
Citation: Carrascal, D.; Rojas, E.;

Arco, J.M.; Lopez-Pajares, D.;

Alvarez-Horcajo, J.; Carral, J.A. A

Comprehensive Survey of In-Band

Control in SDN: Challenges and

Opportunities. Electronics 2023, 12,

1265. https://doi.org/10.3390/

electronics12061265

Academic Editor: Christos J. Bouras

Received: 31 January 2023

Revised: 21 February 2023

Accepted: 5 March 2023

Published: 7 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

A Comprehensive Survey of In-Band Control in SDN:
Challenges and Opportunities
David Carrascal , Elisa Rojas *,† , Jose M. Arco † , Diego Lopez-Pajares and Joaquin Alvarez-Horcajo
and Juan Antonio Carral

Departamento de Automática, Universidad de Alcalá, Escuela Politécnica Superior,
28805 Alcalá de Henares, Spain
* Correspondence: elisa.rojas@uah.es
† These authors contributed equally to this work.

Abstract: Software-Defined Networking (SDN) is a thriving networking architecture that has gained
popularity in recent years, particularly as an enabling technology to foster paradigms like edge
computing. SDN separates the control and data planes, which are later on synchronised via a control
protocol such as OpenFlow. In-band control is a type of SDN control plane deployment in which
the control and data planes share the same physical network. It poses several challenges, such as
security vulnerabilities, network congestion, or data loss. Nevertheless, despite these challenges,
in-band control also presents significant opportunities, including improved network flexibility and
programmability, reduced costs, and increased reliability. Benefiting from the previous advantages,
diverse in-band control designs exist in the literature, with the objective of improving the operation of
SDN networks. This paper surveys the different approaches that have been proposed so far towards
the advance in in-band SDN control, based on four main categories: automatic routing, fast failure
recovery, network bootstrapping, and distributed control. Across these categories, detailed summary
tables and comparisons are presented, followed by a discussion on current trends a challenges in
the field. Our conclusion is that the use of in-band control in SDN networks is expected to drive
innovation and growth in the networking industry, but efforts for holistic and full-fledged proposals
are still needed.

Keywords: Software-Defined Networking; in-band control; survey; network bootstrapping; fault
recovery; routing; distributed control

1. Introduction

During the last decade, the flourishing of SDN [1] has led to a wide range of novel
network services and applications, including inter-disciplinary use cases, such as those
envisioned by the fifth generation of mobile technologies (5G) and beyond [2]. The corner-
stone of SDN is the possibility to separate the control and data planes, hence providing
multiple advantages in network management and operational costs, among others.

Uncoupling both planes involves the utilization of a control communication protocol
that is in charge of synchronising both planes. Considering the SDN architecture, this
protocol is part of the Southbound Interface (SBI), formally known as Data-Controller Plane
Interface (D-CPI), as defined by the Open Networking Foundation (ONF) [3]. Although the
control protocol that initiated the SDN paradigm is OpenFlow [4], others currently exist,
such as P4Runtime [5]; legacy ones (e.g., Simple Network Management Protocol (SNMP))
are even considered potential control protocols in the generalised SDN architectural model.

When deploying the control channel, it is possible to follow either an out-of-band or
in-band approach, as depicted in Figure 1. On the one hand, the channel is out-of-band
when the physical links leveraged for communication are different for the control and data
planes, as illustrated in Figure 1a. In this scenario, the network requires at least one extra

Electronics 2023, 12, 1265. https://doi.org/10.3390/electronics12061265 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061265
https://doi.org/10.3390/electronics12061265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6982-9365
https://orcid.org/0000-0002-6385-2628
https://orcid.org/0000-0001-7752-3561
https://orcid.org/0000-0002-8959-4321
https://orcid.org/0000-0002-8522-9933
https://doi.org/10.3390/electronics12061265
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061265?type=check_update&version=2


Electronics 2023, 12, 1265 2 of 24

physical link per SDN device, apart from the data plane topology, for the control channel.
On the other hand, the channel is in-band when physical links are shared between the
control and data planes and no additional links are required. Additionally, hybrid-band
control is defined when some links are shared but, at the same time, dedicated links for
control also exist [6], as in the example shown in Figure 2.

