………….. 57

 7.4 Conclusion and Future Work…………………………………………………... 58

APPENDIX A EXAMPLE CODE SNIPPET FOR GRAPH PARTITIONING………

59

 A.1 An Example Code for Parsing City Network Data into SUMO Format ..…….. 59

APPENDIX B DEMAND MODELING IN SUMO...…………………………........... 60

 B.1 An Example Demand Modeling for Oldenburg City ..……………………….. 60

APPENDIX C GRAPH PARTITIONING ALGORITHM ...………………………… 61

 C.1 Graph Partitioning Algorithm ..……………………………………………….. 61

APPENDIX D INTEROPERABILITY OF VARIOUS SOFTWARES USED ..……. 62

 D.1 Interoperability of Different Software..………………………………………. 62

REFERENCES ………………………………………………………………………... 63

ix

LIST OF TABLES

Table Page

3.1 Nomenclature…....………………..……………………………………………… 24

4.1 Change Between Two Sites During the Day……….…....………………………. 43

x

LIST OF FIGURES

Figure Page

2.1 Example of a Geometric Representation of a Network ……..…………………...

11

3.1 Sample of PARINET Index Structure ………………..…………………………..

20

3.2 Example of Index Range Search..…..………...…....…………………………….. 22

3.3 Example of a T-PARINET Index Structure……………………………………… 30

3.4 Component Index PARINETi………………………………………..................... 38

4.1 Positions of Selected Loop Detector Stations ...……..…………………………... 41

4.2 Vehicle Count Data at Three Sites on I-80………………………………………. 42

4.3 Poisson Fit of Vehicle Count Data……………………………………………….. 44

6.1 Network Diagram of Selected I-80………………………………………………. 51

6.2 Schematic Diagram of Simulation Experiment Steps……………………………. 54

7.3 Prediction using simulated data………………………………………………….. 58

A.1 An example code for parsing city network data into SUMO format…………….. 59

A.2 An example demand modeling for Oldenburg city………………………………. 60

A.3 Determine Index Partitioning ……………………………………........................ 61

A.4 D-PARINET Online Tuning………………………………................................... 61

A.5 Schematic Diagram of Software Interoperability………………………………... 62

xi

LIST OF SYMBOLS

QDA Total number of disk accesses for a query

pIA Number of index accesses in a partition

f
pIA Number of fixed index accesses in a partition

v
pIA Number of variable index accesses in a partition

pPA Number of page accesses in a partition

pN Number of units (tuples) in partition p

1

CHAPTER 1

INTRODUCTION

1.1 Objective

With the proliferation of mobile devices capable of accurately reporting their positions in

time, it has become possible to accumulate large amounts of trajectory data. Moreover,

the data acquisition can be made in real-time by using the ubiquitous wireless

communication systems. A wide range of applications in areas like transportation

planning, traffic management, location-aware services, rely on these data. Subsequently,

an important research effort went into the general field of moving objects databases

(MOD). Most of these works can fit in one of the following two complementary classes:

modeling spatio-temporal databases; and indexing techniques to efficiently process

spatio-temporal queries.

 The performance issue has become critical in spatio-temporal applications due to

the large amount of data and the computation cost of geometric operators. An impressive

number of access methods have been proposed for efficient processing of moving objects

(MO) queries. These index methods are classified from a temporal or a spatial point of

view. From the temporal perspective, some techniques aim at indexing real-time

application data with the objective of minimizing the update and retrieval costs.

Examples include TPR*-tree proposed by Tao, Y., Papadias, D., Sun, J. in “The TPR*-

tree: an optimized spatio-temporal access method for predictive queries”, STRIPES by

Patel, J.M., Arbor, A., Chen, Y., Chakka, V.P. in “STRIPES: an efficient index for

predicted trajectories” and ST2B-tree by Chen, S., Ooi, B.C., Tan, K.L., Nascimento,

2

M.A. in “The ST2B-tree: A Self-Tunable Spatio-Temporal B+-tree Index for Moving

Objects”, to name a few. Some other techniques focus on indexing complete (past)

trajectories of MOs and aim at reducing the retrieval costs in large datasets. Several

access methods such as the MV3R-Tree by Hadjieleftheriou, M., Kollios, G., Tsotras, J.,

Gunopulos, D. in “Indexing spatiotemporal archives” and by Tao, Y., Papadias, D. in

“MV3R-Tree: A spatio-temporal access method for timestamp and interval queries” have

been proposed in this context.

 From the spatial perspective, most MO access methods consider that the objects

are moving freely in the space. However, in several real-life applications, the object

movements are constrained (e.g., trains moving along a railroad network or vehicles

moving along a road network). Taking into account the network can lead to specific

models that are optimal for the data representation. A few works have proposed access

methods for objects moving in networks.

 The existing indexing techniques for objects moving in networks decompose the

network into roads, and then index the spatio-temporal location of the MOs on each road

with a specific index, e.g., a 2D R-tree. One of the shortcomings of this approach is the

way the space is decomposed: it is solely determined by the road network, and takes

neither into account the distribution of the trajectory data, nor the queries on the data.

Hence, more recent access methods for non-constrained MOs have proposed to partition

the 2D space according to the data distribution. Moreover, indexing both the spatial and

temporal dimensions for a given road is not always useful, since the spatial dimension

(i.e., relative positions) tends to be less selective than the temporal one in most cases.

3

 Another important observation in the case of MO trajectory data is that the

datasets can be very dynamic and can span over very long periods of time, which are

expanding continuously. For example, it is not uncommon nowadays to continuously

monitor the traffic in certain road networks or highway networks, and also to record all

these data for future use. Indeed, numerous applications are based on analyzing the

historic (trajectory) data, e.g., for location-based services, for traffic planning, for

measuring the traffic impact on the environment, for infrastructure developments, etc.

 A more general problem suggested by the above mentioned applications is to

efficiently manage trajectory data flows. The existing techniques for indexing the current

and near-future movements of MO focus on tracking the positions of a set of MO. The

challenge for an index in this case is the ability to continuously adapt to the spatio-

temporal distribution of the data and to find a balance within the update and query cost

tradeoff. These methods discard the historical data. On the other hand, the methods that

index past trajectory data consider mostly static datasets that are known in advance (since

the data is historical) and that are subject to little or no changes. The main issue in this

case is to optimize the retrieval cost of spatio-temporal queries. More recently, Pelanis et

al. in the paper “Indexing the past, present, and anticipated future positions of moving

objects”, proposed an indexing technique for capturing the positions of moving objects at

all points in time (past, present, and anticipated future). Nonetheless, the focus of this

work is on indexing the transition from present states to recent-past states of the data,

while indexing the whole past is not a concern.

 Therefore, in a more general context, it would be interesting to have an access

method that efficiently processes the spatio-temporal queries over the recorded history,

4

while continuously recording the history of trajectory data up to the current time. Note

that in the general context, the focus is still on the snapshot (spatio-temporal) queries, i.e.,

which are evaluated only once.

 This thesis work is based on PARINET, i.e., a PARtitionned Index for in-

NEtwork Trajectories. Thus, we first present PARINET, an access method to efficiently

retrieve the (past) trajectories of objects moving in networks. Given a data set of

trajectories, PARINET proceeds by partitioning the data and by indexing the partitions

with composite B+-trees. This allows exploiting the built-in B+-tree, a robust and

efficient index structure that exists in every database system. Instead of using a 2D grid

as in the previous methods, the partitioning of the data is based on graph partitioning

theory in order to integrate the network topology. In addition, we proposed a cost model

that allows tuning correctly the index structure for a given query load. The part of the

work dealing with indexing constrained trajectory data has already been published by

Sandu Popa, I., Zeitouni, K, this thesis advisor , Prof Oria, V., Barth, D., Vial, S. in the

paper “PARINET: A tunable access method for in-network trajectories” last year.

Similar to the existing approaches, the focus of that work was on indexing historical

trajectory datasets, i.e., where the data are known in advance and are subject to little or no

changes.

 Then, the same team extended PARINET to solve the more general problem, i.e.,

indexing trajectory data flows. The Temporal PARINET (T-PARINET) provides an

optimized handling of trajectory data flows. T-PARINET is configurable in a dynamic

environment and to fulfill its goal, T-PARINET uses an on-line tuning process that

creates periodically a new PARINET to index the trajectory data from the current

5

moment to a future moment in time. The on-line tuning process is based on monitoring a

set of parameters indicating the quality of the last built index in the structure of the T-

PARINET. PARINET and T-PARINET is based on graph partitioning and time interval

indexing. It also presents a cost model that combines the statistics on the data and the

query workload to estimate the number of disk accesses for a given index configuration.

PARINET can automatically choose a good index configuration, based on the provided

cost model, the data distribution and the query workload using well-known graph

partitioning algorithms.

In this thesis Dynamic PARINET (D-PARINET) is proposed for indexing

continuously and efficiently in-network trajectory data flows following the same

principle as T-PARINET and extend the T-PARINET implementation by introducing

trajectory prediction by interpolating data generated over short discrete time intervals. D-

PARINET uses an on-line tuning process to automatically determine the index evolution

in time. The tuning process is based on the cost model of PARINET and T-PARINET

adapted to the context of indexing trajectory data flows. We characterize the query types

in the network constrained MO context and provide different test scenarios.

We have implemented PARINET and D-PARINET using an off-the-shelf DBMS

and validated our approach using an extensive experimentation that shows their

efficiency and their scalability properties.

6

1.2 Background Information

1.2.1 Indexing Moving Objects in Networks

As pointed earlier, considerable attention has been paid to indexing methods for moving

objects. Most of these works deal with indexing past, present or near-future positions of

MOs that move freely in a two-dimensional space. There are only a few methods for

indexing (past) trajectories of MOs in networks, which is the focus of this paper. The

trajectories are represented with reference to a network, i.e., with the relative positions of

the MOs on network edges. The main idea in the previous works is to decompose a three-

dimensional problem in two sub-problems in lower dimensions and then use a

combination of two-level R-trees to index the trajectories.

