
LONG PAPER

Accessible user interface support for multi-device ubiquitous
applications: architectural modifiability considerations

Heiko Desruelle • Simon Isenberg • Andreas Botsikas •

Paolo Vergori • Frank Gielen

Published online: 17 August 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract The market for personal computing devices is

rapidly expanding from PC, to mobile, home entertainment

systems, and even the automotive industry. When devel-

oping software targeting such ubiquitous devices, the bal-

ance between development costs and market coverage has

turned out to be a challenging issue. With the rise of Web

technology and the Internet of things, ubiquitous applica-

tions have become a reality. Nonetheless, the diversity of

presentation and interaction modalities still drastically limit

the number of targetable devices and the accessibility

toward end users. This paper presents webinos, a multi-

device application middleware platform founded on the

Future Internet infrastructure. Hereto, the platform’s

architectural modifiability considerations are described and

evaluated as a generic enabler for supporting applications,

which are executed in ubiquitous computing environments.

Keywords Ubiquitous web � Multi-device applications �
Model-driven user interfaces � Dynamic adaptation

1 Introduction

A series of new generation human–computer interaction

paradigms such as mobile and ubiquitous computing are

enabling software applications and services, which execute

on a wide variety of consumer electronic devices. These

devices currently range from desktop and laptop comput-

ers, to mobile and tablet devices, to TV and home enter-

tainment systems, and to in-car devices. Nevertheless, the

fragmentation of devices and usage contexts makes it

particularly difficult to target a broad segment of devices

and end users. In this context, the use of web technology

can provide a standardized abstraction layer for applica-

tions to execute device independently. By adopting the

Web as an application platform, applications can be made

available whenever and wherever the user wants, regard-

less of the device type that is being used.

Despite these clear advantages, existing Web applica-

tion platforms are generally founded on the principles of

porting traditional API support and operating system

aspects to the Web. The evolution toward large-scale dis-

tributed service access and sensor usage is often not sup-

ported [10]. In result, the true immersive nature of

ubiquitous web applications is mostly left behind. To

enable developers to set up Web applications and services

that fade out the physical boundaries of a device, the we-

binos platform has been proposed. Webinos is a virtualized

application platform that spans across the various Web-

enabled devices owned by an end user. Webinos integrates

the capabilities of these devices by seamlessly enabling the

distribution of service requests.

This paper elaborates on the webinos platform’s innova-

tion and in particular its ability to dynamically adapt appli-

cation user interfaces to the current delivery context and thus

optimize the end user’s accessibility. The remainder of this

H. Desruelle (&) � F. Gielen

Department of Information Technology (INTEC), Ghent

University – iMinds, Ghent, Belgium

e-mail: heiko.desruelle@intec.ugent.be

S. Isenberg

BMW Forschung und Technik GmbH, Munich, Germany

A. Botsikas

Department of Electrical and Computer Engineering, National

Technical University of Athens (NTUA), Athens, Greece

P. Vergori

MultiLayer Wireless solutions (MAIN), Istituto Superiore Mario

Boella (ISMB), Turin, Italy

123

Univ Access Inf Soc (2016) 15:5–19

DOI 10.1007/s10209-014-0373-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55855222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-014-0373-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-014-0373-0&domain=pdf

article is structured as follows. Related work and background

on adaptive software engineering and user interfaces are

covered in Sect. 2. Section 3 provides a high-level intro-

duction to the webinos platform and elaborates on the plat-

form’s architectural decisions for meeting its adaptability

requirements. Section 4 covers an in-depth discussion of

webinos’ adaptive user interface support and highlights the

proposed approach via a case study on dynamic adaptation of

an application’s navigation structure. Section 5 quantita-

tively measures and evaluates the platform’s adaptability

qualities. Moreover, the qualitative evaluation of existing

webinos prototype applications aiming for multi-device

accessibility is discussed. Finally, conclusions and future

work are presented in Sect. 6.

2 Background and related work

2.1 Modifiability in software architecture

Modifiability has always been an important concept in

software engineering. By supporting this quality, software

architects aim to prepare a system for change requirements

after its initial release [8]. Software constantly tends to

evolve, from the addition of features, to the support for new

technology platforms. As a result, modifiability is about

minimizing the technical risks and cost impact of such

changes. In order to achieve modifiability as a system

quality, software architects need to envision and incorpo-

rate modifiability support in the system’s design cycle.

Through the years, a considerable number of best

practices on architectural approaches have been designed

to support the modifiability requirements of a system. In

general, the modifiability quality of a system can be

expressed in terms of cohesion and coupling [25]. Coupling

measures the mutual association strength between the

system’s software components. Cohesion, on the other

hand, is a measure for the number of internal relationships

between the responsibilities of a software component.

Based on the notion of cohesion and coupling, Bass et al.

structured a set of architectural modifiability tactics. This

set aims to guide software architects toward achieving the

required modifiability qualities for their system [2]. As

depicted in Fig. 1, the proposed architectural design deci-

sions can be devised in three high-level categories, i.e.,

increasing cohesion, reducing coupling, and deferring

binding.

Increasing cohesion tactics aims to deal with the number

of internal responsibilities within each of the system’s

components. This is in order to prevent changes to one

responsibility affecting the other responsibilities within the

same component. As a tactic, increasing the semantic

coherence is intended to stimulate a software architect to

relocate one or more component responsibilities in case the

internal responsibilities of that component do not serve the

same purpose.

Tactics regarding the reduction of coupling aim to

reduce the number of mutual relationships among the

various components that shape the system. High coupling

might result in changes to one component impacting one or

more of its associated components as well. Reducing the

coupling intends to prevent such change propagation by

means of the following architectural decisions.

• Encapsulation: Each system component is to interact

with other components through a well-defined yet

abstract interface. With this kind of encapsulation, the

coupling between associated components is limited to

their exposed interfaces rather than the entire

components.

• Intermediary: The use of an intermediary can be opted

to break dependencies between system components.

Depending on the type of dependency (i.e., location,

identity, behavior, and creation), the intermediate can

remove the explicit knowledge requirements from those

components.