Physical linksControl Data

Controller Controller

a) Out-of-band b) In-band

1 2

43

1 2

43

Figure 1. SDN out-of-band and in-band control networks.

Physical linksControl B DataControl A

Controller B
Controller A

1 2

5

76

3 4

Figure 2. SDN hybrid-band control network.

Each type of deployments has its own advantages [6], and the selected approach
mainly depends on the network scenario [7–9]. Some of the disadvantages of out-of-band
are advantages of in-band and vice versa, while hybrid-band could be considered a trade-off
among both approaches. We summarised the main features of each model in Table 1:



Electronics 2023, 12, 1265 3 of 24

Table 1. Features of in-band and out-of-band control.

Feature Out-of-Band Control In-Band Control

SDN device configuration Simple Complex
Control channel security Safe, isolated channel Risky, shared channel
Network maintenance and deployment costs High Low
Scalability Poor Good

Resilience Costly (re-wire) Fast failure recovery (easy traffic
re-routing)

The current trend shows that in-band seems to be prominently used in SDN deploy-
ments [10], particularly for large networks in which the cost of using out-of-band might be
exorbitant. Additionally, in-band control allows a wide range of new applications, particu-
larly for constrained and hybrid SDN environments [11,12], in which out-of-band control
is complex (or even impossible) to deploy. Some of the use cases leveraging in-band control
include 5G [13] and Non-Terrestrial Networks (NTNs) [14], Internet of Things (IoT) (e.g.,
underwater networks [15], energy saving [16] or resource-constrained environments [17]),
emergency and disaster situations [18,19], and enhanced network security [20].

Nevertheless, despite of the multiple benefits of in-band control in SDN scenarios, few
efforts have been made to design a common and holistic in-band control protocol. This
design should consider standard and popular platforms (both for SDN controllers and
switches/devices) for a complete integration in current SDN deployments. Therefore, the
aim of this survey is to provide the current state of the art in this area, describing current
proposals, technologies used, advantages and disadvantages, etc., so that it can serve as
a comprehensive report for researchers and network managers interested in this topic.
Therefore, our goal is to provide a comprehensive survey of the topic and a comprehensive
overview for academia and industry. Accordingly, the main contributions of our survey are

• A comprehensive list of works about in-band SDN control proposals.
• A classification of the surveyed works in terms of designed features, defining four

categories.
• A chronological table per category stating achieved functionality and maturity of each

proposal.
• A summarised analysis for each proposal, describing its main characteristics, imple-

mentation details, and results, if applicable.
• A final discussion and comparison of all works, stating potential research trends and

future challenges in the field.

After providing an overview about the motivation and objectives of this survey in
Section 1, the remainder of the manuscript is structured as follows. In Section 2, we
review the related work (including other SDN surveys, and technologies and platforms
associated with in-band SDN control) and summarise the contributions of this survey. In
Section 3, we describe the methodology followed to look for related articles and current
statistics about the topic. The main survey is performed in Section 4, in which we cover all
previously found articles, first providing a classification. Afterwards, Section 5 discusses
current research trends and future challenges according to the performed analysis. Finally,
Section 6 concludes the survey.

2. Related Work and Contribution of This Survey

After reviewing the literature, there are several surveys on SDN. To begin, there
are various general surveys with a high number of citations [1,21–29]: all these surveys
have in common that they were published at the same time as the SDN wave. They cover
the challenges and new aspects that SDN brought and how it shattered the conventional
networking paradigm.

As a technology becomes trendy in a field, challenges, opportunities and threats
emerge. Thus, as SDN networks emerged, so did works [30–33] that addressed the security



Electronics 2023, 12, 1265 4 of 24

issues of such networks. One very controversial aspect is the centralisation of all network
control in a single entity. In these works, they indicate lines of work, challenges, risks,
threats, and works that propose countermeasures to deal with the most common threats.

