2,489 research outputs found

    Secure data exchange in Industrial Internet of Things

    Get PDF
    The use of the Industrial Internet of Things (IoT) is widespread, working as an enabler to implement large, scalable, reliable, and secure industrial environments. Although existing deployments do not meet security standards and have limited resources for each component which leads to several security breaches, such as trust between components, partner factories, or remote-control. These security failures can lead to critical outcomes, from theft of production information to forced production stoppages, accidents, including physical and others. The combination of blockchain-based solutions with IIoT environments is gaining momentum due to their resilience and security properties. However, chain-structured classic blockchain solutions are very resource-intensive and are not suitable for power-constrained IoT devices. To mitigate the mentioned security concerns, a secure architecture is proposed using a structured asynchronous blockchain DAG (Directed Acyclic Graph) that simultaneously provides security and transaction efficiency for the solution. The solution was modelled with special details in the use cases and sequence diagrams. Security concerns were integrated from the start, and a threat model was created using the STRIDE approach to test the security of the proposed solution. As a result, a flexible solution was been developed that significantly reduces the attack vectors in IIoT environments. The proposed architecture is versatile and flexible, is supported by an extensive security assessment, which allows it to be deployed in a variety of customizable industrial environments and scenarios, as well as to include future hardware and software extensions.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020.info:eu-repo/semantics/publishedVersio

    Secure data exchange in IIoT

    Get PDF
    Dupla diplomação com a National Polytechnic University of ArmeniaIndustrial Internet of Things (IIoT) plays a central role for the Fourth Industrial Revolution. In the scope of Industry 4.0 many specialists of the field are working together towards implementing large scalable, reliable and secure Industrial environments. However, existing environments are lacking security standards and have limited resources per component which results in various security britches such as trust in between the components, partner factories or remote control units with the system. Due to the resilience and it’s security properties, combining blochchain-based solutions with IIoT environments is gaining popularity. Despite that, chain-structured classic blockchain solutions are extremely resource-intensive and are not suitable for power-constrained IoT devices. To mitigate the security challenges presented above a secure architecture is proposed by using a DAG-structured asynchronous blockchain which can provide system security and transactions efficiency at the same time. Use-cases and sequence diagrams were created to model the solution and a security threat analysis of the architecture is made. Threat analysis is performed based on STRIDE methodology and provides us in depth understanding how our security architecture mitigates the threats and reveals also open challenges. The results are robust, supported by extensive security evaluation, which foster future development over the proposed architecture. Therefore, the contributions made are valid, and as the architecture is generic, will be possible to deploy it in diverse custom industrial environments. The flexibility of the architecture will allow incorporation of future hardware and software development in the field.A Internet das Coisas Industriais (IIoT) tem um papel central na quarta revolução industrial. Na área da Indústria 4.0 muitos especialistas colaboram com o objetivo de criar ambientes industriais escaláveis, confiáveis e seguros. No entanto, os cenários existentes carecem de normas de segurança, os recursos dos componentes são limitados, que levam a várias falhas de segurança que impedem a confiança entre dos diversos componentes, entre fábricas parceiras e entre unidades de controlo remoto de sistemas. Soluções suportadas por blockchain em ambientes IIoT estão a ganhar popularidade, principalmente devido à resiliência e propriedades de segurança da blockchain. No entanto, as soluções baseadas em blockchain clássicas estruturadas em cadeia fazem uso intensivo dos recursos, o que as torna não adequadas pra dispositivos IoT com restrição de energia. Para mitigar os desafios apresentados, propõe-se uma arquitetura segura que recorre a uma blockchain assíncrona com uma estrutura DAG, que procura fornecer segurança e eficiência nas transações. Casos de uso e diagramas sequência foram criados para modelar a solução e é realizada uma análise de ameaças de segurança à arquitetura. A análise recorre à metodologia STRIDE e fornece informação de como a nossa proposta mitiga as ameaças e revela também os desafios em aberto. Os resultados da avaliação demonstram que esta abordagem é robusta permitindo o desenvolvimento futuro da arquitetura proposta. As contribuições deste trabalho são validas, e como a arquitetura é genérica, será possível a implantar em diversas ambientes indústrias específicos. A flexibilidade da arquitetura permitirá a incorporar os futuros desenvolvimentos na área sejam hardware e/ou software