• Raised abstraction: In case multiple similar responsi-

bilities exist within the system, abstraction can help to

extract the generic part of the responsibility. This way,

any change to the common part of the responsibility

will only need to be handled in one component.

Finally, the possibility to defer the binding of components

is mainly a result of applying and combining the above-

mentioned tactics on coupling and cohesion. Depending on

the system’s exact modifiability requirement, binding can

be designed to initiate at various points in the software life

cycle. Ranging from compile time (build configurations
Fig. 1 Organizing architectural tactics for modifiability (derived

from Bass et al. [2])

6 Univ Access Inf Soc (2016) 15:5–19

123

and parameterization, and aspect-oriented programming,

etc.), at deploy and start-up time (configuration binding,

resource files, etc.), or at runtime (runtime registration and

binding, dynamic lookup, parameter interpretation, and

polymorphism, etc.).

2.2 Model-based user interfaces

Model-driven engineering (MDE) aims to accommodate

with high-variability aspects of software systems. This

development methodology is characterized by a raised

abstraction tactic via the separation of concerns throughout

all the phases of software engineering (i.e., analysis,

design, and implementation). This approach embodies a

well-accepted technique to reduce the engineering com-

plexity of a software system [11]. A vast number of Web

engineering methods incorporate partial support for model-

based development (e.g., UWE, WSDM, HERA, WebML,

etc.). With a model-driven engineering approach, software

development is started with an abstract platform-indepen-

dent model (PIM) specification of the system [20]. A

transformation model is in turn applied to compile the PIM

to a platform-specific model (PSM). The transformation

process is at the heart of the methodology’s flexibility. For

this purpose, MDE can use transformation languages such

as the Query-View-Transformation standard (QVT) or the

ATLAS Transformation Language (ATL) for specifying

model-to-model transition rules [16].

Recent research on model-driven engineering has been

particularly active in the domain of user interface (UI) engi-

neering. The CAMELEON Reference Framework (CRF)

defines an important foundation for this type of approaches

[5]. The framework specifies a context-sensitive user interface

development process, driven by an intrinsic notion of the

current user context, the environment context, as well as the

platform context. According to the CRF approach, an appli-

cation’s user interface development consists of multiple levels

of abstraction. Starting from an abstract representation of the

interface’s task and domain model, a PSM of the user interface

is subsequently generated by means of a chained model

transformations based on contextual knowledge. A number of

major UI definition languages have adopted CRF, e.g., Us-

iXML [18], and MARIA [22]. Moreover, the World Wide

Web Consortium (W3C) charted the Model-Based UI

Working Group (MBUI-WG) as part of its Ubiquitous Web

Activity (UWA) to investigate the standardization of context-

aware user interface authoring [6]. Its goal is to work on

standards that enable the authoring of context-aware user

interfaces for web applications. The MBUI-WG aims to

achieve this type of adaptivity by means of a model-driven

design approach. In this context, the semantically structured

aspects of HTML5 will be used as key delivery platform for

the applications’ adaptive user interface.

More specifically, the CAMELEON Reference Frame-

work relies on a model-driven approach and structures the

development of a user interface into four subsequent levels

of abstraction:

• Specification of the task and domain model. At the

lowest abstraction level, these models define a user’s

required activities in order to reach his goals.

• Definition of an abstract user interface (AUI) model.

The AUI model defines a platform-independent model

(PIM), which expresses the application’s interface

independently from any interactors or modalities within

the delivery context’s attributes.

• Definition of a concrete user interface (CUI) model, a

platform-specific model (PSM) which generates a more

concrete description of the AUI by including specific

dependencies and interactor types based on the delivery

context.

• Specification of the final user interface (FUI), covering

the code that corresponds with the user interface in its

runtime environment (e.g., HTML, Java.).

Figure 2 shows the interconnection principles and trans-

formations between the above-mentioned abstraction lev-

els. The downward arrows depict reification processes.

Reification is the transformation from a higher-level

abstraction to a lower-level abstraction phase, hence

inferring a more concrete user interface description. The

upward arrows, on the other hand, specify the abstraction

processes. An abstraction operation is the inverse trans-

formation of reification. The third transformation type is

the translation, depicted by the horizontal arrows. The

translation deals with adapting the UI description to

changes in one of the contextual parameters (i.e., user,

device, physical environment). In this case, the UI

description is optimized to the context change, but its

Fig. 2 Model-based user interface abstraction levels and

transformations

Univ Access Inf Soc (2016) 15:5–19 7

123

abstraction level remains the same when performing a

translation.

As documented by Schaefer, various approaches can be

used to express the adaptation of a model-based user

interface [24]. In essence, three types of adaptation

approaches can be distinguished: model-to-model trans-

formations, transformations on the XML representation of

models, and code transformations. The model-to-model

approach relies on the fact that most MBUI models can be

designed based on a directed graph structure. In result,

adaptations between two models are specified with model

mappings by means of graph transformation rules. As

depicted in Fig. 3, transformation rules consist of a left-

hand side (LHS) condition matching the current UI model

represented by graph G [18]. To add expressiveness, one or

more Negative Application Conditions (NAC), which

should not match G, can be defined. Based on the matching

of these conditions, a right-hand side (RHS) defines the

transformation result by replacing LHS occurrence in G

with RHS. This substitution operation results in an adapted

UI model represented by graph G0.
Furthermore, for UI models represented with XML,

XSLT transformations can be used as a more declarative

way to define adaptations [15]. The transformation pro-

cess takes an XML-based document as input together

with an XSLT stylesheet module containing the trans-

formation rules. Each transformation rule consists of a

matching pattern and an output template. Patterns to be

matched in the input XML document are defined by a

subset of the XPath language [3]. The output after

applying the appropriate transformations can be standard

XML, but also other formats such as (X)HTML, XSL-

FO, plain text, etc.

2.3 Ubiquitous application middleware

Various cross-device middleware platforms have previ-

ously been developed, aiming to create a platform-inde-

pendent layer for running generic applications. The Java

Virtual Machine (JVM) and the .NET framework are part

of the most well-known and widespread solutions in this

category, providing a common runtime and set of APIs in

support of their ‘‘write once, run everywhere’’ philosophy.