 The approach by Pfoser and Jensen uses two 2D R-trees, one for indexing road

edges and the other for accessing 2D transformed trajectory segments. The 3D (x, y, t)

coordinates of a trajectory are mapped into a 2D (p, t) coordinate space using a Hilbert

curve to linearize the network line segments. The same mapping is performed for queries.

However, this generally leads to multiple sub-queries and may decrease the

performances. For simplicity we will refer to this approach as PJ-tree in the rest of the

paper.

 The FNR-tree utilizes a 2D R-tree to index road segments. For every leaf node in

the 2D R-tree, there is a 1D R-tree to index the objects whose trajectories cross the

segments included in the leaf node at a certain period of time. A major disadvantage of

the FNR-tree is its limitation in trajectory modeling. Since only the time intervals are

7

stored in the 1D R-tree, it is assumed that the objects cannot stop, change speed or

direction in the middle of a road segment.

 This limitation is addressed by the MON-tree. The MON-tree is composed of a

2D R-tree (the top R-tree) that indexes the network edges and a set of 2D R-trees (the

bottom R-trees) that index the object movements along the edges. An additional hash

structure used to map each edge to its corresponding tree helps speed up insertions. Given

a 3D spatio-temporal query, the top R-tree is used to find the precise intersection between

the spatial part of the query and the network. Based on this intersection, a set of sub-

queries is generated for each intersected part of each edge involved. Then, the

corresponding bottom R-trees are accessed in order to respond to the sub-queries. MON-

tree can handle two network models: an edge oriented model and a route oriented model.

The experimental evaluation of the MON-tree against the FNR-tree shows that the first

method always outperforms the second. The MON-tree on a route oriented network

model shows better results.

1.2.2 Indexing MO Trajectory Data Flows

To the best of the authors’ knowledge, no work in the MOD area considers the problem

of continuously indexing data flows of trajectories (for constrained or non-constrained

MOs) to optimize spatio-temporal queries. The closest works we found are the ones that

focus on continuously tracking a set of non-constrained moving objects.

 These works mainly index two types of queries. A first group of methods, such as

TPR-tree, TPR*-tree, Bx-tree or ST2-B-tree have been proposed to optimize snapshot

spatio-temporal queries that refer to present or near-future times. Typical examples of

8

such queries are: “Which MOs are within 1 km of my location right now?” or “What will

be the number of MOs in the city center ten minutes from now?”

 A second group of methods, such as SINA, Q-index and CNN, optimize

continuous spatio-temporal queries. An example query in this context is: “Continuously

report the hotels within 5 km of my location”. Both the first group and the second group

of works mainly focus on spatio-temporal range queries, but these approaches remain

applicable to a broader class of spatio-temporal queries, e.g., nearest-neighbor or

aggregate queries.

 In the above mentioned works, only the current positions (along with, in some

cases, the current velocity vector used to predict near-future positions) of the tracked

MOs are indexed. The past states representing the MOs’ trajectories up to the current

time are discarded. A few works deal with indexing the movements of non-constrained

MOs at all points in time. These works include the proposal of Sun et al., the BBx-tree

and the RPPF-tree. A common feature in these approaches is the focus on indexing the

transition from present states to recent-past states of the data, while indexing the whole

past is not a concern.

 Sun et al. proposed a method to approximately answer aggregate spatio-temporal

queries at all moments in time. The method is based on a multidimensional histogram

representing the spatio-temporal evolution of the distribution of the moving objects. A

main memory structure is used to keep the distributions corresponding to the current time

and to the recent past. Older states of the histogram are migrated to the secondary storage

and are simply indexed using a single packed B-tree or a 3D R-tree.

9

 BBx-tree is an extension of the Bx-tree and consists in an array of indexes that

store the old phases of a rotating Bx-tree. For the past states, each index covers a time

interval equal to 1.5Tmax, where Tmax represents the anticipated maximum duration

between two consecutive updates of any moving object. Also, the lifespans of two

consecutive indexes overlap on an interval of length Tmax. Since Tmax can be very small in

comparison with the length of the recorded history of the movements of moving objects,

it is expected to have a large number of indexes in the structure of a BBx-tree even for

relatively short periods of time (e.g., of a few weeks). Moreover, the short lifespan of an

index and the index overlap, make that normal range queries intersect several indexes,

which will increase the query processing overhead. Another disadvantage of BBx-tree is

that it does not record the real position of the MOs, but only estimations of the MOs’

location.

 RPPF-tree is another proposal to index the positions of non-constrained moving

objects at all points in time for time slice queries. RPPF-tree is based on the TPR-tree .

Pelanis et al. applied the partial persistence paradigm to the TPR-tree to enable it to retain

and query past states of the indexed data. The focus here is on the application of partial

persistence to the TPR-tree, which is not a trivial task. Once more, a single R-tree-like

structure is used to index all the data spanning from the recording start instant in the past

to the current time. This may lead to an important degradation of the index structure due

to the high number of index entries.

10

CHAPTER 2

THE CONTEXT OF PARINET

2.1 Network Model

PARINET uses two representations for the road network: a geometric view and a

topologic view. The geometric view (or 2D view) captures the approximate geographic

locations of the road network components. This is the base view of the road network. The

topologic view uses a graph in order to represent the road sections and the intersections.

It is useful in the partitioning of the network.

 The geometric representation of a road network is given by a tuple RN2D= (S,C),

where S is a set of segments and C is a set of connections. A road segment Ss∈ is a 2D

line segment defined by)p,(p es , where)y,(xp sss = ,)y,(xp eee = and es pp ≠ ; sp and

ep are respectively the start and end points of the segment. A connection Cc∈ is a tuple

)S(p, c , where p is a geographical point that represents the location in the 2D space of

the connection and Sc is a set of segments that meet at the connection. The list of

segments in Sc should have p as one of their end points. Figure 2.1 gives a simple

example of a geometric representation of a road network.

2.1.1 Definition 2.1

 Given a road network 2DRN as described above, we define a road in 2DRN as

start),S(rid,Road c= , where rid is a unique identifier, cS is a set of connected segments

that form a non self-intersecting polyline in 2DRN (which may be open or closed (a

11

cycle)) and start is one of the two endpoints of the polyline. Each segment belongs to

one road only.

Figure 2.1 Example of a geometric representation of a network

2.1.2 Definition 2.2

Given a road network 2DRN as described above, we define the set of junctions in 2DRN

as { }3))card(c(SCjjJunctions j ≥∧∈= .

 Different granularities can be superimposed to a road resulting in different

network models.

2.1.3 Definition 2.3

For a given road network 2DRN , we define three possible network models:

1. Segment oriented network model: each segment corresponds to a road.

2. Edge oriented network model: each road is defined as the polyline between two

junctions.

3. Route oriented network model: the complete roads are considered without split.

They can extend over the junctions. Notice that several configurations are

possible for the route model on the same road network.

In the example in Figure 2.1,

1. 10 roads (S1,…,S10) in the segment oriented model;

12

2. 4 roads: (S1, S2, S3), (S4, S5), (S6, S7) and (S8, S9, S10) using the edge oriented

model;

3. 2 roads: (S1, S2, S3, S4, S5) and (S6, S7, S8, S9, S10) in the route oriented

model.

 In the sequel, the general term road network is used to denote a road network

modeled as one of the three possible network models.

2.1.4 Definition 2.4

Given a road network 2DRN , we define a position in the network space as a pair

pos)(rid, , where rid is a road identifier and []0,1pos∈ is the relative position on the

road measured from the start end point of the road.

 This is closely related to the concept of linear referencing widely used in GIS for

transportation and available in DBMSs as Oracle Spatial or GIS tools as ArcGIS.

2.1.5 Definition 2.5

Given a road network 2DRN , we define a road connection rc as a tuple)R(p, c where p

is the geographical point location in 2D space of the road connection and cR is the set of

roads that meet at the connection. p has the same coordinates as one of the two end

points of each road in the given connection.

 Based on the 2D representation of a road network 2DRN , we construct the

topologic representation of the network. In this representation, a network is defined as an

undirected weighted graph E)(V,G = with V a set of vertices and Ν××⊆ VVE a set

of edges, where Ν is the set of natural numbers. Each Vv ∈ corresponds to one road

connection in 2DRN . Given Vv,v 21 ∈ , there is an edge),v,(ve 21 w= in G if there is a

13

road in 2DRN between the corresponding road connections. The weight w is given by

the function W , which depends on the data distribution. Notice that in our network

model, the roads are non-oriented. But taking into account the traffic orientation is a

straightforward extension that can be achieved by splitting the two-way roads into two

edges.

2.2 Data Model

As mentioned earlier, we intend to index the trajectories of the MOs in a network. An

object moving on a road network reports its position at different moments in time. We

assume that such an update is issued each time the MO changes its speed or passes on a

different road in the network. An update contains the identifier of the MO, the network

position (as given in Definition 3.4) and the associated time instant: t)pos,rid,(moid, .

We define the trajectory of a moving object as a non-regulated sequence of units (i.e., the

time intervals are not of equal size). Each unit is a tuple defined by two consecutive

updates: [] []),t,,posrid,(moid, 2121 tpos ; t indicates a time instant, while pos gives the

relative position on the road at the beginning and the end of the time interval. For each

unit, it is assumed that the MO moves at constant speed, i.e., a linear interpolation is

considered over each interval. Given a road, the relative position on the road and the time

can be viewed as the two orthogonal axes of a 2D space. In this space, we denote by unit

segment the 2D line segment bounded by the points)t,(pos 11 and)t,(pos 22 .

14

2.3 Query Types

There are several types of queries that have been studied in the field of MOD, such as

range queries, spatio-temporal join, nearest neighbors, within distance (or e-distance join)

or skyline queries to name but a few. Among these query types, the range and the nearest

neighbor queries are, probably, the most studied in the context of MOD. In this paper, we

consider these two types of queries and focus on the range queries since the nearest

neighbor queries can be brought down to a succession of range queries.

 The range queries are composed of a spatial part and a temporal

interval,)Q,(QQ ts= . The queries return either all the MOs that have lied within the

area of sQ , at a certain time interval tQ , or only the pieces of the trajectories that overlap

the query. We consider two types of range queries: 2D queries and path queries. The

difference between the two types of queries lies in the spatial part sQ .

