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Abstract
The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services 
requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength 
of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because 
there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is 
performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the 
current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, 
describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer 
to the cyber security target that matches the generic security requirements of an organisation. The research paper studies 
and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant 
approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the 
assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT 
cyber risk posture.

Keywords  Functional dependency · Network-based linear dependency modelling · Internet of things · Micro-mort 
model · Goal-oriented approach · Transformation roadmap · Cyber risk regulations · Empirical analysis · Cyber risk self-
assessment · Cyber risk target state

1  Introduction

This study is focused on standardising the Internet of Things 
(IoT) risk assessments (Das et al. 2019; Miaoui and Boud-
riga 2019; Burnap et al. 2017; Radanliev et al. 2020a; Schatz 
and Bashroush 2017). The contribution of the study is a 

new goal-oriented dependency model, with the ability to 
perform dynamic real-time predictive intelligence on threat 
frequency and the magnitude loss. The aim of the study is to 
identify a model that enables building dynamic confidence 
intervals and time bound ranges with real-time data and to 
address two objectives: First, to identify and capture a target 
state for cyber risk assessment for the IoT and to adapt a 
transformation roadmap for existing cyber risk assessments 
and standards to include IoT risk. For the second objec-
tive, the risk quantification is followed by a Goal-Oriented 
Approach for cyber risk impact assessment through Net-
work-based Linear Dependency Modelling. These are dis-
cussed and expanded further in the remainder of this article.

In addition, we also contributed to this topic by introduc-
ing a new computational statistical analysis of the literature 
on the topics of ‘Cyber risk and IoT’. We wanted to review 
and analyse all the literature on this topic, though a quali-
tative literature review and case study of the related risk 
assessment approaches and compare the qualitative analysis 
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with a quantitative analysis of all existing data records on 
these two topics. By applying quantitative and qualitative 
approaches, in the text, we wanted to compare different intel-
lectual provenance in the form of study of the intellectual 
heritage of ideas, concepts, methods, and theories.

1.1 � Related work

This research follows the guidance of the FAIR Institute 
(factor analysis of information risk) guidance on quantitative 
cyber risk assessment (FAIR 2020). This article also aims 
to address the NIST (NIST 2014) shortcomings in recom-
mendations on how to quantify risk. Although we are not 
aiming to resolve what NIST has been unable to resolve 
in decades of research and industry collaboration, we still 
hope to identify a suitable approach for quantifying emerg-
ing cyber risks. This study is guided by the science and 
practice of resilience (Kott and Linkov 2019; Linkov and 
Trump 2019) and the existing related work on multicriteria 
decision in cybersecurity risk assessment and management 
(Ganin et al. 2017).

2 � Methodology

Cyber risk traditionally emerges from human–computer 
interactions (Craggs and Rashid 2017), and the impact 
analysis result with different estimated loss ranges (Radan-
liev et al. 2018). The cyber risk investigated in this study 
emerge from compiling of connected systems, creating 
risk from data in transit (Anthi et al. 2018) and necessitat-
ing standardisation of methods (Tanczer et al. 2018). The 
methodological approach used for risk quantification in this 
study is compliant with a Goal-Oriented Approach and Net-
work-based Linear Dependency Modelling. We define goal-
oriented approach as the degree to which an organisation 
focuses on specific tasks and the end results of those tasks. 
By Network-based Linear Dependency Modelling, we refer 
to the process of considering relevant network features to 
explain linear growth, similarly to the recent network-based 
explanation of COVID-19 linear infection curves (Thurner 
et al. 2020). Four methodologies have been adapted for IoT 
risk analysis; those include (a) Risk analysis through func-
tional dependency; (b) risk network-based linear dependency 
modelling; (c) risk impact assessment with a goal-oriented 
approach; and (d) integration of the goal-oriented approach 
with the IoT Micro Mort (IoTMM) model (Radanliev et al. 
2018). While there is novelty in combining methodologies 
that have not been adapted and integrated, the main novelty 
of this article is the categorisation and assessment of the 
methodological connections. That differentiates this research 
from existing quantification models (Radanliev et al. 2020c) 

with parameters that are based on expert opinions which can 
be considered as subjective.