As soon as the new technology stops being trendy and starts to be implemented in
the industry, it is necessary to start studying how to make the transition from the old
paradigm to the SDN paradigm. It is therefore necessary to study and analyse the necessary
intermediate steps, as it is impossible to replace all legacy equipment in a single step. This
is where hybrid SDN architectures and the corresponding surveys where they are studied
in detail come in [11,34,35].

Another aspect that has been addressed [36,37] in the SDN field is distributed systems
where more than one control entity come into play to manage a group of SDN nodes. These
systems solve many of the performance problems, bottlenecks, and threats that arise from
centralisation, but they also bring with them challenges in managing shared resources,
such as race conditions, and atomicity in instantiating rules in SDN nodes, among others.
Finally, another topic that has been deeply explored [38,39] is the integration of other trendy
technologies such as IoT with SDN, what challenges arise in the integration, and what
benefits the IoT environments might derive from the SDN paradigm. Additionally, other
specialised surveys analyse SDN programming languages [40], link failure recovery [41],
or Quality of Service (QoS) [42].

The aforementioned works represent only a small part of the total number of surveys
on SDN. Our intention is to highlight some of the most referenced works and the topics
they cover, while emphasising that an analysis of all existing surveys on SDN is beyond
the scope of this article due to their large number. All the publications mentioned above
have in common that they do not cover the in-band control paradigm in depth. For this
reason, this review is of particular interest as it brings together all the advances in this area
in a single work. Nevertheless, to date and to the best of our knowledge, there has been no
survey of in-band control in SDN, which is remarkable given its importance for real SDN
deployments.

Finally, we would like to clarify that in-band control is not the same (and not even
directly related) to in-band network telemetry [43]. Although the latter also emerged with
the growth of SDN and programmable networks, in-band network telemetry is a technique
that uses the data plane to directly drive the network measurement process, while in-band
control is a model to deploy control channels leveraging the existing data plane channels.
In summary, in-band telemetry is related with data plane devices (hardware), while in-band
control is related with data plane channels/link (logic).

3. Survey Methodology and Statistics

In order to comprehensively survey the topic of in-band control in SDN, we performed
a manual search (in which all works were checked one by one) using Google Scholar. The
core keywords used for this search were: in band, in-band, SDN, Software-Defined Networking,
Software-Defined Network, softwarized network, softwarization, control, communication, and
survey. In all performed searches, all works were manually inspected (mainly by reviewing
title and abstract), from most to less relevant (according to the default Google Scholar
resultant list), until the search provided around 10 consecutive non-related works: we
considered that a specific search would not produce more related results. Only works in
English and Spanish (these were the languages that the authors fully understand) were
considered.

The first lookup was executed in August 2021 and periodically repeated approximately
every 3 months until the last one was performed at the end of January 2023, when this
survey was finally sent for revision. Additionally, the authors subscribed to the topics sdn
survey "in band"-"intitle:telemetry” in Google Scholar to obtain alerts about newly published
topics in the field. As it can be seen, the keyword telemetry was avoided in our searches
because it is not related to our survey, as mentioned in Section 2.



Electronics 2023, 12, 1265 5 of 24

Once the survey was finalised, in January 2023, we performed an additional search
of keywords to have a quick overview of the current trends in the field. This search was
automatic this time, looking for the keywords SDN in-band in Google Scholar once again
and counting the amount of published articles. The result is depicted in Figure 3, in which
the blue line (with circles) represents the amount of works found in Google Scholar for
those specific years. As it can be observed, the trend rapidly grows from 2012 to 2018 and
stays stable in the later years. However, it is important to highlight that this is an automatic
search and, as such, it might include as well works for in-band telemetry in some cases (as
they were not explicitly excluded). In any case, it provides a clear overview of the trend.

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Years

0

10

20

30

40

50

60

70

N
um

be
r 

of
 w

or
ks

 th
at

 in
cl

ud
e 

ke
yw

or
d

Trend of hot-topic SDN In-band keywords

SDN In-band SDN In-band Recovery SDN In-band Routing
SDN In-band Distributed SDN In-band Bootstrap

Figure 3. Trend of published articles related to SDN in-band.