 The spatial component of the first type of queries is a 2D region. Hence, the 2D

queries represent “standard” range queries .Thus, sQ is a 2D region (usually a rectangle).

In the rest of the paper, we will refer to this type of queries as 2D queries. To support 2D

queries, a transformation of sQ is performed first. The exact intersection between the 2D

region and the network is computed. Then the initial region in sQ is replaced with the

intersected network region.

Formally, the new sQ is a set of road sections: }rs ,rs ,{rsQ n21s …= where

])pos ,[pos],pos ,[pos],pos ,[pos ,(rid i
k2

i
k1

i
22

i
21

i
12

i
11i …=irs and }rs{rs ji ≠ and

i
1)1(m

i
m2

i
m2

i
m1 pospos pos pos +<∧≤ . Each irs represents a set of disjoint and ordered

intervals on one road [1]. Multiple intersection intervals with the query region are

15

possible when the road is a polyline, which is the case for an edge or route network

model. Usually, one can use a 2D R-tree over the network to speed up the computation of

the mapping between a 2D region and a network region.

 The constrained movement suggests another type of useful query. For example,

“find in a database all the MOs whose trajectories intersect a given MO trajectory”, or

“find the number of MOs that traverse a given road section at a certain time (interval)”

are path queries that need to refer to the network. Path queries represent a new type of

range queries that we introduce. In a path query, the spatial part, sQ , represents a path in

the network, i.e., a sequence of connected road sections. For this type of queries, no

mapping is needed from the 2D space to the network space and sQ has the same

formalization as above.

 Beside the range queries, the nearest neighbor (NN) queries are another popular

type of query in MOD. Moreover, there are several types of NN queries, e.g., reverse NN,

aggregate NN or continuous NN. The interested reader can refer to [27] for a discussion

about the processing of conventional NN queries by PARINET. That is, given a (static)

position in the network space and a time interval tQ , the query returns the k MOs that

were closer (w.r.t. the network distance, i.e., the shortest path between two network

positions) to the network location during tQ .

2.4 Observations

This subsection gives a short informal intuition of the PARINET index structure.

PARINET uses a filtering and refinement approach. The main idea of our proposal is that

an approximate index search could deliver very good performances in terms of

16

computation time, while offering at the same time good results in terms of physical

accesses. The overall performance of such an access method can surpass the “exact”

index search used in the existing methods.

 Actually, in a network space, the spatial dimension is composed of a discrete

component (the road identifier) and a continuous component (the relative position on the

road). T-PARINET is based on the four following observations.

2.4.1 Observation 1

The relative position dimension is usually less selective than the temporal dimension.

Using an index on time for filtering candidates followed by a refinement step should be

more efficient than using an R-tree on the two dimensions.

 The MON-tree and the PJ-tree fully index the bi-dimensional space (relative

positions and time) with a 2D R-tree. Nevertheless, it is expected to have an important

amount of overlapping of the indexed units in the spatial dimension, because in general,

trajectories traverse entirely the road segments in their path. Moreover, except for queries

on very small regions, the usual queries cover many road segments. Therefore, indexing

only the temporal dimension might be more efficient, since time is more selective in this

case. For this reason, a B+-tree combined with sorted data is used on the time

components. This offers an efficient sequential range scan of the tuples that intersect the

temporal query interval tQ .

17

2.4.2 Observation 2

The partitioning of the network space should not be made only on a road identifier basis,

as it is the case for the existing methods. It should be based on the data distribution and

the network topology.

 Indeed, while the alternative of one index per road offers the advantage of an

exact filtering on one component of the spatial dimension, it nevertheless has a few

shortcomings. The partitioning is strictly related to the static road view of the network

and does not consider the data statistics (distribution of MOs over the network). This is

an important aspect and is even more relevant in a historical context. Moreover, the

performance of the existing methods, e.g., MON-tree depends on the granularity of the

employed network (section, edge, or route based model). Another argument is that a

network can contain several thousand roads and having a separated index for each one

could degrade the system performance even for small datasets.

 Instead, an index structure is proposed, that takes into account the data

distribution over the network and the network topology. The network will be partitioned

in network regions that will be balanced with respect to the amount of data in each

region. Therefore, the parts of the network with less traffic (e.g., the peripheral ones) will

have larger extents than the busy zones (e.g., the central ones). Queries are most of the

time defined on regions where road segments are close or connected. A general rule is to

group together the objects that are close, which will help return more results in a few

page accesses (for instance, R-trees are based on this rule). Because a network is being

considered, the grouping should take into account the connectivity of road segments, i.e.,

the network topology, in addition to the data distribution.

18

2.4.3 Observation 3

The access method should be supplemented with a good quality cost model that will

allow (self) tuning the structure for better performances.

2.4.4 Observation 4

 In the context of continuous indexing of trajectory data flows, the access method should

be able to adapt to the variation in time of the data distribution and density. Also, the

access method should be efficient w.r.t. insertions and robust to massive index updating.

 Trajectory data are inherently divers in space and time. For example, the central

part of a road network is more circulated than the peripheral parts. Also, the traffic can be

denser during peak times on working days than during the week-end. In the case of

indexing trajectory data flows, the access method should be able to adapt to these

variations, since different index configurations are near-optimal for different periods of

time. Moreover, the update efficiency of the index and its robustness to massive updates

are essential in this context. Once again, having an access method that is based on the

B+-tree index appears to be the right choice due to the efficiency of the B+-tree in

performing update operations.

19

CHAPTER 3

PARINET AND D-PARINET INDEX STRUCTURE

3.1 Index Structure

In this section, PARINET is introduced for indexing datasets of in-network trajectories.

PARINET and T-PARINET constitute the foundation for D-PARINET.PARINET is

capable of answering two kinds of queries on historical constrained trajectories, namely

range and nearest neighbor queries. First the index structure and its operations is

presented followed by a cost model based on query and data sizes, and formalizes

PARINET tuning in terms of a graph partitioning problem. Finally, it is shown that how

one can automatically tune PARINET for a better performance, given a road network, the

distribution of the data to be indexed, and an expected query workload.

Based on the above-mentioned observations, the approach is to create a B+-tree index on

time intervals for the set of roads in each partition (retuned by the partitioning phase)

rather than creating an index for each isolated road. The partitioning is based on both the

data distribution and the network topology, i.e., the partitions are balanced in terms of the

amount of data and the partitions separate the network into regions (i.e., connected or

close roads are grouped in the same partition).

 The discussion on how one can choose a good number of partitions and how the

partitioning is obtained is presented later. For now, it is considered that this aspect is

solved and a good partitioning can be obtained for a given network and a given data

distribution. As a result of this operation, each road will be assigned to a certain partition

(cluster).

20

 Given a dataset D containing trajectories of MOs in a network as a set of

trajectory units: [] []{ }),t,,posrid,(moid,D 2121 tpos= , the index is built in three steps:

partitioning the trajectory units based on their road identifiers, sorting the partitions on

the time intervals and indexing each partition using a composite B+-tree on)t,t(21

interval. Note that an interval-based B-tree such as the RI-tree [10] could be used for

indexing time intervals, but we chose a simple B+-tree to allow an easier implementation.

The index structure is quite simple. An example is given in Figure 2. A table RP (Road

Partitioning) that contains one entry for each cluster keeps some basic information on the

partitioning: the list of road identifiers for a cluster and a pointer to the B+-tree index

over the unit segments in the cluster. As we partition the data according to the spatial

dimension, the time)t,t(maxmin represents the entire spanning time of the indexed

trajectories. Therefore, only one RP table is necessary to report the relationship between

the partition attribute (i.e., the rid) and the partition index.

Figure 3.1 Example of PARINET index structure

3.2 Query Search Processing

Given a (2D or path) spatio-temporal range query)Q,(QQ ts= where

}rs ,rs ,{rsQ n21s …= and []est t,tQ = , PARINET can find all the objects that have

traversed the road sections in sQ during the time interval of tQ , or simply return the

21

trajectory units that intersect Q . Data retrieval is performed in three steps. First, we

identify the partitions that contain the road identifiers in the query, i.e., the spatial

filtering step. Then, we use the B+-tree indexes of the selected partitions and look up

candidate data, i.e., the temporal filtering step. Finally, we perform an exact match search

among the candidates, i.e., the refinement step.

 Based on the set of road identifiers }rid ,rid,{rid qnq2q1 … in sQ and on the

distribution table RP , we determine the set of partitions } P,P,{P pmp2p1 … that include all

the roads in a given query. Note that nm ≤ , but in general nm < and we might also

have nm << depending on partition and query sizes. This means that the total number of

searched partitions is smaller than the total number of accessed roads in general, as it is

the case in a road oriented partitioning.

 Then, for each accessed partition we perform a range scan by using the B+-tree

index in order to find the data pages that temporally overlap tQ (see Figure 3). It can be

noted that this may lead to false positives, because the filtering is based only on time and

does not consider the road identifiers or the relative positions on the road. However, the

capability of accessing groups of roads that are likely to appear together in a query will

lower the number of false positives.

 Finally, at the refinement step, for each candidate data we determine if it truly

intersects Q , i.e., the unit segment intersects one of the sub-query windows. The actual

intersection between the unit segment and the sub-query window is computed only if the

unit MBR is not completely covered by the window.

22

Figure 3.2 Example of index range search

3.3 Data Partitioning

3.3.1 Problem Statement

PARINET is based on the partitioning of the road network. Moreover, the partitioning

must take into account the data distribution over the network (e.g., total number of unit

segments for each road) and the network topology. It is clear that, for a given query load,

different partitioning of the same data will lead to different performances. The goal is to

automatically find the best partitioning scenario for a given query load. This is possible

as the network and the data to be indexed are known in advance.

 This section presents a cost model that estimates the number of disk accesses

necessary to answer a query load, given a certain configuration of the PARINET index.

Then, using the cost model, the partitioning problem can be re-written as an optimization

problem and use a graph partitioning algorithm to resolve it. Overall performance

(mainly the response time) of the index is considered to be directly related to the number

of disk accesses.