3 � Bibliographic analysis of literature

We used statistical software to analyse data records on 
the topic of ‘cyber risk and IoT’. To find data records, 
we did historical analysis (1900–2020) from the Web of 
Science Core Collection. We identified 191 records of sci-
entific research papers, published in top ranked journals 
and we analysed the records with R studio. We applied 
the ‘bibliometrix’ package in R studio. With the R studio, 
we designed a three-field plot that enabled us to identify 
the most prominent keywords, divided by research in dif-
ferent counties—in Fig. 1. To design the three-field plot, 
we analysed the data from all 191 records combined. The 
topics of ‘cyber risk and IoT’ appeared in all data records 
in combination (jointly). We applied computable statisti-
cal analysis to look for further insights on the relation-
ships between ‘cyber risk and IoT’. In Fig. 1, we designed 
a three-field plot, with countries on the left, keywords 
from the data records in the middle, and areas of focus 
on the right. We included countries, because we wanted 
to identify the relationships between the research findings 
on ‘cyber risk and IoT’ and compare with the national 
research efforts. What becomes visible from in Fig. 1 is 
the higher research output of the US in the keywords that 
are most present in all data records. Since the USA is the 
leader in the overall research on ‘cyber risk’ at present, 
in Fig. 1 we wanted to determine if the US research is 
focused on different research areas, and not related to the 
keywords that are taken as most represented in the com-
bined research records from all countries.

The three-field plot in Fig. 1 identify the USA and UK 
as the most productive in scientific research on IoT cyber 
risk. From the three-field plot in Fig. 1, it is not possible 
to determine if research is conducted by individual, or 
multiple countries in collaborative projects. To visualise 
research collaborations, we developed the global collabo-
ration network in Fig. 2. In the Fig. 2 global collabora-
tion network, two different clusters appear (coloured in 
red + green and blue).

In Fig. 2, we can see how the collaboration lines are 
developing between the USA, UK, and China, and strong 
research relationship between Switzerland, Normal, Den-
mark and Greece. But surprisingly, this analysis shows that 
UK is not collaborating with the EU partners as strongly as 
with the USA. In Fig. 2, we created a social structure—col-
laboration network, with specific countries in the network 
parameters of the computational program—when designing 
the Fig. 2 graph. We wanted to evaluate and investigate this 
result further, and to visualise the type of research topics 
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that separate the two clusters, in Fig. 3 we applied factorial 
analysis on the same data file, and extracted the keywords 
and sub-topics in the two clusters. To explain briefly our 
intentions for applying factorial analysis with computable 
statistical methods, we wanted to find commonalities by 
observing the interdependencies between sub-topics. We 
designed a conceptual structure map with the multiple cor-
respondence analysis (MCA) method. The MCA method is 

a data analysis technique for nominal categorical data, and 
we applied the MCA data analysis method to detect and 
represent underlying structures in the data set. In Fig. 3, 
the MCA data analysis method represents data as points in 
a low-dimensional Euclidean space1.

We used the factorial analysis statistical methods (in 
Fig. 3) to visualise the variability in correlated research sub-
topics and keywords. The reason we used factor analytic 
method, was to reduce the keyword variables in the data 
records and find commonalities by observing the interde-
pendencies between sub-topics. These commonalities guided 
the case study research on designing a transformational 
roadmap for moving from current state of risk maturity and 
reaching a new—target state.

4 � Case study on transformational roadmaps 
applied in practice

The bibliometric analysis in the previous section, showed 
a strong variability in correlated research sub-topics 
and keywords. By using the factor analytic methods, we 
reduced the keywords and found commonalities in the 
interdependencies between sub-topics. With the case 
study method, we wanted to start building the design pro-
cess for a transformational roadmap that would enable 
moving from current state of risk maturity and reaching 

Fig. 1   Three-Field Plot of sub-topics and keywords in research on IoT cyber risk

Fig. 2   Global collaboration network on IoT cyber risk research

1  https​://en.wikip​edia.org/wiki/Eucli​dean_space​

https://en.wikipedia.org/wiki/Euclidean_space
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a new—target state. In the case study, we have selected 
the most prominent cyber risk assessment methods, and 
we attempted to find commonalities interdependencies 
between different risk assessment approaches.

4.1 � The case study

The case study research involved four workshops that 
included distinguished engineers from Cisco Systems, and 
Fujitsu. In the workshops we applied the controlled conver-
gence to verify the design. The controlled convergence was 
developed in the 1980s by Stuart Pugh (Pugh 1991), using a 
matrix to compare concepts against a set of pre-determined 
criteria. The controlled convergence is designed to provide 
structure to the evaluation of alternative or competing con-
cepts. This approach to pursuing validity through controlled 
convergence—case study research, follows recommenda-
tions from existing literature on this topic (Axon et al. 2018; 
Eggenschwiler et al. 2016) and provide clear definitions that 
specify the units of analysis. The reason for pursuing clar-
ity on the units of analysis for IoT cyber risk, was justified 
by existing literature (Radanliev et al. 2020b), where these 
are identified as recommended areas for further research (de 
Reuver et al. 2017). The IoT risk units of analysis are veri-
fied with the controlled convergence method, where experts 
were asked to confirm the valid concept, merge duplicated 
concepts, and delete conflicting concepts.