Additionally, based on the previously examined works, which were classified into
four main topics (as detailed in Section 4, four additional searches were performed as well
including those classification items: SDN in-band recovery, SDN in-band routing, SDN in-band
distributed, and SDN in-band bootstrap. As illustrated in Figure 3, each of them covers almost
half of the total articles in the automatic search.

Finally, we measured the importance of the topic as the number of references each
article had obtained. More specifically, Figure 4 depicts how many papers have a number
of citations in the ranges 0, 1–10, 11–20, etc. As it can be observed, the majority of works
have received few citations, between 1 and 10, or none at all.



Electronics 2023, 12, 1265 6 of 24

Number of paper citations by category

0
1 - 1

0
11 - 2

0
21 - 3

0
31 - 4

0
41 - 5

0
51 - 6

0
61 - 7

0
71 - 8

0
81 - 9

0

91 - 1
00

101 - 1
10

111 - 1
20

121 - 1
30

>130

Number of citations

0

20

40

60

80

100

120

140

160

180

N
um

be
r 

of
 p

ap
er

s

SDN In-band SDN In-band Recovery SDN In-band Routing
SDN In-band Distributed SDN In-band Bootstrap

Figure 4. Number of papers related to SDN in-band and their amount of citations.

4. A Survey of In-Band SDN Control in SDN

In this section, we survey all works that were classified into four main categories,
which can be found in Sections 4.2–4.5. Prior to this description, Section 4.1 provides a
preliminary overview of the survey, describing those four classification items and a final
subsection focusing on the technologies and tools commonly used in SDN. Finally, in
Section 4.6, other works that do not directly implement in-band control, but are closely
related, are examined.

4.1. Preliminary Survey Overview and Classification

Before studying each of the surveyed works, we decided first to provide an overview
with patterns and similarities found in the articles.

Among the motivations for each design, we discovered the main following ones,
which are illustrated in Figure 5 as four categories:

• Automatic routing;
• Fast failure recovery;
• Network bootstrapping;
• Distributed control.

Automatic

Routing

Fast failure

Recovery

Network

Bootstrapping

In-Band Control

Distributed Control

Section 4.2 Section 4.3 Section 4.4

Section 4.5

Section 4

Figure 5. Main categories of the survey.



Electronics 2023, 12, 1265 7 of 24

The three first categories could be seen as three main features that in-band control
should provide, while the fourth is an orthogonal aspect. More specifically, the need
for automatic routing in in-band control seems quite straightforward: while out-of-band
control is usually implemented with direct links towards the controller (although it should
not be necessarily like that), in-band control requires calculation of routes between SDN
devices and the controller/s and vice versa. Fast failure recovery could be considered
one of the main advantages of in-band; by simply selecting a different route in the data
plane, the control communication can be recovered after a link or switch failure. However,
the procedure to build these new routes should ideally be defined in accordance with the
routing mechanism. Regarding network bootstrapping, it refers to the ability of setting
up all required parameters (such as the connectivity details for the controller–switch
communication) prior to startup of the system. Network bootstrapping is also a desirable
feature for out-of-band control, but it is almost a must for in-band, since routes might vary
depending on each deployment and the routing method applied. Finally, if the network
has distributed control (or controllers), it implies that two or more controllers are involved
in the control decisions and, therefore, a coordination mechanism should be defined for
routing, failure recovery, and bootstrapping. Additionally, in-band control can also serve
as a potential means for internal communication among controllers.

The previous four aspects were the most commonly found. For that reason, they
were selected as the four main classification items of our survey. Nevertheless, some other
features were also found in the literature, such as topology discovery, the possibility of
combining both out-of-band and in-band as a hybrid-band deployment, and other design
parameters such as scalability or QoS. Although network topology discovery is a key
element for a number of necessary network functionalities, it was decided to not include
it as a key aspect to be analysed in the survey. This is because, in general, it is usually a
process that is independent of the in-band protocols, as some solutions include a topology
discovery system/function, while others rely on independent topology discovery protocols
that are used to obtain the necessary paths to compute the in-band routes. To delve into
these aspects, let us consider Figure 2 again. The network represented in the figure contains
seven SDN switches and two SDN controllers. The controllers are distributed and control
type is hybrid-band, as both types are combined. For example, Controller A is connected to
switches 1 and 3 via out-of-band control, but also to 4 and 7 via in-band control. The case
of Controller B is similar, with some switches connected via out-of-band control, other ones
via in-band; there are even some combining both option, such as switches 1 and 2, which
can connect to Controller B using both types of control.