23

3.3.2 PARINET Cost Model

This section presents a cost model that estimates the number of physical disk accesses for

a given query and index configuration. The total number of disk accesses for a

given query is the sum of the physical accesses in each accessed partition. The table RP ,

which gives the distribution of road identifiers in the partitions, is sufficiently small to fit

in main memory. For each accessed partition, disk accesses for the range scan in that

partition is known. A range scan comprises the index search and the data page scan.

Formula (3.1) for the total number of disk accesses can be read as,

∑
∩

+=
sQp

ppQ PAIADA)((3.1)

The data access cost is the number of pages containing the data that overlap with Qt.

Given the distribution of the data in time t
pρ , the number of pages read is:

∫∫
++

⋅×=⋅×=

maxmax
TtQTtQ

dt
BS

N
dtPagesPA t

p
d

pt
ppp ρρ

(3.2)

For simplicity, a uniform temporal distribution is considered, such as constp
t
p == ρρ .

In this case Formula (3.2) becomes,

pt
d

p
p TQ

BS

N
PA ρ×+×=)(max

(3.3)

Where set ttQ −=

Tmax decreases the temporal selectivity of the query by enlarging the query time interval.

The problem of long time intervals is well-known when indexing time related data. The

usual solution is to decompose long time intervals into several smaller intervals. The

drawback is that this will increase the data set size. However, this is not a problem with

24

trajectory data sets because only a small percentage of the time intervals are long, i.e.,

there are few MO that are moving very slowly and that issue very rare updates. In

general, constrained MOs such as vehicles moving in a road network need to report their

location frequently to have an accurate view of their trajectories. Hence, Tmax is expected

to be much smaller than tQ and to have a limited impact on the query cost.

Table 3.1 Nomenclature

QDA Total number of disk accesses for a query
pIA Number of index accesses in a partition
f
pIA Number of fixed index accesses in a partition
v
pIA Number of variable index accesses in a partition

pPA Number of page accesses in a partition
pN Number of units (tuples) in partition p

pPages Number of data pages in a partition

t
pρ

Temporal data distribution in a partition
(percentage of pPages per time unit)

maxT
Maximum length of the unit time intervals in the

dataset
iBS Index block size (number of entries) per index page
dBS Data block size (number of entries) per data page

The number of index accesses is composed of a fixed cost and a variable cost. The

fix cost comprises the accesses performed to reach the leaf nodes from the index tree

root, which is equal to the tree height. The height of a B+-tree is equal to the number of

levels in the tree including the root level. This can be computed based on the number of

index entries and the tree fanout,

 pfan
f
p NIA log= (3.4)

25

A typical value for f
pIA is 3 when 100≈fan and the number of index entries is in the

millions of tuples. The variable index cost reflects the number of pages with leaf nodes

that overlap with tQ . Similar to pPA , it can be shown that ,

pt
i

pv
p TQ

BS

N
IA ρ×+×=)(max

(3.5)

From Formulas (3.1), (3.3), (3.4) and (3.5) the following can be obtained:

 ∑
∩









+++=

s
Qp di

ptppQ BSBS
TQNNDA)

11
()(log max ρ

For the sake of simplicity, we consider that tQ is implicitly enlarged with maxT in the

following. The final formula for the number of disk accesses is,

 ∑
∩









+⋅⋅+=

s
Qp di

ptppQ BSBS
QNNDA)

11
(log ρ

(3.6)

 One advantage of PARINET is that it allows a simple estimation of the disk

accesses for a given query load, based on some statistics on the indexed data. This

estimation can be used to automatically tune the index for a better performance. In short,

the average area of network partitions can be modified by changing the total number of

partitions n . Intuitively, given a query of a certain size, the number of disk accesses

needed to answer the query will decrease with the partition size, because less false

positives will be examined. However, increasing the number of partitions after a certain

point will result in a performance loss. This is due to the fact that more partitions need to

be considered, which increases the fixed index physical accesses and query overhead.

26

3.3.3 Using Graph Partitioning

Assuming that the above cost model is accurate, the performance of the PARINET for a

given configuration can be estimated without effectively constructing the index.

Therefore, some of the possible configurations can be tested and the best one can be

materialize with respect to the cost model. A possible index configuration corresponds to

a network partitioning into a given number of parts that respects some given constraints.

 Graph partitioning is an important problem that has been extensively studied in

the last decades. The problem is to partition the vertices of a graph in n roughly equal

parts, such that the number of edges connecting vertices in different parts is minimized.

The problem was extended to graphs where each node and each edge can have weights.

Therefore, the resulting partitions can be balanced in term of node weights instead of

number of nodes, for example. The graph partitioning problem is NP-complete. However,

many algorithms have been developed to find high quality partitions extremely fast based

on specific heuristics. Public implementations are also available, e.g., METIS.

As formulated in Section 3.1, the constraints imposed by PARINET on the

network partitioning, can be entirely satisfied by the graph partitioning algorithms. The

formalization of the approach is the following: given an undirected network graph

E)(V,G = and a dataset D (as described in Section 3.2), we compute the weight

function of the graph roads Ν→E:W . W associates for each road in G the number of

units from D on that road. Let L(G) be the line graph of G . W is a node weight

function of L(G) . Let } P,P,{PP n21 …= be the partitioning of L(G) in n parts, such that

the partitions are contiguous and balanced in terms of total weight. Let

27

}Q ,Q ,{QQ k21L …= be a query load. We define the quality indicator of P over L(G)

as, ∑
=

=
k

i
Q

n
Q iL

DAQI
1

, where
iQDA is computed by formula (3.6).

 The goal is to find the partitioning such that
LQQI is minimal (Algorithm 1 in

Appendix C). The idea is to implement a program that is based on METIS and that

returns the partitions with the best
LQQI by iterating through the possible index

configurations. METIS takes as input a weighted node graph and a number m of parts

(line 5 in Algorithm 1). It partitions the input graph in m parts such that the partitions are

fairly balanced and contiguous (although this is not guaranteed, non-contiguous portions

are exceptions), which is conform to our demands for the partitioning of the road network

(cf. Observation 2). By iterating with m from 1 to (E)card , we choose the partitioning

with the best QI for the materialization of the index structure. Notice that our

experimental results showed that a step of 100 for m in the iteration is sufficient because

usually m
QL

QI has small variations with m . Thus, the computation time for the optimal

partitioning takes about one minute on our testing machine, which is negligible compared

to the time necessary for testing several index configurations. For example, it takes

several minutes to index about one million trajectory units. The time required to test the

index performance needs also to be considered. Notice also that the partitioning

algorithm can work with any network granularity, i.e., segment, edge or route (cf.

Definition 3.3), since a graph representation can be built for the road network for each of

the possible network granularities.

28

3.4 T-PARINET and D-PARINET

Trajectory datasets are very dynamic, i.e., characterized by frequent updates. In general,

the updates do not concern the exiting data (although this type of update is possible, it is

less probable), but rather about inserting new (parts of) trajectories to the dataset as time

goes. New data can be added continually either as periodical large batches of updates or

by continuously logging the individual updates coming from tracking a group of moving

objects. Typically, the newer data are also the most recent from a temporal point of view.

 In this context, a good access method should not only offer a good performance in

term of querying the trajectories dataset, but it should also perform efficiently the updates

and should have a robust performance in time. Ideally, an index should be capable of

integrating at a low cost the continuous incoming updates, while allowing to process

queries over the complete dataset. Moreover, the query and update performances of the

index should not degrade in time.

 Clearly, using a single index structure is not an appropriate solution for two main

reasons. First, the performance of most indexes degrades with the size of the dataset. The

query performance of the R-tree (frequently used in this context) degrades with the

number of indexed entries due to an increase in the number of overlapping MBBs. Also,

any tree-like index will continue to grow with the number of index entries. Although the

increase in the tree height is logarithmic this aspect can not be neglected in the case of

virtually infinite datasets such as trajectory datasets. Second, as indicated in the previous

section, trajectory data are inherently divers in space and time. An index structure such as

PARINET can balance the spatio-temporal diversity by choosing the best configuration

for a given dataset, i.e., for a dataset corresponding to a time interval. However, the

29

spatial distribution of the data can change between the observed time periods. Therefore,

different index configurations are near-optimal for different periods of time.

 In order to achieve near-optimal index performance for different periods of time

Temporal PARINET (T-PARINET) is designed to continuously index the trajectories of

in-network moving objects. Given a road network, T-PARINET periodically creates a

new PARINET index that will span over a certain temporal window. The structure of the

new index is determined based on an expected spatial distribution of the data and an

expected query size by using an extended PARINET cost model. The construction of a

new index is triggered based on two parameters that are continuously monitored, i.e., the

current index degradation (due to the difference between the expected and the real data

distribution and query size) and the expected degradation (due to an increase in the index

height as the data accumulate).

 D-PARINET follows the same strategy as T-PARINET for indexing continuous

trajectory updates but while T-PARINET manages past and future data, D-PARINET

takes a different approach to index present and future data and hence supports predictive

queries for near-future time period.

3.5 D-PARINET Structure and Operations

D-PARINET uses the same structure as T-PARINET index with a component index for a

current to near-future time interval. T-PARINET indices are associated with different

time intervals covering the index lifespan from 0t , corresponding to the oldest data in the

trajectory dataset, to the current time (ct).Each component index PARINETi is associated

to a time interval [)i1-ii t,tT = . The time intervals partition the lifespan [)c0 t,t of the

30

global index. The time intervals of the component indexes are disjoint. A Time

Partitioning table (TP) has one entry for each component index, which contains the

corresponding lifespan and a pointer to the index.

 D-PARINET uses the same current index component for managing current and

interpolated future trajectory data for prediction purpose with a lifespan [tc, tc+δ). Where

the δ represents the time window in future over which the current trajectory data is

interpolated.

3.5.1 Search Algorithm

Given a spatio-temporal range query)Q,(QQ ts= , where }rs ,rs ,{rsQ n21s …=

and []est t,tQ = , the query processing for D-PARINET will be same as T-PARINET.