These solutions, however, are closed proprietary systems

and mainly confined to PC operating systems [1].

With the increasing maturity of Web technology and the

rise of mobile platforms, Web-based application middle-

ware solutions have started to emerge. This type of mid-

dleware aims to leverage the popularity and market

coverage of devices with built-in support for HTML, CSS,

and JavaScript. Web widget runtimes such as Qt and full-

featured mobile browsers such as Chrome for Android,

Firefox mobile, and Mobile Safari have enabled Rich

Internet Applications (RIAs), which need little to no

modification to run on a wide variety of target devices [19].

Despite their clear benefits, these runtimes still focus on

supporting localized application execution rather than

enabling cross-device user experiences (e.g., multi-screen

applications, remote service invocation.) [10].

The Global Public Inclusive Infrastructure (GPII) ini-

tiative has the goal to build an infrastructure for automated

personalization of services based on a user’s personal

preferences and capabilities [27]. Based on this globally

available profile, the presentation and interaction modali-

ties of every accessed service and application are auto-

matically adapted. The Cloud4All project, co-funded by

the EU’s FP7 programme, aims to support the creation of

Fig. 3 Model-to-model

transformation approach for the

adaptation of a model-based

user interface [18]

8 Univ Access Inf Soc (2016) 15:5–19

123

such an infrastructure. The webinos middleware platform

described in this paper has set a very similar goal. The

main difference lies with the approach for storing profile

data and accessing services. The current Cloud4All vision

is based on a cloud-centric approach for profile storage and

services access. Webinos, on the other hand, focuses on a

distributed application platform, which allows the user to

maintain control over personal data and services. With the

general public’s raising awareness regarding privacy and

security, webinos only stores a reference in the cloud,

while the actual data remain on the user’s device.

3 The webinos platform

The webinos project aims to design and deliver an open

source application platform that enables Web applications

and services to be executed consistently over a broad range

of Web-enabled devices. These connected devices include

PC, mobile and tablet, home entertainment, and in-car units

[9]. Moreover, webinos’ ‘‘one application for every

device’’ vision is not just limited to portability by enabling

a single application to be executed on each of the targeted

device groups. Webinos particularly aims to also simulta-

neously leverage all the specific capabilities of one’s

owned devices within that application. For example, in an

in-car setup this could include accessing your vehicle’s

sensor data for a parking assistance application running on

a smartphone or tablet device.

These modifiability aspects lay out a considerable

number of dynamic change requirements for the webinos

application platform to adapt to. This section presents the

modifiability tactics that were applied to webinos’ archi-

tectural design for coping with these requirements and

constraints. The interested reader can refer to [13] [23] for

a more elaborate background discussion on the exact

requirement scenarios as well as an overview of the plat-

form’s complete architectural structure.

3.1 Platform portability

An important driver for designing the webinos platform is its

device independence support for running applications. A

webinos application should be executable on each of the

targeted device domains (i.e., desktop, mobile, home

entertainment, in-car, and embedded devices), without

requiring any modifications to the actual application. On an

architectural level, webinos addresses this portability

requirement by deferring binding time through an instruc-

tion set intermediary. With this virtual machine approach,

application instructions are translated at runtime into

instructions for the underlying technology platform. The

webinos applications’ code is thus only interpreted and

bound at runtime. The application platform does so by

leveraging broadly accepted and standardized Web tech-

nology including HTML, CSS, and JavaScript. As depicted

in Fig. 4, various modifiability tactics have been incorpo-

rated at this level. An encapsulation tactic is applied to

reduce the number of exposed interfaces to a set of well-

defined JavaScript-based Web APIs (Application Program-

ming Interfaces). Existing Web runtime (WRT) engines

with HTML5 support can in turn hook into these APIs to

allow their Web applications to interact with the webinos

platform and access its functionality. In turn, webinos can

remain independent from the WRT used to run the Web

application. The WRT can thus be a browser (e.g., Mozilla

Gecko for Firefox, WebKit, Google blink for Chrome.), as

well as a hybrid WRT solution, which packages the Web

application as a native app or widget (e.g., PhoneGap).

Moreover, an intermediary tactic provides the at-run-

time binding between the webinos applications’ instruc-

tions in JavaScript and the associated native instructions

for the devices’ underlying operating systems. In result, the

device-dependent platform code is clearly separated from

webinos’ device-independent standard libraries and APIs.

Webinos aims to support a wide range of devices. Each

of these devices will have its particular set of APIs and

services (e.g., based on the available sensors and actua-

tors). In order to enable webinos to leverage the full

potential of its supported devices, it needs to enable

external developers to dynamically expose additional ser-

vices as Web APIs. Webinos does so by applying an

encapsulation tactic to package APIs into modules and by

Fig. 4 Virtual machine approach for meeting webinos’ portability

requirements

Univ Access Inf Soc (2016) 15:5–19 9

123

deferred the binding time of these packages. In result,

external developers can implement and deploy additional

webinos-enabled APIs.

3.2 Dynamic device and service binding

In addition to supporting portable applications, webinos

aims to facilitate the development of applications for multi-

device interaction and service usage. For webinos to

seamlessly dispatch service requests to the most suited

physical device, the platform needs to keep track of all

devices owned by each individual end user. To do so,

webinos relies on two abstraction mechanisms for service

discovery. The design decisions reflecting this approach are

based on semantic cohesion, a service intermediary tactic,

encapsulation, deferred binding, and raised abstraction.

On a local level, webinos encapsulates the various fine-

grained discovery techniques offered by the underlying

devices’ operating systems and exposes them via an

abstract discovery API. This includes service discovery

through, e.g., multicast DNS, UPnP, Bluetooth discovery,

USB discovery, RFID/NFC, etc. Secondly, the local dis-

covery data are propagated to a central repository residing

in the cloud (see Fig. 5). This intermediary acts as a service

broker, aiming to dissolve the strong binding between

webinos applications and their executing device. The vir-

tual overlay network created by such a service broker

enables webinos applications to transparently call upon

device services without requiring any explicit knowledge

regarding to which physical device the request will be

delegated. From the perspective of an application devel-

oper, webinos completely abstracts remote procedure calls

(RPC) as if the functions are discovered and executed

locally. This virtual overlay concept is internally referred

to as the user’s Personal Zone.