4.2 � Transformation implementation tiers 
for reaching the target state based on a current 
state—categorised with a Goal‑Oriented 
approach

Creating a connection between different independent cyber 
risk models and IoT risk is difficult, because cyber risk 
assessments are not based on standardised risk estimation. 
To standardise the IoT risk estimation, we focused on the 
success factors and dependencies with a goal-oriented mod-
elling and Bayesian methods.

The previous steps are applied for the identification of a 
target state and the controlled convergence is applied for the 
development of a transformation roadmap, specific for the 
case study scenario. To build the transformation roadmap, 
firstly we identified the specific target state implementation 
tiers. Secondly, the specific implementation tiers and their 
relation to the main cyber risk impact assessment approaches 
is validated with the controlled convergence. The rationale 
is that different scenarios will have different implementation 
tiers to perform in order to transition to a higher maturity 
lever. A long and detailed list of implementation tiers can 
be found in the NIST framework and the Exostar system.

In Table 1 we describe with examples the process of 
building a transformational roadmap. The process is based 
on determining implementation tiers in the form of ‘parent 
and child’ or ‘goal and objective’. Building the transfor-
mational roadmap with case specific implementation tiers, 

Fig. 3   Factorial analysis of 
research on IoT cyber risk
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enables the application of the goal-oriented approach. The 
roadmap in Table 1 describes this process. Worth empha-
sising that in Table 1 we present the transformational road-
map as a ‘parent, child and orphan’ methodology that is 
required for the dependency modelling. Using the case study 
research, to build a ‘parent, child and orphan’ table as a sum-
mary map of implementation tasks (tiers), by applying the 
controlled convergence evaluation matrix, enables the cat-
egorisation of concepts as a simple ‘understanding’ of a task 
(tier), without any data to back up that understanding, or as 
a established concept, based on evidentialist understanding. 
These are categorised in groups, and numbers, then colour 
coded for visibility and ease of understanding—in Table 1.

The process in Fig. 4 enables transforming a ‘parent’ 
statement, which represents ‘understanding’ and ‘informa-
tion’, into an ‘orphan’ statement describing a measurable 
outcome and therefore enables collecting probabilistic data 
for the ‘justification of truth’. The statements are then com-
pared to the risk assessment approaches (Caralli et al. 2007; 

Table 1   Transformation implementation tiers categorised with a Goal-Oriented approach—describing how the transformational roadmap can be 
applied in a case-specific scenario

Transformation roadmap with case specific implementation tiers
Training and awareness
Control goal (parent) 1: Security skills assessment and training for IoT systems
Control objective (child) 1: Skills and integrated plan to support defence of IoT systems
Control element (orphan) 1: Analysis of needed skills; provide training to match the required skills and validate skills through periodic tests. 

More advanced control orphans include: security assessments using real-world examples to measure mastery or skills
Control goal (parent) 2: Penetration testing of IoT systems
Control objective (child) 2: Test the defences by simulating IoT cyber-attacks
Control element (orphan) 2: Regular focussed penetration tests for detecting unprotected systems through vulnerability scanning and penetration 

testing combined
Control goal (parent) 3: IoT risk from mobile device
Control objective (child) 3: Mitigate cyber risk from mobile devices
Control element (orphan) 3: Mobile devices should have access controls to enforce policies and option to remotely clean the device
Cyber threat intelligence
Control goal (parent) 1: IoT boundary defence
Control objective (child) 1: Manage the flow of information between network trust levels
Control element (orphan) 1: Prevent communications with malicious IP addresses, use two-factor identification; design DMZ network and scan 

connections that aim to bypass the DMZ; block known bad signature or attack behaviour
Security event monitoring
Notes: links with: (a) network security; (b) identity and access management
Control goal (parent) 1: Maintenance, monitoring and analysis of IoT audit logs
Control objective (child) 1: Collect, manage and analyse IoT audit logs of events
Control element (orphan) 1: Two synchronised timestamps in logs to ensure consistency; develop IoT log retention policy
Control goal (parent) 2: Secure configurations for IoT networked devices—such as firewalls, routers and switches
Control objective (child) 2: Actively manage the security configuration of the IoT network infrastructure
Control element (orphan) 2: Documenting all new IoT configurations rules that allow traffic to flow through network security devices; use two-

factor identification and encryption
Control goal (parent) 3: Account monitoring and control of IoT data
Control objective (child) 3: Control the life cycle of IoT system and IoT devices applications accounts
Control element (orphan) 3: Disable unused IoT devices accounts; imprint accounts expiration date; enable revoking system access for IoT 

devices accounts; log-off IoT devices after a standard period of inactivity; encrypt transmitted passwords for IoT devices

Fig. 4   Transformation implementation tiers categorised in Microsoft 
Excel to reflex the level of the ‘justification of truth’—simple under-
standing vs evidentialism
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CMMI 2017; CVSS 2019; Cyberpoint LLC, n.d.; FAIR 
2020; ISO 2017; NIST 2014; Wynn et al. 2011), which are 
further evaluated in Sect. 5.

