
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Experiment Management Wafer and
Wafer Group Graph

Tiago Duarte Carvalho

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Nuno Honório Rodrigues Flores

July 25, 2020

Experiment Management Wafer and Wafer Group Graph

Tiago Duarte Carvalho

Mestrado Integrado em Engenharia Informática e Computação

July 25, 2020

Abstract

In the 21st century, Industry 4.0 emerged as a promising approach to face global competition.
However, its requirements demand profound changes in manufacturing technology, and the up-
date of manufacturing execution systems (MES) used for more than two decades to manage and
monitor the plant floor. Critical Manufacturing (CMF) is one of the companies making major con-
tributions to the manufacturing world and MES. CMF MES was recently improved, and a module
for the Design of Experiment (DoE) was added. DoE is a powerful technique, extensively used
for the optimisation of almost all types of manufacturing processes and in product and process
design and development. One of these manufacturing processes is semiconductor manufacturing,
namely the wafer fabrication, which is the most expensive and time-consuming step of this man-
ufacturing process. Even though the integration of DoE in CMF MES was a valuable addition,
facilitating its application to such complex environments, because of its intricacy and the need to
define wafer group level variations at different process steps, human errors occur. The main goal
of this dissertation was the implementation of graph capabilities into the DoE module, to prevent
logically invalid and or incorrectly designed experiments to be executed. The existing structure
was a tabular one, and graphs and graph drawings are recognized as a good way of storing and
presenting large quantities of information where the tabular view is hardly human-readable. Infor-
mation about flow steps was stored in nodes, and about sub-materials was stored in nodes and in
links. Graph representation was done with an open source library that was already integrated in
CMF MES. Logical validity verification was done with a function that traversed the graphs using
a recursively depth-first approach. Resorting to graphs to address logically invalid experiments,
allowed the use of graph drawings in a more intuitive additional interface, facilitating users’ iden-
tification of incorrectly designed experiments. The graph capabilities also included features for
user interaction. Several tests with different types of experiments were performed and all existing
errors were detected, thus validating the implementation of graph capabilities performed into the
DoE module. Although this validation was done for DoE of wafer fabrication, the solution is not
restricted to it, having the potential to be used in other manufacturing processes.

Keywords: Design of Experiments, Manufacturing Execution System, Semiconductor Manufac-
turing, Graph Theory, Graphs Drawings

i

ii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 3
1.3 Objectives . 5
1.4 Document Structure . 5

2 Graph theory and algorithms 7
2.1 Basic Notions . 7
2.2 Trees . 10
2.3 Directed graphs . 12
2.4 Graph Traversal . 14
2.5 Summary . 15

3 Graph drawings 17
3.1 Criteria . 17
3.2 Methods and Techniques . 19
3.3 Summary . 25

4 Wafer fabrication and DoE 27
4.1 Wafer Fabrication . 27
4.2 Wafer DoE . 29
4.3 CMF Experiment Management Module . 31
4.4 Summary . 38

5 Solution development and methodology 39
5.1 User stories and development methodology . 39
5.2 Preparation and Graph Visualization . 41
5.3 Logical Verification . 49
5.4 Improvement of User Features . 50
5.5 Testing and Validation . 51
5.6 Summary . 53

6 Validation and results analysis 55
6.1 Graph drawing of a complex experiment . 55
6.2 Application of user features . 57
6.3 Detection and visualization of errors . 61
6.4 Summary . 68

iii

iv CONTENTS

7 Conclusions 69
7.1 Main contributions . 70
7.2 Future work . 70

A Source code 73

References 101

List of Figures

2.1 Example of a graph with nodes, links and a self-loop 8
2.2 Example of a simple graph . 8
2.3 Example of digraphs (G1 and G2) and of a simple digraph (G2) 8
2.4 Example of a spanning subgraph (H1) and of an induced subgraph (H2) of a graph

G (adapted from [38]) . 9
2.5 Example of a walk of a graph G that is not a trail (nor a path) 9
2.6 Example of a walk of a graph G that is a trail but not a path 9
2.7 Example of a walk of a graph G that is a trail and a path 10
2.8 Example of a disconnected graph and its three connected components G1, G2 and

G3 (adapted from [33]) . 10
2.9 Examples of non-tree and tree graphs (adapted from [38]) 10
2.10 Examples of trees component of a forest graph (adapted from [33]) 11
2.11 Example of a spanning tree of a graph (adapted from [33]) 11
2.12 Example of a diagraph which is not strongly connected (a) and of its three strongly

connected components (b) (adapted from [33]) 12
2.13 Example of a complete 3-ary tree (G1) and of an incomplete 3-ary tree (G2)

(adapted from [61]) . 14

3.1 Drawings of the same graph/digraph: (a) polyline; (d) straight-line; (c) orthogonal;
(d) polyline grid; (e) planar polyline; (f) upward planar polyline (adapted from [7]) 18

3.2 Example of a non-planar drawing and of a planar drawing (adapted from [53]) . . 19
3.3 Example of the spring analogy (adapted from [10]) 20
3.4 Example of a non-layered drawing and of a possible corresponding layered draw-

ing (adapted from [6]) . 20
3.5 Example of the layering process of a non-layered graph drawing (adapted from [40])) 21
3.6 Examples of orthogonal drawings with bends and no bends (adapted from [27]) . 22
3.7 Example of a graph drawing G1 that does not maintain the user’s mental picture

of the graph (adapted from [7]) . 22
3.8 Example of changes made to a graph drawing being visualized in a timeline (adapted

from [8]) . 23
3.9 Example of possible positions for labelling a node (on the left) and for labelling a

link (on the right) (adapted from [45]) . 24
3.10 Example of a generic labelling and the corresponding integrated labelling (adapted

from [83]) . 25

4.1 Wafers at the national Museum of Scotland ([64] under the Creative Commons
Attribution-Share Alike 3.0 Unported license) 27

v

vi LIST OF FIGURES

4.2 A silicon ingot at the Intel Museum ([3] under the Creative Commons Attribution-
Share Alike 3.0 Unported license) . 28

4.3 A silicon wafer with 30 cm after the depositing of all the layers and before dies
are cut (adapted from [69] under the Creative Commons Attribution-Share Alike
3.0 Unported license) . 28

4.4 Accessing CMF EM module in CMF MES (orange highlight) 31
4.5 Accessing an experiment in CMF EM module’s main menu (orange highlight) . . 32
4.6 Additional features in CMF EM module’s main menu (orange highlight)) 32
4.7 Creation of an experiment in the CMF EM module’s (orange highlight) 36
4.8 Addition of steps to an experiment in the CMF EM module’s (orange highlight) . 36
4.9 Example of a step and respective actions and material groups in the CMF EM

module’s . 38

5.1 JointJS with hardcoded information . 42
5.2 Graph drawing with hardcoded information in JointJS 42
5.3 Code necessary to represent the Version 1 of the experiment 44
5.4 Code necessary to represent the Version 2 of the experiment 45
5.5 Graph drawing of the Version 1 of the experiment (only main flow) 45
5.6 Graph drawing of the Version 2 of the experiment (main flow and an action) . . . 46
5.7 Graph drawing of the Version 3 of the experiment (addition of an action causing a

split) . 46
5.8 Graph drawing of the Version 4 of the experiment (addition of an action causing a

merge back from the split) . 47
5.9 Graph drawing of the Version 5 of the experiment (addition of an action Terminate) 48
5.10 Graph drawing of the Version 6 of the experiment (addition of an action Tempo-

raryOffFlow) . 48
5.11 Graph drawing of the experiment with a missing sub-material error 52
5.12 Graph drawing of the experiment with a missing sub-material error filtered by the

by the sub-material causing the error . 52
5.13 Graph drawing of the experiment with a circular reference error 53
5.14 Graph drawing of the experiment with a circular reference error filtered by the

sub-material causing the error . 53

6.1 Graph drawing of the complex experiment . 57
6.2 Graph drawing of the complex experiment with the unused nodes hidden 58
6.3 Graph drawing of the complex experiment with nodes position changed by the user 58
6.4 Graph drawing of the complex experiment filtered by sub-material 1 59
6.5 Graph drawing of the complex experiment filtered by sub-material 3 59
6.6 Graph drawing of the complex experiment filtered by sub-material 4 60
6.7 Graph drawing of the complex experiment filtered by a group of sub-materials (3

and 4) . 60
6.8 Graph drawing of the complex experiment filtered by sub-material 5 61
6.9 Graph drawing of the complex experiment with missing sub-material errors . . . 63
6.10 Graph drawing of the complex experiment with missing sub-material errors being

filtered by the sub-material causing the errors (sub-material 1) 64
6.11 Graph drawing of the complex experiment with circular reference errors and re-

spective missing sub-material errors . 66

LIST OF FIGURES vii

6.12 Graph drawing of the complex experiment with circular reference errors and re-
spective missing sub-material error filtered by the sub-materials causing the errors
(sub-material 4) . 67

6.13 Graph drawing of the complex experiment with circular reference errors filtered
by the sub-material causing the errors (sub-material 2) 67

viii LIST OF FIGURES

List of Tables

4.1 Description and illustration of stage 1 (Change set) of the experiments’ definition 33
4.2 Description and illustration of part 1 of stage 2 (General data, information) of the

experiments’ definition . 33
4.3 Description and illustration of part 2 of stage 2 (General data, settings) of the

experiments’ definition . 34
4.4 Description and illustration of part 3 of stage 2 (General data, options) of the

experiments’ definition . 35
4.5 Description and illustration of stage 3 of the experiments’ definition (Objectives) 35
4.6 Description and illustration of stage 4 of the experiments’ definition (Material

Groups) . 35
4.7 Description and illustration of stage 1 (General data) of adding a step to a defined

experiment . 36
4.8 Description and illustration of stage 2 (Material groups) of adding a step to a

defined experiment . 37
4.9 Description and illustration of stage 3 (Actions) of adding a step to a defined ex-

periment . 37

5.1 Node Data Structure . 49

6.1 Characteristics of the complex experiment . 56
6.2 Complex experiment with additional actions causing missing sub-material errors 62
6.3 Complex experiment with additional actions causing circular reference and re-

spective missing sub-materials errors . 65

ix

x LIST OF TABLES

Abbreviations

API Application Programming Interface
ASMPT ASM Pacific Technology Limited
BFS Breath-First Search
CMF Critical Manufacturing
CPS Cyber-Physical Systems
DFS Depth-First Search
DoE Design of Experiments
DAG Directed Acyclic Graph
EM Experiments Management
GUI Graphical User Interface
IC Integrated Circuits
IIoT Industrial Internet of Things
IoT Internet of Things
IVR Interactive Voice Response
MES Manufacturing Execution System

xi

Chapter 1

Introduction

This chapter addresses the importance of the project as well as this document’s structure. Sec-

tion 1.1 describes the area in which this project is inserted, as well as related topics and overall

context. Section 1.2 presents the problem and its framework, justifies its relevance and indicates

the solution to be implemented and why. The section 1.3 refers to the goal of this project, and the

specific objectives that have enabled it to be achieved. Section 1.4 includes a brief description of

the structure of this document.

1.1 Context

At the end of the 20th century, industries faced the challenge of dealing with the technological

innovations motivated by the change from analogue to digital [81]. This evolved, in the 21st

century, to a new paradigm, in which manufacturing is digitized and connected, known as Industry

4.0 [63]. Zhou et. al [84, p. 2149] describe it as “a complex and flexible system involving digital

manufacturing technology, network communication technology, computer technology, automation

technology and many other areas”, and Muller et al. [63, p. 247] point out it enabling of “real-time-

capable horizontal and vertical Internet-based connectedness of people, machines, and objects, as

well as information and communication technologies for the dynamic management of complex

business processes”.

The term “Industry 4.0”, which was first used in Germany in 2011, “has been widely discussed,

and has become a hotspot for most global industries” [84, p. 2147]. Similar technology-related

initiatives emerged in several countries around the world [81], making it “one of the important

topics in the realm of manufacturing” [52, p. 3624]. In Portugal, the Government recognizes

that there is a lot to be done because 75% of the companies are unaware of this new industrial

revolution [31]. To do this, in 2019, the second phase of the Government Industry 4.0 Program

was launched, being expected the mobilization of public and private investments worth 600 million

euros in the next two years [49].

1

2 Introduction

According to Rojko [72], although Industry 4.0 is a promising approach to face nowadays

global competition and market requests that continuously change, its requirements can only be

met if the current manufacturing technology is radically improved. For the author [72, p. 77],

“technical aspects of these requirements are addressed by the application of the generic concepts of

Cyber-Physical Systems (CPS) and industrial Internet of Things (IoT) to the industrial production

systems”.

The industrial Internet of Things (IIoT) “builds on not only the automation but also the in-

formation systems already in place to drive new insights by applying sensors and analytics and

connecting the smart devices [which is the] foundation for Industry 4.0, Smart Manufacturing and

Digitalization” [23, p. 4]. Because of that, the transition to the IIoT will require manufacturers to

update their manufacturing execution systems (MES) [50], with some believing that “it will only

succeed as a marriage with MES” [23, p. 2].

Manufacturing execution systems have been used for more than two decades to “deliver in-

formation that enables the optimisation of production activities from order launch to finished

goods” [25, p. 526], by managing and monitoring the work that is been done on the plant floor [50].

So, the majority of MES are pre-IIoT, and are not prepared to make a smooth transition to the new

paradigm brought by Industry 4.0. Although some argue that this shows that MES “is dead” [50],

others consider that “IIoT boosts rather than destroys the need for MES” [23, p. 6] even though

this means that a new MES will be needed [23].

In 2019, to evaluate the importance of MES to Industry 4.0, Mantravadi et al. [57, p. 594]

conducted a systematic literature review and concluded that resorting to a “single advanced MES

software has the potential to help the manufacturing enterprises achieve greater degree of opera-

tional visibility and traceability”. The authors [57, p. 594] argue that MES “play a central role in

the company’s path towards Industry 4.0 because flexibility and transparency in the processes are

the key objectives of Industry 4.0”. They suggest that future research about MES should focus on

its potential to enhance the process performance, resulting in the optimization of manufacturing

operations.

According to De Ugarte [25, p. 535], successful "MES solutions need to combine different

solving tools with multiple data sources to elaborate solutions in reasonable time", and incorpo-

rate recent advances in computing. The expectation for the new MES is that it would be able to

provide real-time information to the operational departments about all resources involved in the

production, benefiting from the advances in integration levels and computing technologies [57].

Because this real-time information is available, allowing the monitoring, controlling and operat-

ing of production processes, MES solutions have now the capability to optimize the production

environment [2].

1.2 Motivation 3

1.2 Motivation

The importance of MES in guiding companies towards Industry 4.0 [57], and its features in pro-

duction optimization, justify the quite few solutions commercially available [36]. According to

Manufacturing Technology Insights Magazine [60, para. 2], “several solutions providers are set

to tackle the evolving challenges in the manufacturing industry (. . .) [promising] a significant

rise in production efficiency”. Every year, the magazine compiles a list of Top 10 MES Solu-

tion Providers to highlight the companies making significant contributions to the manufacturing

world [60]. In the second place of the 2019 edition (and of 2018), it is the Portuguese company

Critical Manufacturing, S.A., founded in 2009 [19].

With its main headquarters is in Porto (Maia), Portugal, "subsidiaries in Dresden, Germany,

Suzhou, China, Austin, USA, and a branch office in Taiwan" [59, para. 2], Critical Manufacturing

provides “state-of-the-art products and services” [58, para. 2], which includes its manufacturing

execution intelligence system and related services and expertise in semiconductor and electronics

manufacturing industries [20]. In August 2018, it joined the ASM Pacific Technology Limited

(ASMPT), which is a “global technology and market leader (. . .) in solutions and materials for

the semiconductor assembly and packaging industries” [76, para. 5]. ASMPT announced this

integration as a strategic investment, recognizing the “significant expertise in the integration and

networking of machines and systems, as well as IT systems and cloud solutions” of Critical Man-

ufacturing [76, para. 1].

Critical Manufacturing (CMF) presents its MES as “the most modern and complete modular

MES available” [21, p. 1], being “comprehensive and modular, deep and radically configurable

(. . .) [, supporting] current and new processes, products and employees in ways unimaginable

for users of older products” [17, para. 4] and offering “not only advanced analytics and con-

tinuous improvement tools, but also a manufacturing digital twin, and quick, intuitive looks at

performance” [17, para. 3]. In 2018, Rodrigues [71] compared eight commercially available MES

solutions, concluding that the CMF MES is the only (of the eight) that combines relevant features

like connectivity, cloud, and mobile.

CMF modern MES modules are organized in seven functional areas: visibility and intelli-

gence, scheduling, factory management, quality management, operational efficiency, enterprise

integration, and factory automation [17]. The latest CMF MES version (V7) includes some new

modules: augmented reality and BI cards (in the visibility and intelligence area), experiments

management (in the quality management area), and weigh and dispense (in the factory automation

area) [17]. The experiments management, in particular, is a breakthrough module in the achieve-

ment of optimum process performance. The module allows workers to perform Design of Experi-

ments (DoE) with multiple input variables, and execute and monitor experiments seamlessly in a

single system, which results in an easier, more efficient and effective process [17].

Giles Jr et al. define DoE as “a systematic approach to understanding how process and product

parameters affect response variables such as processability, physical properties, or product perfor-

mance” [37, p. 231]. As far as process optimization is concerned, DoE is one of its powerful

4 Introduction

techniques, which “has been widely deployed in almost all types of manufacturing processes and

is used extensively in product and process design and development” [4, p. 1]. Engineers across

industries resort to DoE in a variety of diverse activities, “ranging from developing new products

to improving product designs to controlling and optimizing manufacturing processes” [18, para.

2].

One of the industries that resorts do DoE is the semiconductor manufacturing [73]. This indus-

try “is among the most complex manufacturing today, in which a lengthy and re-entrant process

steps are employed with advanced tools to fabricate a variety of Integrated Circuits (IC)” [14, p.

961]. These IC are made of thin slices of semiconductor materials that are known as wafers [35].

Although DoE is a cost-effective approach when there are multiple factors simultaneously, Chien

et al. [14] consider that applying it to semiconductor manufacturing is a difficult task. The reasons

they associated with this are the high manufacturing costs (time and money) involved, the little

time available in the production line to conduct experiments, and the manufacturing process itself

being very complex. This complexity is in part due to the process not following a linear flow and

being constantly split and merged into different lots [22]. Because of the large number of input

variables and step variations to be defined while designing an experiment, this generates matrices

with several hundred cells that need to be filled by the person designing the experiment [73].

The integration of DoE in MES is a valuable addition, and its Experiments Management (EM)

facilitates DoE in complex environments, such as the semiconductor manufacturing and wafer

production. However, because of its intricacy, human errors occur during the DoE process. These

errors result in the waste of valuable production time and resources, due to the execution of:1)

Logically invalid experiments, that do not make logical sense, and may not be executed properly,

or even executed at all; 2) Incorrect experiments, that having logical sense, do not correspond to

what was intended.

Regarding the logically invalid experiments, the current CMF EM module does not provide

the user with the necessary feedback to prevent its execution. This is mainly due to the information

being stored solely in tables in a database, that need multiple time-consuming joins to reproduce

all the relations and processes involved in the designed experiments. Because the problem is

associated with the relations, one way to tackle it is to have an additional information structure

that facilitates finding these relations and processes, like graphs. Gross and Yellen [38, p. 2]

define graph as “any mathematical object involving points and connections between them” and

graph drawing as the “geometric representation of graphs” [38, p. 1015]. According to Loh et

al. [55], graphs are used to represent networks, i.e., systems with different elements or components

connected.

As for the incorrect experiments, a user-friendly way to verify them does not exist in the CMF

EM module. The reason for this is the fact that the module’s current interface was designed to

resemble the previous DoE tools, to facilitate users’ adaptation. Resorting to graphs to address

the problem of logically invalid experiments, will allow the use of graph drawings in the develop-

ment of an additional interface, which will provide a more intuitive visualization of the designed

experiment.

1.3 Objectives 5

The implementation of graphs and graph diagrams in the EM module has the potential to

facilitate and improve DoE, contributing to expand CMF MES features in process optimization,

making it even a more valuable tool for companies towards Industry 4.0.

1.3 Objectives

The main goal is the implementation of graph capabilities into the CMF EM module, to prevent

logically invalid and or incorrectly designed experiments to be executed. To attain this general

objective, some specific objectives were defined.

• To save the data resorting to graphs as a structure, using its properties to facilitate and speed

up the process of detecting logical errors.

• To visually represent the graphs, using graph drawings, namely a hierarchical layout because

it is the one that best resembles the wafer fabrication process flow.

• To have the information on the nodes necessary to be easily filtered and to have a function

that traverses all nodes and compares their information to the information by which it is

filtering, presenting the intended result.

• To implement the additional features needed to facilitate user interaction with the GUI.

1.4 Document Structure

Chapter 1 is the introduction to this dissertation and includes the context and motivation for the

problem, the objectives, and the structure of this document. Chapter 2 describes relevant aspects

of graph theory and algorithms, namely basic notions, trees, directed graphs, and graph traversal.

In Chapter 3, criteria, methods, and techniques of graph drawings are explained. Chapter 4 focuses

on wafer fabrication and DoE, which includes a detailed description of the CMF Experiment Man-

agement Module. Chapter 5 presents the user stories, the solution development methodology and

the several stages of the development of the solution, which are graph visualization, logical verifi-

cation, improvement of user features and testing and validation. The validation and analysis of the

results is in Chapter 6, and includes a graph drawing of a complex experiment, the application of

the implemented user interaction features to that graph drawing and an illustration of the detection

and visualization of errors also in the mentioned graph drawing. Chapter 7 holds the conclusions

of the dissertation, resuming the problem, the objectives and the development methodology and

presenting the main contributions and future work.

6 Introduction

Chapter 2

Graph theory and algorithms

This chapter describes aspects of graph theory and algorithms, taking into consideration what is

relevant for the implemented solution. Section 2.1 presents general concepts and terminology of

graph theory. Section 2.2 addresses notions about the type of graphs known as trees. Section 2.3

includes notions about directed graphs, emphasizing directed acyclic graphs. Section 2.4 is dedi-

cated to graph traversal, focusing on the depth-first search algorithm. Section 2.5 summarizes the

highlights of this chapter.

2.1 Basic Notions

As stated before, in this dissertation graphs are used to tackle the problem of rapidly finding

relations and processes regarding designed experiments for wafer manufacturing, also allowing its

visualization. Because of that, in this chapter, some elements of graph theory are presented.

