9,503 research outputs found

    A review of data visualization: opportunities in manufacturing sequence management.

    No full text
    Data visualization now benefits from developments in technologies that offer innovative ways of presenting complex data. Potentially these have widespread application in communicating the complex information domains typical of manufacturing sequence management environments for global enterprises. In this paper the authors review the visualization functionalities, techniques and applications reported in literature, map these to manufacturing sequence information presentation requirements and identify the opportunities available and likely development paths. Current leading-edge practice in dynamic updating and communication with suppliers is not being exploited in manufacturing sequence management; it could provide significant benefits to manufacturing business. In the context of global manufacturing operations and broad-based user communities with differing needs served by common data sets, tool functionality is generally ahead of user application

    Digitally interpreting traditional folk crafts

    Get PDF
    The cultural heritage preservation requires that objects persist throughout time to continue to communicate an intended meaning. The necessity of computer-based preservation and interpretation of traditional folk crafts is validated by the decreasing number of masters, fading technologies, and crafts losing economic ground. We present a long-term applied research project on the development of a mathematical basis, software tools, and technology for application of desktop or personal fabrication using compact, cheap, and environmentally friendly fabrication devices, including '3D printers', in traditional crafts. We illustrate the properties of this new modeling and fabrication system using several case studies involving the digital capture of traditional objects and craft patterns, which we also reuse in modern designs. The test application areas for the development are traditional crafts from different cultural backgrounds, namely Japanese lacquer ware and Norwegian carvings. Our project includes modeling existing artifacts, Web presentations of the models, automation of the models fabrication, and the experimental manufacturing of new designs and forms

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions

    Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

    Get PDF
    The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture

    IUPUC Spatial Innovation Lab

    Get PDF
    During the summer of 2016 the IUPUC ME Division envi-sioned the concept of an “Imagineering Lab” based largely on academic makerspace concepts. Important sub-sections of the Imagineering Lab are its “Actualization Lab” (mecha-tronics, actuators, sensors, DAQ devices etc.) and a “Spatial Innovation Lab” (SIL) based on developing “dream stations” (computer work stations) equipped with exciting new tech-nology in intuitive 2D and 3D image creation and Virtual Reality (VR) technology. The objective of the SIL is to cre-ate a work flow converting intuitively created imagery to an-imation, engineering simulation and analysis and computer driven manufacturing interfaces. This paper discusses the challenges and methods being used to create a sustainable Spatial Innovation Lab

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Data Driven Surrogate Based Optimization in the Problem Solving Environment WBCSim

    Get PDF
    Large scale, multidisciplinary, engineering designs are always difficult due to the complexity and dimensionality of these problems. Direct coupling between the analysis codes and the optimization routines can be prohibitively time consuming due to the complexity of the underlying simulation codes. One way of tackling this problem is by constructing computationally cheap(er) approximations of the expensive simulations, that mimic the behavior of the simulation model as closely as possible. This paper presents a data driven, surrogate based optimization algorithm that uses a trust region based sequential approximate optimization (SAO) framework and a statistical sampling approach based on design of experiment (DOE) arrays. The algorithm is implemented using techniques from two packages—SURFPACK and SHEPPACK that provide a collection of approximation algorithms to build the surrogates and three different DOE techniques—full factorial (FF), Latin hypercube sampling (LHS), and central composite design (CCD)—are used to train the surrogates. The results are compared with the optimization results obtained by directly coupling an optimizer with the simulation code. The biggest concern in using the SAO framework based on statistical sampling is the generation of the required database. As the number of design variables grows, the computational cost of generating the required database grows rapidly. A data driven approach is proposed to tackle this situation, where the trick is to run the expensive simulation if and only if a nearby data point does not exist in the cumulatively growing database. Over time the database matures and is enriched as more and more optimizations are performed. Results show that the proposed methodology dramatically reduces the total number of calls to the expensive simulation runs during the optimization process
    corecore