When applying the implementation tiers of the trans-
formational roadmap—described with Microsoft Excel 
in Fig. 4, the ‘parent, child and orphan’ implementation 
tiers will be almost inevitably different, because the tiers 
are always case specific. The statements in the categories 
represent examples for clarifying the methodology. For a 
more detailed process on implementing the recommenda-
tions emerging from the transformational implementation 
tiers, we refer to the NIST cyber security implementation 
tiers as support guidance. The implementation tiers in 
Fig. 4 advance the NIST implementation tiers by advocat-
ing a methodology for transforming current cyber profiles 
that dictate reactive approach, into rik informed, repeatable 
and adaptive target cyber profiles (Barrett et al. 2017). The 
difference in our methodology is that the target state imple-
mentation tiers are focused on identifying case specific IoT 
risk, rather than examining general cyber risk categories and 
subcategories. Hence, we addressed a significant gap in the 
NIST cyber risk assessment process. The following section 
details how the implementation tiers are applied in for IoT 
risk impact assessment with a dependency goal-oriented 
modelling.

5 � IoT risk assessment with dependency 
goal‑oriented modelling

We applied dependency goal-oriented modelling to connect 
the implementation tiers in the IoT risk assessment. The first 
step is to link separate implementation tiers. This requires 
identifying the shared principles from the tiers being con-
nected. Then, to determine the level of dependency risk, it is 
necessary to understand the dependencies of the shared prin-
ciples that are representative of a larger complex IoT system.

5.1 � IoT risk impact assessment with a Goal‑Oriented 
Approach

Our methodology for IoT risk impact assessment with a 
goal-oriented approach focuses on the success factors and 
concentrates on the external dependencies. In this approach, 
individual IoT risks are considered as representative of a 
larger complex IoT system. This advocates a top-down or 
goal-oriented modelling approach, where success factors are 
traversing across multiple isolated models. The proposed 
goal-oriented modelling approach is analysed with Bayesian 
methods. Statistical inference can be updated with Bayes 
theorem as more evidence and probabilistic data become 
available. The paradigm can provide a real-time statistical/
probabilistic assessment of IoT cyber risk of all the entities 

in the model. The dependencies between a dynastic meta-
phor, such as ‘parent’, ‘child’, and ‘orphan’ as explained 
in the transformational implementation tiers (Table 1), can 
be analysed with computational statistics using a Bayesian 
analysis engine (Hanson and Cunningham 1996; Weinberg, 
n.d.). Therefore, the proposed goal-oriented dependency 
modelling approach relies on Bayesian analysis engine 
to evaluate a range of sensitivities or vulnerabilities. To 
develop Bayesian inferences, the model requires the statis-
tical relationships between parent, child and orphan nodes 
(where available) (see Table 1). The level of achievement is 
articulated as the ‘state’ of the goal, which is usually cor-
related with failure and success. However, while ‘state’ is 
usually identified according to a value judgement, e.g. bad-
good, no-yes or 0–1, a ‘state’ could also be identified with a 
number of possible states, not necessarily two single states. 
In addition, with the IoT real-time update feature, the deci-
sion model can provide real-time risk assessment, where 
the impact of changes in state can be immediately identified 
through the functional dependencies.

5.2 � IoT risk analysis through functional dependency

Dependency modelling and analysis provides a means to 
support the management of functional and operational com-
plexities within IoT systems with focus on the system ele-
ments, measures of a design or operational challenge, and 
the functional dependencies that define their associations. 
Dependency modelling and analysis can support a superior 
understanding of connectivity and its implications on per-
formance, and can assist in constructing, improving, and 
maintaining such complex systems.

The construct and exchanges that happen in IoT domain 
defines a tightly coupled association amongst constituting 
components and sub-systems that typically rely on the cor-
rect functions of another linked component or node. This 
exhibits a dependency relationship, which can either be 
direct (a first order dependency) or indirect (a subsequent 
higher order dependency) (Laugé et al. 2015) from both 
layer and component-level perspectives.