Graphs are mathematical objects consisting of two sets of elements: vertices or nodes and

edges or links (in this document, the notation used is nodes and links). Each link connects two

nodes, that are said to be its endpoints [38], [33]. A link that joins a single endpoint to itself is a

self-loop [38]. The degree of a node in a graph is the number of links that have that node as its

endpoint. For example, in Figure 2.1, link a connects nodes u and v. Link e is a self-loop. The

degree of node u is one, the degree of node y is two and the degree of node z is three. The notation

for graphs is G = (N,L), where N represent nodes (in Figure 2.1, u, v, x, y and z are nodes) and L

links (in Figure 2.1, a, b, c and d are links) [77].

A practical way to draw a graph in a plane is to use dots or circles to represent nodes and lines

for links (see Figure 2.1) [33]. Dots and lines can be placed in many ways in the plane, meaning

that graphs can have several possible representations [77]. The curvature and length of the lines

as no particular meaning [38].

7

8 Graph theory and algorithms

Figure 2.1: Example of a graph with nodes, links and a self-loop

There are several types of graphs, based on the number of nodes or links. When a graph has two

distinct nodes and only one link connecting them it is a simple graph (see Figure 2.2) [38], [77].

Figure 2.2: Example of a simple graph

Besides having nodes and links, graphs can have additional attributes. One of these attributes

that is relevant for manufacturing processes is link direction. A link with direction is a directed

link (see a and b in Figure 2.3), and a graph with a directed link is a directed graph or digraph (see

G1 and G2 in Figure 2.3) [38].

Figure 2.3: Example of digraphs (G1 and G2) and of a simple digraph (G2)

When all the nodes and links of a graph H are contained in the set of nodes and links of

another graph G, H is a subgraph of G. A subgraph is a spanning subgraph if it includes all the

nodes of the graph (see H1 in Figure 2.4, which is a spanning subgraph of graph G). A subgraph

is an induced subgraph on a set of nodes if it includes all the links of the graph that have the

nodes of the subgraph as its endpoints (see H2 on Figure 2.4, that is an induced subgraph of graph

G) [38], [77].

2.1 Basic Notions 9

Figure 2.4: Example of a spanning subgraph (H1) and of an induced subgraph (H2) of a graph G
(adapted from [38])

In a graph, a walk is a finite alternating sequence of nodes and links, that in a simple graph may

be represented by just listing a sequence of nodes (see Figure 2.5). If the link is a directed link,

then the walk is a directed walk. The first node of the walk is the initial node (see u in Figure 2.5),

the last node of the walk is the final node (see y in Figure 2.5), and all the other node are internal

nodes (see v and x in Figure 2.5). The number of links in a walk is the length of the walk (the

length of the walk in Figure 2.5 is three). A walk can be closed (the initial node and the final node

are the same) or open [38].

Figure 2.5: Example of a walk of a graph G that is not a trail (nor a path)

If in a walk, a link does not occur more than once, the walk is a trail (see Figure 2.6). When

in a trail, an internal node is not repeated, the trail is a path (see Figure 2.7) [38]. This means that

a trail is a walk where the links are all different, and the path is a walk where the links and nodes

are all different [33].

Figure 2.6: Example of a walk of a graph G that is a trail but not a path

10 Graph theory and algorithms

Figure 2.7: Example of a walk of a graph G that is a trail and a path

According to Thulasiraman [77, p. 31], “the graphs that are encountered in most of the appli-

cations are connected”. A graph is said to be a connected graph when any two of its nodes are

linked by a path [33]. A graph that is not connected is a disconnected graph [33], [28]. A com-

ponent of a graph is a maximal connected subgraph of the graph [38]. According to Fournier [33,

p. 35], “the connected components of a graph are subgraphs pairwise disjoint, that is having pair-

wise no common vertices and no common edges”. These connected components define the unique

decomposition of the graph (see Figure 2.8)).

Figure 2.8: Example of a disconnected graph and its three connected components G1, G2 and G3
(adapted from [33])

2.2 Trees

Trees are a type of graph that Gross and Yellen [38, p. 15] consider “important to the structural

understanding of graphs and to the algorithmics of information processing, and they play a central

role in the design and analysis of connected networks”. For Estrada [28], the tree is the simplest

type of graph. Fournier [33] defines it as a connected graph that has no closed paths, i.e., cycles

(see Figure 2.9), thus being a connected acyclic graph. When the links of a tree are directed, the

resulting tree is a directed acyclic graph, known as a polytree [24].

Figure 2.9: Examples of non-tree and tree graphs (adapted from [38])

2.2 Trees 11

Fournier [33] states the first properties of trees, where N is the number of nodes and L the

number of links, as: 1) A tree with two or more nodes has at least two nodes of degree one; 2) If a

graph is a tree, the number of links plus one equals the number of nodes (N = L+1); 3) Any two

nodes of a tree are connected by a unique path.

A forest is a disconnected graph in which every connected component is a tree (see Fig-

ure 2.10) [28]. The forest is also an acyclic graph [38], [33]. In a forest, the number of links

plus one is less than the number of nodes (N < L+1) [33].

Figure 2.10: Examples of trees component of a forest graph (adapted from [33])

A bridge of a graph G is a link whose absence turns a connected graph into a disconnected

one. Eliminating the bridge in a graph creates one more connected component in the resulting

graph [33]. Regarding bridges, Fournier [33, p. 48] states that “a link of a graph G is a bridge if

and only if it does not belong to a cycle of G” and “in a tree, any [link] is a bridge”.

A tree can also be a subgraph in a graph. For a given tree in a graph G, the nodes and links are

called tree links and tree nodes, and the nodes and links that are not in the tree are called non-tree

links and non-tree nodes [38].

A spanning subgraph of G which is a tree is a spanning tree of a graph G (in Figure 2.11,

subgraph G1 of graph G is a spanning tree) [33].

Figure 2.11: Example of a spanning tree of a graph (adapted from [33])

Fournier [33, p. 50] states some propositions regarding spanning subgraphs as “a connected

graph has at least one spanning tree”, “a spanning subgraph of a connected graph G is a span-

ning tree of G if and only if it is connected and [link].maximal”, and “a spanning subgraph of a

connected graph G is a spanning tree of G if and only if it is acyclic and [link]-maximal”.

A spanning forest is a subgraph of the graph that includes every node and is a forest [28].

12 Graph theory and algorithms

2.3 Directed graphs

Several situations that are not adequately represented by undirected graphs, because the direc-

tion of what is being represented is important [77]. As stated before, the direction is one of the

attributes of links, and a graph with directed links is a directed graph or digraph.

Terminology associated with directed graphs is different according to the authors. For exam-

ple, Gross and Yellen [38] refer to the nodes as the tail and the head, with the arrow pointing to the

head, and Fournier [33] as successor and predecessor, with the link coming out of the predecessor

and entering the successor.

It is possible to define a basis of a digraph, which is a minimal set of nodes such that every

other node can be reached from some node in this minimal set by a directed path [38].

As with undirected graphs, digraphs can have self-loops or multiple links. When a digraph has

two distinct nodes and only one directed link connecting them it is a simple digraph [38].

All directed graphs have an underlying graph, which is defined by not considering the direction

of its links. Concepts like degree, connectedness, components, walk, trail, and path, all apply to

directed graphs through its underlying graph [33]. Regarding the degree, the number of links

directed to a node is the indegree of that node, and the number of links directed from a node is the

outdegree [38]. As for connectedness, a directed connected graph is named a strongly connected

graph [28]. A strongly connected component of a graph is a maximal strongly connected induced

subdigraph of that graph [33]. According to Fournier, these strongly connected components are

less simple to determine than the connected components of an undirected graph (see Figure 2.12).

Figure 2.12: Example of a diagraph which is not strongly connected (a) and of its three strongly
connected components (b) (adapted from [33])

For a digraph, walks, trails, and paths are referred to as directed walks, directed trails, and

directed paths. Cycles are directed cycles, that are known as circuits. A circuit is a closed directed

path. When a digraph does not have circuits it is an acyclic digraph [33].

For Maurer [61, p. 142], acyclic digraphs or directed acyclic graphs (DAG) “arise quite natu-

rally because [nodes] often have a natural ordering”, as nodes can represent events ordered in time

2.3 Directed graphs 13

or by hierarchy. This is the case of wafer manufacturing and designed experiments to optimize its

production process, which is the focus of this dissertation.

Some examples of the applicability of DAG include: 1) Operations research, as a large project

involves a great number of tasks that precede each other, meaning that there are tasks that have to

be completed before other tasks can start; 2) Sociology and socio-biology, as businesses, armies,

societies, or ant colonies have a hierarchical dominance structure, where the nodes are the em-

ployees, soldiers, citizens or ants amongst which there is a dominance relation represented by the

directed links; 3) Computer software design, as a large program groups several subprograms that

can invoke each other, where nodes can represent the subprograms and directed links represent a

subprogram invoking another subprogram; 4) Ecology, namely in food webs, where nodes rep-

resent species and links indicate which species eats another specie (food chain); 5) Genealogy,

namely in family trees, even though there are no arrows, being implicit that later generations are

down in the tree; 6) State diagrams, as the nodes can represent a set of states and links the possible

changes between these states, preventing the states going back to the previous configuration [61].

In an acyclic digraph, there is a source and a sink. A source is a node with a zero indegree and

a sink is a node with a zero outdegree [33].

When the underlying graph of a digraph is a tree, then this tree is a directed tree. A directed

tree that has a root is known as a rooted tree [61] or an arborescence [33]. The root is a node

such that the unique path from the root to another node is a directed path from the root to that

node [61]. According to Maurer [61], if the root is marked in the graph drawing than the arrows

are not included because the direction of each link is always from the root to the other nodes. The

author [61] distinguishes out-tree from in-tree. The out-tree is another name for the rooted tree. In

an in-tree, the direction of all the paths is toward the root.

Some terminology related to arborescence includes the notion of depth or level and height.

The depth of a node is the distance from the root to this node, which is the number of links in the

path from the root to the node. The height of a tree is the greatest depth of its nodes [61]. Nodes

with the same depth are at the same depth level [33]. A layer of nodes is a subset of nodes that

includes all the nodes that have the same depth [61].

Trees have also a part of its terminology that is influenced by genealogical trees [33]. The

term child applied to a node means any successor of that node. Similarly, a predecessor node is

the parent of a successor node. Nodes with the same parent are called siblings. A node without a

child is a leaf and a node that is not a leaf is an internal node [61], [33].

Trees can be classified regarding the number of children that every node has. In a m-ary tree,

every node has m or fewer children. A m-ary tree is complete when all its internal nodes have

exactly m children and all the leaves are at the same level (see Figure 2.13).

14 Graph theory and algorithms

Figure 2.13: Example of a complete 3-ary tree (G1) and of an incomplete 3-ary tree (G2) (adapted
from [61])

2.4 Graph Traversal

Graphs that are used to solve real-life problems are large and complex, and so, analysing them

efficiently involves resorting to computer algorithms [77]. As part of solving these problems,

it may be necessary to traverse the graph. The algorithms used to graph traversal are known as

search algorithms. They are used when it is necessary to find or visit nodes or links of a graph [33].

Gabow [34, p. 953] defines search of a graph as “a methodical exploration of all the [nodes] and

[links]” and Thulasiraman [77, p. 346] as “a systematic way for exploring a graph”.

According to Gabow [34], the two most important search methods are breath-first search (BFS)

and depth-first search (DFS). The BFS is an efficient way to compute distances [34] and the DFS is

useful for checking some properties of graphs [34] and for general graph traversal [12]. Chao [12]

summarizes the differences between them as follows: 1) The BFS algorithm explores the graph

one layer at a time, increasing the depth of the layer that is being explored; 2) The DFS algorithm

travels along a path, from a starting node to some end node, repeating the search with another path

from the same node. Because in this dissertation distances in graph drawings are not computed,

only the DFS algorithm is described with more detail.

The DFS origin dates back to the 19th century when it was developed by Trémaux as a strategy

for exploring a maze [34]. Imagining that the maze is the graph drawing, the DFS algorithm

should “guarantee that the whole graph will be scanned without wandering too long in the maze

and that the procedure will allow one to recognize when the task is done. However, before one

starts walking in the maze, one does not know anything about its structure, and therefore, no

preplanning is possible” [29, p. 46].

Thulasiraman [77] describes the procedure for the DFS as follows. A node v is chosen to start

the search; this node v is the root of the DFS and is now visited. A link from node v is traversed

to get to another node w; the link (v,w) is said to examined. When at a node x, there are two

possibilities: 1) If all the links from node x have already been examined, then the search continues

from the parent of x; node x is said to be completely scanned; 2) If there are some links from node

2.5 Summary 15

x that have not been examined, then a link (x,y) is chosen and is now said to be examined. In this

case, if y has not been visited, link (x,y) is traversed, node y is visited and the search continues

from node y. If y has been previously visited, then another unexamined link from x is selected.

When a node is visited for the first time, it is assigned an integer. These integers indicate the order

in which nodes were visited. The DFS ends when the search returns to the root and all the nodes

have been visited.

The DFS algorithm as some differences depending on whether the graph is undirected or

directed. In directed graphs, a link can only be traversed along its orientation [77]. Because of this

constraint, when at a node v of an unexamined link (v,w), one of four categories can be assigned

to this link: tree link, forward link, back link, cross link. Link (v,w) is a tree link if node w has

not yet been visited. Link (v,w) is a forward link if node w has already been visited, and node w is

a descendant of v in the DFS forest. Link (v,w) is a back link if node w has already been visited,

and node w is an ancestor of v in the DFS forest. Link (v,w) is a cross link if its nodes are not

related in the DFS forest and the integer assigned to w is smaller than the one assigned to v.

2.5 Summary

In this chapter, relevant aspects of graph theory and algorithms were presented. Of these, it is

important to highlight that:

• Graphs are mathematical elements with nodes and links that can be represented by dots and

lines, respectively. Graphs can have and/or be subgraphs, which in turn can be spanning

subgraphs or induced subgraphs. Some graphs have walks, or trails or paths. Depending

on the existence of paths, graphs can be connected or disconnected. Some graphs have

components.

• Digraphs are directed graphs, i.e. graphs with directed links. Degree, connectedness, com-

ponents, walk, trail, and path also apply to digraphs. Digraphs can have directed walks,

directed trails, and directed paths. Directed cycles are called circuits. Directed acyclic

graphs have no circuits.

• One of the simplest types of graphs is the tree. The tree is a connected acyclic graph (has

no closed paths). Trees can be part of forests. Trees can also be subgraphs of graphs, which

include spanning trees. Trees can be directed graphs. Trees with roots are rooted trees.

Depth and height can be defined for rooted trees. Trees related terminology includes the

term child, parent, and sibling.

• Graph traversal is made easier resorting to algorithms. The DFS algorithm, which is useful

for checking some properties of graphs, traverses the graph along each of its paths. It can

be used with indirect and directed graphs, with the proper adjustments.

16 Graph theory and algorithms

Chapter 3

Graph drawings

This chapter is dedicated to graph drawings. Section 3.1 addresses issues related to graph rep-

resentation and conventions, and the aesthetic quality of graph drawings. Section 3.2 describes

methods and techniques for drawing graphs, giving more emphasis to those used in the imple-

mented solution. Section 3.3 summarizes the highlights of this chapter.

3.1 Criteria

Graph drawings became popularized as a good way for presenting large quantities of informa-

tion since the tabular view “is hardly human readable” [66, p. 1]. They “take advantage of the

powerful human visual perception system, (. . .) [being] often used as a visual tool for the pur-

poses of communication and understanding of non-visual graph data” [44, p. 444]. However,

this does not mean that graphs can be drawn in any way, or that all graph drawings are good

graph drawings [32], [44]. Nodes and links can be drawn in several ways, the same being true for

the information corresponding to these nodes and labels. Different colours and thickness can be

used, amongst a variety of other elements, and a two- or three-dimensions drawing can be done.

Fleischer and Hirsch [32] call these drawing style considerations the representation of a graph.

According to Battista et al. [7], there are basic rules that graph drawings must satisfy to be

admissible, i.e. there is a drawing convention for graphs. For the author [7], some of these widely

used conventions are (see Figure 3.1): 1) Polyline drawing: links are drawn as polygonal chains; 2)

Straight-line drawing: links are drawn as straight line segments; 3) Orthogonal drawing: links are

drawn as polygonal chains of horizontal and vertical segments; 4) Grid drawing: nodes, crossings

and link bends are integer coordinates; 5) Planar drawing: links do not cross; 6) Upward (or

downward) drawing: for acyclic graphs, links are drawn facing up (or down) accordingly.

17

18 Graph drawings

Figure 3.1: Drawings of the same graph/digraph: (a) polyline; (d) straight-line; (c) orthogonal; (d)
polyline grid; (e) planar polyline; (f) upward planar polyline (adapted from [7])

Huang et al. [44] point out that a good layout facilitates the way a graph is perceived, while

a poor layout may hinder the process. For Fleischer and Hirsch [32], a good layout for a graph

drawing should take into account the structural properties of a graph (the type of graph), but

also the knowledge about what the graph is representing. In graphs for human consumption, the

aesthetics criteria should be taken into consideration, whereas in other purposes criteria like the

technical criteria, might be more relevant.

Some of the commonly used aesthetics criteria are, according to Fleischer and Hirsch [32],

the following: 1) Crossing minimization between links, to facilitate finding which nodes are con-

nected to which links; 2) Bend minimization of links, because for the human eye straight lines are

easier to follow ; 3) Area minimization, in a way that the nodes and links are evenly distributed;

4) Angle maximization because having the links as far apart from each other as possible improves

the readability of the layout; 5) Length minimization, as links can correspond to real wires, where

information travels faster as shorter these links are; 6) Symmetries, when present, should be re-

flected in the layout; 7) Clustering the nodes when its necessary to facilitate a better understanding

of the graph’s structure; 8) Layered drawings when is necessary to restrict the node positions to

distinct layers. Panjtar [66] additionally recommends bounding the graph with a frame.

The problem with these aesthetics criteria is that the recommendations conflict with each other,

not being possible “to implement all of them to the fullest at the same time” [44, p. 445]. So, many

different methods have been developed that aim to optimize one or more aesthetic criteria [48].

Also, depending on the applications, some criteria may be more important than others [32]. For

Klammler et al. [47], knowing what makes a drawing of a graph aesthetically pleasing is a question

central to the field of Graph Drawing. The authors [47] sum up what has been done in this field,

namely: 1) Attempts to use quality metrics, that can be simple metrics like the number of crossings,

or advanced metrics, like energy or stress; 2) Resorting to performance studies on readability

and clarity of representation that emphasize the purpose of a drawing or the way it facilitates

possible user actions. They offer a different perspective, pointing out the importance of a drawing

being aesthetically pleasing, and stating that, instead of trying to produce the best layout, several

layouts can be obtained by different methods and then compared. So, even though new trends are

emerging, classical methods for graph drawing are still current.

3.2 Methods and Techniques 19

3.2 Methods and Techniques

There are several methods and techniques for drawing graphs. Fleischer and Hirsch [32] summa-

rize some of the better techniques to address graph drawings optimisation, namely, planarization,

force-directed methods, Sugiyama-like methods, flow methods, interactive drawings and labelling.

A description of each of them is made and some examples are presented, giving more emphasis to

those used in this dissertation.

Planarization consists in the elimination of crossings between links. When a graph drawing

has no crossings, it is a planar drawing (see Figure 3.2) [53]. A graph is planar when a planar

representation of this graph exists [79]. According to Fleischer and Hirsch [32, p. 20], “planar

layouts are usually much more appealing than nonplanar layouts”. Algorithms to test for planarity

date back to the 1960s [79]. As for making a graph planar, there are several ways to do it: deleting

nodes, splitting nodes, inserting new nodes and deleting links [79]. Some methods rely on a

special ordering of the vertices known as the canonical ordering [79]. Any non-planar graph can

be converted to a planar graph [66].

Figure 3.2: Example of a non-planar drawing and of a planar drawing (adapted from [53])

Force-directed methods “interpret a graph as a physical system with forces between the nodes

and then try to minimize the energy of the system to obtain a nice drawing” [32, p. 20]. In this

physical system, the goal is to find positions for each body, such that the sum of forces is zero [7].

According to Battista et al. [7], there are many force-directed methods, and they comprise

two parts: 1) The model, which is a force system defined by nodes and links; 2) The algorithm,

i.e. a technique to find the equilibrium state of the system, where the sum of forces is null. The

model can also be defined as an energy system, in which case, the algorithm seeks to minimize the

energy.

These methods are popular because the physical analogy makes them easy to understand and

simple to code, and their results have quality [7], [10]. These algorithms also ensure that link

lengths are uniform and that symmetries are visualized [66]. The fundamental concept behind

physical modelling in these methods is having charged balls replacing nodes and springs replacing

links (see Figure 3.3).

20 Graph drawings

Figure 3.3: Example of the spring analogy (adapted from [10])

Sugiyama-like methods are the most widely used algorithms for drawing layered graphs [32], [40]

because they produce layered layouts while also trying to minimize the number of crossings or the

area of the layout [32]. In a layered layout, nodes at the same distance from the root (i.e., the same

depth) are in the same horizontal line (see Figure 3.4) [53]. Because these layers can also represent

a hierarchy of existing relationships, which is common in directed graphs, these drawings are also

known as hierarchical drawings [40]).

Algorithms for computing layered drawings date back to the 1970s, being the most popular

the one from Sugiyama et al. in 1981 that was extended in 1990 by Eades and Sugiyama [6].

Figure 3.4: Example of a non-layered drawing and of a possible corresponding layered drawing
(adapted from [6])

For Bastert and Matuszewski [6], these layered drawings should take into account some aes-

thetic and readability criteria that the authors summarize as: 1) When directed, upward links

should be avoided; 2) Nodes should be uniformly distributed; 3) Crossings should be avoided;

4) Links should be as straight and vertical as possible. For Healy and Nikolov [40, p. 411], the

aesthetics that should be taken into consideration are stated as: “links should point in a uniform

direction, short links are more readable, uniformly distributed nodes avoid clutter, link crossings

obstruct comprehension, straight links are more readable”.

3.2 Methods and Techniques 21

Meeting all these criteria can be difficult and sometimes impossible and some authors [6], [7]

suggest the following approach: 1) Cycle removal; 2) Layer assignment; 3) Cross reduction; 4)

Horizontal coordinate assignment. These steps do not necessarily need to be all performed.

In cycle removal, the goal is to have links temporally drawn in one direction, reversing as

few links as possible to have an acyclic graph [6], [7]. In layer assignment, nodes are assigned

to horizontal layers in such a way that all links point downward, thus determining the nodes y-

coordinate [6], [7]. Crossing reduction consists in reducing the number of crossings between links

by ordering the nodes within each layer, which is usually done by examining adjacent layers and

links between them [6], [7]. In the horizontal coordinate assignment, the horizontal positions of

the nodes are such that they do not overlap and that no nodes lie on the straight lines between two

adjacent nodes [6], [7]. In Figure 3.5 an example of the application of this approach is illustrated.