    Kaistan ulkopuolisten todennuskanavien arviointi

    Get PDF
    One of the challenges in entirely wireless communication systems is authentication. In pervasive computing and peer-to-peer networks, it is often not possible to rely on the existence of a trusted third party or other infrastructure. Therefore, ad hoc verification of keys via an out-of-band (OOB) channel is often the only way to achieve authentication. Nimble out-of-band for EAP (EAP-NOOB) protocol is intended for bootstrapping security between IoT devices with no provisioned authentication credentials and minimal user interface. The protocol supports a user-assisted OOB channel to mutually authenticate the key-exchange performed over an insecure wireless network between the peer and the server. The protocol allows peers to scan for available networks and, based on the results, generate multiple dynamic OOB messages. The user then delivers one of these messages to the server to register the device and authenticate the key-exchange. We implemented the OOB channels using NFC, QR codes and sound with EAP-NOOB as the bootstrapping protocol. The implementation requires an auxiliary device such as the user's smartphone. We evaluated the usability and security as well as the benefits and limitations of the OOB channels. Our results show that NFC and QR codes are capable in displaying multiple OOB messages while the sound-based channel is suitable for one or two messages due to its lower bandwidth. When the peer device generates multiple OOB messages, the process becomes more complex for the user who needs to browse through them and identify the correct server. However, we showed that this cumbersome step can be removed with the help of a mobile application. Furthermore, we identified vulnerabilities in each technology when used as an OOB channel. While some of these vulnerabilities can be mitigated with the mobile application, some require more refined solutions.Yksi täysin langattomien järjestelmien haasteista on todennus. Sulautetussa tietotekniikassa sekä vertaisverkkoissa ei usein voida luottaa maailmanlaajuisesti luotettavan kolmannen osapuolen olemassaoloon. Siksi salausavainten ad hoc-varmennus erillistä tiedonsiirtokanavaa (OOB) käyttäen on usein ainoa ratkaisu turvallisen kommunikaation käynnistämiseksi. Se luo resilienssiä eri hyökkäyksiä vastaan tuomalla järjestelmään toisen, itsenäisen tiedonsiirtokanavan. EAP-NOOB protokolla on tarkoitettu IoT-laitteille, joilla on minimaalinen käyttöliittymä eikä esiasennettuja avaimia. EAP-NOOB tukee käyttäjäavustettua OOB-tiedonsiirtokanavaa, jota käytetään todentamaan suojaamattomassa verkossa suoritettu laitteen ja palvelimen keskinäinen salausavainten vaihto. Protokolla sallii laitteiden kartoittaa käytettävissä olevia verkkoja ja tuottaa sen perusteella dynaamisia todennusviestejä, jotka käyttäjä toimittaa palvelimelle laitteen rekisteröimiseksi. Tässä työssä tutkittiin EAP-NOOB protokollan OOB kanavaa käyttäen NFC:tä, QR-koodeja ja ääntä. Todennusviestin lukeminen laitteelta vaatii käyttäjältä älypuhelimen. Työssä arvioitiin toteutettujen todennuskanavien käytettävyyttä, tietoturvaa, hyötyjä sekä näitä rajoittavia tekijöitä. Työn tulokset osoittavat, että NFC ja QR-koodit soveltuvat näyttämään useita OOB-viestejä. Sen sijaan äänipohjainen kanava soveltuu vain yhdelle tai kahdelle viestille hitaamman tiedonsiirron johdosta. Kun IoT-laite tuottaa useita OOB-viestejä, käyttäjäkokemus muuttuu monimutkaisemmaksi, koska käyttäjän on tunnistettava oikea viesti ja palvelin. Työssä osoitetaan, että tämä käyttäjälle hankala vaihe voidaan välttää erillisellä mobiilisovelluksella. Lisäksi työssä tunnistettiin toteutettujen tiedonsiirtomenetelmien haavoittuvuuksia, kun niitä käytettiin OOB-kanavana. Vaikka osa näistä haavoittuvuuksista voidaan eliminoida mobiilisovelluksen avulla, jotkut niistä vaativat tehokkaampia ratkaisuja

    Securing the Internet of Things Communication Using Named Data Networking Approaches