3.5.2 Index Evolution in Time

Given a dataflow of moving object updates t)pos,rid,(moid, in a road network, we can

build a D-PARINET to index the current and future trajectory data following the same

structure used in T-PARINET current index component. At time tc the structure of the

index is initialized with an empty PARINET. The structure of a PARINET index is

Figure 3.2 Example of a T-PARINET Index Structure

31

determined based on the distribution (i.e., the temporal density of trajectories on each

road) of the trajectory dataset that needs to be indexed and expected query load. In the

case of continuous indexing a dataflow of trajectories the data (distribution) is not exactly

known in advance. Hence, the structure of a new component index in D-PARINET will

be computed based on an expected distribution of the data.

 There are several ways of anticipating the spatio-temporal distribution of the data.

For example, this can be based on statistics of the traffic from previous observations in

the road network. For the I-80 highway loop detector data, it fits the Poisson model. If

this type of information is not available, one could consider, for instance, a uniform

trajectory distribution (although more elaborated models could be easily devised) for the

index. Then, as the time passes and new component indexes are instantiated, the past

distribution of the data from old indices can be used to foresee a possible future trajectory

distribution in D-PARINET. Nonetheless, the index should be robust w.r.t. both the data

distribution and the query size.

3.5.3 Optimizing Update Operations

Given a D-PARINET structure that continuously stores and indexes a flow of trajectory

updates, only the current index in the structure is modified by the updates. The current

index, which is a PARINET index, consists in a forest of B+-trees over clusters of

trajectory units. The trajectory units in each cluster need to be kept sorted on the units’

time interval []2, tt1 to ensure an optimal query performance of the index. This constraint

is easy to preserve since the updates are inherently chronologically ordered. However, an

in-memory buffer that stores all the updates in the time interval [)cmaxc t,T-t is needed to

be certain that the new trajectory units are inserted sorted on the units’ time interval. The

32

reason is that the time intervals can have different lengths, but insertions occur once 2t is

known.

 In the context of adding intensively and continuously new trajectory units to the

indexed dataset, the cost of the insert operation becomes crucial for the index throughput.

Moreover, the robustness of the index with regard to the insert operation is also

important. PARINET is based on the B+-tree index. This type of approach has an

important advantage over the existing methods that are based on the R-tree index. The

index operations in a B+-tree (e.g., search, insertion, and deletion) can be performed more

efficiently than in an R-tree. The difference in performance between the two structures is

even more significant in a concurrent environment. This represents an essential aspect for

real-time applications, where frequent queries and updates arrive simultaneously.

Moreover, in our context the insert operation can be performed even more efficiently,

since the new data can be directly appended to the existing data, i.e., the index is

expanding only to the right as seen on the time axis.

 Although it is expected that PARINET would offer a good performance w.r.t. the

cost of the insert operation, some simple optimizations, yet having potentially an

important impact on the update cost, can still be considered in this context. Recall that

PARINET partitions the dataset over a number of clusters (corresponding to network

regions) that are each indexed with a B+-tree. In the case of a non-partitioned index, the

buffered data page is copied to disk at the cost of one I/O operation and then the index is

updated at the cost of one or several I/O operations. On the other hand, since the index is

partitioned in our case, the buffered updates will generally fall in different partitions.

Therefore, one page of buffered updates will require several disk accesses to copy to disk,

33

i.e., equal to the number of involved partitions. Moreover, all the local indexes in the

affected partitions need to be updated, increasing even more the insertion cost.

 Hence, the partitioning used by PARINET, which greatly improves the query

performance in a static environment, can have a reverse effect on the insertion operations.

This shortcoming can be easily avoided. Instead of buffering the updates page-wise, i.e.,

gathering one page of updates before copying to secondary storage, one could use a

partition-wise buffering, i.e., one in-memory data page for each partition. A simple in-

memory hash structure having one package (e.g., of a disk page size) for each partition

can be used. The updates are committed to disk only when a package overflow occurs.

The insertion of the trajectory units in a package will only affect one partition, thus

minimizing the operation cost.

3.5.4 D-PARINET Cost Model

In this section the cost model of PARINET is revisited in the context of D-PARINET.

We define the constraints and the parameters needed by D-PARINET for an on-line

tuning of the evolution of the index structure in time. The main idea is that the

construction of a new component index is triggered whenever the degradation of the

current index exceeds a certain defined limit. T-PARINET cost model considers this and

we adopt that model for D-PARINET. However, in case of D-PARINET the time interval

covered by each component index should also be able to provide a good query results in

terms of prediction quality.

 Given a spatio-temporal query)Q,(QQ ts= over a D-PARINET index and

assuming that the query time interval []est ttQ ,= is inside the lifespan of a component

index PARINETi, the number of disk accesses needed to answer this query is:

34

 ∑ ∫
∩














⋅++=

s
Qp

e

s

t

t

i
p

di
t

i
p

i
pQ dtt

BSBS
QNNDA)()

11
(log ρ

(3.7)

i
pN and i

pρ have the same significance as pN and pρ are measured relatively to the

component index PARINETi.

 Assuming that the temporal interval of a query can be situated with equal

probability at any instant within the lifespan of the D-PARINET, we can use an average

temporal data distribution instead of the local temporal distribution)(ti
pρ . The average

temporal distribution is
ii

t

t

i
p

i
p TT

dtt
i

i 1
)(

~ 1 =

⋅

=
∫
−

ρ

ρ , where 1−−= iii ttT is the lifespan of the

local index. This assumption does not limit the generality of the cost model. In the case of

non-uniform temporal distribution of the queries, i
pρ~ can be estimated based on the

specific distributions. Then, Formula (3.7) can be rewritten as follows

 ∑
∩












++=

sQp i

t

di

i
p

i
pQ T

Q

BSBS
NNDA)

11
(log

(3.8)

where set ttQ −=

To simplify the formulas, we use the notation
i

t

di

i
p

Q
p T

Q

BSBS
Nt)

11
(+=σ representing the

(average) temporal selectivity of a query in a partition. Using this notation the number of

disk accesses for given a query is  ()∑
∩

+=

s
Qp

tQ
p

i
pQ NDA σlog . Also, given a query load

}Q ,Q ,{QQ k21L …= the quality indicator of PARINETi is ∑
=

=
k

j

i
Q

i
Q jL

DAQI
1

 .

35

 D-PARINET uses the following parameter definitions that measure the quality of

a component index PARINETi in a T-PARINET.

Definition 5.1 The global cumulated degradation of a component index PARINETi w.r.t.

a query load LQ is defined as:
optimal-i

Q

optimal-i
Q

i
Qi

Q

L

LL

L QI

QIQI
GCD

−
= , where optimal-i

QL
QI represents the

quality indicator of the optimal configuration of PARINETi w.r.t. the cost model.

Definition 5.2 The local cumulated degradation of a component index PARINETi w.r.t.

a query load LQ is defined as:
)

))
optimal-i

Q

optimal-i
Q

i
Qi

Q

L

LL

L stdev(DA

stdev(DAstdev(DA
LCD

−
= , where

∑
=

−⋅=
k

j

i
Q

i
Q

i
Q LjL

DADA
k

stdev(DA
1

2)(
1

) and
k

DA

DA

k

j

i
Q

i
Q

j

L

∑
== 1 .

Definition 5.3 The load factor of a component index PARINETi having m partitions is

defined as:
 h

m

j

i
j

i

fanm

N

LF ~
1

⋅
=
∑

= , where fan is the fanout of the B+-trees indexes and

 

m

N

h

m

j

i
j∑

== 1

log
~ is the average height of the trees.

 The defined parameters indicate the expected degradation of an index (e.g., the

index of the future trajectories or a set of future indices). GCD measures the percentage

of query performance loss of an index compared with the optimal index configuration

w.r.t. the cost model. This parameter offers a global view of the performance loss, since it

considers the aggregated cost over the query load. LCD is a parameter intended to

measure the unbalance in the query cost across the indexed data space. Recall that

PARINET partitions the data into several clusters that are balanced w.r.t. the amount of

36

data in each cluster. Due to the difference between the expected and the real distribution

of the data, the partition weights can be unbalanced. LCD indicates a local degradation,

since it measures the unbalance in the query cost.

 The first two parameters measure a degradation that is already presented in the

index. LF indicates an imminent degradation of the current index. A drop in the query

performance is also caused by an increase in the tree height of the B+-trees since the data

continuously accumulate. When LF approaches 1, the average height of the B+-trees is

expected to augment to include the new entries. This will lead to an increase in the query

cost. However, the overhead can be avoided by an earlier “closing” of the index and

triggering the creation of a new index.

 In addition to monitoring these parameters, the construction of a new component

index in a D-PARINET can be automatically triggered whenever they exceed certain

predefined threshold values of prediction window. Assuming the maximum time interval

of the queries max
tQ , the lifespan of a D-PARINET index should verify the following

inequality in order to have searchable temporal predicates in the queries.

i

di
ti BS

BSBS
QT

+
⋅> max

 Each partition in a PARINET index uses a B+-tree to index the temporal

dimension of the data. The query optimizer will make use of these indexes only if the

estimated number of disk accesses for an index based search is lower than the number of

disk accesses in a full partition data scan. Therefore, building a B+-tree index in each

partition is useful only if,  
d

i
p

i

t

di

i
p

i
p BS

N

T

Q

BSBS
NN <++)

11
(log . Since  

d

i
pi

p BS

N
N <<log , the

above inequality leads to above formula.

37

 Assuming the maximum time interval of the queries max
tQ , the creation of a new

component index indicated by the load factor of the current index is beneficial only if the

lifespan of the current index verifies the following inequality:
hQT ti
~max ⋅>

, where h
~

 is

computed by
 

m

N
h

m

j

i
j∑

== 1

log
~

.