Figure 3.5: Example of the layering process of a non-layered graph drawing (adapted from [40]))

Flow methods are used to minimize bends, which “can efficiently be solved by reduction to a

network flow problem” [32, p. 21]. These techniques are also useful to maximize angles between

links [32], addressing the problem, for the drawing legibility, of having links that are too close

together [27]. For Eiglsperger et al. [27], a way to guarantee maximal distinctiveness of adjacent

links is to force all angles between adjacent links to be multiples of 90 degrees, giving rise to

the area of orthogonal graph drawing. However, to do so, bends must be included in the path

representing a link. To avoid complicated paths, the number of these bends should be minimized.

This can be done by introducing additional nodes where changes in direction occur in a path (see

Figure 3.6). One disadvantaged of having angles of 90 degrees is the fact that nodes cannot have

more than four links each [26]. When more than four links per node are needed, the alternative is to

use more general polyline drawing techniques, instead of standard orthogonal drawing techniques.

In this case, and because it is not possible to have only 90 degree angle, the goal not have angles

below a certain threshold [26]. According to Eiglsperger et al. [27, p. 121], this is “probably one

of the most prolific in all of graph drawing(. . .) [, becoming] far more important than the issues

of angles in drawings”. For Blasius et al. [9, p. 860] “orthogonal graph drawing is one of the most

22 Graph drawings

important techniques for the human readable visualization of complex data. Its aesthetic appeal

derives from its simplicity and straightforwardness”.

Figure 3.6: Examples of orthogonal drawings with bends and no bends (adapted from [27])

Interactive drawings apply to graphs that are not static [32] because the structure of nodes and

links can change over time [8]. The field emerged in the 1990s since many situations required the

“repeated redrawing of the graph after frequently occurring changes to the graph structure and/or

some layout properties” [11, p. 228]. This happens when the user is allowed to manually edit the

graph, adding, removing and moving nodes an links, or by setting additional constraints [7], [11].

According to Branke [11], the easiest solution for this problem is to treat the changed graph as

a new graph and apply a static graph drawing algorithm every time that an alteration is made.

However, this is not efficient, because, in the case of slight modifications, much of the previous

drawing can be reused, saving computation time. On the other hand, if the user is still working

in that graph drawing and have a mental picture of it, having it change at every slight alteration

will require a considerable effort for the user to re-familiarize with it [11]. Battista et. al [7]

argue that for the example given in Figure 3.7, where the link (b,d) is added in graph drawing G,

graph drawing G2 is preferable to graph drawing G1, because it maintains the overall look of the

drawing, even though this impliea having a crossing in G2 that G1 does not have.

Figure 3.7: Example of a graph drawing G1 that does not maintain the user’s mental picture of the
graph (adapted from [7])

3.2 Methods and Techniques 23

According to Battista et al. [7, p. 220], software with “interactive drawing features should be

able to: (a) create a drawing of a given graph under some layout standard, and (b) give the user

the ability to interact with the drawing”. This interaction should allow the user to insert a link

between two nodes, insert a node and its links, delete links, nodes or sets of links and nodes, move

a node and move a set of nodes and links. The way the interactive graph drawing responds to these

alterations depend on the amount of control that users have on the graph elements and on how

different the new drawing will be, compared to the current one.

So, interactive drawings, also known as dynamic graph drawings, emerged to address the need

to frequently change the graph itself, adjusting its drawing to the changes, whilst considering the

usual optimization criteria for graph layout and preserving the users’ mental map, which is also

known as “maintaining dynamic stability” [11, p. 230]. At that time, according to Branke [11,

229-230], two ways were being used to deal with the issue of maintaining the dynamic stability:

“Support the user by animating and highlighting the changes so that the changes can be easily

recognized and the transitions are smooth; 2) Minimize the changes such that the effort to regain

familiarity is minimized”.

Although “the field was first understood as a subproblem of graph drawing (. . .), after the mil-

lennium, with the availability of more and more time-varying datasets, dynamic graph diagrams

were discovered as an information visualization technique. Alternatives to animated node-link

diagrams that plot the graph onto timelines were introduced [see Figure 3.8]. By 2010, the visual-

ization of dynamic graphs was established as a standard visualization discipline” [8, p. 133].

Figure 3.8: Example of changes made to a graph drawing being visualized in a timeline (adapted
from [8])

Labelling consists of naming nodes and links in a graph drawing [32], which means that “text

labels have to be associated with graphical features” [65, p.247]. For Kakoulis and Tollis [45, p.

489], “because the labelling process is a monotonous and very demanding task, its automation is

very desirable”. However, for the authors, it is unlikely that computer-based systems can produce

labelling of the same quality of experienced professionals. So, they consider that “semi-automated

interactive name placement systems may be the most practical approach at the present time” [45,

p. 489]. The difficulty of labelling is caused by the proximity between the object to be labelled

and other objects, restricting the freedom to place the label. So, the labelling must take into

24 Graph drawings

consideration “not only the position of a label with respect to its associated object, but also how it

relates to other labels and objects in the surrounding area” [45, p. 490].

Regarding general labelling quality evaluation, Kakoulis and Tollis [45] summarize it as: 1) A

label cannot overlap other labels or other drawing elements; 2) Identification of exactly what label

corresponds to what drawing elements must be easy; 3) A label must be placed in the best possible

position. For the authors [45], a typical rule when labelling nodes is to place labels to the right

and above the point representing the node. The label can touch the point but not overlap it (see

Figure 3.9). As for links, a label can touch the link to which it belongs, but not any other drawing

element (see Figure 3.9).

Figure 3.9: Example of possible positions for labelling a node (on the left) and for labelling a link
(on the right) (adapted from [45])

Despite the enunciated rules to facilitate labelling and improve its quality, “there are cases

where the best methods available do not always produce an acceptable or legible solution even if

one exists. Furthermore, there are cases where no feasible solution exists” [45, p. 511]. When this

happens, the only solution is to modify the drawing. For the authors, there are two algorithmic

approaches to do this: "1) Modify the existing layout of a graph drawing to make room for the

placement of labels; 2) Produce a new layout of a graph drawing that integrates the layout and

labeling process" [45, p. 512].

For Neyer [65], labelling should occur when the graph is being drawn, to avoid situations

where the drawing is too dense to be labelled. This is known as integrated labelling (see Fig-

ure 3.9) because labels are an integrated part of the layout calculation. As labels are applied

during the layout process, this allows for considering labels as part of the overall layout [83].

Nonetheless, algorithms that add labels to previously existing drawings, without modifying them

are useful, because in many situations the drawings represent geographical or technical informa-

tion that cannot be changed. This type of labelling is called generic labelling (see Figure 3.10) and

it consists of placing labels on a graph drawing without changing its layout [83].

3.3 Summary 25

Figure 3.10: Example of a generic labelling and the corresponding integrated labelling (adapted
from [83])

3.3 Summary

In this chapter, graph drawings and related issues were addressed. Of these, it is important to

highlight that:

• Graphs can be represented in several ways. Graph drawings must satisfy a set of drawing

conventions. Good layouts depend on aesthetics criteria and technical criteria. There are a

set of recommendations regarding the aesthetics criteria. Some of these recommendations

conflict with each other, given rise to different methods and techniques for optimising graph

drawings.

• The better techniques to address graph drawings optimisation are planarization, force-directed

methods, Sugiyama-like methods, flow methods, interactive drawings and labelling.

• Sugiyama-like methods are the most widely used algorithms for drawing layered graphs

and hierarchical drawings, taking into consideration the direction, orientation and crossing

of the links and the nodes distribution.

26 Graph drawings

Chapter 4

Wafer fabrication and DoE

This chapter includes aspects of wafer fabrication and DoE. Section 4.1 describes semiconductors

manufacturing, focusing on wafer fabrication. Section 4.2 addresses DoE and its application to

semiconductors manufacturing and wafer fabrication. Section 4.3 presents the CMF module for

DoE and its main features and functionalities, making the connecting with the problem addressed

in this dissertation. Section 4.4 summarizes the highlights of this chapter.

4.1 Wafer Fabrication

A great variety of electronic equipment such as smartphones, digital cameras, personal comput-

ers, and other use semiconductors devices [78]. Semiconductor devices are electronic components

like integrated circuits (IC), diodes, and transistors that are made of semiconductor materials [42],

which are substances “possessing an electrical conductivity somewhere between that of a conduc-

tor and that of an insulator. Silicon is a representative example of a semiconductor” [42, pt. S].

The physical unit that is used for manufacturing semiconductor devices is called a wafer (see Fig-

ure 4.1) [42]. The wafer is, in general, “made by slicing a silicon ingot (a cylindrical mass) into

disk-shaped pieces of about 0,5 mm to 1 mm thick” (see Figure 4.2) [42, pt. W].

Figure 4.1: Wafers at the national Museum of Scotland ([64] under the Creative Commons
Attribution-Share Alike 3.0 Unported license)

27

28 Wafer fabrication and DoE

Figure 4.2: A silicon ingot at the Intel Museum ([3] under the Creative Commons Attribution-
Share Alike 3.0 Unported license)

The raw wafer is submitted to several manufacturing operations, that typically consist of “de-

positing insulating or dielectric layers, conductive layers, and semi-conductive layers of material

over a semiconductor substrate, and patterning the various material layers using lithography to

form circuit components and elements thereon” [78, para. 1]. These layers will vary, depending

on the device that is being made. For example, “in the manufacturing process of IC, electronic cir-

cuits with components such as transistors are formed on the surface of a silicon crystal wafer [42,

para. 2]. A single wafer has more than one hundred semiconductor dies [43], which is “the mini-

mum unit of the semiconductor device to be cut out individually” (see Figure 4.3) [42, pt. D].

Figure 4.3: A silicon wafer with 30 cm after the depositing of all the layers and before dies are cut
(adapted from [69] under the Creative Commons Attribution-Share Alike 3.0 Unported license)

4.2 Wafer DoE 29

Wafer fabrication is the first stage in the manufacturing of semiconductors. Because the re-

sulting components depend on “chemical purity and near-perfect crystalline properties of wafers,

(. . .) the production of silicon wafers has achieved a high degree of intricacy with many com-

plex phases” [39, p. 640]. This complexity is corroborated by May and Spanos [62, p. 8] when

they consider that “the modern semiconductor manufacturing process sequence is the most so-

phisticated unforgiving volume production technology that has ever been practiced successfully.

It consists of a complex series of hundreds of unit process steps that must be performed very nearly

flawlessly”.

The manufacturing process has steps. Each step has inputs, outputs, and specifications. Mul-

tiple process steps are linked together to form a process sequence, which is called a process

flow [62]. According to Gupta [39, p. 640], “most wafer fabs contain over 100 machines and often

there are dozens of process flows, each with a very specific set of 300–500 processing steps”. This

is due not only to the complexity of the process itself but also to the wide variety of ICs that it is

necessary to produce, as the demands from the automobile industries and medical and healthcare

industries, amongst others, are increasing rapidly [80].

Because of the increasingly high costs involved mainly due to the equipment, and of the de-

creasingly low IC chip prices [80], manufacturers are under pressure to produce larger quantities

and improve quality and delivery times [39]. So, they strive to schedule the various orders (jobs)

in their factory in a way that will allow them to make the most of all resources. This “requires

scheduling of jobs on a large number of machines where jobs re-enter processing several times

after [they have been] processed by subsequent machines” [39, p. 644], thus creating multiple

process flows with split and merge operations. In these operations, “two or more lots can be

merged into a single lot if routes and all the processing conditions of the lots are the same for

a number of subsequent operations, and the merged lot is split into the original lots at the point

where the routes or processing conditions become different” [5, p. 2209]. Bang et al. denote

as wafer group, the “wafer lots that can be merged together, i.e., those with the same processing

conditions and the same next workstation to visit” [5, p. 2210].

According to Liu and Li, “many production systems have split and merge operations to in-

crease production capacity and variety, improve product quality, and implement product control

and scheduling policies” [54, p. 4373].

4.2 Wafer DoE

On the one hand, because wafer fabrication is “the most costly and time consuming of the semicon-

ductor manufacturing steps” [39, p. 640], any improvements that can be made are very important

to manufacturers [39]. On the other hand, “as wafer fabrication processes become increasingly

complicated in nano technologies, many factors (. . .) affect the yield of fabricated wafers, while

spec tolerance is significantly reduced owing to physical limits. Hence it is increasingly difficult

to quickly identify the root causes and suggest the corresponding corrective actions when yield

loss occurs to minimize the incurred excursion cost” [14, pp. 961-962].

30 Wafer fabrication and DoE

A method that has been used to provide a quick and cost-effective way to optimize manufac-

turing is the DoE [75], [14]. Abreu et al. [1, p. 2] define DoE as “a methodology that allows us

to select the best combination of factors levels in order to optimize the value (s) of the quality

characteristic (s) under study, both in terms of its mean value such as the reduction of variability,

i.e., allows to determine which controllable factors affect certain quality characteristics and which

are the best levels of these factors in order to increase the resistance of the product to the noise

factors, thus satisfying the requirements of the various stakeholders in the performance of an orga-

nization”. For Giles et al. [37, p. 291], “the advantage of using a DOE approach is that systematic

data are generated, summarized, and evaluated to definitively determine whether a project should

be carried forward or if it is fundamentally impossible to resolve and needs to be dropped”.

Farooq at al. [30, p. 155] state the process improvement from the application of DoE as being

the “improved process yields, reduced process variability and reduced overall costs” and that “over

the past many years, industries have successfully applied DoE to improve process performance and

reduce variability”.

Nonetheless, and according to Chien et al. [14], even though DoE has been successfully ap-

plied to manufacturing, employing it to semiconductor manufacturing is a difficult task. The

authors [14] present three reasons for that difficulty: 1) This industry is very capital intensive,

with a 24/7 equipment utilization to have an early return on the capital investment, that leaves no

room for other uses of the equipment, like experimentation; 2) Experiments itself have also the

high costs of time and money associated with wafer fabrication and to the experimentation pro-

cess, which limits the number and variety of experiments that can be done; 3) Wafer fabrication

involves hundreds of re-entrant process steps (splits and merges) which makes the experiments

very hard to follow, due to the complex data variety.

To better understand how DoE has been used in semiconductor manufacturing and wafer fab-

rication, a search was conducted in the Scopus database. The inclusion criteria were: 1) Being

published after 1999 (last 20 years); 2) Having (“semiconductor manufacturing” and “design of

experiments”) or (“wafer fabrication” and “design of experiments”) in the keywords (so that the

focus of the documents were the intended topics). This search returned 28 document results for

“semiconductor manufacturing" and “design of experiments”. Of these, 15 (54%) are conference

papers, and 13 (46%) are articles. More than half (54%) are from North America, 32% are from

Asia and 14% are from Europe. The last decade accounts for 68% of these documents. As for the

content, it can be summarized as being related with the use of DoE in the semiconductor manu-

facturing: 1) With other techniques or methods like data mining (e.g. [14]) and machine learning

(e.g. [67]); 2) For simulation (e.g. [46]); 3) To improve metrological (e.g. [13]) or technologi-

cal aspects (e.g. [51]) related with the manufacturing process; 4) To improve time-related issues

of the manufacturing process (e.g. [70]). As for the search with “wafer fabrication" and “design

of experiments", the results were eight documents equally distributed between conference papers

and articles. The majority (67%) are from Asia and the rest (33%) from North America. The last

decade saw a decrease in the publication from 67% to 33%. The content was all related to very

specific critical technical issues of wafer fabrication (e.g. [82], [56]). Three of the eight identified

4.3 CMF Experiment Management Module 31

documents had “semiconductor manufacturing”, “wafer fabrication”, and “design of experiments”

in the keywords and had also shown up as results of the first search.

Additionally, these documents were inspected for illustrations of the DoE interface. Some had

illustrations (e.g. [56]), but they were all of the tabular types. No mention of graphs or graph

drawings were found.

4.3 CMF Experiment Management Module

To allow and facilitate the DoE, making it an easier, more efficient, and effective process, CMF

has recently integrated into its MES the EM module [17]. According to CMF, the EM module will

allow to “reduce time by conducting multi-parameter experiments rather than test one variable at

a time; conduct experiments transparently, side-by-side, in a mass production factory; understand

and gain in-depth knowledge of the process variables and their effect; improve Quality and Reli-

ability of process and products; decrease product development and production costs; [and] speed

Time-to market” [18, para. 4]. Besides these benefits, because this module is “an integral part

of the MES, experiments can be conducted alongside daily production schedules with complete

transparency” [68, para. 7]. The data collection of the shop floor that is a part of the CMF MES is

available in the CMF EM module, which “means engineers can readily gain in-depth knowledge

of the process variables and their effect on production” [68, para. 7].

The CMF EM module can be accessed from CMF MES selecting «Business Data» and «Ex-

periment Definition» (see Figure 4.4).

Figure 4.4: Accessing CMF EM module in CMF MES (orange highlight)

Upon entering, the user can access a previously defined experiment, import an experiment

defined somewhere else (a .xml file), or define/create a new one (see Figure 4.5). Additional

features include the possibility of refreshing the information being shown, searching and querying

(see Figure 4.6).

32 Wafer fabrication and DoE

Figure 4.5: Accessing an experiment in CMF EM module’s main menu (orange highlight)

Figure 4.6: Additional features in CMF EM module’s main menu (orange highlight))

Before presenting the stages involved in the definition and creation of an experiment and how

to do it in the CMF EM module, it is important to understand what elements are necessary to

design an experiment for wafer fabrication in this module.

In general, an experiment consists of subjecting a set of materials (sub-materials) to a set

of manufacturing process steps (flow). Thus, for each experiment, it is necessary to choose the

main flow, from a set of available flows. This flow can itself be a set of flows, known as a Flow

of flows. Other steps from other flows can be added to the selected main flow. At each step,

the materials can be subject to actions. Different actions can be chosen for different materials.

There is a set of eleven existing actions to choose from. Some actions (ChangeFlowAndStep,

TemporaryOffFlow and Terminate) determine which materials to subject to which steps of the

flow. The actions ChangeFlowAndStep and TemporaryOffFlow cause the materials to change to

another flow, i.e. they create splits and/or merges in the flow. Applying the action Terminate to a

set of materials prevents them to advance to other steps of the flow, which can also create a split.

The other available actions are Hold, SetBOM, SetChecklist, SetDataCollection, SetDurables,

SetMeasureAll, SetNote, and SetRecipe. It is also necessary to indicate, for each action being

applied, in what moment of the respective step it will be performed. This information is given by

the events. Each action is associated with certain events from a pre-existing set of four (Track-In,

Track-Out, Queued, Processed).

4.3 CMF Experiment Management Module 33

To do the DoE in the CMF EM module it is necessary to specify all the materials, the main

flow, other steps from other flows, the actions, to which material in which steps these actions apply,

and the respective events. This is done in the definition of an experiment and its creation.

In the CMF EM module itself, the definition of experiments comprises several stages: 1)

Change set; 2) General data; 3) Objectives; 4) Material groups. The stages are presented in Ta-

ble 4.1, Table 4.2, Table 4.3, Table 4.4, Table 4.5, and Table 4.6 applied to the wafer fabrication.

Table 4.1: Description and illustration of stage 1 (Change set) of the experiments’ definition

DESCRIPTION AND ILLUSTRATION

- To select a change set for the experiment is mandatory. The experiment gets its universal

state from the change set.

Table 4.2: Description and illustration of part 1 of stage 2 (General data, information) of the
experiments’ definition

DESCRIPTION AND ILLUSTRATION

- A name and a description can be attributed to the experiment. The name and the type are

mandatory and the type will allow better future organization and search of information.

- Information about the owner’s role and purpose of the experiment can be included. It is

also possible to add some notes about the experiment.

34 Wafer fabrication and DoE

Table 4.3: Description and illustration of part 2 of stage 2 (General data, settings) of the experi-
ments’ definition

DESCRIPTION AND ILLUSTRATION

- Users can choose whether the experiment will be applied to a product or a product group.

This changes the information presented to them and from which they can make their fol-

lowing selections.

- The inclusion of information about the product is not mandatory but recommended. Once

the product is chosen, its flow (a unique set of associated manufacturing processes) is auto-

matically selected, although it can be changed (flow is mandatory).

- Users have the option to include information about the maximum number of materials.

- Users can also associate the required material type and the required material form with the

experiment. These are optional.

- For mode, the options are sub-materials or full material. Full material is a block of raw

material and sub-materials are portions of full materials. This means that sub-materials

can be separated and therefore subject to different flows, while a full material because it

is a single block, can only be subjected to a single flow. This mode selection changes the

information that is presented to users and from which they must choose. Because wafers

are sub-materials, this is the selection for mode.

- The indication of the required sub-materials count, and the required sub-materials form

is mandatory. The form is selected from a pre-existing set of options, that are available in

CMF MES.

- Information about the planned start date and the planned end date can also be included.

4.3 CMF Experiment Management Module 35

Table 4.4: Description and illustration of part 3 of stage 2 (General data, options) of the experi-
ments’ definition

DESCRIPTION AND ILLUSTRATION

- Users must select the options from the following yes or no possibilities: ignore in sampling

plans, ignore in SPC charts, and close experiment automatically.

Table 4.5: Description and illustration of stage 3 of the experiments’ definition (Objectives)

DESCRIPTION AND ILLUSTRATION

- Objectives for the experiment can be added. After this, they can be deleted and sorted.

- Naming the objective is mandatory. Additional information about the description of the

objective and its target can also be included.

Table 4.6: Description and illustration of stage 4 of the experiments’ definition (Material Groups)

DESCRIPTION AND ILLUSTRATION

- The definition of the material groups must be done. The advantage of having these groups

is the possibility of subjecting them to different processes (flows). At least one group must

be added, but there can be as many groups as sub-materials (required sub-materials count).

These groups can also be deleted and sorted.

- Naming the material groups is mandatory. Additional information required is the descrip-

tion (optional), whether it is shippable (required; yes or no), and the type of material (op-

tional). For each group, users must select their respective sub-materials. All sub-materials

(required sub-materials count) must be part of a group.

36 Wafer fabrication and DoE

After the experiment is defined, it must be created, which is done by hitting «create» (see

Figure 4.7).

Figure 4.7: Creation of an experiment in the CMF EM module’s (orange highlight)

Hitting «create» allows steps to be added to the defined experiment (see Figure 4.8).

Figure 4.8: Addition of steps to an experiment in the CMF EM module’s (orange highlight)

The addition of steps to an experiment comprises three stages: 1) General data; 2) Material

groups; 3) Actions (see Table 4.7, Table 4.8 and Table 4.9).