In this scenario, fast failure recovery can be implemented via restoration or protection
(as defined by Sharma et al. [44]). For instance, switch 1 could be connected to Controller
A and Controller B at the same time via out-of-band control, while maintaining a third
in-band control route to Controller B routed through switch 2 for enhanced resiliency.
Furthermore, bootstrapping could help to deploy all initial parameters and default setup
and this might require topology discovery for it. Although it might seem that routing
and topology discovery are both closely related, not all routing proposals might need to
obtain the full topology; this is especially true if it is based on tree routing. For example, in
Figure 2, all switches have at least one route towards a controller, but link 2–4, 3–6, 4–6, and
6–7 might be completely unknown for the control plane if a topology discovery function is
not implemented.

Common Technologies and Tools

It is also important to highlight the most common technologies and tools found in the
surveyed works in order to provide an overview of the protocols, controllers, switches and
simulation, and emulation tools currently used in in-band SDN environments.

First of all, almost all proposals in the D-CPI/SBI use OpenFlow [4] protocol, while
some of the most recent ones consider Programming Protocol-independent Packet Pro-
cessors (P4) [45,46] and/or P4Runtime [5]. OpenFlow exchanges messages between the



Electronics 2023, 12, 1265 8 of 24

controller and its legacy switches to communicate the control and data planes. The con-
troller indicates forwarding or metric rules to the switches by matching header fields.
However, the reduced number of predefined OpenFlow rules limits its flexibility. This has
led to new solutions such as P4 and P4Runtime, which create a new programmable data
plane paradigm through a universal high-level language. It also replaces control and data
plane communication with message exchange using Google Remote Procedure Call (gRPC),
providing a fast and flexible communication interface.

In the case of SDN controllers, the most commonly leveraged ones are Open Net-
work Operating System (ONOS) [47], OpenDaylight (ODL) [48], Ryu [49], and Floodlight,
among others [1]. ONOS and ODL are high-performance controllers used in real-world
deployments, while Ryu and Floodlight are simpler and intended for prototyping or low-
performance use. However, there are also several proposals that simply simulate the
behaviour of the controller instead of using a real one.

Regarding SDN devices/switches, the most common by far is Open vSwitch (OVS) [50];
however, Basic OpenFlow Userspace Software Switch (BOFUSS) [51] is also used in a few
works. The target, Behavioral Model version 2 (BMv2) [52], is also used, particularly when
P4 is considered. In most cases, these switches were deployed using the Mininet [53]
emulation platform. As for simulated environments, OMNeT++ [54,55] was predominant,
followed by ns-3 [56,57]; many others exist as well [58].

Finally, for the evaluation, diverse types of topologies have been considered, including
simple linear, star or mesh networks, data center networks like fat tree or Clos, or other mod-
eled networks (adjusted by a set of parameters) like Waxman [59] or Barabási–Albert [60].

According to this preliminary study, we have organised all works in four main subsec-
tions, and for each of them, all surveyed items have been summarised in a table. This table
contains the year the article was published, its key features, evaluation tools, if its code
is publicly available, and an overall contribution based on three stars. The contribution
was qualitatively assigned based on all previous characteristics together with its impact in
number of citations.

4.2. Automatic Routing

To start, we describe the different articles found in the literature that propose designs
for automatic routing in in-band control in SDN. Although the majority of surveyed works
provide a routing approach, some of them only focused on routing (and failure recovery
in some cases). Those are the ones classified in this initial section. To provide a quick
overview, Table 2 summarises them all. Afterwards, we individually examine each work.