Within the platform, all available services and APIs are

uniquely identified through a service-type URI (Unified

Resource Identifier) with the following prefix for core

APIs:

http://webinos.org/api/\webinos-api-name[

and the following prefix for APIs provided by external

developers, respectively:

http://\dev-domain[/api/\external-api-name[

In addition to its own API set, webinos also supports the

APIs defined by W3C’s Device APIs Working Group [29].

These APIs are identified via the URI prefix.

http://webinos.org/api/w3c/\w3c-api-name[

The code snippet in Listing 1 demonstrates the deferred

service binding for an access requests to webinos’ core

vehicular API. The vehicle API offers car-specific sensor

data regarding the vehicle’s engine, its climate control, the

media system, etc. Access is requested via the API’s

associated URI. Webinos’ discovery mechanism will in

turn trigger the service broker to dynamically lookup the

most suited registered device to handle such request. In

turn, the broker returns the application a JavaScript call-

back function, which provides the at-runtime binding

between the requested service-type and the selected device.

Although the webinos platform is designed with a pri-

mary focus on taking benefit from online usage, the highly

Fig. 5 Service broker approach

for webinos’ dynamic service

binding

10 Univ Access Inf Soc (2016) 15:5–19

123

mobile nature of ubiquitous computing requires the plat-

form to dynamically cope with temporary offline devices as

well. This should allow users to still operate the basic

functionality of their webinos applications even while

being offline and unable to access the Internet. For this

purpose, webinos’ architectural design incorporates

encapsulation and raised abstraction tactics. Each device

running the webinos runtime can temporarily act in place

of the service broker in case no reliable Internet connection

can be established. The local webinos runtime does so by

maintaining a synchronized copy of the service broker’s

repository, encapsulated as a cache within their commu-

nication interface. Through communication queuing, all

data shared with the service broker is again synchronized

as soon as the device’s Internet access is restored.

Listing 1 Webinos service discovery

4 Multi-device adaptive user interfaces

For webinos to facilitate the development of accessible

multi-device applications, the platform needs to accom-

modate developers with adaptive user interface support.

This includes dynamic adaptability support for both the

application’s presentation, as well as its interaction

modalities. Webinos does so by incorporating a model-

driven engineering approach for its user interfaces (see

Sect. 2.2). In order to minimize the learning curve for

application developers, the platform uses standardized

HTML as user interface definition language (UIDL). Based

on a rule-driven mechanism, model-to-model transforma-

tions are dynamically executed to generate an optimal

platform-specific model (PSM) of the user interface. The

rules are a means for developers to express the contextual

conditions in which certain action to the user interface

should be taken. As a result, the supported process trans-

lates the developer’s concrete user interface (CUI) defini-

tion based on the end user’s active delivery context.

4.1 Webinos user interface framework

Within webinos, the user interface adaptation is regulated

by each of the local webinos runtimes. For this particular

purpose, the webinos runtime contains an adaptation

manager component. The adaptation manager aggregates

all available adaptation rules, analyzes them, and feeds

them to a forward-chaining rule engine for evaluation. In

turn, the rule engine aims to match the applicability of each

rule by comparing its conditions with the context data

exposed by the runtime’s internal services. Once an

applicable rule is identified, the adaptation process is fired

by sending the rule’s transformation instruction to the Web

runtime. In order to accommodate webinos with support for

dynamically triggered adaptations based on at-runtime

contextual changes, the implemented rule syntax complies

with the Event Condition Action (ECA) format. The

structure of an ECA rule consists of three main parts:

Fig. 6 Simplified representation of webinos’ device and user context

model

Univ Access Inf Soc (2016) 15:5–19 11

123

on ½event� if ½conditions� do ½action� ð1Þ

The event part specifies an internal webinos system signal

or event that triggers the invocation of this particular rule.

The conditions part is a logical test that, if evaluated to

true, causes the rule to be carried out. Lastly, the action part

consists of invocable JavaScript instructions. This code is

able to programmatically access and manipulate the Web

application’s user interface via the Document Object

Model (DOM) [17]. The DOM is a W3C standard for

representing and interacting with the objects in a HTML-

based Web application. The model is maintained by the

WRT and can be altered at runtime through scripting.

For each ECA rule, the adaptation manager analyzes the

rule’s trigger event. Based on the event type, it subse-

quently feeds the rule to a dedicated instance of the rule

engine. The reasoning within this instance is only triggered

in case its associated system event occurs. As an instance is

activated by its registered event, the engine starts matching

its allocated rules’ conditions. The evaluation is performed

based on the meta-data fetched from webinos services such

as the Device Status and Interaction API, Context API,

Vehicle and TV API, and Contacts API [31]. These APIs

provide a rich contextual at-runtime representation of the

user and his or her devices. The standard context model

aggregated from the available meta-data is depicted in Fig.

6. As described in Sect. 3, however, webinos provides an

easily extensible API structure. In order to extend the

available context model with more specific knowledge

dimensions, developers are only required to implement and

deploy additional APIs. In the context of accessibility, this

can include API support for particular assistive hardware or

software, or more elaborate user profiles, etc.

The sequence diagram in Fig. 7 provides a detailed

overview of how the adaptation process is handled by the

platform. By bootstrapping webinos at the launch of an

application, a communication interface is established

between the WRT environment and the local webinos

platform. This interface allows for the injection of an

adaptation client component in the WRT. The adaptation

client executes all the UI adaptation instructions it receives

from webinos’ adaptation manager. As the adaptation cli-

ent runs within the WRT, it has access to the application’s

DOM. Hence, this component is able to access and adapt

Fig. 7 Sequence diagram for the lookup of applicable UI adaptation rules at application launch

12 Univ Access Inf Soc (2016) 15:5–19

123

the application’s content, structure and style via the

manipulation of DOM structures and properties. In result,

webinos enables developers to express dynamic adaptation

requirements for their Web-based applications in terms of

runtime events and contextual conditions as they occur

during the application’s life cycle.