Table 4.7: Description and illustration of stage 1 (General data) of adding a step to a defined
experiment

DESCRIPTION AND ILLUSTRATION

- The steps to be selected are part of a flow path. Because of that, the selection of a flow path

is mandatory. By default, the flow path is the one chosen in the experiment definition, but it

can be altered. Clicking «browse» shows the steps of the selected flow (orange highlight).

- After clicking «browse», the steps of the selected flow path are shown and can be selected

(orange highlight).

4.3 CMF Experiment Management Module 37

Table 4.8: Description and illustration of stage 2 (Material groups) of adding a step to a defined
experiment

DESCRIPTION AND ILLUSTRATION

- For the selected step, material groups must be chosen (orange highlight).

- In the material groups details, the selection of sub-materials is mandatory. These sub-

materials can be selected from the material groups previously defined (see Table 4.6), se-

lecting a group itself or any of its elements separately. In the example, two groups were

selected, each with two sub-materials (1 and 2, and 3 and 4, respectively for group «Con-

trol» and for group «Test01»).

- It is also mandatory to indicate the type of split to apply to the selected sub-materials. Split

type can be none, physical or logical.

Table 4.9: Description and illustration of stage 3 (Actions) of adding a step to a defined experiment

DESCRIPTION AND ILLUSTRATION

- For each one of the step materials group, one or more actions and events must be selected.

- Fill-in all the information regarding the actions and events, that can be different depending

on what was chosen, and save it.

38 Wafer fabrication and DoE

After a step definition, the user can see all the information for that step, which can be edited

if necessary (see Figure 4.9). Additional steps can be added, repeating the process described.

As stated before, and as illustrated in Figure 4.9, there is only available a tabular view, which

does not facilitate user interaction and does not prevent the execution of logically and incorrect

experiments.

Figure 4.9: Example of a step and respective actions and material groups in the CMF EM module’s

4.4 Summary

This chapter was dedicated to wafer fabrication and DoE and the CMF EM module. Of the ad-

dressed topics, it is important to highlight that:

• Wafer fabrication is the first stage in the manufacturing of semiconductors. The semiconduc-

tor manufacturing industry is very complex, involving increasingly higher costs and greater

demands. The optimisation of the process flow requires multiple splits and merges.

• DoE is a method to provide a quick and cost-effective way to optimize manufacturing, even

though applying it to semiconductor manufacturing is a difficult task.

• To allow and facilitate the DoE, making it an easier, more efficient, and effective process,

CMF has recently integrated into its MES the EM module. Nonetheless, the designed ex-

periment being shown only in a tabular view does not facilitate user interaction and does not

prevent the execution of logically and incorrect experiments.

Chapter 5

Solution development and methodology

This chapter describes the methodology used for the development of the implemented solution,

according to the user stories and the objectives of this dissertation. Thus, section 5.1 presents the

user stories, the tasks that needed implementation, and the methodology used to do it. The fol-

lowing sections describe the development of the solution. Section 5.2 describes all aspects related

with graph visualization, section 5.3 with logical verification, section 5.4 with the improvement of

user features and section 5.5 with testing and validation. Section 5.6 summarizes the highlights of

this chapter.

5.1 User stories and development methodology

Although the existence of the CMF MES EM module facilitated the DoE, there are designed

experiments that are executed despite having logical errors. Because of that:

• Users want to detect logical errors, to correct them, thus preventing the execution of logi-

cally invalid experiments.

• Users want a visualization of the designed experiment that is similar to the wafer fabrication

process flow, to facilitate the interpretation of what is being visualized.

• Users want to be able to filter the visualization of the designed experiment by a sub-material

or set of sub-materials, to individually analyse the respective process flow.

Taking the user stories into consideration, the general objective and the specific objectives of

this dissertation were defined, and a set of tasks that allow their accomplishment were identified.

To facilitate the presentation of the development of the solution, these tasks were organized in

four stages: preparation and graph visualization, logical verification, improvement of user features,

and testing and validation. These tasks, and respective stages, are the following:

39

40 Solution development and methodology

STAGE 1: PREPARATION AND GRAPH VISUALIZATION

• To get acquainted with the technology, processes, concepts, and terminology involved in

semiconductors manufacturing, namely wafers fabrication, CMF MES, in general (devel-

oper perspective) and CMF MES EM module, in particular (developer and user perspective).

• To research and choose a graph drawing tool, checking its adequacy, and testing it with

hardcoded information.

• To test the selected graph drawing tool in drawing graphs with information parsed from

CMF MES, regarding an experiment with no splits and merges in the process flow and to

save the graph information.

• To adjust visual details and implement basic features for user interaction.

• To draw graphs of different types of experiments, by adding processes resulting from splits

and merges to the process flow.

STAGE 2: LOGICAL VERIFICATION

• To analyse the errors from designed experiments caused by splits and merges in the wafer

fabrication to identify how they translate into occurrences in graph drawings.

• To adapt the coded information structure of the graphs to facilitate logical verification of the

graph drawings occurrences, to identify relevant graph information for the logical verifica-

tion, making it as trivial as possible.

• To implement the logical verification, including simple feedback for users.

STAGE 3: IMPROVEMENT OF USER FEATURES

• To research algorithms to organize the graph drawings, improving their quality and their

resemblance to the manufacturing process.

• To improve the previously developed basic features for user interaction, making them more

versatile and adjusted to the information structure of graphs used for logical verification.

• To implement features that facilitate users’ identification of errors’ cause and related infor-

mation, taking into consideration users’ requests.

STAGE 4: TESTING AND VALIDATION

• To populate the database with experiments with known errors, drawing its graphs and

analysing the results with experts.

To complete these tasks and develop the solution to be implemented, an agile software process

model was chosen, more specifically the SCRUM framework. "Scrum is a framework within

which people can address complex adaptive problems, while productively and creatively delivering

5.2 Preparation and Graph Visualization 41

products of the highest possible value" [74]. SCRUM was chosen because it is the methodology

adopted by CMF in their projects, and because of its adequacy for this specific project. This

adequacy is due to SCRUM being used when: "1) Requirements are not clearly defined; 2) The

probability of changes during the development is high; 3) There is a need to test the solution; 4)

The Product Owner is fully available; 5) The client’s culture is open to innovation and adapts to

change" [41].

In the SCRUM framework, projects are developed in two weeks periods, known as sprints.

The sprint begins with the sprint planning, in which priority tasks that can be accomplished in

the duration of a sprint are chosen. At the end of the sprint, the sprint review and the sprint

retrospective are done. In the case of this project, these included a presentation for CMF staff with

knowledge about this project and the CMF MES.

The tasks were analysed to evaluate the priority of each one, and, at the beginning of each

sprint, moved to the sprint backlog.

5.2 Preparation and Graph Visualization

To get acquainted with the necessary aspects of semiconductors manufacturing, namely wafers

fabrication, and the CMF MES, in general, and CMF MES EM module, in particular, was a priority

task that was done with the help of CMF staff and experts, at the early stages of the internship.

When researching for a graph drawing tool to be used to draw the graphical representation

of a graph, it was found that there are several open source libraries available. The CMF MES

already uses one of these libraries, JointJS, to draw a graphical representation of different types of

information in other modules.

JointJS is an open source javascript library that allows users to "create static diagrams or

fully interactive diagramming tools such as workflow editors, process management tools, IVR

systems, API integrators, presentational applications and much more" [16, para. 1]. Its Model-

View-Controller "architecture separates graph, element and link models from their rendering. A

diagram in JointJS is represented by a Graph model (joint.dia.Graph) to which models of cells, ei-

ther Elements (subtypes of joint.dia.Element) or Links (subtypes of joint.dia.Link), can be added"

[15, para. 1]. JointJS provides "a visual library of common geometric shapes, as well as an ex-

tensive collection of ready-to-use components from several well-known diagramming languages"

[15, para. 1]. JointJS also provides functions to automatically position the nodes resorting to an

algorithm and its respective parameters. JointJS Core library is licensed under the Open Source

Mozilla Public License Version 2.0 [16].

To assess the adequacy of JointJs in drawing graphs for the CMF EM module, it was tested

with a basic set of hardcoded information (see Figure 5.1), to create a few nodes and links, and

checking if it produced a good graph drawing. The obtained result (see Figure 5.2) showed that

JointJS is adequate for this situation, because of its ability to represent the necessary drawing

elements.

42 Solution development and methodology

Figure 5.1: JointJS with hardcoded information

Figure 5.2: Graph drawing with hardcoded information in JointJS

After this, JointJS was tested with an experiment defined in the CMF EM module for this

purpose. In this experiment, there are six sub-materials organized in three groups of two sub-

materials each, and there is a main flow with five steps (from step 00 to step 04). The experiment

was initially defined in its simpler version (Version 1) and was progressively incremented and

changed to test the representation of different types of actions in graph drawings, namely the ones

that can cause the errors. Six versions (Version 1 to Version 6) of the experiment were created to

5.2 Preparation and Graph Visualization 43

test and illustrate the development of the solution. All versions of the experiment tested were the

following:

• Version 1 is the experiment with the main flow (Step 00 to Step 04) and no actions (see

graph drawing in Figure 5.5);

• Version 2 is Version 1 of the experiment with a SetMeasureAll action (Track-In event) in

Step 01 to sub-materials 3, 4, 5 and 6 (see graph drawing Figure 5.6);

• Version 3 is Version 2 of the experiment with a ChangeFlowAndStep action (Processed

event) in Step 02 to Step 20, with sub-materials 5 and 6, and another flow with Steps 20 to

Step 23 (see graph drawing Figure 5.7);

• Version 4 is Version 3 of the experiment with a ChangeFlowAndStep action (Processed

event) in Step 23 to Step 04 (back to the main flow), with sub-materials 5 and 6 (see graph

drawing Figure 5.8);

• Version 5 is Version 3 of the experiment with a Terminate action (Processed event) in Step

21, with sub-materials 5 and 6 (see graph drawing Figure 5.9);

• Version 6 is Version 3 of the experiment with a TemporaryOfFlow action (Processed event)

in Step 04, with sub-materials 3 and 4, and another flow with Steps 30 and Step 31 (see

graph drawing Figure 5.10).

For this test, and for every future experiment, the first thing that was done was to get all the

information related to the experiment from the database, which includes: 1) The number of sub-

materials; 2) The main flow; 3) Every step, from the main flow or not, that has one or more actions.

Following this, the retrieved information was parsed and fed to the respective functions of JointJS.

As an example, excerpts of the code from Version 1 and Version 2 of the experiment are presented

in Figure 5.3 and Figure 5.4 (the rest of the code of this and other versions of the experiment is

included in the Appendix A).

To draw the nodes it was used the shapes.basic.Rect() function and to draw the links, the

dia.Link() function. Nodes are represented as rectangular boxes with the name of the step. Nodes

with no actions are filled with light green and nodes with actions have a darker shade. Links are

blue lines and have arrows indicating the flow direction. A flow is represented by nodes and links.

When a flow is a Flow of flows, additional links are used to connect the last node of a flow with

the first node of the next one. The color yellow is used for nodes that represent steps that were

added due to TemporaryOfFlow actions. The color red is used to signal the presence of logical

errors and takes priority over both greens. The visual aspect of the nodes and links serves only as

a proof of concept.

44 Solution development and methodology

Figure 5.3: Code necessary to represent the Version 1 of the experiment

5.2 Preparation and Graph Visualization 45

Figure 5.4: Code necessary to represent the Version 2 of the experiment

The graph drawings of Version 1 and Version 2 of the experiment are presented in Figure 5.5

and Figure 5.6, respectively. Because Version 1 as no actions, all nodes are represented in light

green, according to the color scheme that was chosen for graph drawings. Version 2 has a SetMea-

sureAll action in Step 2, that is colored in a darker shade of green.

Figure 5.5: Graph drawing of the Version 1 of the experiment (only main flow)

46 Solution development and methodology

Figure 5.6: Graph drawing of the Version 2 of the experiment (main flow and an action)

In Version 3 of the experiment, it was added an action ChangeFlowAndStep to Step 02 for the

sub-materials 5 and 6 (see Figure 5.7). This type of action may create a physical split, meaning

that one or more sub-materials will follow a different flow from the rest. This can happen for

multiple steps if it is merged later, or permanently if there is no future merge, which was the case.

Because of this, the nodes were automatically repositioned, giving a more pleasant look to the

graph drawing by keeping a hierarchical layout. For the representation itself, it was not enough

to draw an extra node with its respective link. It was also needed to draw the rest of the flow for

which those sub-materials were changing into. To do this, it was necessary to get the information

about the new flow from the database and parse it in a very similar way to the main flow and then

represent it. After having the new flow, it was only necessary to add the remaining link from the

step that had the action ChangeFlowAndStep into the new step from the new flow.

Figure 5.7: Graph drawing of the Version 3 of the experiment (addition of an action causing a
split)

5.2 Preparation and Graph Visualization 47

In Version 4 of the experiment, an action ChangeFlowAndStep was used to merge back the

previously split sub-materials 5 and 6 (see Figure 5.8). This action was done in Step 23 to Step

04. Because of that, Step 23 was colored in a darker shade of green. As in the previous version,

also this one, the nodes were automatically repositioned, maintaining a layered layout.

As before, it was required to check if both flows were already represented. If one of them or

both were not represented, their information had to be retrieved from the database. If both were

already represented in the graph, then it was only necessary to add the new link between both

flows, which was the case.

Figure 5.8: Graph drawing of the Version 4 of the experiment (addition of an action causing a
merge back from the split)

In Version 5 of the experiment, it was added an action Terminate on Step 21 to sub-materials 5

and 6 (see Figure 5.9). If one or more sub-materials are subjected to this action in a step, those sub-

materials no longer continue along with the flow, and so this step becomes the last step for these

sub-materials. If other sub-materials continue to another step in the flow, this creates a permanent

physical split. Because the action Terminate applies to all sub-materials on Step 21 (sub-materials

5 and 6), in this case, no split is created.

To represent this in the graph drawing it was necessary to parse this information, just like

for the previous actions, but this time instead of adding more components to the graph, some

components were hidden in order for the last step of the flow to correspond to the last step with

sub-materials.

48 Solution development and methodology

Figure 5.9: Graph drawing of the Version 5 of the experiment (addition of an action Terminate)

In Version 6 of the experiment, it was added an action TemporaryOffFlow on Step 04 to Step

30 with sub-materials 3 and 4 (see Figure 5.10). This action, at first sight, might seem to create

a loop in the experiment, because in the drawing, there will be a link from the step that has the

action (Step 04) to another step in another flow (Step 30), and in the last step of that other flow

(Step 31), there will be a link back to the step that had the action (Step 04). According to the

color scheme, Step 04 is filled in a darker green, because it as the action TemporaryOffFlow. Step

30 and Step 31 are colored in light yellow because they represent a flow that was added due to a

TemporaryOffFlow. In the drawing itself, this is indeed a cycle, but the CMF EM module already

ensures that this action does not create any type of logical problem during the execution of the

experiment. To represent this action in the drawing the same procedure of parsing information

from the database was followed.

Figure 5.10: Graph drawing of the Version 6 of the experiment (addition of an action Temporary-
OffFlow)

5.3 Logical Verification 49

5.3 Logical Verification

To analyse if the experiment is logically valid, it was required to save in every node information

regarding the sub-materials that have at least one action in that step and the sub-materials that pass

through that step. This information is stored in the variables described in Table 5.1.

Table 5.1: Node Data Structure

NAME DESCRIPTION

stepId Id of the step

stepName Name of the step

stepDescription Description of the step

mainLink Next link in the flow, if it exists

changeLinks Set of other links (links due to the action ChangeFlowAndStep)

tempLinks Set of other links(links due to the action TemporaryOffFlow)

subMaterials Set of sub-materials that pass through

subMaterialsAction Set of sub-materials with actions

actions Set of actions

events Set of events

The information about the sub-materials that have at least one action in a step was already

stored in their respective nodes because it was necessary for the graph drawing. For the sub-

materials that pass through a step, the process was more complex and required some graph prop-

erties to be used. To achieve this, an algorithm to traverse the graph depth-first was implemented.

The depth-first algorithm implemented is a recursive algorithm that accepts a node and a set of

sub-materials as parameters. When called for the first time, the parameters should be the root node

(first step of the main flow) and a set of every sub-material in that experiment. This algorithm does

the following operations:

• Checks if the sub-materials trying to be saved in a node x are not already there; if they are

not, it saves the sub-materials in the node x;

• Checks if there are tempLinks in the node x; if there are, an auxiliary function is called,

because this case needs to be addressed differently;

• Checks if there is any Terminate action in the node x, if there is, the terminated sub-materials

T are removed from the set of sub-materials that are going to next node y in the flow;

• Checks if there are changeLinks in the node x; if there are, the sub-materials C, going to a

step a in another flow, are removed from the set of sub-materials that are going to next node

y in the flow, and recursively call this function with that step a and sub-materials C;

50 Solution development and methodology

• Recursively call this function with the next nodey in the flow, if y exists, and with the

remaining sub-materials, if any.

After having all the information needed in the nodes, it is only necessary to do a few checks to

test if the experiment is logically valid or not. There are two types of logical errors that can occur,

a circular reference or a missing sub-material.

• A missing sub-material occurs when an action is added to a node, for a certain sub-material,

and that sub-material does not pass through that node. So, missing sub-material type of

errors only occur in nodes that have actions.

• A circular reference occurs when a sub-material is sent, via ChangeFlowAndStep action, to

a node where it already passed through, creating a cycle in the graph. So, circular reference

types of errors can occur in nodes with or without actions.

To check for circular references, it was added a verification in the previous algorithm during the

first condition; if there is a sub-material trying to be saved in a node where it was already saved, this

indicates that there is a cycle, which generates an error. To check for a missing sub-material, after

the conclusion of the previous algorithm, it is checked, for every node, if the subMaterialsAction

set is contained in the subMaterials set; if not, then there is a missing sub-material in that node.

When one of these errors is identified, that node turns red and an error message is sent to the error

tab with information regarding the step, the sub-material, and the type of the error so that the user

can fix it easily.

Every node has stored every link that has that node as a source, and every link stores its target

node. There are two types of links, that vary due to their origin, one type of link is those that are

apart of a flow and connect their steps in a sequence, the other type is the one that originates from

the action ChangeFlowAndStep, which connect steps from different flows. So while traversing

the graph, for each node, first the set of sub-materials is saved in that node, after that, it will be

determined which sub-materials go to each node, so it is checked if there is any ChangeFlowAnd-

Step, then check if there is an action Terminate, and the remaining sub-materials are sent to the

next node of the main flow if any.

5.4 Improvement of User Features

Some complementary features were added to this module to enable the user to have a better expe-

rience while using it.

• The user can filter the graph by a specific sub-material to see the graph of only that one

sub-material, to ensure that it is as it was supposed to be. The filter can also be used for

more than one sub-material, in the same group or not, showing the graph of all of them

combined (filtering for everything yields the same result as filtering for nothing). This

feature is achieved by traversing every node and checking if at least one of the sub-materials

being filtered is contained in either the subMaterials set or subMaterialsExp set.

5.5 Testing and Validation 51

• JointJS already comes with a feature that allows users to be able to grab and hold nodes, to

change their position on the paper in real-time, which is useful for graph drawings of DoE.

• It was added the feature to drag the outside of the graph to create the effect of panning. To

implement this, it was used the already exposed events, blank:pointerdown, blank:pointerup

and cell:pointerup. The first is used to set the start position and the last two are used to clean

it. Also, it was used a regular javascript event listener, that takes into consideration the start

position, the current position, and the current scale value and applies a translate to the graph

accordingly.

• It was also implemented a zoom function which helps the user to better visualize experi-

ments with a great number of nodes. As mentioned on the pan feature, JointJS also exposes

the event for the blank:mousewheel and cell:mousewheel, so a scale is applied to everything

on the paper according to the rotation of the wheel. It is also done a translate that takes into

consideration the position of the mouse so that it stays in the same position of the graph.

• Nodes and links are clickable, and when clicked, information about them is shown in a side

tab (this component was adapted from an existing CMF MES component to keep the same

look and feel). The shown information is already stored in the elements clicked, so it is only

necessary to write it in the designated sections of the side tab.

• When there is a logical error, information appears in a bar showing what is causing that

error, including the type of error, the sub-material, and the node. By clicking on it, it will

automatically filter by that sub-material to streamline the process of detecting what might

be originating the error. The implementation of this was already described in 5.3.

• Unused nodes are hidden to lighten up the complexity of the drawing. This can be toggled

in case the user wants to check something in those unused nodes. This is achieved by the

same methods used in the filter.

5.5 Testing and Validation

To test the code developed, the missing sub-material type of errors and the circular reference type

of errors were generated in the Version 3 of the experiment tested in graph visualization (see graph

drawing of Version 3 in Figure 5.5). The generation of theses errors was based on the fact that,

in Version 3, sub-materials 5 and 6 are sent to step 20, due to a ChangeFlowAndStep on Step 02.

The purpose of creating theses errors was to check if the code was able to detect and catch them

and show the appropriate feedback. For validation, the results were analysed by in-house experts,

which is the method that CMF uses in its projects.

For generating a missing sub-material error in Version 3 of the tested experiment in graph

visualization, a SetMeasureAll action was added for sub-materials 5 and 6 on step 03. Because

of the split on step 02, these sub-materials did not pass through Steps 03 and 04. This generates

52 Solution development and methodology

a logical error, step 03 turns red (see Figure 5.11) and two error messages saying "Trying to use

missing sub-material 5 on Step 03" and "Trying to use missing sub-material 5 on Step 03" are

displayed in the errors tab. By filtering by either sub-material 5 or 6 or both, step 03 appears

without any link. With this information, the user should quickly realize what may be causing this

error (see Figure 5.12).

Figure 5.11: Graph drawing of the experiment with a missing sub-material error

Figure 5.12: Graph drawing of the experiment with a missing sub-material error filtered by the by
the sub-material causing the error

For generating a circular reference error in Version 3 of the tested experiment in graph visual-

ization, a ChangeFlowAndStep action on step 21 to step 00 was added for sub-materials 5 and 6.

5.6 Summary 53

Because these sub-materials have already passed through step 00 before, this generates a logical

error. Step 00 turns red (see Figure 5.13) and two error messages saying "Circular reference of

sub-material 5 on Step 00" and "Circular reference of sub-material 5 on Step 00" are displayed

in the errors tab. By filtering by either sub-material 5 or 6 or both, step 03 appears without any

link. With this information, the user should quickly realize what may be causing this error (see

Figure 5.14). The in-house experts found these results in accordance with what was intended.