Sharma et al. [44] present the basic ideas for the design of in-band control in OpenFlow
networks. They analyse the extent to which diverse SDN switches could support this type
of control and implement a prototype with NOX and TrafficLab1.3 (currently known as
BOFUSS [51]), tested with diverse topologies. Additionally, they examine how failure
recovery is a cornerstone in this type of control, presenting the restoration and protection
methods to implement it. This article is particularly relevant in the field, as it defined the
foundations for automatic and resilient bootstrapping for in-band control in SDN.

Goltsmann et al. [61] present the Intermediate System to Controller (ICS) protocol,
focused on resilient connectivity, while keeping protocol overhead low, for in-band control
in SDN. The design relies on the fact that communication only occurs between the controller
and the rest of nodes—not among all pairs of nodes. Considering this aspect, they design
a labelled spanning tree and its behavior when a single link failure occurs. However, it
requires some convergence time and multiple failures are not considered.

Khakhalin et al. [62] formulate an algorithm for automatic in-band control routing
which is resilient to multiple failures. However, it requires the assignment of a unique
label to every switch. This becomes quite complex when multiple failures occurs because
loops should be avoided without a global knowledge of paths. Moreover, no reference
implementation with a SDN controller is provided.



Electronics 2023, 12, 1265 9 of 24

Table 2. Summary table of in-band proposals that support automatic routing.

Article Year Key Features Evaluation & Tools Available
Code?

Overall
Contribution

Sharma
et al. [44] 2016 Key ideas for in-band control with DHCP,

queueing and failure recovery
Emulation: NOX/BOFUSS/Pan-European,
ring, star networks —

Goltsmann
et al. [61] 2017 Routing and single-link failure recovery Analytical model —

Khakhalin
et al. [62] 2017 Routing and link failure recovery Analytical model —

Raza et al. [63] 2017 Routing and link failure recovery Analytical model/Random networks —
Gonzalez
et al. [64] 2018 Routing and link failure recovery Emulation: Ryu/OVS/Mesh network —

Mohan
et al. [65] 2018 Routing and link failure recovery with a

security focus Analytical model/Internet topologies —

Görkemli
et al. [66] 2018 Routing and link failure recovery Emulation: POX/OVS/Ring-tree topology —

Holzmann
et al. [67] 2019 Distributed routing protocol for in-band

SDN control Simulation: OMNeT++/WAN/Zoo topology —

Raza et al. [68] 2019 Path selection algorithm for routing
using MPTCP Simulation: C++/BRITE networks —

Fan et al. [69] 2020 Routing, in-band connection with QoS
Simulation: Python Networkx. Emulation:
ONOS/OVS/Docker/Fat tree and random
networks

—

Ningyuan
et al. [70] 2021 Routing and link failure recovery in LEO

networks Simulation: Walker–Delta constellations —

Kumazoe
et al. [71] 2022 Routing in P4BMv2-based network Real testbed: BMv2/Linear network —

Raza et al. [63] focus on the in-band channel availability and propose the use of
MultiPath TCP (MPTCP) instead of simply Transmission Control Protocol (TCP). High
availability is achieved using as many disjoint paths to a switch as possible by selecting a
set of adjacent switches to the controller. The search of this adjacent switches might be time
consuming, so they only propose and evaluate two simple heuristic algorithms.

Gonzalez et al. [64] design an in-band OpenFlow channel through MPTCP which
leverages the multiple paths for enhanced resilience. However, it requires an out-of-band
channel for the initial setup.

Mohan et al. [65] propose a control path routing approach that selects two node-
disjoint control paths for every switch in the network. In that way, a malicious node can
be detected based on the normal packet-in messages sent on the control paths. Then,
the controller can send explicit test flows to determine and isolate the malicious switch.
They derive an optimization formula to provide a routing solution that minimises the
average number of intermediate nodes while satisfying the malicious switch detection
and resilience constraints. They demonstrate the effectiveness of the proposed approach
through numerical analysis. Their results show that the proposed approach enables faster
malicious switch detection with less control overhead compared to a previous approach.
However, the solution does not scale for large networks due to the high number of decision
variables.