Dependency modelling and analysis provides a means to 
support managing functional and operational complexities in 
IoT systems with focus on the system components, measures 
of a design and/or operational challenge, and the functional 
dependencies that define component associations. In an IoT 
ecosystem, component/system functionalities are typically 
reliant on connectivity or network exchange/communication 
infrastructures—mainly the internet, and service functionali-
ties and availabilities of connected IoT components (Yadav 
et al. 2019). From an availability standpoint, components 
functionalities and the service(s) they enable can be greatly 
hindered by intentional or unintentional disruptions in net-
work connectivity. This is especially when the disruption 
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involves a top-level information processing and distribution 
node like a wired/wireless router. Affected devices at the 
lower end of the network can thus be impacted to the degree 
with which they rely on service receptions from a connected 
service/function-impaired component.

For example, from a typical IoT layered architecture 
(Bilal 2017), components, functions or services on the 
‘application layer’ typically rely on the normal function-
ing of linked components/nodes/services on the ‘network 
layer’. In turn, the network layer components/services rely 
on inputs from the ‘perception layer’. Compromising, dis-
rupting or destroying components/service operations on a 
higher-level layer, e.g. perception, can result in wrong or 
no information exchange via connectivity. Thus, the accu-
rate functioning of connected components/service(s) on the 
network or application layers can be altered. This suggests 
that the broader security risks in IoT domain (like any other 
independency system) may not be entirely drawn from the 
failure of one specific IoT component. Most often, it extends 
to the failure of other linked components/services that can 
receive cascading impacts. This dependency amongst IoT 
sub-systems and components can worsen when adverse 
impacts flow from one affected component/system/service 
onto another (Bloomfield et al. 2010; Kotzanikolaou et al. 
2013).

Dependency modelling and analysis can support a supe-
rior understanding of component connectivity and impli-
cations on performance. It can also assist in constructing, 
improving, and maintaining of such complex system. Typi-
cally, security and safety–critical impacts can vary amongst 
assets, their functionalities (services), placement positions, 
and configurations within industrial networked systems (Ani 
et al. 2018) including IoT. However, effective control and 
management decision-making can be supported by adopting 
risk assessment methods that go beyond considering risk 
scenarios one by one, qualitatively or statically, to consid-
ering the relationship between the risk factors. This way, 
security-related dependencies can be evaluated such that 
can enable profounder insights on how an impact to IoT 
infrastructure that prevents it from delivering the relevant 
and requisite service(s), can affect the performance levels 
of other sub-systems connected and reliant on an affected 
target. This can support adopting effective security incidence 
response and recovery (Laugé et al. 2015), and help mini-
mise the effects of IoT disruptions.

From a goal-oriented perspective, an effective approach 
involves evaluating the security risks of an IoT component/
device or service being compromised or failing due to 
the compromise and(or) failure of another component or 
service(s) the first entity relies upon. The goal of ensuring 
or maintaining operational continuity makes crucial to deter-
mine and understand the extent or number(s) of depend-
encies necessary to sustain continuity. Thus, the security 

risks that can cause security and functional impairments in 
IoT components/services can be characterised by a chain of 
cascading failure-causing impacts. These when understood 
earlier can support relevant security strategy adoption as 
solutions. Earlier understanding of impact flows and opera-
tional implications can also help in identifying potential 
critical points in the network, and support prioritisation of 
risk management to ensure that more critical security risks 
are addressed first.

5.3 � Network‑based linear dependency modelling

There are a number of approaches for modelling complex 
system dependencies which provide a good starting point for 
exploring dependency analysis in IoT. The Leontief-based 
input–output approach (Setola et al. 2009) can support IoT 
interdependency modelling from a failure perspective. The 
input–output Leontief-based model offers an explorable way 
to derive dependency-oriented attributes such as; disruption 
probability, risk transmission, and cascading impacts (Zhang 
and Peeta 2011). A scenario-driven what-if analysis method 
enables a simulation-based technique for evaluating the con-
sequences of discrete events and physical economic flows 
amongst IoT sub-systems (Zhang and Peeta 2011), ena-
bling the resolution of varied events and controls strategies. 
However, the more common approach involves the network-
based approach, which can assist with evaluating physical 
dependencies and cascading disruptions within and across 
geographical dimensions. These typically explore stochas-
tic modelling (Bloomfield et al. 2010; Huang et al. 2016), 
especially the Markov-based undirected techniques (Nozick 
et al. 2004; Qiao et al. 2007), and the Bayesian Network-
based (BN) technique (Di Giorgio and Liberati 2011). This 
BN approach appears more promising for demonstrating the 
characteristics of components and dependencies in the IoT 
network, thus is discussed further. It is crucial to note the 
common denominator that the listed approaches leverage 
topological attributes of networked infrastructures, such as 
connectivity, path length, degree of vertex, and redundancy 
ratio for interdependency analysis and the resolve of spatial 
impacts of security risks and disruptions in the IoT.