Figure 5.13: Graph drawing of the experiment with a circular reference error

Figure 5.14: Graph drawing of the experiment with a circular reference error filtered by the sub-
material causing the error

5.6 Summary

This chapter was dedicated to the description of the methodology used for the development of the

solution. Of the presented results, it is important to highlight that:

• Users stories were taken into consideration for the definition of the objectives of this disser-

tation.

54 Solution development and methodology

• A set of tasks that allowed the accomplishment of the objectives were defined and organized

in stages.

• For the development of the solution, an agile software process model, more specifically the

SCRUM framework was chosen.

• The development of the solution regarding the graph visualization, the logical verification,

the improvement of user features and the testing and validation were described and illus-

trated resorting to a simple experiment with six versions.

Chapter 6

Validation and results analysis

This chapter presents the validation and analysis of the results of this dissertation. Section 6.1

presents the graph drawing of a complex experiment. Section 6.2 illustrates the use of the im-

plemented user features with the graph drawing of the complex experiment. Section 6.3 includes

graph drawings with different errors, illustrating their detection in a complex experiment. Sec-

tion 6.4 summarizes the highlights of this chapter.

6.1 Graph drawing of a complex experiment

The complex experiment that illustrates the implemented solution for drawing graphs was defined

and created in the CMF EM module for this dissertation.

In this experiment, there are six sub-materials (1, 2, 3, 4, 5, 6) organized in three groups of two

sub-materials each (1 and 2, 3 and 4, 5, and 6). There is a main flow with five steps (Step 0 to Step

4), but also other flows (Step 5 to Step 8, Step 18 to Step 19 and Step 20 to Step 23) and a Flow

of flows (Step 9 to Step 17). As for the actions, there are six actions ChangeFlowAndStep, two

actions SetMeasureAll, one action TemporaryOffFlow, and one action Terminate. The steps that

have these actions are Step 1, Step 4, Step 6, Step 8, Step 11, Step 13, Step 14, and Step 19. Step

1 has two actions ChangeFlowAndStep, one for sub-materials 3 and 4, and other for sub-materials

5 and 6. Step 4 has one action ChangeFlowAndStep for sub-materials 1 and 2. Step 6 has one

action SetMeasureAll for sub-materials 5 and 6. Step 8 has one action ChangeFlowAndStep for

the sub-materials 5 and 6. Step 11 has one action TemporaryOffFlow for the sub-materials 3 and

4. Step 13 has one action Terminate for the sub-material 3. Step 14 has one action SetMeasureAll

for the sub-material 4. Step 19 has one action ChangeFlowAndStep for sub-materials 1, 2, 5, and

6.

In Table 6.1, the information of steps, sub-materials, and actions is summarized.

55

56 Validation and results analysis

Table 6.1: Characteristics of the complex experiment

STEPS SUB-MATERIALS ACTIONS (SUB-MATERIALS)

0 1, 2, 3, 4, 5, 6 —

1 1, 2, 3, 4, 5, 6 ChangeFlowAndStep (3, 4); ChangeFlowAndStep (5, 6)

2 1, 2 —

3 1, 2 —

4 1, 2 ChangeFlowAndStep (1, 2)

5 5, 6 —

6 5, 6 SetMeasureAll (5, 6)

7 5, 6 —

8 5, 6 ChangeFlowAndStep (5, 6)

9 — —

10 3, 4 —

11 3, 4 TemporaryOffFlow (3, 4)

12 3, 4 —

13 3, 4 Terminate (3)

14 4 SetMeasureAll (4)

15 4 —

16 1, 2, 4, 5, 6 —

17 1, 2, 4, 5, 6 —

18 1, 2, 5, 6 —

19 1, 2, 5, 6 ChangeFlowAndStep (1, 2, 5, 6)

20 — —

21 — —

22 3, 4 —

23 3, 4 —

The graph drawing of the complex experiment characterized in Table 6.1 is presented in Fig-

ure 6.1. When visualizing it, the user has also available information about the sub-materials and

actions at each node by clicking on it. As mentioned previously, for a certain sub-material, nodes

with actions are colored in a darker green, and nodes that were added due to a TemporaryOff-

Flow action are colored in light yellow. The two actions ChangeFlowAndStep in Step 1 split

the sub-materials by three flows, the main flow and two other flows. Two of the three groups of

sub-materials are merged back by actions ChangeFlowAndStep in Step 8 and Step 4. The other

group has a TemporaryOffFlow in Step 11, thus diverting to Step 22 and Step 23, and only then

proceeding to Step 12. In this group, sub-material 3 has an action Terminate in Step 13 and do

not pass by the following nodes. The other two groups of sub-materials are merged back with the

remaining sub-material from this one, by an action ChangeFlowAndStep in Step 19.

6.2 Application of user features 57

Figure 6.1: Graph drawing of the complex experiment

The graph drawing in Figure 6.1 shows that the implemented solution produces adequate graph

drawings. In this case, the graph drawing is a hierarchical drawing of a directed acyclic graph. As

recommended, upward links are avoided (the exception is a link due to the action TemporaryOff-

Flow), nodes are uniformly distributed, there are no crossings and links are straight lines.

6.2 Application of user features

Although the graph drawing in Figure 6.1 is an adequate visualization of the complex experiment

described in Table 6.1, some additional features can improve its effectiveness, making it more

useful for users. According to the information in Table 6.1, some nodes do not have sub-materials

(Step 9, Step 20, and Step 21). This means that they are part of a flow that is being used in this

experiment, even though these particular steps are not. A feature was implemented to allow users

to hide the nodes that are not being used, i.e, those that do not have sub-materials nor actions.

Figure 6.2 illustrates the use of this feature by hiding the nodes corresponding to Step 9, Step 20,

and Step 21.

Another feature available to users is the possibility to grab and hold the nodes, changing man-

ually the layout of the graph drawing. For example, in the automatically generated graph drawing

of Figure 6.2, the nodes of Steps 10 to 17 are not vertically aligned, despite being part of the same

Flow of flows. The user may be interested in changing this, positioning the nodes in a vertical

straight line and thus facilitating the identification of the Flow of flows. Figure 6.3 shows the same

graph drawing of Figure 6.2 but with some nodes positioned by the user.

58 Validation and results analysis

Figure 6.2: Graph drawing of the complex experiment with the unused nodes hidden

Figure 6.3: Graph drawing of the complex experiment with nodes position changed by the user

6.2 Application of user features 59

The complexity of the graph drawing can be decreased by not visualizing the complete draw-

ing. This is accomplished with the possibility of filtering the graph drawing by sub-materials,

showing the nodes and links of a specific sub-material or set of sub-materials, and recoloring the

nodes accordingly. Figures 6.4, 6.5, 6.6, 6.7 and 6.8 illustrate the use of this feature by only

showing the nodes and links of sub-materials 1, 3, 4, 3 and 4, and 5, respectively. The graph

drawing filtered by sub-material 2 is identical to the one of sub-material 1, the same happening

with sub-material 6 and 5. Because of that, they were not included here.

Figure 6.4: Graph drawing of the complex experiment filtered by sub-material 1

Figure 6.5: Graph drawing of the complex experiment filtered by sub-material 3

60 Validation and results analysis

Figure 6.6: Graph drawing of the complex experiment filtered by sub-material 4

Figure 6.7: Graph drawing of the complex experiment filtered by a group of sub-materials (3 and
4)

6.3 Detection and visualization of errors 61

Figure 6.8: Graph drawing of the complex experiment filtered by sub-material 5

The observation of the graph drawings in this section shows that the implemented solution

allows users, not only to visualize all the nodes, links, and actions involved in a complex exper-

iment but also visualize more specific information regarding a particular sub-material or set of

sub-materials. These sub-materials can be from the same group or not, being available the possi-

bility to chose sub-materials individually or to chose a group of sub-materials. It also shows that

the colors of the nodes change according to the sub-material being filtered. Figure 6.4 is the only

one where Step 1 is light green because it is filtered by the sub-material 1 and this sub-material

does not have an action in this node. In all graph drawings, filtered or not, the user has available

information about the sub-materials and actions at each node by clicking on it.

6.3 Detection and visualization of errors

To illustrate the capability of the implemented solution in the detection and visualization of errors,

changes were made to the complex experiment to create different errors of the two possible types

(missing sub-material and circular reference).

For the missing sub-material type of error, different actions for sub-material 1, were added to

five nodes (Step 06, Step 08, Step 11, Step 13, and Step 15). Four of these nodes (Step 06, Step

08, Step 11, and Step 13) already had actions for other sub-materials. Step 15 had no other action

than the one added to create this error. An action SetMeasureAll was added to Step 6 and Step

15 and an action ChangeFlowAndStep was added to Step 8, Step 11, and Step 13. Hence, Step 6

had two actions SetMeasureAll, one for sub-materials 5 and 6 and other for sub-material 1, Step

62 Validation and results analysis

8 had two actions ChangeFlowAndStep, one for sub-materials 5 and 6 and other for sub-material

1, Step 11 had one action TemporaryOffFlow for sub-materials 3 and 4 and one action Change-

FlowAndStep for sub-material 1, Step 13 had one action Terminate for sub-material 3 and one

action ChangeFlowAndStep for sub-material 1 and Step 15 had one action ChangeFlowAndStep

for sub-material 1. All the additional actions for sub-material 1 were added to nodes by which the

sub-material 1 did not pass through, thus causing an error as it was intended.

In Table 6.2, the information about the additional actions and respective sub-materials causing

the missing sub-material type of error is presented with the information about the steps, sub-

materials, and actions of the complex experiment.

Table 6.2: Complex experiment with additional actions causing missing sub-material errors

STEPS SUB-MATERIALS ACTIONS (SUB-MATERIALS) ADDITIONAL ACTIONS

0 1, 2, 3, 4, 5, 6 — —

1 1, 2, 3, 4, 5, 6 ChangeFlowAndStep (3, 4) —

ChangeFlowAndStep (5, 6) —

2 1, 2 — —

3 1, 2 — —

4 1, 2 ChangeFlowAndStep (1, 2) —

5 5, 6 — —

6 5, 6 SetMeasureAll (5, 6) SetMeasureAll (1)

7 5, 6 — —

8 5, 6 ChangeFlowAndStep (5, 6) ChangeFlowAndStep (1)

9 — — —

10 3, 4 — —

11 3, 4 TemporaryOffFlow (3, 4) TemporaryOffFlow (1)

12 3, 4 — —

13 3, 4 Terminate (3) Terminate (1)

14 4 SetMeasureAll (4) —

15 4 — SetMeasureAll (1)

16 1, 2, 4, 5, 6 — —

17 1, 2, 4, 5, 6 — —

18 1, 2, 5, 6 — —

19 1, 2, 5, 6 ChangeFlowAndStep (1, 2, 5, 6) —

20 — — —

21 — — —

22 3, 4 — —

23 3, 4 — —

6.3 Detection and visualization of errors 63

Figure 6.9 illustrates how these errors are visualized in the graph drawing of the complex

experiment. As expected, the color of five nodes turned red and five error messages were displayed

in the errors bar: "Trying to use missing sub-material 1 on Step 6", "Trying to use missing sub-

material 1 on Step 8", "Trying to use missing sub-material 1 on Step 11", "Trying to use missing

sub-material 1 on Step 13", and "Trying to use missing sub-material 1 on Step 15". Clicking on

any of the error messages automatically filters the graph drawing by the sub-material causing the

error indicated in the message. The resulting graph drawing is shown in Figure 6.10. The same

graph drawing could be obtained by applying a filter to the graph drawing shown in Figure 6.9 and

selecting only the sub-material 1. As previously stated, the color of the nodes changed according to

the actions that are being applied to the filtered sub-material. The color red always takes precedent

over the other colors. Since the missing sub-material type of error occurs by applying actions to

certain sub-materials, in nodes in which these sub-materials do not pass through, this means that

these nodes were not a part of the path of that sub-material. Thus, this type of error in a graph

drawing filtered by the sub-material that caused it, can be identified not only by its red color but

also because it corresponds to isolated nodes, without any links to the remaining ones. This can be

seen by comparing figure 6.4, without errors, with figure 6.10, with errors, both from the complex

experiment and both filtered by sub-material 1.

The in-house experts found these results in accordance with what was intended.

Figure 6.9: Graph drawing of the complex experiment with missing sub-material errors

64 Validation and results analysis

Figure 6.10: Graph drawing of the complex experiment with missing sub-material errors being
filtered by the sub-material causing the errors (sub-material 1)

For the circular reference type of error, two actions ChangeFlowAndStep were applied to

different sub-materials (2 and 4) passing through different nodes (Step 17 and Step 10). These

steps had no actions in the complex experiment. Sub-material 2 passed through Step 17 and sub-

material 4 passed through Step 10, thus making it possible for these actions to be applied to these

steps. One action ChangeFlowAndStep from Step 17 to Step 19 was applied to sub-material 2,

and one action ChangeFlowAndStep from Step 10 to Step 0 was applied to sub-material 4. The

added actions ChangeFlowAndStep made sub-materials 2 and 4 pass through the selected nodes

twice, thus causing errors due to circular reference type errors, as it was intended. Sub-material

4, Step 10, and Step 0 were intentionally chosen to create a circular reference type of error, but

also missing sub-material errors due to the change of the respective path. Because of this path

alteration, sub-material 4 will not pass trough Step 11, thus returning an error due to the an action

in that step. Similarly, sub-material 4 will also not pass trough Step 14, thus returning an error due

to an action in that step.

In Table 6.3, the information about the additional actions and respective sub-materials causing

the circular reference and respective missing sub-materials type of errors is presented with the

information about the steps, sub-materials, and actions of the complex experiment.

6.3 Detection and visualization of errors 65

Table 6.3: Complex experiment with additional actions causing circular reference and respective
missing sub-materials errors

STEPS SUB-MATERIALS ACTIONS (SUB-MATERIALS) ADDITIONAL ACTIONS

0 1, 2, 3, 4, 5, 6 — —

1 1, 2, 3, 4, 5, 6 ChangeFlowAndStep (3, 4) —

ChangeFlowAndStep (5, 6) —

2 1, 2 — —

3 1, 2 — —

4 1, 2 ChangeFlowAndStep (1, 2) —

5 5, 6 — —

6 5, 6 SetMeasureAll (5, 6) —

7 5, 6 — —

8 5, 6 ChangeFlowAndStep (5, 6) —

9 — — —

10 3, 4 — ChangeFlowAndStep (4)

11 3, 4 TemporaryOffFlow (3, 4) —

12 3, 4 — —

13 3, 4 Terminate (3) —

14 4 SetMeasureAll (4) —

15 4 — —

16 1, 2, 4, 5, 6 — —

17 1, 2, 4, 5, 6 — ChangeFlowAndStep (2)

18 1, 2, 5, 6 — —

19 1, 2, 5, 6 ChangeFlowAndStep (1, 2, 5, 6) —

20 — — —

21 — — —

22 3, 4 — —

23 3, 4 — —

Figure 6.11 illustrates how these errors are visualized in the graph drawing of the complex

experiment. As expected, the color of four nodes turned red and four error messages were dis-

played in the errors tab: "Circular reference of sub-material 2 on Step 19", "Circular reference

of sub-material 4 on Step 0", "Trying to use missing sub-material 4 on Step 11" and "Trying to

use missing sub-material 4 on Step 14". As previously stated, clicking in any of the error mes-

sages automatically filters the graph drawing by the sub-material causing the error indicated in the

message. The resulting graph drawings are shown in Figure 6.12 and in Figure 6.13. The same

graph drawings could be obtained by applying the respective filters to the graph drawing shown in

Figure 6.11.

66 Validation and results analysis

Figure 6.11: Graph drawing of the complex experiment with circular reference errors and respec-
tive missing sub-material errors

The observation of Figure 6.11, namely the red nodes, shows an isolated node (Step 14), which

means that there is a missing sub-material (sub-material 4) in the respective action. Another red

node (Step 11) due to a missing sub-material type of error is not presented as an isolated node

in Figure 6.11 because Step 11 is also a part of the path of the sub-material 3. For visualizing

this node as an isolated node, it is necessary to filter the graph drawing by the sub-material 4 (see

Figure 6.12), thus hiding all the elements that are not traversed by sub-material 4 or that have an

action for sub-material 4. Because Step 11 has the color red, and also is a part of what seems

to be a cycle, one might think that this indicates a circular reference type of error. As mentioned

before, this is not the case, because the other nodes involved have the color yellow, which indicates

an action TemporaryOffFlow. The color red in Step 11 is due to the already mentioned missing

sub-material type of error and not to a circular reference. To confirm this, the user can check the

error messages, that show that the error in Step 11 is due to a missing sub-material. If this is not

enough, clicking on that error message, filters the graph drawing by the missing sub-material (see

Figure 6.12), which, for a missing sub-material error due to that same sub-material, will always

show that node as an isolated node. The other two red nodes in Figure 6.11 (Step 0 and Step 19)

are each a part of a cycle with upward and downward links, which indicates a circular reference

type of error. That information can also be confirmed by clicking on the respective error messages

and filtering the graph drawing by the respective sub-material (see Figure 6.12 and Figure 6.13 for

sub-material 4 and 2, respectively).

The in-house experts found these results in accordance with what was intended.

6.3 Detection and visualization of errors 67

Figure 6.12: Graph drawing of the complex experiment with circular reference errors and respec-
tive missing sub-material error filtered by the sub-materials causing the errors (sub-material 4)

Figure 6.13: Graph drawing of the complex experiment with circular reference errors filtered by
the sub-material causing the errors (sub-material 2)

68 Validation and results analysis

6.4 Summary

This chapter was dedicated to the validation and analyses of the results. Of the presented results,

it is important to highlight that:

• The implemented solution was illustrated resorting to a complex experiment that was de-

signed for this purpose. The graph drawing of this complex experiment was presented.

• The user features developed for the implemented solution were also illustrated resorting

to the graph drawing of the complex experiment, focusing on how they facilitate the user

interaction with the graph drawing.

• To show the capability of the implemented solution in the detection and visualization of

errors, changes were made to the complex experiment to create different errors of the two

possible types (missing sub-material and circular reference). The resulting graph drawings

were included and the usefulness of the user features was shown in the analyses of these

drawings in the process of error detection.

Chapter 7

Conclusions

The problem that motivated this dissertation is grounded on the idea that Industry 4.0 brings dif-

ficulties and opportunities, like the IIoT, and that, even though old MES are not adequate, the

new MES solutions can optimize the production environment. The global relevance of CMF and

recognized expertise as a MES solution provider was argued. The improvements recently made

in CMF MES were highlighted, namely the EM, a breakthrough module in the achievement of

optimum process performance. The module allows workers to perform DoE with multiple input

variables, and execute and monitor experiments seamlessly in a single system, which results in

an easier, more efficient, and effective process. the advantages of DoE were presented, and its

relevance for the semiconductor manufacturing industry was pointed out. Reasons for the diffi-

culty in implementing DoE, regarding high manufacturing costs (time and money), the little time

available in the production line to conduct experiments, and the manufacturing process itself is

very complex, are described. It was argued that although the CMF MES EM module is a valuable

addition in performing DoE for the semiconductor manufacturing, because of its complexity, hu-

man errors occur and cause waste of valuable production time and resources. As these errors are

due to logically invalid experiments and incorrect experiments, a claim was made that graph and

graph drawings would be an appropriate way to address this problem, making CMF MES even a

more valuable tool for companies towards Industry 4.0.

With this problem and framework in mind, the main goal of this dissertation was stated as the

implementation of graph capabilities into the CMF MES EM module, to prevent logically invalid

and or incorrectly designed experiments to be executed.

To achieve the general objective of this dissertation, an agile software process model, more

specifically the SCRUM framework was used. A set of tasks were defined and organized in five

stages: preparation, graph visualization, logical verification, improvement of user features, and

testing and validation. The tasks were analysed to evaluate the priority of each one, and, in the

begin of each sprint, moved to the sprint backlog. It was the choice of the SCRUM framework

that justified resorting to a simple experiment with several versions in the graph visualization and

69

70 Conclusions

testing and validation stages. This simple experiment was progressively evolving, thus being well

adjusted to the duration of the sprints. Also, this allowed for a development of the implemented

solution that was based on a set of decisions and intermediate tests that were validating it.

7.1 Main contributions

The main contributions of this dissertation focused on the implementation of the logical verifi-

cation and of the feedback for users, and in the implementation of features that facilitate users’

identification of errors’ cause and related information. For this implementation, a complex ex-

periment was used, designed for this specific purpose, to demonstrate that the solution developed

meets the intended objectives. The use of this complex experiment, which could be seen as a

limitation, because it is not an experiment obtained in the real context of Wafer Fabrication DoE,

allowed the combination, in a single experiment, of a wide range of errors, with various conse-

quences, allowing to simplify the mentioned demonstration.

Taking into consideration the results obtained, one can conclude that the use of DAG and hi-

erarchical graph drawings were an appropriate option for the visualization of Wafer Fabrication

DoE since the graph drawings obtained follow the recommendations and aesthetic criteria that fa-

cilitate the understanding and interpretation of these drawings. All the intentionally added logical

errors were correctly identified and signaled with the appropriate color and corresponding error

messages, thus making it possible to conclude of the adequacy of the code developed to do it and

of the graph structure implemented.

Also in the results, one tried to demonstrate the need and advantage of the implemented user

features, emphasizing that, although the signaling of errors is important, the use of these features

is indispensable to the visualization and identification of the cause of the errors, thus preventing

not only the execution of logically invalid experiments but also of incorrect ones. It is, therefore,

possible to conclude that taking these aspects into account was an appropriate choice and that the

general objective has been fully achieved.

7.2 Future work

Although the general objective has been fully achieved, this dissertation works as a proof of con-

cept, and for it to be ready for integration in the final product it needs some changes in the GUI.

These changes include improving the node representation to be able to show more information to

the user in the node itself. Some of this information could be in collapsible sections in the node

so that the user can choose between a more heavy information view and a lighter version more

similar to the one presented in this dissertation. There should also be a visual representation of the

sub-material groups in the nodes, for example with a color scheme system, that would allow the

user to check which group contains the sub-materials passing through each node.

Moving on from the graph drawing itself, some adjustments could be made to the rest of the

page, mainly to the details tab. Even though this tab was implemented, its features are limited and

7.2 Future work 71

rudimentary, presenting to the user information regarding each node clicked, but just text-based.

In the future, some more information could be added and there should be links wherever they

are useful. For example, when clicking a node there should be information about the flow of the

corresponding step, including a link to the flow page. All these improvements mentioned so far

should be implemented while keeping and improving the look and feel of the CMF MES and the

EM module.

