886 research outputs found

    Service Orientation and the Smart Grid state and trends

    Get PDF
    The energy market is undergoing major changes, the most notable of which is the transition from a hierarchical closed system toward a more open one highly based on a ā€œsmartā€ information-rich infrastructure. This transition calls for new information and communication technologies infrastructures and standards to support it. In this paper, we review the current state of affairs and the actual technologies with respect to such transition. Additionally, we highlight the contact points between the needs of the future grid and the advantages brought by service-oriented architectures.

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    Making distributed computing infrastructures interoperable and accessible for e-scientists at the level of computational workflows

    Get PDF
    As distributed computing infrastructures evolve, and as their take up by user communities is growing, the importance of making different types of infrastructures based on a heterogeneous set of middleware interoperable is becoming crucial. This PhD submission, based on twenty scientific publications, presents a unique solution to the challenge of the seamless interoperation of distributed computing infrastructures at the level of workflows. The submission investigates workflow level interoperation inside a particular workflow system (intra-workflow interoperation), and also between different workflow solutions (inter-workflow interoperation). In both cases the interoperation of workflow component execution and the feeding of data into these components workflow components are considered. The invented and developed framework enables the execution of legacy applications and grid jobs and services on multiple grid systems, the feeding of data from heterogeneous file and data storage solutions to these workflow components, and the embedding of non-native workflows to a hosting meta-workflow. Moreover, the solution provides a high level user interface that enables e-scientist end-users to conveniently access the interoperable grid solutions without requiring them to study or understand the technical details of the underlying infrastructure. The candidate has also developed an application porting methodology that enables the systematic porting of applications to interoperable and interconnected grid infrastructures, and facilitates the exploitation of the above technical framework

    Automated Service Composition Using AI Planning and Beyond

    Get PDF
    Automated Service Composition is one of the ``grand challenges'' in the area of Service-Oriented Computing. Mike Papazoglou was not only one of the first researchers who identified the importance of the problem, but was also one of the first proposers of formulating it as an AI planning problem. Unfortunately, classical planning algorithms were not sufficient and a number of extensions were needed, e.g., to support extended (rich) goal languages to capture the user intentions, to plan under uncertainty caused by the non-deterministic nature of services; issues that where formulated (and, partially addressed) by Mike, being one of his key contributions to the service community

    Exploiting Semantic Technologies in Smart Environments and Grids: Emerging Roles and Case Studies

    Get PDF
    Semantic technologies are currently spreading across several application domains as a reliable and consistent mean to address challenges related to organization, manipulation, visualization and exchange of data and knowledge. Different roles are actually played by these techniques depending on the application domain, on the timing constraints, on the distributed nature of applications, and so on. This paper provides an overview of the roles played by semantic technologies in the domain of smart grids and smart environments, with a particular focus on changes brought by such technologies in the adopted architectures, programming techniques and tools. Motivations driving the adoption of semantics in these different, but strictly intertwined, fields are introduced using a strong application-driven perspective. Two real-world case studies in smart grids and smart environments are presented to exemplify the roles covered by such technologies and the changes they fostered in software engineering processes. Learned lessons are then distilled and future adoption scenarios discussed

    Symbiotic service composition in distributed sensor networks

    Get PDF
    To cope with the evergrowing number of colocated networks and the density they exhibit, we introduce symbiotic networks-networks that intelligently share resources and autonomously adapt to the dynamicity thereof. By allowing the software services provided in such networks to operate in an equally symbiotic manner, new opportunities for the so-called service compositions arise, which take advantage of the multitude of services and combine them to achieve goals set out by the individual networks. To accommodate services in large-scale symbiotic networks, including wireless sensor networks, we propose a software platform which autonomously constructs and orchestrates such compositions. Furthermore, upon changes in the infrastructure, the platform responds by adapting compositions to reflect the changed context. To enable the interaction between services offered by arbitrary partners, the platform deploys ontologies to achieve a common vocabulary and semantic rules to express the policies imposed by the networks involved. By applying the platform to typical scenarios from the field of sensor-augmented cargo transportation and logistics, we illustrate its applicability and, through performance evaluation, show a significant increase in process efficiency. Additionally, by means of a generic problem generator, we quantify the scalability of our platform and show the importance of an appropriate priority function, one of the core constituents of our service composition approach
    • ā€¦
    corecore