Bayesian Networks quite well supports IoT dependency 
modelling through functionality evaluations, which involves 
analysing how the functionality of one system or component 
can affect the functionalities of other systems or components 
(Zhang and Peeta 2011) on the basis of connectivity and 
process configurations over multi-layered IoT architecture. 
Building on graph theory (Laugé et al. 2015; Stergiopoulos 
et al. 2016), BN’s (Di Giorgio and Liberati 2011) graphical 
representation of probability distributions provide a useful 
dependency analysis features akin to the IoT, i.e. consist-
ing of a set of discrete or continuous random variables: 
V =

{
v1, v2, v3,… , vn

}
 . BN enables a directed acyclic graph 
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where vertices/nodes are marked with quantitative probabil-
ity information, such that:

1.	 For each random variable, there exists an associated ver-
tex (representing network components/nodes) in the BN.

2.	 Edges (representing links) use arrows to represent the 
relations among random variables, so that an arrow 
vi, (i = 1 − n, correspondingtothenumberofparentnodes) 
from a node vi to another node vi+ in the set V implies 
that the state of vi directly influences the state of vi+ , 
which in turn influences a node vi++ (herein vi is consid-
ered a parent, vi+ is a child node).

3.	 For each node (corresponding to a component or ser-
vice), parent’s influence can be evaluated using a con-
ditional probability distribution (CPD): P(vi/Parents(vi))

The CPD for parents’ influence would often work well 
for discrete random variables/nodes; however, the potentials 
for random nodes to increase introduces intractable com-
plexities (Di Giorgio and Liberati 2011) that require that 
certain conditional independence relations be encoded in 
the BN graph to simplify complexities (Jensen 2007). Basic 
BN’s inability to consider time attributes makes it weak in 
accounting for potential changes system while evaluating 
influences and dependencies. Dynamic Bayesian Network 
(DBN) resolves this by enabling a modelling of systems that 
evolve in discrete time steps called ‘Time slice Bayesian 
Network’—TSBN. TSBN links to ‘time slices’ and provides 
a static model of the system at each instant of time, which 
instinctively reflects rapid causalities. Dynamics are then 
captured by linking inter-time slices, also indicating tem-
poral probabilistic dependencies between random nodes 
belonging to varied time slices.

Supposing that the condition guiding the system devel-
opment remains unchanged, and DBN can be defined by 
topologies of sequential time slices, then it becomes feasible 
to; infer the system’s current status learning from available 
past and present information, estimate the past status and 
predict future status of the system. Reiterating the point from 
(Di Giorgio and Liberati 2011), it becomes feasible to evalu-
ate the probability distribution using information aggregated 
into a conditional probability table, if nodes in the network 
remain ordered such that a node’s index is always preceded 
by the indices of its parent. The probability distribution for 
the network of nodes V is thus;

likening the typical IoT layered architecture (comprising 
perception, network, and application layers) to traditional 
service-oriented structures, where the occurrence of ser-
vice disruptions/failures is represented at the lowest level 
of the TSBN. Similar to the IoT, TSBN service structure 
and positioning is divided into three different levels: 
Atomic Events, Propagation, and Service (Di Giorgio and 
Liberati 2011). This structure points that, typically events 
in a TSBN dependency interrelationship expresses these 
three structures at some point and degree.

Atomic events level refers to the part of a TSBN event 
that captures random nodes/components associated with 
adverse events capable of causing compromise, disrup-
tions and impairments (Di Giorgio and Liberati 2011). 
Essentially, it indicates the potential starting point of an 
abnormal activity in the network, which can occur at any 
layer of the IoT system depending on the target or victim 
component/node of compromise. Appropriate security 
respond and management need to account for potential risk 
attributes (threats, vulnerabilities, and attack likelihoods) 
from identified or associated event origins as measure 
towards grasping the full scope of impacts and criticali-
ties of events. As component/node functional dependen-
cies move in a particular direction from event origin, typi-
cally, the flow of probability impacts for nefarious events 
would move in the opposite direction.

The propagation level is associated to nodes through 
which service functions are enabled based on connectiv-
ity (Di Giorgio and Liberati 2011). This also indicates 
the medium through which potential negative impacts are 
enabled and trickle through the network of connected IoT. 
Thus, it includes facilitating interconnections of nodes and 
services to support the attainment of desired system goals, 
and can emerge at any point in the IoT layered structure, pro-
vided that affected components/nodes support the exchange 
or transfer of services to certain ends. Evaluating associated 
probabilities of security risks at this level can enable insights 
into the scope of feasible negative impacts that need to be 
prepared against or responded to.