    Get PDF
    The rapid advancement in sensors and their use in devices has led to the drastic increase of Internet-of-Things (IoT) device applications and usage. A fundamental requirement of an IoT-enabled ecosystem is the device’s ability to communicate with other devices, humans etc. IoT devices are usually highly resource constrained and come with varying capabilities and features. Hence, a host-based communication approach defined by the TCP/IP architecture relying on securing the communication channel between the hosts displays drawbacks especially when working in a highly chaotic environment (common with IoT applications). The discrepancies between requirements of the application and the network supporting the communication demands for a fundamental change in securing the communication in IoT applications. This research along with identifying the fundamental security problems in IoT device lifecycle in the context of secure communication also explores the use of a data-centric approach advocated by a modern architecture called Named Data Networking (NDN). The use of NDN modifies the basis of communication and security by defining data-centric security where the data chunks are secured directly and retrieved using specialized requests in a pull-based approach. This work also identifies the advantages of using semantically-rich names as the basis for IoT communication in the current client-driven environment and reinforces it with best-practices from the existing host-based approaches for such networks. We present in this thesis a number of solutions built to automate and securely onboard IoT devices; encryption, decryption and access control solutions based on semantically rich names and attribute-based schemes. We also provide the design details of solutions to sup- port trustworthy and conditionally private communication among highly resource constrained devices through specialized signing techniques and automated certificate generation and distribution with minimal use of the network resources. We also explore the design solutions for rapid trust establishment and vertically securing communication in applications including smart-grid operations and vehicular communication along with automated and lightweight certificate generation and management techniques. Through all these design details and exploration, we identify the applicability of the data-centric security techniques presented by NDN in securing IoT communication and address the shortcoming of the existing approaches in this area

    A Comprehensive Survey of In-Band Control in SDN: Challenges and Opportunities

    Get PDF
    Software-Defined Networking (SDN) is a thriving networking architecture that has gained popularity in recent years, particularly as an enabling technology to foster paradigms like edge computing. SDN separates the control and data planes, which are later on synchronised via a control protocol such as OpenFlow. In-band control is a type of SDN control plane deployment in which the control and data planes share the same physical network. It poses several challenges, such as security vulnerabilities, network congestion, or data loss. Nevertheless, despite these challenges, in-band control also presents significant opportunities, including improved network flexibility and programmability, reduced costs, and increased reliability. Benefiting from the previous advantages, diverse in-band control designs exist in the literature, with the objective of improving the operation of SDN networks. This paper surveys the different approaches that have been proposed so far towards the advance in in-band SDN control, based on four main categories: automatic routing, fast failure recovery, network bootstrapping, and distributed control. Across these categories, detailed summary tables and comparisons are presented, followed by a discussion on current trends a challenges in the field. Our conclusion is that the use of in-band control in SDN networks is expected to drive innovation and growth in the networking industry, but efforts for holistic and full-fledged proposals are still needed

    Accessible user interface support for multi-device ubiquitous applications: architectural modifiability considerations

    Get PDF
    The market for personal computing devices is rapidly expanding from PC, to mobile, home entertainment systems, and even the automotive industry. When developing software targeting such ubiquitous devices, the balance between development costs and market coverage has turned out to be a challenging issue. With the rise of Web technology and the Internet of things, ubiquitous applications have become a reality. Nonetheless, the diversity of presentation and interaction modalities still drastically limit the number of targetable devices and the accessibility toward end users. This paper presents webinos, a multi-device application middleware platform founded on the Future Internet infrastructure. Hereto, the platform's architectural modifiability considerations are described and evaluated as a generic enabler for supporting applications, which are executed in ubiquitous computing environments

    The Impact of Digital Technologies on Public Health in Developed and Developing Countries

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th International Conference on String Processing and Information Retrieval, ICOST 2020, held in Hammamet, Tunisia, in June 2020.* The 17 full papers and 23 short papers presented in this volume were carefully reviewed and selected from 49 submissions. They cover topics such as: IoT and AI solutions for e-health; biomedical and health informatics; behavior and activity monitoring; behavior and activity monitoring; and wellbeing technology. *This conference was held virtually due to the COVID-19 pandemic

    Improving Access and Mental Health for Youth Through Virtual Models of Care

    Get PDF
    The overall objective of this research is to evaluate the use of a mobile health smartphone application (app) to improve the mental health of youth between the ages of 14–25 years, with symptoms of anxiety/depression. This project includes 115 youth who are accessing outpatient mental health services at one of three hospitals and two community agencies. The youth and care providers are using eHealth technology to enhance care. The technology uses mobile questionnaires to help promote self-assessment and track changes to support the plan of care. The technology also allows secure virtual treatment visits that youth can participate in through mobile devices. This longitudinal study uses participatory action research with mixed methods. The majority of participants identified themselves as Caucasian (66.9%). Expectedly, the demographics revealed that Anxiety Disorders and Mood Disorders were highly prevalent within the sample (71.9% and 67.5% respectively). Findings from the qualitative summary established that both staff and youth found the software and platform beneficial
    corecore