In addition to the improvements to the GUI, some further developments that could be done to

add more features to the graph. The main improvement would be allowing the user to define, or at

least edit, the experiment in the graph view, without needing to use the wizards in the matrix view.

Initially, this should start as the user being able to click in a button on a node to add/edit/remove

an action. Then, there should be an option to allow to add or remove flows, which implies also

the need to have a way of add/edit/remove links. Furthermore, this allows the user to tackle any

mistakes that he or she might make, straight away.

These suggestions for future work highlight the potential yet to be explored of the use of graphs

and graph drawings in streamlining wafer fabrication DoE, thus being of paramount importance

for the semiconductor industry, and in making the integrated CMF MES an even more valuable

tool for companies towards Industry 4.0.

72 Conclusions

Appendix A

Source code

In this appendix, it is presented most of the source code of the software developed in this disser-

tation. This only includes the typescript code since the html and less (Leaner Style Sheets) files

are very simple and standard. Some sections of this file were also omitted to keep the appendix as

concise and relevant as possible.

1

2 @Component({

3 moduleId: __moduleName,

4 selector: ’icf-graph-custom-graphView’,

5 inputs: [],

6 outputs: [],

7 templateUrl: ’./graphView.html’,

8 styleUrls: ["./graphView.css",

9 "../../../../jointjs/dist/joint.css"],

10 encapsulation: ng.ViewEncapsulation.None,

11 assign: { i18n: i18n }

12 })

13 export class GraphView extends CoreComponent implements ng.OnChanges, ng.OnInit, ng

.AfterViewInit {

14

15 constructor(private _elementRef: ng.ElementRef, viewContainerRef: ng.

ViewContainerRef) {

16 super(_elementRef, viewContainerRef);

17

18 this.errorCount = 0;

19

20 this.headerItem1 = {

21 id: "0",

22 iconClass: "",

23 text: "Errors",

24 disabled: false

25 };

26 this.bodyItems1 = [

73

74 Source code

27];

28 this.bodyItems1SubMaterials = [

29];

30 this.menuModel1 = {

31 headerItem: this.headerItem1,

32 bodyItems: this.bodyItems1

33 }

34

35 this.disabled = false;

36 this.multiSelection = true;

37 this.search = true;

38

39 this.items = [];

40

41 this.selectedItems = [];

42

43 this.leftPanelShowCollapse = true;

44 this.rightPanelShowCollapse = true;

45 this.centerContent = "Click on the left menu";

46

47 this.selectedStepName = "";

48 this.selectedStepDescription = "";

49 this.selectedStepAllMaterials = [];

50 this.selectedStepAllMaterialsWithActions = [];

51 this.selectedStepAllMaterialsWithErrors = [];

52 this.selectedStepActions = [];

53 }

54

55 //#region Private methods

56

57 //#endregion

58

59 //#region Public methods

60

61 public onSelect(value: any): void {

62 this.selectedItems = [];

63

64 if (this.multiSelection) {

65 value.map((item, index) => {

66 this.selectedItems[index] = item.item.name;

67 });

68 } else {

69 this.selectedItems.push(value.item.name);

70 }

71

72 this.filterBySubMaterial(this.selectedItems);

73 }

74

75 public onClick(item: any): void {

Source code 75

76 this.centerContent = "clicked: " + item.name;

77 }

78

79 public onMenuGroupClick(e: any) {

80 }

81

82 public onPanelBarItemClick(e: any) {

83 this.selectedItems = [];

84 this.selectedItems.push(this.bodyItems1SubMaterials[e.id]);

85 this.filterBySubMaterial(this.selectedItems);

86 }

87

88 // New functions

89 // Fill with subMaterials

90 public fillSubMaterials(node, subMaterials): boolean {

91

92 // TemporaryOffFlow Stuff

93 for (let i = 0; i < node.attributes.tempLinks.length; i++) {

94 const tempSubMaterials = [];

95 for (let j = 0; j < node.attributes.tempLinks[i][1].length; j++) {

96 if (subMaterials.indexOf(node.attributes.tempLinks[i][1][j]) !==

-1) {

97 tempSubMaterials.push(node.attributes.tempLinks[i][1][j]);

98 node.attributes.tempLinks[i][0].attributes.subMaterials.push(

node.attributes.tempLinks[i][1][j]);

99 }

100 }

101 this.fillSubMaterialsTemp(node.attributes.tempLinks[i][0].attributes.

target, tempSubMaterials);

102 }

103

104 // SubMaterials sent to next step in the flow

105 const childSubMaterials = [];

106

107 // SubMaterials splitted from the flow

108 const allSplitSubMaterials = [];

109

110 // Save subMaterials in node

111 let circRef = false;

112 for (let i = 0; i < subMaterials.length; i++) {

113 if (node.attributes.subMaterials.find(subMaterial => subMaterial ===

subMaterials[i]) === undefined) {

114 node.attributes.subMaterials.push(subMaterials[i]);

115 } else {

116 node.attributes.subMaterialsError.push(subMaterials[i]);

117 node.attributes.subMaterialsError.sort();

118 node.attr({

119 rect: { fill: this.inColorError, stroke: this.outColorError },

120 text: { fill: this.outColorError }

76 Source code

121 });

122 const message = ’Circular reference of Sub-Material ’ +

subMaterials[i]

123 + ’ on step ’ + node.attributes.stepName;

124 this.bodyItems1.push({

125 id: this.errorCount.toString(),

126 iconClass: "",

127 text: message,

128 disabled: false

129 });

130 this.bodyItems1SubMaterials.push(subMaterials[i]);

131 this.errorCount++;

132 console.log(’Circular reference of Sub-Material ’ + subMaterials[i]

+ ’ on step ’ + node.attributes.stepName);

133 circRef = true;

134 }

135 }

136

137 if (circRef) {

138 return false;

139 }

140

141 node.attributes.subMaterials.sort();

142

143 // Terminated subMaterials

144 for (let i = 0; i < node.attributes.actions.size; i++) {

145 if (node.attributes.actions.get(i).find(action => action === 0) === 0)

{

146 for (let j = 0; j < node.attributes.subMaterialsExp.get(i).length;

j++) {

147 allSplitSubMaterials.push(node.attributes.subMaterialsExp.get(i

)[j]);

148 }

149 }

150 }

151

152 // Splitted subMaterials

153 for (let i = 0; i < node.attributes.otherLinks.length; i++) {

154 const splitSubMaterials = [];

155 for (let j = 0; j < node.attributes.otherLinks[i][1].length; j++) {

156 if (subMaterials.indexOf(node.attributes.otherLinks[i][1][j]) !==

-1) {

157 splitSubMaterials.push(node.attributes.otherLinks[i][1][j]);

158 allSplitSubMaterials.push(node.attributes.otherLinks[i][1][j]);

159 node.attributes.otherLinks[i][0].attributes.subMaterials.push(

node.attributes.otherLinks[i][1][j]);

160 }

161 }

162

Source code 77

163 // Send splitted subMaterials to another flow

164 if (splitSubMaterials.length !== 0) {

165 this.fillSubMaterials(node.attributes.otherLinks[i][0].attributes.

target, splitSubMaterials);

166 }

167 }

168

169 // Remaining subMaterials

170 for (let i = 0; i < subMaterials.length; i++) {

171 if (allSplitSubMaterials.indexOf(subMaterials[i]) === -1) {

172 childSubMaterials.push(subMaterials[i]);

173 }

174 }

175

176 // Send subMaterials to next step in the flow

177 if (node.attributes.mainLink !== undefined) {

178 if (childSubMaterials.length !== 0) {

179 node.attributes.mainLink.attributes.subMaterials = node.attributes.

mainLink.attributes.subMaterials.concat(childSubMaterials);

180 node.attributes.mainLink.attributes.subMaterials.sort();

181 this.fillSubMaterials(node.attributes.mainLink.attributes.target,

childSubMaterials);

182 }

183 }

184

185 return true;

186 }

187

188 // Fill with subMaterials ofr TempOffFlow

189 public fillSubMaterialsTemp(node, subMaterials): boolean {

190

191 node.attributes.subMaterials = subMaterials;

192

193 if (node.attributes.mainLink !== undefined) {

194 node.attributes.mainLink.attributes.subMaterials = subMaterials;

195 node.attributes.mainLink.attributes.subMaterials.sort();

196 this.fillSubMaterialsTemp(node.attributes.mainLink.attributes.target,

subMaterials)

197 } else {

198 node.attributes.tempLinks[0][0].attributes.subMaterials = subMaterials;

199 node.attributes.tempLinks[0][0].attributes.subMaterials.sort();

200 }

201

202 return true;

203 }

204

205 // Filter by subMaterial(s)

206 public filterBySubMaterial(filteredSubMaterials) {

207 const nodes = this.paper.model.getElements();

78 Source code

208 const links = this.paper.model.getLinks();

209

210 if (filteredSubMaterials.length === 0) {

211 for (let i = 0; i < links.length; i++) {

212 if (links[i].attributes.subMaterials.length === 0) {

213 links[i].attr({

214 ’.connection’: { display: ’none’ },

215 ’.connection-wrap’: { display: ’none’ },

216 ’.marker-target’: { display: ’none’ }

217 });

218 if (links[i].attributes.source.attributes.subMaterialsExpSorted

.length === 0 &&

219 links[i].attributes.source.attributes.subMaterials.length

=== 0) {

220 links[i].attributes.source.attr({

221 rect: { display: ’none’ },

222 text: { display: ’none’ }

223 });

224 } else {

225 links[i].attributes.source.attr({

226 rect: { display: ’initial’ },

227 text: { display: ’initial’ }

228 });

229 if (links[i].attributes.source.attributes.type !== ’Temp’)

{

230 if (links[i].attributes.source.attributes.

subMaterialsError.length > 0) {

231 links[i].attributes.source.attr({

232 rect: { fill: this.inColorError, stroke: this.

outColorError },

233 text: { fill: this.outColorError }

234 });

235 } else if (links[i].attributes.source.attributes.

subMaterialsExpSorted.length > 0) {

236 links[i].attributes.source.attr({

237 rect: { fill: this.actionColor, stroke: this.

outColor },

238 text: { fill: this.outColor }

239 });

240 } else {

241 links[i].attributes.source.attr({

242 rect: { fill: this.inColor, stroke: this.

outColor },

243 text: { fill: this.outColor }

244 });

245 }

246 }

247 }

Source code 79

248 if (links[i].attributes.target.attributes.subMaterialsExpSorted

.length === 0

249 && links[i].attributes.target.attributes.subMaterials.

length === 0) {

250 links[i].attributes.target.attr({

251 rect: { display: ’none’ },

252 text: { display: ’none’ }

253 });

254 } else {

255 links[i].attributes.target.attr({

256 rect: { display: ’initial’ },

257 text: { display: ’initial’ }

258 });

259 if (links[i].attributes.target.attributes.type !== ’Temp’)

{

260 if (links[i].attributes.target.attributes.

subMaterialsError.length > 0) {

261 links[i].attributes.target.attr({

262 rect: { fill: this.inColorError, stroke: this.

outColorError },

263 text: { fill: this.outColorError }

264 });

265 } else if (links[i].attributes.target.attributes.

subMaterialsExpSorted.length > 0) {

266 links[i].attributes.target.attr({

267 rect: { fill: this.actionColor, stroke: this.

outColor },

268 text: { fill: this.outColor }

269 });

270 } else {

271 links[i].attributes.target.attr({

272 rect: { fill: this.inColor, stroke: this.

outColor },

273 text: { fill: this.outColor }

274 });

275 }

276 }

277 }

278 } else {

279 links[i].attributes.source.attr({

280 rect: { display: ’initial’ },

281 text: { display: ’initial’ }

282 });

283 if (links[i].attributes.source.attributes.type !== ’Temp’) {

284 if (links[i].attributes.source.attributes.subMaterialsError

.length > 0) {

285 links[i].attributes.source.attr({

286 rect: { fill: this.inColorError, stroke: this.

outColorError },

80 Source code

287 text: { fill: this.outColorError }

288 });

289 } else if (links[i].attributes.source.attributes.

subMaterialsExpSorted.length > 0) {

290 links[i].attributes.source.attr({

291 rect: { fill: this.actionColor, stroke: this.

outColor },

292 text: { fill: this.outColor }

293 });

294 } else {

295 links[i].attributes.source.attr({

296 rect: { fill: this.inColor, stroke: this.outColor

},

297 text: { fill: this.outColor }

298 });

299 }

300 }

301 links[i].attributes.target.attr({

302 rect: { display: ’initial’ },

303 text: { display: ’initial’ }

304 });

305 if (links[i].attributes.target.attributes.type !== ’Temp’) {

306 if (links[i].attributes.target.attributes.subMaterialsError

.length > 0) {

307 links[i].attributes.target.attr({

308 rect: { fill: this.inColorError, stroke: this.

outColorError },

309 text: { fill: this.outColorError }

310 });

311 } else if (links[i].attributes.target.attributes.

subMaterialsExpSorted.length > 0) {

312 links[i].attributes.target.attr({

313 rect: { fill: this.actionColor, stroke: this.

outColor },

314 text: { fill: this.outColor }

315 });

316 } else {

317 links[i].attributes.target.attr({

318 rect: { fill: this.inColor, stroke: this.outColor

},

319 text: { fill: this.outColor }

320 });

321 }

322 }

323 links[i].attr({

324 ’.connection’: { display: ’initial’ },

325 ’.connection-wrap’: { display: ’initial’ },

326 ’.marker-target’: { display: ’initial’ }

327 });

Source code 81

328 }

329 }

330 } else {

331 for (let i = 0; i < nodes.length; i++) {

332 if (nodes[i].attributes.subMaterials.filter(subMaterial =>

filteredSubMaterials.includes(subMaterial)).length === 0 &&

333 nodes[i].attributes.subMaterialsExpSorted.filter(subMaterial =>

filteredSubMaterials.includes(subMaterial)).length === 0)

{

334 nodes[i].attr({

335 rect: { display: ’none’ },

336 text: { display: ’none’ }

337 });

338 } else {

339 nodes[i].attr({

340 rect: { display: ’initial’ },

341 text: { display: ’initial’ }

342 });

343 if (nodes[i].attributes.type !== ’Temp’) {

344 if (!(nodes[i].attributes.subMaterialsError.filter(

subMaterial =>

345 filteredSubMaterials.includes(subMaterial)).length ===

0)) {

346 nodes[i].attr({

347 rect: { fill: this.inColorError, stroke: this.

outColorError },

348 text: { fill: this.outColorError }

349 });

350 } else if (!(nodes[i].attributes.subMaterialsExpSorted.

filter(subMaterial =>

351 filteredSubMaterials.includes(subMaterial)).length ===

0)) {

352 nodes[i].attr({

353 rect: { fill: this.actionColor, stroke: this.

outColor },

354 text: { fill: this.outColor }

355 });

356 } else {

357 nodes[i].attr({

358 rect: { fill: this.inColor, stroke: this.outColor

},

359 text: { fill: this.outColor }

360 });

361 }

362 }

363 }

364 }

365

366 for (let i = 0; i < links.length; i++) {

82 Source code

367 if (links[i].attributes.subMaterials.filter(subMaterial =>

filteredSubMaterials.includes(subMaterial)).length === 0) {

368 links[i].attr({

369 ’.connection’: { display: ’none’ },

370 ’.connection-wrap’: { display: ’none’ },

371 ’.marker-target’: { display: ’none’ }

372 });

373 } else {

374 links[i].attr({

375 ’.connection’: { display: ’initial’ },

376 ’.connection-wrap’: { display: ’initial’ },

377 ’.marker-target’: { display: ’initial’ }

378 });

379 }

380 }

381 }

382 }

383

384 // Hide nodes that don’t have actions or subMaterials

385 public hideUnusedNodes(graph) {

386 const links = graph.getLinks();

387 for (let i = 0; i < links.length; i++) {

388 if (links[i].attributes.subMaterials.length === 0) {

389 links[i].attr({

390 ’.connection’: { display: ’none’ },

391 ’.connection-wrap’: { display: ’none’ },

392 ’.marker-target’: { display: ’none’ }

393 });

394 if (links[i].attributes.source.attributes.subMaterialsExpSorted.

length === 0 &&

395 links[i].attributes.source.attributes.subMaterials.length ===

0) {

396 links[i].attributes.source.attr({

397 rect: { display: ’none’ },

398 text: { display: ’none’ }

399 });

400 }

401 if (links[i].attributes.target.attributes.subMaterialsExpSorted.

length === 0 &&

402 links[i].attributes.target.attributes.subMaterials.length ===

0) {

403 links[i].attributes.target.attr({

404 rect: { display: ’none’ },

405 text: { display: ’none’ }

406 });

407 }

408 }

409 }

410 }

Source code 83

411

412 // Details Tab

413 public setSelectedStep(attributes): boolean {

414 this.selectedStepName = attributes.stepName;

415 this.selectedStepDescription = attributes.stepDesc;

416 this.selectedStepAllMaterials = attributes.subMaterials;

417 this.selectedStepAllMaterialsWithActions = attributes.subMaterialsExpSorted

;

418 this.selectedStepAllMaterialsWithErrors = attributes.subMaterialsError;

419

420 this.selectedStepActions = [];

421 let message;

422

423 for (let i = 0; i < attributes.actions.size; i++) {

424 message = ’Sub-Materials: ’ + attributes.subMaterialsExp.get(i) + ’ in

Actions: ’;

425 for (let j = 0; j < attributes.actions.get(i).length; j++) {

426 message += Cmf.Navigo.BusinessObjects.

ExperimentStepMaterialGroupAction[attributes.actions.get(i)[j

]];

427 message += ’(’ + Cmf.Navigo.BusinessObjects.

ExperimentStepMaterialGroupActionEvent[attributes.events.get(i)

[j]] + ’)’ + ’\n’;

428 }

429 this.selectedStepActions.push(message);

430 }

431

432 return true;

433 }

434

435 /**

436 * On changes method

437 *

438 * @param changes the changes made to the component properties

439 */

440 public ngOnChanges(changes: ng.SimpleChanges): void { }

441

442 public async ngAfterViewInit() {

443

444 const _this = this;

445

446 let outputExpDef;

447 let outputFlow;

448

449 // Get Experiment Definition (omitted)

450 // Returns the experiment in outputExpDef

451

452 // Get Main Flow (omitted)

453 // Returns the flow in outputFlow

84 Source code

454

455 // Save steps that have an experiment

456 const stepsExp = outputExpDef.ExperimentDefinition.Steps;

457 const numberOfSubMaterials = outputExpDef.ExperimentDefinition.

RequiredSubMaterialsCount;

458 const allSubMaterials = [];

459 for (let i = 1; i <= numberOfSubMaterials; i++) {

460 allSubMaterials.push(i.toString());

461 this.items.push({ name: i.toString() });

462 }

463

464 // Save steps of the main flow

465 const mainFlowId = outputFlow.Flow.Id;

466 let steps = [];

467 if (outputFlow.Flow.FlowSteps === undefined) {

468 for (let i = 0; i < outputFlow.Flow.SubFlows.length; i++) {

469 steps = steps.concat(outputFlow.Flow.SubFlows[i].TargetEntity.

FlowSteps);

470 }

471 } else {

472 steps = outputFlow.Flow.FlowSteps;

473 }

474

475 // Create Map of Flows (ID, [Step])

476 const flows = new Map();

477 flows.set(mainFlowId, []);

478 const flowsTemp = new Map();

479

480 // Create graph and paper

481 const graph = new joint.dia.Graph;

482

483 const paper = new joint.dia.Paper({

484 el: this.holder.nativeElement,

485 model: graph,

486 width: 1360,

487 height: 500,

488 interactive: function (cellView) {

489 if (cellView.model instanceof joint.dia.Link) {

490 return { vertexAdd: false };

491 }

492 return true;

493 },

494 });

495

496 this.paper = paper;

497

498 // Represent main flow

499 for (let i = 0; i < steps.length; i++) {

500 const mainStep = new joint.shapes.basic.Rect({

Source code 85

501 position: { x: 60, y: 20 + 100 * i },

502 size: { width: 220, height: 30 },

503 stepId: steps[i].TargetEntity.Id,

504 stepName: steps[i].TargetEntity.Name,

505 stepDesc: steps[i].TargetEntity.Description,

506 mainLink: undefined,

507 otherLinks: [],

508 tempLinks: [],

509 subMaterials: [],

510 subMaterialsExp: new Map(),

511 subMaterialsExpSorted: [],

512 subMaterialsError: [],

513 actions: new Map(),

514 events: new Map(),

515 type: ’Main’

516 }).attr({

517 rect: { fill: this.inColor, stroke: this.outColor, rx: 1, ry: 1 },

518 text: { ’font-size’: 20, fill: this.outColor, text: steps[i].

TargetEntity.Name }

519 });

520

521 graph.addCell(mainStep);

522

523 flows.get(mainFlowId).push(mainStep);

524 }

525

526 // Add links for main flow

527 const mainSteps = flows.get(mainFlowId);

528 for (let i = 1; i < mainSteps.length; i++) {

529 const mainLink = new joint.dia.Link({

530 source: mainSteps[i - 1],

531 target: mainSteps[i],

532 subMaterials: [],

533 type: ’Main Flow’

534 })

535 graph.addCell(mainLink);

536 mainSteps[i - 1].attributes.mainLink = mainLink;

537 }

538

539 // Add experiments to nodes

540 for (let i = 0; i < stepsExp.length; i++) {

541 // If the flow isn’t represented yet, represent it

542 if (!flows.has(stepsExp[i].Flow.Id)) {

543

544 // Get Other Flow (omitted)

545 // Returns the flow in outputOtherFlow

546

547 flows.set(stepsExp[i].Flow.Id, []);

548

86 Source code

549 let newSteps = [];

550 if (outputOtherFlow.Flow.FlowSteps === undefined) {

551 for (let i = 0; i < outputOtherFlow.Flow.SubFlows.length; i++)

{

552 newSteps = newSteps.concat(outputOtherFlow.Flow.SubFlows[i

].TargetEntity.FlowSteps);

553 }

554 } else {

555 newSteps = outputOtherFlow.Flow.FlowSteps;

556 }

557

558 for (let j = 0; j < newSteps.length; j++) {

559 const otherStep = new joint.shapes.basic.Rect({

560 position: { x: 400, y: 20 + 100 * j },

561 size: { width: 220, height: 30 },

562 stepId: newSteps[j].TargetEntity.Id,

563 stepName: newSteps[j].TargetEntity.Name,

564 stepDesc: newSteps[j].TargetEntity.Description,

565 mainLink: undefined,

566 otherLinks: [],

567 tempLinks: [],

568 subMaterials: [],

569 subMaterialsExp: new Map(),

570 subMaterialsExpSorted: [],

571 subMaterialsError: [],

572 actions: new Map(),

573 events: new Map(),

574 type: ’Other’

575 }).attr({

576 rect: { fill: this.inColor, stroke: this.outColor, rx: 1,

ry: 1 },

577 text: { ’font-size’: 20, fill: this.outColor, text:

newSteps[j].TargetEntity.Name }

578 });

579

580 graph.addCell(otherStep);

581

582 flows.get(stepsExp[i].Flow.Id).push(otherStep);

583 }

584

585 const otherSteps = flows.get(stepsExp[i].Flow.Id);

586 for (let j = 1; j < otherSteps.length; j++) {

587 const mainLink = new joint.dia.Link({

588 source: otherSteps[j - 1],

589 target: otherSteps[j],

590 subMaterials: [],

591 type: ’Other Flow’

592 })

593 graph.addCell(mainLink);

Source code 87

594 otherSteps[j - 1].attributes.mainLink = mainLink;

595 }

596 }

597 const subMaterialGroups = stepsExp[i].MaterialGroups;

598 const subMaterialsExp = new Map();

599 const actionsExp = new Map();

600 const eventsExp = new Map();

601 let hasChangeFlowAndStep = false;

602 const ChangeFlowAndStepStep = [];

603 const ChangeFlowAndStepRestrictions = [];

604 let hasTemporaryOffFlow = false;

605 const temporaryOffFlowStep = [];

606 const temporaryOffFlowRestrictions = [];

607 for (let j = 0; j < subMaterialGroups.length; j++) {

608 if (!subMaterialGroups[j].NoActions) {

609

610 subMaterialsExp.set(j, subMaterialGroups[j].TargetEntity.