4.2 Case study: adaptive navigation bar

This section elaborates on a simple case study for using

webinos’ UI framework to dynamically adapt the pre-

sentation of an application’s navigation structure. For this

adaptation case study, the HTML skeleton code in List-

ing 2 will serve as a sample application. This basic

application is semantically enhanced with HTML element

attributes to guide the adaptation process. Developers can

use any semantical structure for the annotation of their

user interface objects and widgets. However, the use of

the ‘‘role’’ attribute is recommended as specified by

many accessibility guidelines such as the W3C WAI-

ARIA candidate standard (Accessible Rich Internet

Applications) [7]. The role attribute declares what a UI

object does, rather than how it should be represented or

how it should be interacted with. Hence, role-based

semantics will be used for this case study, as it provides

a good foundation for at-runtime interpretation and

adaptation.

The presented application skeleton contains a menu

component (navigation role) and a number of application-

specific subviews (page role). As shown in Figs. 8 and 9,

the presentation of this application’s navigation component

can be optimized based on various parameters such as the

device’s operating system, input modalities, screen size,

screen orientation, available sensors, also based on the

user’s profile and preferences. Taking these contextual

characteristics into account is necessary in order to ensure

the adaptive usability requirements of a multi-device

ubiquitous application, but, e.g., for meeting existing safety

recommendations and regulations regarding user distrac-

tion by vehicular applications [10].

Listing 2 Sample HTML application skeleton

In-car systems are increasingly used to run various appli-

cations. Setups in this domain range from mountable navigation

systems, to built-in dashboard units. Overall, the application

user interface for such in-vehicle infotainment (IVI) systems

needs to be clear and easy to use. To do so for the application’s

navigation bar, adaptation rules can be set to display the menu in

Fig. 8 Application navigation

bar adaptation for an in-vehicle

infotainment setup with BMW

iDrive controller

Fig. 9 Application navigation bar adaptation for mobile and tablet

devices based on screen orientation

Univ Access Inf Soc (2016) 15:5–19 13

123

fullscreen mode with large buttons (see rule in Listing 3).

Webinos can be instructed to execute this rule at the applica-

tion’s start-up (i.e., application.launch event trigger, combined

with an IVI-based system as rule condition). All other UI ele-

ments are hidden to further decrease the risk for user distraction.

Moreover, based on the specific interaction modalities provided

by the IVI system, displaying the application’s navigation bar

can also be triggered by pressing the MENU button on its

controller module. The interaction controller depicted in Fig. 8

is BMW’s iDrive controller [4], which internally maps to the

combination of a jog dial and four-way scroller device. Once a

specific navigation item is selected, either via the touchscreen

or with the hardware controller, the associated page item is

unhidden and displayed as a dialog on top of the navigation bar.

Listing 3 Vehicular adaptation rule

Listing 4 Touch-based adaptation rule

On the other hand, when accessing the exact same

application from a smartphone or tablet device, completely

different presentation and interaction requirements can

come into play. The case depicted in Fig. 9 provides an

alternative adaptation example of the navigation bar based

on the changes in a device’s screen orientation (i.e., land-

scape or portrait mode). In the event of a touchscreen

device that is being rotated to landscape mode, adaptation

rules are set to transform the navigation bar in a vertically

organized list that is moved to the left-hand side of the

display. Moreover, on the right side of the screen only one

page element is shown. All other page elements can be

accessed via the appropriate link in the navigation bar (see

rule in Listing 4). In case the device is rotated to portrait

mode, the navigation bar is reduced to a collapsible UI

element located on the top of the screen.

5 Evaluation

In this section, an evaluation of the proposed platform and

its flagship applications is presented. First, the platform’s

prototype implementation is discussed and its ability to

meet the set of key modifiability requirements regarding

platform independence and portability is quantitatively

evaluated (as laid out in Sect. 3).

The second part of the analysis focuses on a qualitative

impact evaluation of webinos’ proof-of-concept applica-

tions. All selected applications focus on accessible multi-

device functionality. The process starts by elaborating the

applications’ main use case scenarios. Moreover, a con-

ducted impact evaluation for each of these webinos-

enabled applications is discussed.

5.1 Platform modifiability evaluation

A prototype of the webinos platform is currently under

development. All sources and documentation are available

as open source resources [30]. The development is part of a

research project supported by the European Union’s 7th

Framework Programme (FP7-ICT). The project consortium

involves over 30 partner companies and organizations,

ranging from device manufacturers, service providers,

universities, and research organizations. Various teams

distributed across Europe have been working on the

requirements, design, and development of webinos since

September 2010.

Based on the project’s extensive background analysis of

the current ubiquitous ecosystem [28], the following pro-

totype platforms were selected for implementation: PC

(Linux, Windows, Mac OS X), mobile and tablet

(Android), in-vehicle systems (Linux on Pandaboard), and

home entertainment systems (Linux on ARM). For rapid

14 Univ Access Inf Soc (2016) 15:5–19

123

prototyping purposes, the webinos client runtime as well as

the service broker component are both implemented on top

of Node.js. Node.js is an event-driven JavaScript runtime

for Google’s V8 engine [26]. The runtime provides a

JavaScript virtual machine, enabling webinos to implement

most of its core functionality based on device-independent

JavaScript code.

This approach enabled the implementation of a working

platform prototype for each of the targeted operating sys-

tems. Table 1 lists the distribution of platform-dependent

and platform-independent code for these implementations,

expressed in lines of code (LOC). The code analysis covers

three core system components: the client-side web runtime,

the cloud-based service broker, and the shared communi-

cation and synchronization library (see Fig. 5). For the

client web runtime, nearly 92.1 % of the codebase consists

of generic JavaScript instructions shared across all plat-

forms. The number of platform-specific modifications

needed for Linux, Windows and Mac OSX was remarkably

low (0.06 %, 0.12 %, 0.06 % respectively). Only bootstrap

code was required for hooking up their underlying file-

systems. The Android implementation, on the other hand,

required most device-dependent code (7.7 %), due to the

need for custom components with regards to WebSocket

support, certification handling, and key storage.