Considering the component index PARINETi in Figure 3.4, which has the lifespan

iT , at time it , iLF is close to 1 indicating thus an imminent increase in the average index

height. Therefore, a new component index is built for the data arriving after it . To keep

the formulas tractable, we consider that PARINETi+1 has the same configuration as

PARINETi. Creating a new index will keep the cost of the queries situated in the interval

iT from augmenting, except for the queries having tQ overlapped with it . For these

queries the cost will increase since we need to visit two PARINET indices to evaluate

them. Globally, this is not too penalizing if the percentage of queries in iT that intersect

it is low. This percentage can be estimated as
i

t

T

Q
, conform with the temporal uniformity

assumption considered earlier. Hence, the average cost of a query in iT is equal to

Figure 3.4 Component Index PARINETi

38

∑
∩












++=

s
Qp

tQ
p

i

t
Q h

T

Q
DA σ

~
)1(. This is the cost of traversing the index is increased with

the probability that a query overlaps two indexes.

 Another option would be to continue indexing the data arriving after iT with the

same index regardless of the increase of the average index height. In this case the average

cost of a query is ∑
∩

+=

sQp

tQ
pQ hDA)

~
(1

1 σ , where 1
~~

1 += hh . It is then beneficial to create a

new index at it only if 1
~

<h
T

Q

i

t .

3.5.5 Temporal Partitioning Algorithm

In the previous section, the cost model of PARINET and T-PARINET is adopted in the

context of D-PARINET, i.e., for continuously indexing future trajectory datasets. The

minimum lifespan of a index in D-PARINET based on the maximum expected query

time interval and the maximum lifespan of the index depends on the prediction quality

degradation factor. In addition, we used some quality factors, i.e., GCD , LCD and LF , to

measure the performance of a component index. By simply monitoring the evolution in

time of these parameters in the current index of a D-PARINET, an on-line tuning process

can automatically decide when is an appropriate moment to trigger the construction of a

new current index. Note that these parameters only take into account the query cost since

the updates can be performed at approximately constant cost regardless of the index

configuration. Also, the instantiation of a new component index is considered to have a

small cost and is neglected.

39

 The on-line tuning process of T-PARINET is based on a simple algorithm

(Algorithm 2 in APENDIX C) which can be extended for D-PARINET. The process

computes and continuously updates a few global statistics on the current index. Then, it

verifies based on these statistics if the index quality indicators are situated within some

predefined limits. A new (component) index is created when one of the parameters

exceeds a threshold value. The configuration of the new index is determined based on an

expected data distribution and density for that timespan. Note that the creation of a new

component index can be triggered only if the lifespan of the current index is greater than

a predefined value based on prediction quality factor. Afterwards, the tuning process

continues monitoring the new index in D-PARINET.

 Given a component index PARINETi, iStat includes the following information on

the index structure: the current number of trajectory units for each road and the total

current number of trajectory units in each partition of PARINETi. This is sufficient to

compute iGCD , iLCD and iLF .

 Note that the tuning process used here, can be improved in certain cases. For

instance, if good prediction models for the traffic are available, an important change in

the distribution and the density of the data flow can be foreseen and the construction of a

new current index can be triggered in advance, i.e., without having to wait for a

degradation of the current index.

40

CHAPTER 4

MODELING VEHICLE DISTRIBUTION ON ROUTE

4.1 Data Gathering

We have collected data from State of New Jersey Department of Transportation. NJDOT

monitors more than 3000 sites for continuous traffic count data recorded at hourly for 24

hours. For our work, we have selected Route I-80 as it is a busy urban freeway and data

were available for most of the stations. We can safely assume that any change between

two stations on a freeway can only happen at the exits between the stations. We use

available freeway map and station’s longitude, latitude to identify the exits. Whenever

there is more than one exit between two stations, we consider them as one and assume

them to be equally likely for a vehicle to exit and enter the freeway.

Figure 4.1 Position of selected loop detector stations on Google map

41

We have selected stations A(1-1-31e), B(1-1-29),C(1-1-36) for primary analysis as these

stations are located on I-80 East and have only one exit between two locations and we

can model the change of traffic at that exit.

4.2 Pre-processing of data

The data is recorded hourly and saved in a daily file. Data was processed for the year

2009 and inserted the data into an oracle database for the ease of analysis. This was a

time consuming process as the format of data was not 100% consistent for each station.

For learning purpose, weekday’s morning from 5:00 AM to evening 8:00PM is

considered because this is the time window when the roads are busy and the traffic

reflects changes due to daily commute to work. Hourly count data is processed for the

three selected stations and plotted the average hourly count.

Figure 4.2 Vehicle count data at three sites on I-80

Sometimes the sensors at these stations were not in working conditions with zero counts

which is very unlikely at the selected time of the day. Available data is interpolated in

order to avoid undesired skew in the data.

42

Table 4.1 Change between two sites during the day

Time Site Change at Site Change at Site
1-1-031 Exit 37 1-1-029 Exit 38 1-1-036

5:00 3876 -589 3287 200 3487
6:00 5805 -9 5796 -302 5494
7:00 5613 400 6013 -637 5376
8:00 5293 593 5886 -837 5049
9:00 4549 453 5002 -720 4282
10:00 4044 67 4111 -419 3692
11:00 4063 156 4219 -603 3616
12:00 4101 270 4371 -757 3614
13:00 4181 189 4370 -715 3655
14:00 4313 91 4404 -646 3758
15:00 4516 430 4946 -915 4031
16:00 4596 770 5366 -1261 4105
17:00 4509 564 5073 -996 4077
18:00 3804 159 3963 -547 3416
19:00 3002 -63 2939 -268 2671
20:00 2527 -64 2463 -249 2214

Source: Calculated from Hourly Freeway loop Detector Data, NJDOT

4.3 Average Vehicle Speed Data

We also collected the monthly and yearly average speed data by vehicle type from

NJDOT at loop detector stations for demand modeling in SUMO which is explained later

in Chapter 5 in detail.

4.4 Modeling the data

4.4.1 Homogeneous Poisson Process

Let N(t), for t ∈ {1, . . . , T}, be the observed count at time t for any of the time-

dependent counting processes, such as the freeway traffic one hour aggregate count

process. The most common probabilistic model for count data is the Poisson distribution,

whose probability mass function is given by P(N; λ) = e−λλN/N! and N = 0, 1,2,3 etc.

43

where λ represents the rate, or average number of occurrences in a fixed time interval.

When λ is a function of time, i.e. λ(t), (1) becomes a non-homogeneous Poisson

distribution, in which the degree of heterogeneity depends on the function λ(t).Given that

the observations at different stations are Poisson, we can easily estimate the λ of a time in

a day by averaging the observed count at each station, which will give the maximum

likelihood estimate. The following figure shows the vehicle count data when fitted into a

Poisson distribution.

Figure 4.3 Poisson Fit of vehicle count data

4.4.2 Baseline Model and Limitation

If the modeling of N(t)L1 is derived from Alexander Ihler, Jon Hutchins & Padhraic

Smyth(2006) where λ(t) is decomposed into day and time factor to represent the

periodical nature of the data in their paper Learning to Detect Events with Markov-

Modulated Poisson Processes , who used the same highway loop sensor data for

modeling existence of events in the traffic. Proposed Poisson coefficient,

λ(t) = λ0 δd(t) ηd(t),h(t)

44

where d(t) takes on values {1, . . . , 7} and indicates the day on which time t falls (so

that Sunday = 1, Monday = 2, and so forth), and h(t) indicates the interval (one hour) in

which time t falls. We can ensure that the values λ0, δ, and η are easily interpretable. λ0 is

the average rate of the Poisson process over a full week, δj is the day effect, or the

relative change for day j (so that, for example, Sundays have a lower rate than Mondays),

and ηj,i is the relative change in time period i given day j (the time of day effect).While,

implementing this non-homogeneous Poisson process for modeling the route and vehicle

distribution in SUMO would result in more accurate prediction, it requires substantial

customization in SUMO’s source code. In reality, the poissonfit vehicle count data shows

at most 10% deviation from the observed count on average.

45

CHAPTER 5

TRAFFIC SIMULATION MODEL IN SUMO

5.1 Traffic Model in SUMO

 SUMO is a microscopic, space continuous and time discrete traffic simulation. In traffic

research three or four classes of models are distinguished according to the level of detail

of the simulation. In ‘Macroscopic’ models traffic flow is the basic entity, vehicle density

and average speed is considered for modeling. ‘Microscopic’ models, simulate the

movement of every single vehicle on the street – mostly assuming that the behavior of the

vehicle depends on both, the vehicle‘s physical abilities to move and the driver‘s

controlling behavior (Krauß 1998; Janz 1998). ‘Mesoscopic’ models, also sometimes

called ‘nanomodels’ regard single vehicles like microscopic simulations, but submodels

are included, that describe the engine‘s rotation speed in relation to the vehicle‘s speed or

the driver‘s preferred gear switching actions, for instance. This allows more detailed

computations of the emissions produced by the vehicle compared to a simple microscopic

simulation (Diekamp 1995; Schreckenberg and Wolf 1998; Helbig et al. 2001). However,

submicroscopic models require large computation times. This restrains the size of the

networks to be simulated.

We used SUMO to simulate the traffic flow on a section of New Jersey I-80

freeway. We use the hourly average vehicle count and average velocity measured at loop

detector sites on I-80 and the data is provided by NJDOT.

46

5.1.1 SUMO Model and Its Application on Freeway Data

SUMO is a multi-modal i.e. it not only simulates cars, but also simulates other

form of transportation including commercial vehicles. The traffic flow is simulated

microscopically. This means, that every vehicle that moves within the simulated network

is modeled individually and has a certain place and speed. In every time step which has

duration of 1sec by default but can be configured as needed, vehicle speed and position is

calculated based on the following well known models.

1. Car following model

2. Lane change model

The simulation of street vehicles is time-discrete and space-continuous. As our car-driver

model is continuous - as the majority of car-driver models are - we decided to use this

approach. When simulating traffic, the street attributes, such as maximum velocity and

right of way rules are regarded.

5.1.2 Classical Car Following Model

Positions and velocities of all vehicles are denoted by xi and vi respectively, where the

index i rises in downstream direction. Deriving a car following theory can obviously

always start from the quite reasonable assumption that a change of the velocity is only

performed, if the momentary velocity does not coincide with some desired velocity Vdes,

which is determined by safety considerations, legal restrictions and so on. The simplest

dynamics that describes how a driver tries to approach the desired velocity is that of a

relaxation on some time scale τ :

47

dvi(t) = Vdes − vi

 dt τ

_Virtually all car following theories can be traced back to this simple idea.