SubMaterialNumbers.split(’;’));

611 actionsExp.set(j, []);

612 eventsExp.set(j, []);

613

614 for (let k = 0; k < subMaterialGroups[j].Actions.length; k++) {

615 actionsExp.get(j).push(subMaterialGroups[j].Actions[k].

Action);

616 eventsExp.get(j).push(subMaterialGroups[j].Actions[k].Event

);

617

618 // ChangeFlowAndStep

619 if (subMaterialGroups[j].Actions[k].Action === 2) {

620 if (!flows.has(subMaterialGroups[j].Actions[k].

ChangeFlowAndStepFlow.Id)) {

621

622 // Get Other Flow (omitted)

623 // Returns the flow in outputOtherFlow

624 flows.set(subMaterialGroups[j].Actions[k].

ChangeFlowAndStepFlow.Id, []);

625

626 let newSteps = [];

627 if (outputOtherFlow.Flow.FlowSteps === undefined) {

628 for (let i = 0; i < outputOtherFlow.Flow.

SubFlows.length; i++) {

629 newSteps = newSteps.concat(outputOtherFlow.

Flow.SubFlows[i].TargetEntity.FlowSteps

);

630 }

631 } else {

632 newSteps = outputOtherFlow.Flow.FlowSteps;

633 }

634 for (let l = 0; l < newSteps.length; l++) {

88 Source code

635 const otherStep = new joint.shapes.basic.Rect({

636 position: { x: 400, y: 20 + 100 * l },

637 size: { width: 220, height: 30 },

638 stepId: newSteps[l].TargetEntity.Id,

639 stepName: newSteps[l].TargetEntity.Name,

640 stepDesc: newSteps[l].TargetEntity.

Description,

641 mainLink: undefined,

642 otherLinks: [],

643 tempLinks: [],

644 subMaterials: [],

645 subMaterialsExp: new Map(),

646 subMaterialsExpSorted: [],

647 subMaterialsError: [],

648 actions: new Map(),

649 events: new Map(),

650 type: ’Other’

651 }).attr({

652 rect: { fill: this.inColor, stroke: this.

outColor, rx: 1, ry: 1 },

653 text: { ’font-size’: 20, fill: this.

outColor, text: newSteps[l].

TargetEntity.Name }

654 });

655

656 graph.addCell(otherStep);

657

658 flows.get(subMaterialGroups[j].Actions[k].

ChangeFlowAndStepFlow.Id).push(otherStep);

659 }

660

661 const otherSteps = flows.get(subMaterialGroups[j].

Actions[k].ChangeFlowAndStepFlow.Id);

662 for (let l = 1; l < otherSteps.length; l++) {

663 const mainLink = new joint.dia.Link({

664 source: otherSteps[l - 1],

665 target: otherSteps[l],

666 subMaterials: [],

667 type: ’Other Flow’

668 })

669 graph.addCell(mainLink);

670 otherSteps[l - 1].attributes.mainLink =

mainLink;

671 }

672 }

673

674 hasChangeFlowAndStep = true;

675

Source code 89

676 const changeFlow = flows.get(subMaterialGroups[j].

Actions[k].ChangeFlowAndStepFlow.Id);

677 for (let l = 0; l < changeFlow.length; l++) {

678 if (subMaterialGroups[j].Actions[k].

ChangeFlowAndStepStep.Id === changeFlow[l].

attributes.stepId) {

679 ChangeFlowAndStepStep.push(changeFlow[l]);

680 ChangeFlowAndStepRestrictions.push(

subMaterialsExp.get(j));

681 break;

682 }

683 }

684 }

685

686 // TempOffFlow

687 if (subMaterialGroups[j].Actions[k].Action === 3) {

688 const otherFlow: Cmf.Navigo.BusinessObjects.Flow = new

Cmf.Navigo.BusinessObjects.Flow();

689 otherFlow.Id = subMaterialGroups[j].Actions[k].

TemporaryOffFlowFlow.Id;

690

691 // Get Other Flow (omitted)

692 // Returns the flow in outputOtherFlow

693 flowsTemp.set(subMaterialGroups[j].Actions[k].

TemporaryOffFlowFlow.Id, []);

694

695 let newSteps = [];

696 if (outputOtherFlow.Flow.FlowSteps === undefined) {

697 for (let i = 0; i < outputOtherFlow.Flow.SubFlows.

length; i++) {

698 newSteps = newSteps.concat(outputOtherFlow.Flow

.SubFlows[i].TargetEntity.FlowSteps);

699 }

700 } else {

701 newSteps = outputOtherFlow.Flow.FlowSteps;

702 }

703 for (let l = 0; l < newSteps.length; l++) {

704 const otherStep = new joint.shapes.basic.Rect({

705 position: { x: 400, y: 20 + 100 * l },

706 size: { width: 220, height: 30 },

707 stepId: newSteps[l].TargetEntity.Id,

708 stepName: newSteps[l].TargetEntity.Name,

709 stepDesc: newSteps[l].TargetEntity.Description,

710 mainLink: undefined,

711 otherLinks: [],

712 tempLinks: [],

713 subMaterials: [],

714 subMaterialsExp: new Map(),

715 subMaterialsExpSorted: [],

90 Source code

716 subMaterialsError: [],

717 actions: new Map(),

718 events: new Map(),

719 type: ’Temp’

720 }).attr({

721 rect: { fill: this.inColorTemp, stroke: this.

outColorTemp, rx: 1, ry: 1 },

722 text: { ’font-size’: 20, fill: this.

outColorTemp, text: newSteps[l].

TargetEntity.Name }

723 });

724

725 graph.addCell(otherStep);

726

727 flowsTemp.get(subMaterialGroups[j].Actions[k].

TemporaryOffFlowFlow.Id).push(otherStep);

728 }

729

730 const otherSteps = flowsTemp.get(subMaterialGroups[j].

Actions[k].TemporaryOffFlowFlow.Id);

731

732 for (let l = 1; l < otherSteps.length; l++) {

733 const mainLink = new joint.dia.Link({

734 source: otherSteps[l - 1],

735 target: otherSteps[l],

736 subMaterials: [],

737 type: ’Temporary Off Flow’

738 });

739 graph.addCell(mainLink);

740 otherSteps[l - 1].attributes.mainLink = mainLink;

741 }

742

743 hasTemporaryOffFlow = true;

744

745 const tempFlow = flowsTemp.get(subMaterialGroups[j].

Actions[k].TemporaryOffFlowFlow.Id);

746 for (let l = 0; l < tempFlow.length; l++) {

747 if (subMaterialGroups[j].Actions[k].

TemporaryOffFlowStep.Id === tempFlow[l].

attributes.stepId) {

748 temporaryOffFlowStep.push([tempFlow[l],

tempFlow[tempFlow.length - 1]]);

749 temporaryOffFlowRestrictions.push(

subMaterialsExp.get(j));

750 break;

751 }

752 }

753 }

754 }

Source code 91

755 }

756 }

757 const nodes = flows.get(stepsExp[i].Flow.Id);

758 for (let j = 0; j < nodes.length; j++) {

759 if (nodes[j].attributes.stepId === stepsExp[i].Step.Id) {

760 nodes[j].attributes.subMaterialsExp = subMaterialsExp;

761 nodes[j].attributes.actions = actionsExp;

762 nodes[j].attributes.events = eventsExp;

763 let subMaterialsExpSorted = [];

764 for (let k = 0; k < subMaterialsExp.size; k++) {

765 subMaterialsExpSorted = subMaterialsExpSorted.concat(

subMaterialsExp.get(k));

766 }

767 subMaterialsExpSorted.sort();

768 nodes[j].attributes.subMaterialsExpSorted =

subMaterialsExpSorted;

769 nodes[j].attr({

770 rect: { fill: this.actionColor }

771 });

772 if (hasChangeFlowAndStep) {

773 for (let k = 0; k < ChangeFlowAndStepStep.length; k++) {

774 const changeFlowAndStepLink = new joint.dia.Link({

775 source: nodes[j],

776 target: ChangeFlowAndStepStep[k],

777 subMaterials: [],

778 type: ’Change Flow and Step’

779 });

780 graph.addCell(changeFlowAndStepLink);

781 nodes[j].attributes.otherLinks.push([

changeFlowAndStepLink,

ChangeFlowAndStepRestrictions[k]]);

782 }

783 } else if (hasTemporaryOffFlow) {

784 for (let k = 0; k < temporaryOffFlowStep.length; k++) {

785 const temporaryOffFlowLinkStart = new joint.dia.Link({

786 source: nodes[j],

787 target: temporaryOffFlowStep[k][0],

788 subMaterials: [],

789 type: ’Start Temporary Off Flow’

790 });

791 const temporaryOffFlowLinkEnd = new joint.dia.Link({

792 source: temporaryOffFlowStep[k][1],

793 target: nodes[j],

794 subMaterials: [],

795 type: ’End Temporary Off Flow’

796 });

797 graph.addCell(temporaryOffFlowLinkStart);

798 graph.addCell(temporaryOffFlowLinkEnd);

92 Source code

799 nodes[j].attributes.tempLinks.push([

temporaryOffFlowLinkStart,

temporaryOffFlowRestrictions[k]]);

800 temporaryOffFlowStep[k][1].attributes.tempLinks.push([

temporaryOffFlowLinkEnd,

temporaryOffFlowRestrictions[k]]);

801 }

802 }

803 }

804 }

805 }

806

807 // Fill with actual subMaterials and check if valid

808 this.fillSubMaterials(mainSteps[0], allSubMaterials);

809

810 // Check islands

811 const nodes = graph.getElements();

812 for (let i = 0; i < nodes.length; i++) {

813 for (let j = 0; j < nodes[i].attributes.subMaterialsExpSorted.length; j

++) {

814 if (nodes[i].attributes.subMaterials.find(subMaterial =>

subMaterial === nodes[i].attributes.subMaterialsExpSorted[j])

=== undefined) {

815 nodes[i].attributes.subMaterialsError.push(nodes[i].attributes.

subMaterialsExpSorted[j]);

816 nodes[i].attributes.subMaterialsError.sort();

817 nodes[i].attr({

818 rect: { fill: this.inColorError, stroke: this.outColorError

},

819 text: { fill: this.outColorError }

820 });

821 const message = ’Trying to use missing Sub-Material ’ + nodes[i

].attributes.subMaterialsExpSorted[j]

822 + ’ on step ’ + nodes[i].attributes.stepName;

823 this.bodyItems1.push({

824 id: this.errorCount.toString(),

825 iconClass: "",

826 text: message,

827 disabled: false

828 });

829 this.bodyItems1SubMaterials.push(nodes[i].attributes.

subMaterialsExpSorted[j]);

830 this.errorCount++;

831 console.log(’Trying to use missing Sub-Material ’ + nodes[i].

attributes.subMaterialsExpSorted[j]

832 + ’ on step ’ + nodes[i].attributes.stepName);

833 }

834 }

835 }

Source code 93

836

837 // Check future merge

838 for (let i = 0; i < stepsExp.length; i++) {

839 for (let j = 0; j < stepsExp[i].MaterialGroups.length; j++) {

840 if (!stepsExp[i].MaterialGroups[j].NoActions) {

841 if (stepsExp[i].MaterialGroups[j].MergeStep) {

842 for (let k = 0; k < flows.get(stepsExp[i].MaterialGroups[j

].MergeFlow.Id).length; k++) {

843 if (flows.get(stepsExp[i].MaterialGroups[j].MergeFlow.

Id)[k].attributes.stepId === stepsExp[i].

MaterialGroups[j].MergeStep.Id) {

844 for (let l = 0; l < stepsExp[i].MaterialGroups[j].

TargetEntity.SubMaterialNumbers.split(’;’).

length; l++) {

845 if (flows.get(stepsExp[i].MaterialGroups[j].

MergeFlow.Id)[k].attributes.subMaterials.

find(

846 subMaterial => subMaterial ===

847 stepsExp[i].MaterialGroups[j].

TargetEntity.SubMaterialNumbers.

split(’;’)[l]) === undefined) {

848 console.log(

849 ’Missing merge of subMaterial ’ +

stepsExp[i].MaterialGroups[j].

TargetEntity.SubMaterialNumbers.

split(’;’)[l]

850 + ’ on step ’ + flows.get(stepsExp[i].

MaterialGroups[j].MergeFlow.Id)[k].

attributes.stepName)

851 }

852 }

853 }

854 }

855 }

856 }

857 }

858 }

859

860 // Remove unused nodes

861 const hide = true;

862 if (hide) {

863 this.hideUnusedNodes(graph);

864 }

865

866 // Organize graph

867 joint.layout.DirectedGraph.layout(graph, {

868 nodeSep: 50,

869 edgeSep: 80,

870 rankDir: "TB"

94 Source code

871 });

872

873 // Change link aspect

874 paper.model.getLinks().forEach(link => {

875 link.attr({

876 ’.marker-target’: {

877 d: ’M 16 0 L 0 8 L 16 16 z’,

878 fill: this._defaultLinkColor,

879 stroke: this._defaultLinkColor

880 },

881 ’.connection’: {

882 stroke: this._defaultLinkColor

883 }

884 });

885 });

886

887 // Highlight node and link when hover

888 paper.on(’cell:mouseover’, function (cellView) {

889 if (cellView.model.isElement()) {

890 cellView.highlight(null, {

891 highlighter: {

892 name: ’stroke’,

893 options: {

894 padding: 1,

895 rx: 2,

896 ry: 2,

897 attrs: {

898 ’stroke-width’: 3,

899 stroke: cellView.model.attributes.attrs.rect.stroke

900 }

901 }

902 }

903 });

904 } else

905 if (cellView.model.isLink()) {

906 const source = paper.findViewByModel(cellView.model.attributes.

source);

907 const target = paper.findViewByModel(cellView.model.attributes.

target);

908

909 source.highlight(null, {

910 highlighter: {

911 name: ’stroke’,

912 options: {

913 padding: 1,

914 rx: 2,

915 ry: 2,

916 attrs: {

917 ’stroke-width’: 3,

Source code 95

918 stroke: source.model.attributes.attrs.rect.

stroke

919 }

920 }

921 }

922 });

923

924 target.highlight(null, {

925 highlighter: {

926 name: ’stroke’,

927 options: {

928 padding: 1,

929 rx: 2,

930 ry: 2,

931 attrs: {

932 ’stroke-width’: 3,

933 stroke: target.model.attributes.attrs.rect.

stroke

934 }

935 }

936 }

937 });

938 }

939 });

940

941 // Return to normal when stop hover

942 paper.on(’cell:mouseout’, function (cellView) {

943 if (cellView.model.isElement()) {

944 cellView.unhighlight(null, {

945 highlighter: {

946 name: ’stroke’,

947 options: {

948 padding: 1,

949 rx: 2,

950 ry: 2,

951 attrs: {

952 ’stroke-width’: 3,

953 stroke: cellView.model.attributes.attrs.rect.stroke

954 }

955 }

956 }

957 });

958 } else

959 if (cellView.model.isLink()) {

960 const source = paper.findViewByModel(cellView.model.attributes.

source);

961 const target = paper.findViewByModel(cellView.model.attributes.

target);

962

96 Source code

963 source.unhighlight(null, {

964 highlighter: {

965 name: ’stroke’,

966 options: {

967 padding: 1,

968 rx: 2,

969 ry: 2,

970 attrs: {

971 ’stroke-width’: 3,

972 stroke: source.model.attributes.attrs.rect.

stroke

973 }

974 }

975 }

976 });

977

978 target.unhighlight(null, {

979 highlighter: {

980 name: ’stroke’,

981 options: {

982 padding: 1,

983 rx: 2,

984 ry: 2,

985 attrs: {

986 ’stroke-width’: 3,

987 stroke: target.model.attributes.attrs.rect.

stroke

988 }

989 }

990 }

991 });

992 }

993 });

994

995 // Update details tab

996 paper.on(’cell:pointerclick’, function (cellView) {

997 if (cellView.model.isElement()) {

998 _this.setSelectedStep(cellView.model.attributes);

999 console.log(’Name: ’ + cellView.model.attributes.stepName);

1000 console.log(’Description: ’ + cellView.model.attributes.stepDesc);

1001 console.log(’All sub-materials: ’ + cellView.model.attributes.

subMaterials);

1002 console.log(’All sub-materials with actions: ’ + cellView.model.

attributes.subMaterialsExpSorted);

1003 for (let i = 0; i < cellView.model.attributes.actions.size; i++) {

1004 console.log(’Sub-Materials: ’ + cellView.model.attributes.

subMaterialsExp.get(i) + ’ in Actions:’);

1005 for (let j = 0; j < cellView.model.attributes.actions.get(i).

length; j++) {

Source code 97

1006 console.log(Cmf.Navigo.BusinessObjects.

ExperimentStepMaterialGroupAction[cellView.model.

attributes.actions.get(i)[j]]

1007 + ’, when: ’ +

1008 Cmf.Navigo.BusinessObjects.

ExperimentStepMaterialGroupActionEvent[cellView.

model.attributes.events.get(i)[j]]);

1009 }

1010 }

1011 console.log(’All sub-materials with errors: ’ + cellView.model.

attributes.subMaterialsError);

1012 }

1013

1014 if (cellView.model.isLink()) {

1015 console.log(cellView.model.attributes.type + ’ link from step ’ +

cellView.model.attributes.source.attributes.stepName +

1016 ’ to step ’ + cellView.model.attributes.target.attributes.

stepName);

1017 console.log(’SubMaterials: ’ + cellView.model.attributes.

subMaterials);

1018 }

1019 });

1020

1021 // Zoom parameters

1022 let scaleValue = 1;

1023 let transValue = 0;

1024 const maxZoom = 4;

1025

1026 // Zoom

1027 paper.on(’blank:mousewheel’, function (_evt, x, y, delta) {

1028 if (delta === 1 && scaleValue < maxZoom) {

1029 scaleValue = scaleValue * 1.2;

1030 transValue = -1 / 6;

1031 paper.scale(scaleValue, scaleValue);

1032 graph.translate(x * transValue, y * transValue);

1033 }

1034 if (delta === -1 && scaleValue > 1 / maxZoom) {

1035 scaleValue = scaleValue / 1.2;

1036 transValue = 1 / 5;

1037 paper.scale(scaleValue, scaleValue);

1038 graph.translate(x * transValue, y * transValue);

1039 }

1040 });

1041

1042 paper.on(’cell:mousewheel’, function (_cellView, _evt, x, y, delta) {

1043 if (delta === 1 && scaleValue < maxZoom) {

1044 scaleValue = scaleValue * 1.2;

1045 transValue = -1 / 6;

1046 paper.scale(scaleValue, scaleValue);

98 Source code

1047 graph.translate(x * transValue, y * transValue);

1048 }

1049 if (delta === -1 && scaleValue > 1 / maxZoom) {

1050 scaleValue = scaleValue / 1.2;

1051 transValue = 1 / 5;

1052 paper.scale(scaleValue, scaleValue);

1053 graph.translate(x * transValue, y * transValue);

1054 }

1055 });

1056

1057 let dragStartPosition;

1058

1059 // Pan

1060 paper.on(’blank:pointerdown’, function (_evt, x, y) {

1061 dragStartPosition = { x: x * scaleValue, y: y * scaleValue };

1062 });

1063

1064 paper.on(’cell:pointerup blank:pointerup’, function () {

1065 dragStartPosition = undefined;

1066 });

1067

1068 this.holder.nativeElement.addEventListener(’mousemove’, event => {

1069 if (dragStartPosition) {

1070 graph.translate(

1071 (event.offsetX - dragStartPosition.x) / scaleValue,

1072 (event.offsetY - dragStartPosition.y) / scaleValue);

1073 dragStartPosition.x = event.offsetX;

1074 dragStartPosition.y = event.offsetY;

1075 }

1076 });

1077 }

1078

1079 public ngOnInit(): void {

1080 }

1081

1082 //#endregion

1083 }

1084

1085 @Module({

1086 imports: [

1087 DropdownModule,

1088 PageSplitterModule,

1089 CollapsiblePanelsMenuModule,

1090 CollapsiblePanelsMenuPanelBarModule,

1091 PanelBarModule,

1092 PropertyEditorModule

1093],

1094 declarations: [GraphView],

1095 defaultRoute: GraphView,

Source code 99

1096 exports: [GraphView]

1097 })

1098 export class GraphViewModule { }

100 Source code

References

[1] A. Abreu, J. Requeijo, J. M. F. Calado, and A. Dias. Definition of strategies based on simula-
tion and design of experiments. In John R. Wagner, Eldridge M. Mount, and Harold F. Giles,
editors, ISEL - Eng. Mecan. - Comunicações. Instituto Superior de Engenharia de Lisboa,
2019.

[2] Agidens. MES, optimization of your production environment. https://www.agidens.
com/en/automation/Our-expertise/Manufacturing-execution-systems.

[3] Oleg Alexandrov. Siligon ingot at Intel Museum. https://commons.wikimedia.org/
wiki/File:Siligon{_}ingot{_}at{_}Intel{_}Museum.JPG, 2013.