The service level is associated to nodes through which 
the final desired function of an IoT is achieved. It can also 
refer to the point of goal accomplishment for the system or 
user (Di Giorgio and Liberati 2011). It can also be associ-
ated to the probable final point of negative impacts from an 
initial atomic event through a propagation level based on 

first or multi-order links and dependencies. Understanding 
the probable security risk to and at this level helps to achieve 
a more holistic viewpoint of the full scope of the impact of a 

The above DBN theory may be applied to IoT system/
infrastructures interdependency analysis to support secu-
rity risk management. The goal-oriented approach enables 
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security event in the network, which is necessary to inform 
an effective solution approach.

Using the IoT layer architecture as example, the stand-
ard functions for components and services on the applica-
tion layer (which may be considered the final goal level of 
component functions) in an IoT system, typically depend on 
the standard functioning of movement of data through the 
network layer, and unto the perception layer (PL) (which 
perceives the physical properties of things). Using Fig. 5 
if a service flow a14 on a perception layer is impaired, 
it can affect the functionality of a connected services 
a12, a10, a7, anda6 on the network, and a4, a3, a2, anda1 on 
application layer. The services on the application layers 
result in the final goal, and their negative impacts on dis-
ruptions or failure in attaining the final goal.

Combining all three service contexts in relation to abnor-
mal events in IoT networks can provide a useful way if rep-
resenting functional dependencies to support security risk 
management using the goal-oriented approach. In addition, 
functional dependency assessments may be combined with 
other dynamic vulnerability information such as the envi-
ronmental severity attributes (vulnerability collateral dam-
age potential, its target distribution, and its target security 
requirement violation) often viewed as optional from stand-
ard CVSS models (Chejara et al. 2013; Mell et al. 2007) 
when undertaking security analysis. The outcome can poten-
tially be used to understand potential impacts associated to 
component vulnerabilities—estimating how wide or other-
wise an impact on a component or system can ripple through 
and affect other components and systems. Such insights can 
support a more accurate estimation of security risks and cas-
cading impacts, and plan incident response and recovery in 
the IoT domain. Thus, an organisation embracing IoT into 
its network need to perform such multi-factor security analy-
sis to better grasp its IoT cyber security posture. Organisa-
tions adopting IoT like any other digital trend need to be 

clear about their current and target security posture, before 
designing and adopting a transformation roadmap outlin-
ing tasks to achieve the stated target posture. In developing 
a target profile, a broad range of approach may be used, 
considering more effective and efficient risk management 
approaches across the entire in-scope organisations.

5.4 � Discussion on the advantages of applying 
the Bayesian network method

The original idea of this article was to advance the efforts of 
other quantitative risk assessment approaches, such as the 
factor analysis of information risk (FAIR 2020). Similarly, 
the System Theoretic Process Analysis (STPA) method is 
also used for identifying the risks and vulnerabilities in the 
cyber-physical system from the safety and security point 
of view. The main novelty of this article is that the pro-
posed method does not only consider the risks caused by 
individual components, but also considers risks caused due 
to misinteractions between different components. A similar 
attempt was made in a recent study to address this issue 
with applying Monte Carlo (MC) simulation with the FAIR 
method, which was supported by the RiskLense software. It 
was found that the Bayesian network method achieves higher 
accuracy in cases that cannot be accurately modelled by the 
FAIR model (Wang et al. 2020). Moreover, the Bayesian 
network method is more flexible and extensible by showing 
how it can incorporate process-oriented and game theoretic 
methods. Presenting the potential for an integrated cyberse-
curity risk assessment.

5.5 � Discussion on limitations and further research

This study compares a number of most prominent risk 
assessment models, methods and frameworks. However, 
a holistic analysis of all risk assessment approaches was 

Fig. 5   Network-based (Compo-
nent/Layer) Linear Interdepend-
ency Structure
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considered beyond the scope of this study. Hence, it is dif-
ficult to claim that the approach we present, will be com-
patible with existing, and new approaches. However, the 
flexibility of our approach is that we applied epistemologi-
cal approach, to the Goal-Oriented Approach and Network-
based Linear Dependency Modelling. The epistemological 
approach in this article, presents a generic approach that can 
easily be adapted to accommodate additional concepts and 
to guide researchers and practitioners on the advancement 
of this topic.