Usually, however, this dynamical relation is not interpreted as a relaxation process, but as

a stimulus.

5.1.3 Lane Changes

The topic of lane changes has been addressed much less in the literature than that of car–

following. Sparmann performed a partly empirical and partly theoretical analysis of lane

changing on two–lane–freeways, while Leutzbach and Busch performed this kind of

analysis for three–lane freeways. A model for the structure of lane–changing decisions in

urban driving situations, where traffic signals, obstructions and heavy vehicles all exert

an influence, has been developed by Gipps. The generalization of the minimalistic rules

used in cellular automaton models to multilane traffic was done by Latour, Rickert et al.,

Wagner et al., and Chowdhury et al.

5.1.4 Using a Probabilistic Data Distribution Model in SUMO

To the best knowledge of this thesis writer, presently a custom data distribution model

cannot be fed into SUMO directly. But in can be integrated indirectly in the demand

modeling step. For example, it is explained in chapter 4 that the highway vehicle count

data follows Poisson distribution model but this information cannot be fed into SUMO

directly while creating the demand. This has been identified as a potential area of future

work.

48

CHAPTER 6

EXPERIMENTAL DETAILS

6.1 SUMO features

In the current version – 0.12.3 – SUMO contains the following features including

network generation and routes import, demand modeling and simulation.

6.1.1 Simulation

Using available custom parameter while running a simulation on SUMO, it can ensure

and provide

1. Collision free vehicle movement

2. Different vehicle types

3. Multi-lane streets with lane changing

4. Junction-based right-of-way rules

5. Hierarchy of junction types

6. A fast openGL graphical user interface

7. Manages networks with several edges (streets)

8. Fast execution speed (up to 100.000 vehicle updates/s on a 1GHz machine)

9. Interoperability with other application on run time using TraCI

10. Network-wide, edge-based, vehicle-based, and detector-based outputs

49

6.1.2 Network

SUMO supports importing different network file (node, edge and connection) from

different sources and can determine missing values as needed for simulation using

heuristics. Many network formats (VISUM, Vissim, Shapefiles, OSM, Tiger, RoboCup,

XML-Descriptions) may be imported.

6.1.3 Routing

While SUMO does not store vehicle history, i.e the vehicle is unique in every simulation.

SUMO supports

1. Microscopic routes - each vehicle has an own routes. One can assign probabilistic

distribution for each route a vehicle can use.

2. Demand modeling – It has two steps, first estimating the traffic demand and then

estimating the dynamic user equilibrium.

6.2 SUMO network

6.2.1 Generating network diagram from map

The location information (latitude, longitude) is extracted for the selected loop detector

sites .Three sites were selected on east bound freeway and there is only one exit in

between every two sites. We selected these three sites so that we can easily estimate the

exit and entry through on-ramp and off-ramp edges, when required. We used the open

Street Map rest API (http://api.openstreetmap.org/api/0.6/map?bbox=-

74.52681753,40.91096134, -74.48420668,40.89237314) to generate the network

diagram as shown below in osm format. As the network generated for the given latitude-

http://api.openstreetmap.org/api/0.6/map?bbox=-74.52681753%2C40.91096134%2C%20-74.48420668%2C40.89237314
http://api.openstreetmap.org/api/0.6/map?bbox=-74.52681753%2C40.91096134%2C%20-74.48420668%2C40.89237314

50

longitude box boundary included local street information, another third party program

“Osmosis” is used to extract only the freeway graph from the network in xml format.

Figure 6.1 Network diagram of I-80 selected area

6.2.2 Create SUMO compatible network

SUMO provides a command line tool called NETCONVERT which is capable of using

osm format network and converting into SUMO format. A full list of command line

parameters used for our case is given in Apendix1.

In graph theory, a flow network is a directed graph where each edge has a

capacity and each edge receives a flow. The amount of flow on an edge cannot exceed

the capacity of the edge. Often in Operations Research, a directed graph is called a

network, the vertices are called nodes and the edges are called arcs. A flow must satisfy

the restriction that the amount of flow into a node equals the amount of flow out of it,

except when it is a source, which has more outgoing flow, or sink, which has more

incoming flow. A network can be used to model traffic in a road system, fluids in pipes,

currents in an electrical circuit, or anything similar in which something travels through a

network of nodes. G(V,E) is a finite directed graph in which every edge (u,v)ε E has a

non-negative, real-valued capacity c (u,v). If (u,v) NOT ε E, it is assumed that c (u,v) = 0.

http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Edge_%28graph_theory%29

51

Two vertices are identified , a source, which "produces" flow, s and a sink, which

"consumes" flow, t. e As the data on a multi-lane freeway is simulated , SUMO defines

lanes inside an edge.The output is generated as XML file, so it is both human and

machine readable.

6.3 Route Generation for I-80 Highway

Beside the static part – the network – the simulation consists of moving vehicles. With

the increase of the quality of simulations, the need to model a populations’ mobility has

increased as well. In such cases, vehicles are not spread statistically over the network;

instead a single person’s daily plan consisting of routes with certain departure times is

used. While data needed to describe the departure times and a route’s origin and

destination are given, the routes themselves must be computed. To avoid online-

computation of these during the simulation, this computation is done using a separate

module, the SUMO-ROUTER. This module reads the departure times, origins and

destinations for a set of virtual humans that will be simulated, then computes the routes

through the network itself using the well-known Dijkstra routing algorithm (Dijkstra

1959). As the speed on the streets changes with the traffic amount and therefore the

computation of routes using a network where the traffic is not yet known does not regard

the real-world situation, the routing will be done using the Dynamic User Equilibrium

approach developed by Christian Gawron (Gawron 1998) where routing and simulation

are repeated several times to achieve a real-world behavior of drivers. Furthermore, the

router supports dynamic network load, the fact that the load on a edge depends on the

time of day is also regarded. In order to estimate the demand of traffic i.e. route/flow/trip

52

generation, we followed two different procedures for two different datasets. The first one

was for I-80 highway vehicle count data; we fed the simulator with the hourly averaged

data for a given site from a loop detector. The second one was to use a cities demographic

data to generate the daily demand. Here, we did not have access to real life data but used

Wikipedia to create a realistic demand. This step is done offline and very time consuming

depending on the network size. This activity data is used to create the vehicle and route

distribution.

6.4 Simulation Output

Simulation is run using the network configuration, routing configuration and loop

detector configuration files. A schematic view of the workflow is given in the appendix.

SUMO provides various options for generating output from the simulation; we

created a dump output file which gives us the complete network state at every time

period. Time period is configurable with a default value of 1 sec. The next output is

created with vehicle state giving us each vehicle’s position by time period. These outputs

were parsed to insert the data into oracle database and indexed for future queries.

53

Figure 6.2 A schematic diagram of simulation experiment steps

54

CHAPTER 7

D-PARINET

7.1 Continuous Indexing of Incoming Trajectory Data

PARINET can be used to index historical datasets. In this case, the data are known in

advance. Therefore, PARINET can be automatically tuned for near-optimal performance

given a dataset and an expected query load. However, even if the data is historical, it does

not mean that the queries are known in advance. Moreover, the queries at a given time

may differ a lot (different users may pose totally different queries), and the queries may

change across time (during the day or week or month). In such cases, the index itself

should be able to handle very different queries at the same time and should be able to

adapt to changes over time. We are interested in a robust index structures whose

performance that does not degrade much with reasonable variations between the expected

and actual query sizes.

 The extended version of PARINET, i.e., T-PARINET, is intended to efficiently

and continuously index trajectory data flows for querying history data. The concept of T-

PARINET is used to build D-PARINET with interpolated future trajectories in order to

answer predictive queries.

7.2 D-PARINET Cost model

In Section 3.3.2, we presented a cost model that estimates the number of disk accesses for

a query load and a given index configuration. The tests show that the execution time of a

query usually depends on the number of disk accesses. Therefore, the cost model can

55

estimate the performance of our access method for a given configuration, without

effectively constructing the index. This is very important considering that the index

creation is costly, i.e., it is not an option to actually test all the possible configurations in

order to choose the best one. If the cost model is accurate, we can automatically find and

materialize a good configuration among all the possible ones. Moreover, the cost model

can be further employed in the context of continuously indexing MOs trajectories in

order to optimize the index evolution in time. In this case, its role is to permit monitoring

the efficiency of the current index and to compare it with a near-optimal index

configuration.

 In this section, we experimentally evaluate the proposed cost model. We also

calculated the number of disk accesses as defined in Section 3.3.2. Practically, we

implemented a program that takes as input the network graph with the data distribution

for each road, a query load and a number of partitions, and outputs an estimated number

of disk accesses. We consider a uniform temporal distribution of the data, which is a

good approximation for the generated datasets. For non uniform data distribution, the real

temporal distribution must be used in order to obtain a good estimation of disk accesses.

 Another observation is that the cost model is more accurate for the larger datasets

and also offers good estimations for the smaller datasets when the number of partitions is

smaller or equal to 200. The reason the cost model is less accurate for small datasets and

large number of partitions lays in the way the data partitioning is implemented under the

Oracle Server. Each partition of a partitioned table has allocated a minimum of eight data

pages regardless of the amount of data in that partition. For small datasets distributed

over a large number of partitions, the partitions become under-occupied, i.e., they contain

56

less than eight pages of data. This will lead to an increase in the number of disk accesses

to answer a query. The cost model can be easily adapted to take into account this specific

case. Nevertheless, for the sake of generality, we used the cost model as initially

proposed in Section 3.3.2.

 In conclusion, the experiments show that the cost model is good enough to be

used for tuning the PARINET index. Two types of queries are tested, 2D and path. For

each type of query and for each map, three scripts are generated, each script containing

queries of fixed size. For the 2D queries, a 2D square window is a randomly generated

over a time interval. The intervals have the same relative size in all the dimensions. Then,

the query is transformed and the final script is generated. For the path queries, some

trajectories are randomly selected from the dataset and used to generate the spatial

interval of the queries. A smaller spatial window is chosen due to the large number of

roads in a network. The temporal interval is randomly chosen within the temporal interval

of the dataset.