Similar results can be observed when analyzing the

shared communication library, which handles the com-

munication and synchronization of entities within the we-

binos Personal Zones. Over 95.8 % of the codebase

consists of device-independent JavaScript instructions. The

largest number of platform-dependent code can be found in

the Android build (3.43 %), which needed custom modi-

fications to its RPC communication stack for handling

chunked messages. As with the client-side web runtime,

the required modifications for Linux, Windows, and Mac

OSX were minimal (0.1 %, 0.52 %, 0.1 % respectively).

These modifications are limited to hooking the library into

the device’s filesystem.

The cloud-based service broker, finally, is completely

platform-independent. The Linux, Windows, and Mac

OSX builds all share an identical code base. Note, how-

ever, that based on webinos’ requirements and design

Android support has been dismissed for this component.

By design, the service broker is a server-side component,

which needs to be accessible at all times and across net-

works. Enabling Android support would not outweigh the

costs and constraints in terms of battery consumption,

service availability due to sleep mode, network coverage

and traversal issues, etc.

In a second stage, webinos’ portability and modifiability

capabilities were put to an additional test by extending the

set of supported platforms and operating systems. Two new

device categories were added to the list, i.e., netbook

(Chrome OS), and machine-to-machine setups (Arduino,

Raspberry Pi). In addition, the mobile device category was

extended with Firefox OS. Support for each new platform

was implemented by a dedicated webinos developer with

prior knowledge of the system’s internals. An analysis of

the required resources was performed based on the devel-

opers’ timesheets, Git source code management (SCM)

statistics, and Jira issue tracking activities. The extracted

results were encouraging. On average, each additional

platform category required the assigned engineer to

develop for 0.3 to 0.5 PM (Person Months). For more

information and detailed instruction on webinos platform

ports, the interested reader can refer to [30].

5.2 Application evaluation

Five proof-of-concept application scenarios were selected

to be built on top of the webinos platform. These flagship

applications aim to demonstrate the potential impact of

webinos’ built-in platform support for accessible and

ubiquitous human–computer interaction (HCI). As for the

webinos platform design and implementation, these proof-

of-concept applications were developed as part of the we-

binos FP7-ICT research project. The application prototype

development process currently covers a 14-month time-

span. All applications are made open source and can be

accessed online [30].

5.2.1 Proof-of-concept applications

Travel.1 The travel application is a multi-device webinos

application. The prototype enables a user to manage his or

her points-of-interest (POIs) while traveling. Based on

Table 1 Distribution of

platform-independent versus

platform-dependent code,

expressed in lines of code

(LOC)

Core platform components Platform implementation (lines of code, %)

Generic code Android Linux Windows Mac OSX

Client runtime 3146 (92.07 %) 263 (7.70 %) 2 (0.06 %) 4 (0.12 %) 2 (0.06 %)

Service broker 2548 (100 %) N/A 0 (0.00 %) 0 (0.00 %) 0 (0.00 %)

Communication library 2770 (95.85 %) 99 (3.43 %) 3 (0.10 %) 15 (0.52 %) 3 (0.10 %)

1 https://github.com/webinos/app-travel-manager.

Univ Access Inf Soc (2016) 15:5–19 15

123

https://github.com/webinos/app-travel-manager

webinos’ service brokerage POIs and status information are

automatically synchronized between all of a user’s devices.

The application enables a user to enter travel plans via a

desktop or laptop computer. Next, the user can access the

travel application from his or her in-vehicle infotainment

system. Moreover, a smartphone or tablet can be used for

guidance once the vehicle is parked. A running multi-

device prototype of this application is depicted in Fig. 10.

Zap and Shake2. This media consumption prototype

application allows multiple devices of various users to

share and render media contents. This application offers

both an accessible control interface and an adaptive media

rendering interface. The prototype applications also stim-

ulate social interaction by allowing users to share videos

and pictures over social media. The application can be

executed from any webinos-enabled device. To increase

usability, mobile devices can be used to remotely control

the media rendering on television screens.

Creative Notes.3 Creative Notes is a multi-device note

editor. With these applications, notes are synchronized

between all devices owned by a particular user. Whenever

a note is created with one device, all other devices are

automatically notified. The webinos platform handles all

communication, no intermediate or third server is required.

The application also aims to benefit from webinos’ cross-

device functionality. For example, instructions for captur-

ing images can dynamically be redirected to the user’s

mobile device in order to take a picture with its built-in

camera.

File Manager.4 The File Manager encompasses a proof-

of-concept enhanced document management application.

The application adds to the commonly available file

management operations (i.e., local file operation including

rename, copy, move). Moreover, the application includes

selectively sharing of data among personal devices and

trusted users. With this application, all personal documents

and files are made available and accessible throughout the

user’s devices. Yet, control over this data remains with the

user. The webinos platform allows for seamless service

dispatching, regardless of the physical device it is residing

on.

Katwarn integration.5 This application integrates the

existing Katwarn service with the webinos platform. Kat-

warn is a service that informs citizens about nearby

emergencies. The webinos Katwarn integration application

aims to enhance the interaction with end users as well as

the service’s accuracy. With webinos’ multi-device appli-

cation platform, the Katwarn service can rely on more

detailed knowledge regarding the user’s location. More-

over, the webinos service broker allows incoming notifi-

cations to be dispatched to the most recently used device.

5.2.2 Impact evaluation

The qualitative impact of each prototype application was

evaluated during a face-to-face focus group meeting. All

applications were presented to the participants in a pitch

style presentation, followed by a live 20 min demonstrator

and the option for participants to ask questions. The con-

ducted evaluation included three 5-scale Likert questions

(1. strongly disagree; 2. disagree; 3. neutral; 4. agree; and

5. strongly agree) [21] regarding the participants’ percep-

tion of each application’s usability, impact, and added

value:

• Q1: Does the application support your multi-device

accessibility needs?

Fig. 10 Running multi-device

prototype of the webinos Travel

application

2 https://developer.webinos.org/webinostv.
3 https://developer.webinos.org/creativenotes.
4 https://github.com/webinos/app-file-manager. 5 https://developer.webinos.org/inrush.