5.6 � Discussion on further research—the 
relationship between the Goal‑Oriented 
Approach and the IoTMM model

The relationship between the IoTMM and the Goal-Oriented 
Approach is that the IoTMM expresses a conditional prob-
ability for the Goal-Oriented Approach dynastic metaphor. 
The conditional probability is the probability of a goal in 
the dynastic metaphor (in the transformational roadmap), 
being in a ‘state’ according to the states of its ‘parents’, ‘chil-
dren’, and ‘orphans’. Since Bayesian inferences are based 
on a logical AND or OR function then the IoTMM provides 
more clarity than a simple structure consisting merely of 
0 s and 1 s.

In scenarios where there is a lack the probabilistic 
data to determine the IoTMM, then the goal is considered 
as ‘uncontrollable’. In such scenarios, the IoTMM still 
provides a conditional probability as an isolated model. 
However, in uncontrollable scenarios, the IoTMM only 
presents a catalogue of the probabilities in each pos-
sible ‘state’. The advantages of combining the IoTMM 
with dependency modelling is more obvious when the 
uncontrollable states are dynamically analysed from 
other distributed states that contain the actual ‘state’ 
and dependencies. By using the two approach simultane-
ously, it becomes possible to assess uncontrollable states 
in complex systems.

This ability to assess uncontrollable states in complex 
systems can be used as a decision-making method. In this 
paper we established that cyber risk regulations for the 
IoT do not exist. This creates invisible risks and also trig-
gers data protection questions from the new types of cyber 
risk. In this paper we also conclude that the IoT risk is 
not included in the cyber security assessment standards, 
hence, often not visible to cyber security experts. This is 
concerning, because companies integrating IoT devices 
and services need to perform a self-assessment of its IoT 
cyber security posture. Although there are emerging cyber-
security standards related to IoT (e.g. IEC62443 (Shaaban 
et al. 2018), the NIST Guide to Industrial Control Systems 

(ICS) Security2, or the ENISA Good Practices for Secu-
rity of Internet of Things3), this article presents a new 
goal-oriented approach, that provides a transformation 
approach for reaching the required or desired target state 
of cyber security/risk maturity level.

Through epistemological analysis we uncovered the best 
method to design an IoT cyber risk assessment. We also pre-
sented and evaluated a transformation roadmap for IoT cyber 
risk assessment with a case study research, the controlled 
convergence, and the goal-oriented approach. The process 
we presented enables practitioners to improve their cyber 
posture. The new understanding of how to assess IoT risk 
dependencies also enables the development of new cyber 
regulations.

6 � Conclusion

This article reviews the existing literature and performs 
comparative, empirical and epistemological analysis of 
common cyber risk assessment approaches and integrates 
current standards. The findings present a map of the present 
initiatives, frameworks, methods and models for assessing 
the impact of cyber risk. Hence, the article advances the 
efforts of integrating cyber risk standards and governance 
and offers a better understanding of a holistic assessment 
approach for IoT cyber risk. This enables visualising the 
interactions among different sets of cyber security assess-
ment criteria and results with a new design criterion spe-
cific for cyber risk from the IoT. The contributions from this 
paper constitute the following:

1.	 Transformation roadmap for IoT cyber risk assessment 
and

2.	 Dependency modelling describing how IoT companies 
can achieve their target state with goal-oriented trans-
formation implementation tiers, that can be applied for 
the following:

a)	 Risk identification (measure IoT risk);
b)	 Risk management (standardise IoT risk);
c)	 Risk estimation (compute IoT risk) and
d)	 Risk prioritisation (design IoT risk strategy).

New methods are presented for the following:

1.	 IoT risk analysis through functional dependency, pro-
viding a superior understanding of connectivity and its 

2  https​://nvlpu​bs.nist.gov/nistp​ubs/Speci​alPub​licat​ions/NIST.SP.800-
82r2.pdf
3  https​://www.enisa​.europ​a.eu/publi​catio​ns/good-pract​ices-for-secur​
ity-of-iot

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
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implications on performance, assisting in the construc-
tion, and maintenance of complex IoT systems;

2.	 Network-based linear dependency modelling, which 
enables evaluating physical dependencies and cascad-
ing disruptions within and across geographical dimen-
sions. Hence, this approach appears more promising for 
demonstrating the characteristics of components and 
dependencies in the IoT network;

3.	 IoT risk assessment with a goal-oriented approach, 
and with the IoT real-time update feature, the decision 
model can provide real-time risk assessment, where the 
impact of changes in state can be immediately identified 
through the functional dependencies and

4.	 A correlation between the goal-oriented approach and 
the IoTMM model for assessing uncontrollable states in 
complex systems. The uncontrollable states are dynami-
cally analysed from other distributed states. By using the 
two approaches simultaneously, it becomes possible to 
assess uncontrollable states in complex systems, which 
can be used as a decision-making method.

These findings are relevant to national and international 
digital strategies, specifically for IoT cyber risk planning.
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