 For a given query set, dataset and index configuration, the average time per query

and the average number of disk accesses per query are measured. Similarly, given a large

batch of updates that need to be executed, the average time and the average number of

I/Os per one thousand processed updates are measured. The default page size in Oracle,

i.e., 8KB is used. The resulted fan-out is 340 for the B+-tree index. Oracle logically

implements the R-tree as a tree and physically using tables inside the database. Hence,

the fanout does not depend on the page size. Oracle uses a LRU buffer cache. The size of

the buffer cache is set to 32MB, which allows for good performances of the tested

indexes (e.g., the minimum allowed size of the buffer cache under Oracle 11g is 8MB).

57

In all the tests that measure the query performance, the cache is emptied between each

query run to limit the influence of the cache on query processing evaluations. In the tests

that measure the update performance the buffer cache is cleared and commit changes

were done after each 32 thousand processed updates. There is no intervention on the

cache memory for the tests that measure the index throughput.

 Due to incompatibility of SUMO format and METIS required format, the data is

from SUMO is hand crafted to fit the previously created partition used by PARINET and

T-PARINET.

7.3 Prediction using D-PARINET

The projected data for I-80 highway simulated in SUMO is compared with the observed

data available from loop detector. We initialized SUMO with the hourly average count

data and run the simulation for five minutes for every hour in a day starting 5 AM to

8PM. Then the data is interpolated refor the 24 hour span and fed into D-PARINET. In

this case, the index structure is built in advance based on anticipated values for the data

distribution and data density and the query size. Hence, the index should feature good

robustness with the combined variation of both the data size and the query size. Clearly

the prediction performance could be better if we could configure the simulation model

based on history.

58

Figure 7.3 Prediction using simulated data

7.4 Conclusion and Future Work

While processing a big and complex network for city of Oldenburg with more than 10000

nodes and more than 31000 segments, building the partition based on data distribution

become a challenge. The network data is created in SUMO compatible format and the

partitioning software METIS expects a completely different format which requires huge

amount of programming and testing time. Also the simulation software SUMO does not

remember the vehicle id, a new vehicle is simulated. This prevents us interpolating

data/route for a single vehicle without changing the source code for SUMO. Also, the

distribution is used in SUMO is not configurable, which is a big factor in the prediction

quality. These issues have not been addressed until now but it is under-work in-order to

use large amount of synthetic data effectively to prove the robustness of proposed

indexing method for D-PARINET. In addition to that, a more detail and thorough testing

is required for D-PARINET for the SUMO generated data.

59

APPENDIX A

EXAMPLE CODE SNIPPET FOR GRAPH PARTITIONAING INPUT FILE

We tried to use available open source softwares for creating network, demand modeling,

activity generation and graph partitioning as much as we can rather than building them

from scratch. These softwares often require input in different formats and we wrote

custom java program to create input files and parse output. The work was not trivial and

we plan to use this as a base for developing parsing software in future.

Figure A.1 An example code for parsing city network data into SUMO format

60

APPENDIX B

DEMAND MODELING IN SUMO

Here’s the sample activity statistics input for demand modeling and route generation

Figure A.2 An example demand modeling for Oldenburg city

61

APPENDIX C

ALGORITHM

Here are the algorithms used for road partitioning an index tuning of D-PARINET.

Algorithm 1: Determining index partitioning

Input: Network graph E)(V,G = , trajectory dataset D , query load }Q ,Q ,{QQ k21L …=

Output: Road Partitioning function { }p1,2,...,E:RP →

1. Compute Ν→E:W given G and D
2. Compute L(G) of G

3. ∞=optimal
QL

QI

4. for 1m = to (E)card do

5.)),((mGLMETISRPm ←

6. ∑

=

=
k

i

m
Q

m
Q iL

DAQI
1

7. if m
Q

optimal
Q LL

QIQI > then

8. mRPRP ←

9. m
Q

optimal
Q LL

QIQI =

10 return RP

Figure A.3 Determine Index Partitioning

Algorithm 2: D-PARINET On-line Tuning(Adopted from T-PARINET)
Input: Road Partitioning function iRP of the current index PARINETi, global statistics iStat of

PARINETi, query load }Q ,{QQ k1L …= and max
tQ , thresholds thGCD , thLCD

1. current index ici =
2. while true
3. update ciStat

4. if (tc+δ - tc) > 2 max
tQ then

5.

if thci
Qci GCDGCDStat

L
>.

or thci
Qci LCDCDLStat

L
>.

or 9.0. >i
ci FLStat then

6. Create new index PARINETi+1
7. Compute 1iStat +

8. current index 1ici +=

Figure A.4 D-PARINET Online Tuning

62

APPENDIX D

INTEROPERABILITY OF VARIOUS SOFTWARES USED

Following figure demonstrates the interoperability problem among the open source
software used in the experiment.

Figure A.5 A schematic diagram of software interoperability

63

REFERENCES

Sandu Popa, I., Zeitouni, K., Oria, V., Barth, D., Vial, S. PARINET: A tunable access
method for in-network trajectories. Proc. ICDE: 177-188 (2010)

Ihler A., Hutchins J. & Smyth P. (2006). Learning to Detect Events with Markov-
Modulated Poisson Processes

Behrisch M., Bonert M., Brockfeld E. Event traffic forecast for metropolitan areas based
on microscopic simulation, Jan 2008

Almeida, V.T. de, Guting, R. Indexing the Trajectories of Moving Objects in Networks.
GeoInformatica 9(1): 30–60 (2005)

Botea, V., Mallett, D., Nascimento, M.A., Sander, J. PIST: An Efficient and Practical
Indexing Technique for Historical Spatio-Temporal Point Data. GeoInformatica
12(2): 143-168 (2008)

Brinkhoff, T. A framework for generating network-based moving objects.
GeoInformatica 6(2): 153-180 (2002)

Chen, S., Ooi, B.C., Tan, K.L., Nascimento, M.A. The ST2B-tree: A Self-Tunable Spatio-
Temporal B+-tree Index for Moving Objects. Proc. ACM SIGMOD, pp. 29–42
(2008)

Frentzos, E. Indexing objects moving on fixed networks. Proc. SSTD, 289–305 (2003)

Garey, M.R., Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-
Completeness, New York (1990)

Güting, R.H., Almeida, V.T. de, Ding, Z. Modeling and Querying Moving Objects in
Networks. VLDB Journal 15(2) 165-190 (2006)

Hadjieleftheriou, M., Kollios, G., Tsotras, J., Gunopulos, D. Indexing spatiotemporal
archives. VLDB Journal 15(2) 143-164 (2006)

Karypis, G., Kumar, V. A Fast and Highly Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp.
359—392 (1999)

Kriegel, H.-P., Pötke, M., Seidl, T. Managing Intervals Efficiently in Object-Relational
Databases. Proc. VLDB (2000)

METIS - Family of Multilevel Partitioning Algorithms. [On-line]. Available:
http://glaros.dtc.umn.edu/gkhome/views/metis

Patel, J.M., Arbor, A., Chen, Y., Chakka, V.P. STRIPES: an efficient index for predicted
trajectories. Proc. ACM SIGMOD 635–646 (2004)

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Popa:Iulian_Sandu.html

64

Pelanis, M., Saltenis, S., Jensen, C.S. Indexing the past, present, and anticipated future
positions of moving objects. ACM Trans. Database Syst. 31(1): 255-298 (2006)

Pfoser, D., Jensen, C.S. Indexing of Network-Constrained Moving Objects. Proc. ACM-
GIS, 25–32 (2003)

Tao, Y., Papadias, D. MV3R-Tree: A spatio-temporal access method for timestamp and
interval queries. Proc. VLDB, pp. 431-440 (2001)

Tao, Y., Papadias, D., Sun, J. The TPR*-tree: an optimized spatio-temporal access
method for predictive queries. Proc. VLDB 790–801 (2003)

Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A. Indexing the positions of
continuously moving objects. Proc. ACM SIGMOD 331–342 (2000)

Sun, J., Papadias, D., Liu, B. Querying about the Past, the Present and the Future in
Spatio-Temporal Databases. Proc. ICDE 202–213 (2004)

Lin, D., Jensen, C.S., Ooi, B.C., Saltenis, S. Efficient indexing of the historical, present,
and future positions of moving objects. Proc. MDM, 59–66 (2005)

Mokbel, M.F., Xiong, X., Aref, W.G. SINA: Scalable Incremental Processing of
Continuous Queries in Spatio-temporal Databases. Proc. SIGMOD: 623-634
(2004)

Prabhakar, S., Xia, Y., Kalashnikov, D.V., Aref, W.G., Hambrusch, S.E. Query Indexing
and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries
on Moving Objects. IEEE Trans. on Computers, 51(10) (2002)

Theodoridis, Y., Stefanakis, E., Sellis, T.K. Efficient Cost Models for Spatial Queries
Using R-Trees. IEEE Trans. Knowl. Data Eng. 12(1): 19-32 (2000)

Jensen, C.S., Lin, D., Ooi, B.C. Query and update efficient B+-tree based indexing of
moving objects. Proc. VLDB: 768–779 (2004)

Gipps P.G., A model for the structure of lane changing decisions, Transpn. Res.B 20B(5),
403–414 (1986)

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 2011

	Dynamic-parinet (D-parinet) : indexing present and future trajectories in networks
	Mou Nandi
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2:The Context of Parnet
	Chapter 3: Parinet and D-Parinet Index Structure
	Chapter 4: Modeling Vehicle Distribution on Route
	Chapter 5: Traffic Simulation Model in Sumo
	Chapter 6: Experimental Details
	Chapter 7: D-Parinet
	Appendix A: Example Code Snippet for Graph Partitioning Input File
	Appendix B: Demand Modeling in Sumo
	Appendix C: Algorithm
	Appendix D: Interoperability of Various Softwares Used
	References

	List of Tables
	List of Figures
	List of Symbols