16 Univ Access Inf Soc (2016) 15:5–19

123

https://developer.webinos.org/webinostv
https://developer.webinos.org/creativenotes
https://github.com/webinos/app-file-manager
https://developer.webinos.org/inrush

• Q2: Does the application solve a customer problem by

adding value?

• Q3: Does the application clarify webinos’ built-in

platform support for accessibility?

The second part of the evaluation digs deeper into these

key questions. This evaluation part consisted of three open

questions regarding the prototype applications’ target

audience, main functionality, and direct competitors.

• Q4: Describe the key audience for the presented

application?

• Q5: How does the application compare to its

competition?

• Q6: Which functionality would be key for this

application?

During the focus group, the input of 41 participants from

across Europe was collected (BE: 2.4%; DE: 19.5%; ES:

2.4%; FR: 7.3%; GR: 7.3%; IT: 17.1%; NL: 4.9%; PO:

2.4%; SE: 4.9%; UK: 31.7%). In order to maximize the

coverage of webinos stakeholders, participants were

selected based on various parameters (age, technical

background, and occupation, etc.). Table 2 and Fig. 11

aggregate the evaluation results for the first three questions.

The listed results reflect each application’s mean score �x

over the N submitted evaluation scores xi (with N ¼ 41):

�x ¼ 1

N

XN

i¼1

xi ð2Þ

Moreover, the results include the standard deviation r,

depicting the answers’ typical variation from �x:

r ¼

ffi
1

N

XN

i¼1

ðxi � �xÞ2

vuut ð3Þ

The majority of the participants showed a particular

interest in the multi-device capabilities of the presented

webinos prototypes. The focus group’s face-to-face dis-

cussions confirmed people’s need for accessible human–

computer interaction within the ubiquitous computing

domain. From this perspective, the webinos prototype

applications received good evaluation results with regards

to dynamic multi-device support (PC, mobile, TV, car), as

well as support for multiple presentation paradigms (screen

size, resolution, reading distance) and interaction modali-

ties (touchscreen, mouse and keyboard, stylus). Further-

more, for the Travel, ZapShake, and FileManager

applications, the audience clearly understands the benefits

of using webinos as a key enabler for the presented ubiq-

uitous accessibility scenarios.

However, evaluation results also uncover the need for a

better market positioning of some of the prototype appli-

cations (i.e., KatWarn, CreativeNotes). For these particular

applications, participants suggest to line out a clearer target

audience, as the applications’ message would be passed

more effectively and thus have a significantly higher

impact on the audience’s understanding of its accessibility

goals.

K
at

W
ar

n

Tr
av

el

Za
pS

ha
ke

C
re

at
iv

eN
ot

es

Fi
le

M
an

ag
er

1

2

3

4

5

Sc
or

e
(1

-5
)

Q1 Q2 Q3

Fig. 11 Focus group impact evaluation results of the webinos

prototype applications

Table 2 Prototype impact

evaluation results
Mean (�x) SD (r)

KatWarn

Q1 3.22 0.95

Q2 3.43 1.08

Q3 2.67 1.2

Travel

Q1 3.8 0.71

Q2 3.84 0.62

Q3 3.8 1.0

ZapShake

Q1 3.77 0.81

Q2 4.24 0.7

Q3 3.62 1.2

CreativeNotes

Q1 2.89 0.88

Q2 3.0 0.82

Q3 2.95 1.28

FileManager

Q1 3.68 1.11

Q2 4.16 0.9

Q3 4.47 0.51

Univ Access Inf Soc (2016) 15:5–19 17

123

6 Conclusion

Designing flexible mobile applications has turned out to be

a major challenge to software developers. In this paper, the

core architectural modifiability considerations for design-

ing a multi-device ubiquitous platform for accessible Web-

based applications have been presented. The proposed

architectural structure was applied to the design process of

the webinos application platform, aiming for applications

available for everyone, at any time, and on any device.

With webinos, applications developers are enabled to cre-

ate software that transcends the executing device’s physical

boundaries by simultaneously accessing the capabilities of

multiple devices. Moreover, webinos aims to enable im-

mersive ubiquitous software applications through adaptive

user interfaces. In order to ensure users a comparable and

intuitive quality in use throughout all their devices, the

presentation and interaction modalities of the applications’

user interface can be adapted accordingly. Based on the

contextual knowledge available within the webinos plat-

form, rule-based adaptation decisions can be made as a

means to dynamically optimize the applications user

interfaces to the executing device’s characteristics.

The developed webinos technology aims to influence the

Future Internet architecture and its related frameworks.

Collaboration has hereto been established with various

Future Internet projects such as FI-WARE and FI-CON-

TENT [12], as well as the GPII/Cloud4All initiative.

Future work for the proposed platform thus includes

exploring the possibility to use the webinos platform as a

generic enabler for these initiatives to seamlessly connect

ubiquitous devices on a global scale. Moreover, future

work includes a further evaluation of both the platform’s

and the applications’ implementation results. At first with

regards to the webinos platform meeting its modifiability

requirements, but also based on the tradeoffs and sensi-

tivity points implied by these architectural decisions.

Moreover, the analysis of architectural patterns and tactics

should be expanded to a broader range of key quality

attributes. These tactics should include architectural con-

siderations on important qualities such as scalability,

security, performance, etc.

Acknowledgments The research leading to these results has

received funding from the European Union’s Seventh Framework

Programme (FP7-ICT-2009-5, Objective 1.2) under grant agreement

number 257103 (webinos project). The authors thank all Webinos

project partners, as this article draws upon their work.

References

1. Amatya, S., Kurti, A.: Cross-platform mobile development:

challenges and opportunities. In: Trajkovik, V., Mishev, A. (eds.)