[4] J. Antony, S. Coleman, D. C. Montgomery, M. J. Anderson, and R. T. Silvestrini. Design
of Experiments for non-manufacturing processes: Benefits, challenges and some examples.
Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Man-
ufacture, 225(11):2078–2087, 2011.

[5] June Young Bang, Jae Hun Kang, Bong Kyun Kim, and Yeong Dae Kim. Multi-product lot
merging/splitting algorithms for a semiconductor wafer fabrication. In Proceedings of the
Winter Simulation Conference, pages 2209–2215, Miami, dec 2008. IEEE.

[6] Oliver Bastert and Christian Matuszewski. Layered Drawings of Digraphs. In Michael
Kaufmann and Dorothea Wagner, editors, Drawing Graphs: Methods and Models, chapter 5,
pages 87–120. Springer, Berlin, 2001.

[7] Giuseppe Di Battista, Ioannis G. Tollis, Peter Eades, and Roberto Tamassia. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, New Jersey, 1999.

[8] Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. A Taxonomy and Survey
of Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133–159, jan 2017.

[9] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Orthogonal graph draw-
ing with flexibility constraints. Algorithmica, 68(4):859–885, apr 2014.

[10] Ulrik Brandes. Drawing on Physical Analogies. In Michael Kaufmann and Dorothea Wagner,
editors, Drawing Graphs: Methods and Models, chapter 4, pages 71–86. Springer, Berlin,
2001.

[11] Jurgen Branke. Dynamic Graph Drawing. In Michael Kaufmann, editor, Drawing Graphs:
Methods and Models, chapter 9, pages 228–246. Springer, Berlin, 2001.

[12] Joy Chao. Graph Search Algorithms: Depth-first and Breadth-first. https://neo4j.
com/blog/graph-search-algorithm-basics/.

101

https://www.agidens.com/en/automation/Our-expertise/Manufacturing-execution-systems
https://www.agidens.com/en/automation/Our-expertise/Manufacturing-execution-systems
https://commons.wikimedia.org/wiki/File:Siligon{_}ingot{_}at{_}Intel{_}Museum.JPG
https://commons.wikimedia.org/wiki/File:Siligon{_}ingot{_}at{_}Intel{_}Museum.JPG
https://neo4j.com/blog/graph-search-algorithm-basics/
https://neo4j.com/blog/graph-search-algorithm-basics/

102 REFERENCES

[13] R. Chao, M. Breton, B. L’Herron, B. Mendoza, R. Muthinti, F. Nelson, A. De La Pena,
F. L. Le, E. Miller, S. Sieg, J. Demarest, P. Gin, M. Wormington, A. Cepler, C. Bozdog,
M. Sendelbach, S. Wolfling, T. Cardinal, S. Kanakasabapathy, J. Gaudiello, and N. Felix.
Advanced in-line metrology strategy for self-aligned quadruple patterning. In Proceedings
of SPIE - The International Society for Optical Engineering, volume 9778, 2016.

[14] Chen Fu Chien, Kuo Hao Chang, and Wen Chih Wang. An empirical study of design-of-
experiment data mining for yield-loss diagnosis for semiconductor manufacturing. Journal
of Intelligent Manufacturing, 25(5):961–972, 2014.

[15] client IO s.r.o. JointJS - JavaScript diagramming library - Getting started. https:
//resources.jointjs.com/tutorial.

[16] client IO s.r.o. JointJS: Visualize and interact with diagrams and graphs. https://www.
jointjs.com/opensource.

[17] Critical Manufacturing. Critical Manufacturing - Complete Modular Solution. https:
//www.criticalmanufacturing.com/en/critical-manufacturing-mes/
complete-modular-solution.

[18] Critical Manufacturing. Critical Manufacturing - Experiments Management. https:
//www.criticalmanufacturing.com/en/critical-manufacturing-mes/
industry-4-0/experiments-management.

[19] Critical Manufacturing. Critical Manufacturing - Manufacturing Technology Solution
Provider | Company Overview. https://www.criticalmanufacturing.com/en/
company/overview.

[20] Critical Manufacturing. Critical Manufacturing - Other Industries. https://www.
criticalmanufacturing.com/en/industries/other-industries.

[21] Critical Manufacturing. Critical Manufacturing V7 Brochure. Technical report.

[22] Critical Manufacturing. Critical Manufacturing - Blog about MES, Industry
4.0, Quality, Manufacturing, Automation & much more - Genealogy. https:
//www.criticalmanufacturing.com/en/newsroom/blog/posts/blog/
genealogy{#}.XtufhmhKjMV, 2014.

[23] Critical Manufacturing and Iyno Advidors. IIoT Has a ‘Thing’ for MES Why IoT Platforms
Won’t Replace MES. Technical report, 2018.

[24] Sanjoy Dasgupta. Learning Polytrees. In Kathryn Blackmond Laskey and Henri Prade,
editors, Procedings of the 15th Conference on Uncertainty in Artificial Intelligence, pages
134–141, Stockholm, 1999. Morgan Kaufmann Publishers.

[25] B. Saenz De Ugarte, A. Artiba, and R. Pellerin. Manufacturing execution system - A litera-
ture review. Production Planning and Control, 20(6):525–539, 2009.

[26] Christian A. Duncan and Michael T. Goodrich. Planar Orthogonal and Polyline Drawing
Algorithms. In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization,
chapter 7, pages 223–246. CRC Press, Boca Raton, 2014.

https://resources.jointjs.com/tutorial
https://resources.jointjs.com/tutorial
https://www.jointjs.com/opensource
https://www.jointjs.com/opensource
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/complete-modular-solution
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/complete-modular-solution
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/complete-modular-solution
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/industry-4-0/experiments-management
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/industry-4-0/experiments-management
https://www.criticalmanufacturing.com/en/critical-manufacturing-mes/industry-4-0/experiments-management
https://www.criticalmanufacturing.com/en/company/overview
https://www.criticalmanufacturing.com/en/company/overview
https://www.criticalmanufacturing.com/en/industries/other-industries
https://www.criticalmanufacturing.com/en/industries/other-industries
https://www.criticalmanufacturing.com/en/newsroom/blog/posts/blog/genealogy{#}.XtufhmhKjMV
https://www.criticalmanufacturing.com/en/newsroom/blog/posts/blog/genealogy{#}.XtufhmhKjMV
https://www.criticalmanufacturing.com/en/newsroom/blog/posts/blog/genealogy{#}.XtufhmhKjMV

REFERENCES 103

[27] Markus Eiglsperger, Sándor P Fekete, and Gunnar W Klau. Orthogonal Graph Drawing. In
Michael Kaufmann, editor, Drawing Graphs: Methods and Models, chapter 6, pages 121–
171. Springer, Berlin, 2001.

[28] Ernesto Estrada. Graph and Network Theory. In Michael Grinfeld, editor, Mathematical
Tools for Physicists, pages 111–158. Wiley, 2013.

[29] Shimon Even. Graph algorithms. Cambridge University Press, New York, 2nd edition, 2012.

[30] Muhammad Arsalan Farooq, Henriqueta Nóvoa, António Araújo, and Sergio M.O. Tavares.
An innovative approach for planning and execution of pre-experimental runs for Design of
Experiments. European Research on Management and Business Economics, 22(3):155–161,
2016.

[31] Victor Ferreira. Governo relançou a Indústria 4.0, a indústria pediu “um
Estado 4.0”. https://www.publico.pt/2019/04/09/economia/noticia/
governo-falou-industria-40-industria-pediu-estado-40-1868683, apr
2019.

[32] Rudolf Fleischer and Colin Hirsch. Graph Drawing and Its Applications. In Michael Kauf-
mann and Dorothea Wagner, editors, Drawing Graphs: Methods and Models, chapter 1,
pages 1–22. Springer, Berlin, 2001.

[33] Jean-Claude Fournier. Graphs Theory and Applications: With Exercises and Problems. Wi-
ley, 2011.

[34] Harold N. Gabow. Searching. In Jonathan L Gross and Jay Yellen, editors, Handbook of
Graph Theory, chapter 10-1, pages 953–984. CRC Press, 2004.

[35] Gallagher Fluid Seals Inc. Basic Semiconductor Manufacturing Process. https://www.
gallagherseals.com/blog/semiconductor-manufacturing-process/.

[36] Gartner Peer Insights. Manufacturing Execution Systems (MES) Soft-
ware Reviews. https://www.gartner.com/reviews/market/
manufacturing-execution-systems.

[37] Harold F. Giles Jr, Eldridge M. Mount III, and John R. Wagner Jr. Extrusion: The Definitive
Processing Guide and Handbook. Elsevier, Waltham, second edition, 2014.

[38] Jonathan L. Gross and Jay Yellen. Fundamentals of graph theory. In Jonathan L. Gross and
Jay Yellen, editors, Handbook of Graph Theory. CRC Press, 2004.

[39] J. N. D. Gupta, R. Ruiz, J. W. Fowler, and S. J. Mason. Operational planning and control
of semiconductor wafer production. Production Planning and Control, 17(7):639–647, oct
2006.

[40] Patrick Healy and Nikola S Nikolov. Hierarchical Drawing Algorithms. In Roberto Tamassia,
editor, Handbook of Graph Drawing and Visualization, chapter 13, pages 409–453. CRC
Press, Boca Raton, 2014.

[41] Hexacta. 7 tips to know when to use SCRUM in your project. https://www.hexacta.
com/7-tips-to-know-when-to-use-scrum-in-your-project/, 2018.

https://www.publico.pt/2019/04/09/economia/noticia/governo-falou-industria-40-industria-pediu-estado-40-1868683
https://www.publico.pt/2019/04/09/economia/noticia/governo-falou-industria-40-industria-pediu-estado-40-1868683
https://www.gallagherseals.com/blog/semiconductor-manufacturing-process/
https://www.gallagherseals.com/blog/semiconductor-manufacturing-process/
https://www.gartner.com/reviews/market/manufacturing-execution-systems
https://www.gartner.com/reviews/market/manufacturing-execution-systems
https://www.hexacta.com/7-tips-to-know-when-to-use-scrum-in-your-project/
https://www.hexacta.com/7-tips-to-know-when-to-use-scrum-in-your-project/

104 REFERENCES

[42] Hitachi High-Tech GLOBAL. Semiconductor Glossary. https://www.
hitachi-hightech.com/global/products/device/semiconductor/words.
html{#}Semiconductor.

[43] Hitachi High-Tech GLOBAL. Semiconductor manufacturing process. https:
//www.hitachi-hightech.com/global/products/device/semiconductor/
process.html.

[44] Weidong Huang, Mao Lin Huang, and Chun Cheng Lin. Evaluating overall quality of
graph visualizations based on aesthetics aggregation. Information Sciences, 330:444–454,
feb 2016.

[45] Konstantinos G. Kakoulis and Ioannis G. Tollis. Labeling Algorithms. In Roberto Tamassia,
editor, Handbook of Graph Drawing and Visualization, chapter 15, pages 489–515. CRC
Press, Boca Raton, 2014.

[46] T. S. Kim. Chip speed prediction model for optimization of semiconductor manufacturing
process using neural networks and statistical methods. In Lecture Notes in Computer Science,
volume 3498, pages 845–850, 2005.

[47] Moritz Klammler, Tamara McHedlidze, and Alexey Pak. Aesthetic discrimination of graph
layouts. In Biedl T. and Kerren A., editors, Graph Drawing and Network Visualization.
GD 2018. Lecture Notes in Computer Science, volume 11282, pages 169–184. Springer, sep
2018.

[48] Stephen G. Kobourov, Sergey Pupyrev, and Bahador Saket. Are Crossings Important for
Drawing Large Graphs? In Duncan C. and Symvonis A., editors, Graph Drawing. GD 2014.
Lecture Notes in Computer Science, volume 8871, pages 234–245. Springer, Berlin, 2014.

[49] KPMG Portugal. Indústria 4.0- Fase II. Technical report, República Portuguesa, COTEC
Portugal, IAPMEI, 2019.

[50] Ashok Kumar. Are MES systems dead? How IoT and AI are transform-
ing the shop floor. https://www.ibm.com/blogs/internet-of-things/
iot-mes-is-dead/, 2018.

[51] J. Kuo and C. Kuo. Optimal parameter design in flip chip micro-machining process for solder
residue by using design of experiments approach, volume 126-128 of Advanced Materials
Research. 2010.

[52] Yongxin Liao, Fernando Deschamps, Eduardo de Freitas Rocha Loures, and Luiz Fe-
lipe Pierin Ramos. Past, present and future of Industry 4.0 - a systematic literature review and
research agenda proposal. International Journal of Production Research, 55(12):3609–3629,
2017.

[53] Giuseppe Liotta and Roberto Tamassia. Drawings of graphs. In Jonathan L Gross and Jay
Yellen, editors, Handbook of Graph Theory, chapter 10-3, pages 1015–1045. CRC Press,
2004.

[54] Yang Liu and Jingshan Li. Modelling and analysis of split and merge production sys-
tems with bernoulli reliability machines. International Journal of Production Research,
47(16):4373–4397, jan 2009.

https://www.hitachi-hightech.com/global/products/device/semiconductor/words.html{#}Semiconductor
https://www.hitachi-hightech.com/global/products/device/semiconductor/words.html{#}Semiconductor
https://www.hitachi-hightech.com/global/products/device/semiconductor/words.html{#}Semiconductor
https://www.hitachi-hightech.com/global/products/device/semiconductor/process.html
https://www.hitachi-hightech.com/global/products/device/semiconductor/process.html
https://www.hitachi-hightech.com/global/products/device/semiconductor/process.html
https://www.ibm.com/blogs/internet-of-things/iot-mes-is-dead/
https://www.ibm.com/blogs/internet-of-things/iot-mes-is-dead/

REFERENCES 105

[55] Ser Lee Loh, Chin Kim Gan, Tau Han Cheong, Shaharuddin Salleh, and Nor Haniza Sarmin.
An overview on network diagrams: Graph-based representation. Journal of Telecommunica-
tion, Electronic and Computer Engineering, 8(2):83–86, 2016.

[56] C. J. Mahandran, A. Y. A. Fatah, N. A. Bani, H. M. Kaidi, M. N. B. Muhtazaruddin, and M. E.
Amran. Thermal oxidation improvement in semiconductor wafer fabrication. International
Journal of Power Electronics and Drive Systems, 10(3):1141–1147, 2019.

[57] Soujanya Mantravadi and Charles Møller. An overview of next-generation manufacturing
execution systems: How important is MES for industry 4.0? Procedia Manufacturing,
30:588–595, 2019.

[58] Critical Manufacturing. Critical Manufacturing - Overview. Critical Manufacturing.
https://www.criticalmanufacturing.com/en/company/overview. (accessed
Jun. 2, 2020).

[59] Critical Manufacturing. Critical Manufacturing - Sobre nós. Linkedin. https://pt.
linkedin.com/company/critical-manufacturing. (accessed Jun. 2, 2020).

[60] Manufacturing Technology Insights. Top 10 MES Solution Companies - 2019. https://
manufacturing-execution-system.manufacturingtechnologyinsights.
com/vendors/top-mes-solution-companies.html.

[61] Stephen B. Maurer. Directed acyclic graphs. In Jonathan L Gross and Jay Yellen, editors,
Handbook of Graph Theory, chapter 3-2, pages 142–155. CRC Press, 2004.

[62] Gary S. May and Costas J. Spanos. Fundamentals of Semiconductor Manufacturing and
Process Control. Wiley, New Jersey, 2006.

[63] Julian Marius Müller, Daniel Kiel, and Kai Ingo Voigt. What drives the implementation
of Industry 4.0? The role of opportunities and challenges in the context of sustainability.
Sustainability (Switzerland), 10(1):247, 2018.

[64] Nachosan. Wafers at the National Museum of Scot-
land. https://commons.wikimedia.org/wiki/File:
Wafers{_}National{_}Museum{_}of{_}Scotland{_}20.JPG.

[65] Gabriele Neyer. Map Labeling with Application to Graph Drawing. In Michael Kaufmann,
editor, Drawing Graphs: Methods and Models, chapter 10, pages 247–273. Springer, Berlin,
2001.

[66] Boštjan Pajntar. Overview of Algorithms for Graph Drawing. In Conference on Data Mining
and Data Warehouses, 2006.

[67] S. Pampuri, G. A. Susto, J. Wan, A. Johnston, P. O’Hara, and S. McLoone. Insight ex-
traction for semiconductor manufacturing processes. In IEEE International Conference on
Automation Science and Engineering, volume 2014-January, pages 786–791, 2014.

[68] Chris Parsons. Critical Manufacturing - Blog about MES, Industry 4.0, Qual-
ity, Manufacturing, Automation & much more - Effective, Speedy Experiments.
https://www.criticalmanufacturing.com/en/newsroom/blog/posts/
blog/effective-speedy-experiments{#}.Xu0uIkVKiHs, jul 2019.

https://www.criticalmanufacturing.com/en/company/overview
https://pt.linkedin.com/company/critical-manufacturing
https://pt.linkedin.com/company/critical-manufacturing
https://manufacturing-execution-system.manufacturingtechnologyinsights.com/vendors/top-mes-solution-companies.html
https://manufacturing-execution-system.manufacturingtechnologyinsights.com/vendors/top-mes-solution-companies.html
https://manufacturing-execution-system.manufacturingtechnologyinsights.com/vendors/top-mes-solution-companies.html
https://commons.wikimedia.org/wiki/File:Wafers{_}National{_}Museum{_}of{_}Scotland{_}20.JPG
https://commons.wikimedia.org/wiki/File:Wafers{_}National{_}Museum{_}of{_}Scotland{_}20.JPG
https://www.criticalmanufacturing.com/en/newsroom/blog/posts/blog/effective-speedy-experiments{#}.Xu0uIkVKiHs
https://www.criticalmanufacturing.com/en/newsroom/blog/posts/blog/effective-speedy-experiments{#}.Xu0uIkVKiHs

106 REFERENCES

[69] Peellden. 12-inch silicon wafer. https://commons.wikimedia.org/wiki/File:
12-inch{_}silicon{_}wafer.jpg, 2011.

[70] C. Qi, A. I. Sivakumar, and S. B. Gershwin. Impact of production control and system factors
in semiconductor wafer fabrication. IEEE Transactions on Semiconductor Manufacturing,
21(3):376–389, 2008.

[71] Jonathan Vasconcelos Rodrigues. Indústria 4.0-Desenvolvimento de um Manufacturing Ex-
ecution System [Dissertação de mestrado]. PhD thesis, Coimbra, 2018.

[72] Andreja Rojko. Industry 4.0 concept: Background and overview. International Journal of
Interactive Mobile Technologies, 11(5):77–90, 2017.

[73] Bruno Scibilia. A DOE in a Manufacturing Environment (Part 1). https:
//blog.minitab.com/blog/applying-statistics-in-quality-projects/
a-doe-in-a-manufacturing-environment-part-1, mar 2016.

[74] Scrum.org. What is SCRUM. https://www.scrum.org/resources/
what-is-scrum.

[75] Martín Tanco, Elisabeth Viles, Laura Ilzarbe, and María Jesús Álvarez. Is design of experi-
ments really used ? A survey of Basque industries Basque industries. Journal of Engineering
Design, 19(5):447–460, 2008.

[76] ASM Pacific Technology. ASMPT To Invest In SMART Factory Software Solutions. ASM
Pacific Technology, 2018. https://www.asmpacific.com/en/media-release/
81-asmpt-to-invest-in-smart-factory-software-solutions.

[77] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. Wiley, 1992.

[78] Yu-Ping Wang. Methods of manufacturing semiconductor devices and transistors. https:
//patents.google.com/patent/US8377779B1/en, jan 2013.

[79] René Weiskircher. Drawing Planar Graphs. In Michael Kaufmann and Dorothea Wagner,
editors, Drawing Graphs: Methods and Models, chapter 2, pages 23–45. Springer, Berlin,
2001.

[80] Hong Xiao. Introduction to Semiconductor Manufacturing Technology. SPIE, Washington,
2nd edition, nov 2012.

[81] Yong Yin, Kathryn E. Stecke, and Dongni Li. The evolution of production systems from In-
dustry 2.0 through Industry 4.0. International Journal of Production Research, 56(1-2):848–
861, jan 2018.

[82] H. Younan, L. Y. Ping, N. R. Rao, and T. Qinghua. Studies on galvanic corrosion on floating
and grounded bondpads in wafer fabrication. volume 25, pages 219–223, 2009.

[83] yWorks GmbH. Developer’s Guide: Automatic Label Placement. https://docs.
yworks.com/yfiles-html/dguide/layout/label{_}placement.html, 2020.

[84] Keliang Zhou, Taigang Liu, and Lifeng Zhou. Industry 4.0: Towards future industrial op-
portunities and challenges. In 2015 12th International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2015, pages 2147–2152. IEEE, 2016.

https://commons.wikimedia.org/wiki/File:12-inch{_}silicon{_}wafer.jpg
https://commons.wikimedia.org/wiki/File:12-inch{_}silicon{_}wafer.jpg
https://blog.minitab.com/blog/applying-statistics-in-quality-projects/a-doe-in-a-manufacturing-environment-part-1
https://blog.minitab.com/blog/applying-statistics-in-quality-projects/a-doe-in-a-manufacturing-environment-part-1
https://blog.minitab.com/blog/applying-statistics-in-quality-projects/a-doe-in-a-manufacturing-environment-part-1
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum
https://www.asmpacific.com/en/media-release/81-asmpt-to-invest-in-smart-factory-software-solutions
https://www.asmpacific.com/en/media-release/81-asmpt-to-invest-in-smart-factory-software-solutions
https://patents.google.com/patent/US8377779B1/en
https://patents.google.com/patent/US8377779B1/en
https://docs.yworks.com/yfiles-html/dguide/layout/label{_}placement.html
https://docs.yworks.com/yfiles-html/dguide/layout/label{_}placement.html

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Structure

	2 Graph theory and algorithms
	2.1 Basic Notions
	2.2 Trees
	2.3 Directed graphs
	2.4 Graph Traversal
	2.5 Summary

	3 Graph drawings
	3.1 Criteria
	3.2 Methods and Techniques
	3.3 Summary

	4 Wafer fabrication and DoE
	4.1 Wafer Fabrication
	4.2 Wafer DoE
	4.3 CMF Experiment Management Module
	4.4 Summary

	5 Solution development and methodology
	5.1 User stories and development methodology
	5.2 Preparation and Graph Visualization
	5.3 Logical Verification
	5.4 Improvement of User Features
	5.5 Testing and Validation
	5.6 Summary

	6 Validation and results analysis
	6.1 Graph drawing of a complex experiment
	6.2 Application of user features
	6.3 Detection and visualization of errors
	6.4 Summary

	7 Conclusions
	7.1 Main contributions
	7.2 Future work

	A Source code
	References