ICT Innovations 2013. Advances in Intelligent Systems and

Computing, vol. 231, pp. 219–229. Springer, Berlin (2013)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in

Practice. Addison Wesley, Reading (2012)

3. Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.F., Kay,

M., Robie, J., Simeon, J. (eds.): XML Path Language (XPath) 2.0

(2nd Edn.). W3C Recommendation (2010)

4. BMW: BMW technology guide: controller, http://www.bmw.

com/com/en/insights/technology/technology_guide/articles/con

troller.html

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,

Vanderdonckt, J.: A unifying reference framework for multi-

target user interfaces. Interact. Comput. 15, 289–308 (2003)

6. Cantera, J.M. (ed.): Model-Based UI XG Final Report. W3C

Incubator Group Report, http://www.w3.org/2005/Incubator/

model-based-ui/XGR-mbui (2010)

7. Craig, J., Cooper, M. (eds.): Accessible Rich Internet Applica-

tions (WAI-ARIA) 1.0. W3C Candidate Recommendation (2011)

8. Chung, L., do Prado Leite, J.: On non-functional requirements in

software engineering. In: Conceptual Modeling: Foundations and

Applications, pp. 363–379, Springer, Heidelberg (2009)

9. Desruelle, H., Lyle, J., Gielen F.: Leveraging the ubiquitous web

as a secure context-aware platform for adaptive applications. In:

Proceedings of the 4th International conference on Adaptive and

Self-Adaptive Systems and Applications, pp. 57–62 (2012)

10. Desruelle, H., Lyle, J., Isenberg, S., Gielen, F.: On the challenges

of building a Web-based ubiquitous application platform. In: 14th

ACM International Conference on Ubiquitous Computing,

pp. 733–736. ACM, New York (2012)

11. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall,

Englewood Cliffs (1976)

12. FI-WARE: Core platform of the Future Internet, http://www.fi-

ware.eu/

13. Fuhrhop C (ed.): Webinos platform architecture and components,

Tech. rep. D3.1, Webinos consortium (2012)

14. Isberg, A., Andre, P. (eds.): Webinos discovery API, http://dev.

webinos.org/specifications/api/servicediscovery.html (2012)

15. Kay, M. (ed.): XSL Transformations (XSLT) Version 2.0, W3C

Recommendation (2007)

16. Koch, N.: Classification of model transformation techniques used

in UML-based web engineering. Software 1(3), 98–111 (2007)

17. Le Hors, A., Le Hegaret, P., Wood, L., Nicol, G., Robie, J.,

Champion, M., Byrne, S. (eds.): Document Object Model (DOM)

Level 3 Core Specification, W3C Recommendation (2004)

18. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lo-

pez-Jaquero, V.: USIXML: A language supporting multi-path

development of user interfaces. In: Bastide, R., Palanque, P.,

Roth, J. (eds.) EHCI-DSVIS 2005. LNCS, vol. 3425,

pp. 200–220. Springer, Heidelberg (2005)

19. Mikkonen, T., Taivalsaari, A.: Apps vs. Open Web: the battle of

the decade. In: Proceedings of the 2nd Workshop on Software

Engineering for Mobile Application Development (2011)

20. Moreno, N., Romero, J.R., Vallecillo, A.: An overview of model-

driven Web engineering and the MDA. In: Rossi, G., Pastor, O.,

Schwabe, D., Olsina, L. (eds.) Web Engineering Modelling and

Implementing Web Applications. Human-Computer Interaction

Series, pp. 353–382. Springer, London (2008)

21. O’Donnell, P.J., Scobie, G., Baxter, I.: The use of focus groups as

an evaluation technique in HCI. People Comput. 5(1), 211–224

(1991)

22. Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal,

declarative, multiple abstraction-level language for service-ori-

ented applications in ubiquitous environments. ACM TOCHI

16(4), 19 (2009)

23. Paul A (ed.): Updates on Scenarios and Use Cases, Tech. rep.

D2.4, Webinos consortium (2012)

18 Univ Access Inf Soc (2016) 15:5–19

123

http://www.bmw.com/com/en/insights/technology/technology_guide/articles/controller.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/controller.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/controller.html
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui
http://www.w3.org/2005/Incubator/model-based-ui/XGR-mbui
http://www.fi-ware.eu/
http://www.fi-ware.eu/
http://dev.webinos.org/specifications/api/servicediscovery.html
http://dev.webinos.org/specifications/api/servicediscovery.html

24. Schaefer, R.: A Survey on Transformation Tools for Model Based

User Interface Development. In: Jacko, J.A. (ed.) HCII 2007.

LNCS, vol. 4550, pp. 1178–1187. Springer, Heidelberg (2007)

25. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design.

IBM Syst. J. 13(2), 115–139 (1974)

26. Tilkov, S., Vinoski, S.: Node.js: Using JavaScript to build high-

performance network programs. Int. Comput. 14(6), 80–83

(2011)

27. Vanderheiden, G.C., Treviranus, J., Gemou, M., Bekiaris, E.,

Markus, K., Clark, C., Basman, A.: The evolving global public

inclusive infrastructure (GPII). In: Stephanidis, C., Antona, M.

(eds.) UAHCI/HCII 2013, Part I. LNCS, vol. 8009, pp. 107–116.

Springer, Heidelberg (2013)

28. Voulgaris, G. (ed.). Webinos Target Platforms, Target Require-

ments and Platform IPRs, Tech. rep. D2.3, Webinos consortium

(2011)

29. W3C, Device APIs Working Group, http://www.w3.org/2009/

dap/

30. Webinos project consortium: Developer portal, http://developer.

webinos.org

31. Webinos project consortium: Device APIs, http://dev.webinos.

org/specifications/new/

Univ Access Inf Soc (2016) 15:5–19 19

123

http://www.w3.org/2009/dap/
http://www.w3.org/2009/dap/
http://developer.webinos.org
http://developer.webinos.org
http://dev.webinos.org/specifications/new/
http://dev.webinos.org/specifications/new/

	Accessible user interface support for multi-device ubiquitous applications: architectural modifiability considerations
	Abstract
	Introduction
	Background and related work
	Modifiability in software architecture
	Model-based user interfaces
	Ubiquitous application middleware

	The webinos platform
	Platform portability
	Dynamic device and service binding

	Multi-device adaptive user interfaces
	Webinos user interface framework
	Case study: adaptive navigation bar

	Evaluation
	Platform modifiability evaluation
	Application evaluation
	Proof-of-concept applications
	Impact evaluation

	Conclusion
	Acknowledgments
	References