Görkemli et al. [66] define a dynamic control plane architecture to redistribute and
scale controller load and re-route in-band control traffic using control flow tables depending
on underlying the network topology and the requirements of the applications running
on top. They test their dynamic paradigm on a virtualised network with an arbitrary
number of controllers (running a modified version of POX) and OVS switches in hybrid
ring-tree and balanced binary tree topologies. They achieve greater efficiency in the use of
the controller’s resources than with a static approach.

Holzmann et al. [67] present Izzy, a distributed routing protocol for maintaining
robust connectivity of in-band SDN control channels. Izzy is based on a combination of a
spanning tree and topology-dependent temporary addresses called locators. The solution is
divided into three modules; the first one, called TREE, is responsible for maintaining the
spanning tree structure by assigning locators. The second module, known as UPDATER, is



Electronics 2023, 12, 1265 10 of 24

responsible for coordinating and updating the network’s forwarding tables. Finally, the
Fast ReRoute (FRR) module is in charge of maintaining backup routes. The evaluation of
Izzy has been carried out in OMNeT++ and shows recovery times under 100 ms in WAN
topologies of 100 nodes.

Raza et al. [68] define an algorithm to create robust control paths when leveraging
MPTCP for in-band communication in SDN. Their algorithm looks for the best set of
switches to route through the shortest and disjoint paths in the network. They compute the
sum of disjoint path lengths and computation time and compare their proposal with two
baseline algorithms, proving better results. However, they only test it via simulation and
leave the real implementation as future work.

Fan et al. [69] propose a centralised routing solution to improve the QoS of in-band
control traffic in terms of bandwidth. They analyse the in-band control traffic, finding out
that it is periodic and needs a very small bandwidth: around 120 kbits every 5 s. Hence,
they place the in-band connection on the path with the most available bandwidth. They
design a centralised routing algorithm in the SDN controller to compute the optimal path
from the network topology and current consumed bandwidth at every link. However,
their simulations show that it does not scale to generic large networks. They choose to
stick to a Fat Tree Data Center (DC) network and a special network designed with higher
connectivity and randomness, in which they clearly improve the Round-Trip Time (RTT)
and the Packet Loss Ratio (PLR) compared with a L2 Spanning Tree Protocol (STP).

Ningyuan et al. [70] acknowledge the need for reliable in-band control in Low Earth
Orbit (LEO) constellation systems and propose a dual-layer architecture where the upper-
layer control plane provides reliable in-band control paths for the lower-SDN control
plane. This plane, in turn, deploys virtual out-of-band control in the data plane, in spite of
the constantly changing of network topology. In order to provide reliable control traffic
transmission, a redundant path-planning algorithm is further proposed. They evaluate
the framework with a simulation which proves much better satellites accessibility and has
barely any inaccessible satellites under massive link faults.

Kumazoe et al. [71] design an in-band control channel communication scheme for P4,
in which control messages are piggybacked onto data packets. The target switch is based
on the BMv2, and their evaluation shows performance degradation in data forwarding,
which they envision to be solved as future research work.

4.3. Fast Failure Recovery

This section covers a set of surveyed works exclusively focused on fast failure recovery
methods for in-band control in SDN. These proposals might complement the rest: particu-
larly, those that did not envision failure recovery in the first place. Table 3 summarises all
works in this section, which are described in detail in the remainder of this section.

Table 3. Summary table of in-band proposals that support fast failure recovery.

Article Year Key Features Evaluation & Tools Available
Code?

Overall
Contribution

Huang
et al. [72] 2016 Protection method for link failure

recovery Simulation: Python —

Park et al. [73] 2017 Restoration method for link failure
recovery

Real testbed: ONOS/Raspberry Pi, OVS/Mesh
network —

Akhtar
et al. [74] 2018 Mechanism to avoid retransmitions of

in-band packets Emulation: Ryu/Mininet/Linear network —

An et al. [75] 2019 Protection method for interferences in
in-band wireless networks

Real testbed: ONOS/Raspberry Pi/Mesh
network (IEEE 802.11) —

Alowa
et al. [76] 2020 Protection method for link failure

recovery Simulation: C++/SNDlib networks —

Ochoa-Aday
et al. [77] 2020 Fast multiple-link failure recovery Simulation: OMNeT++/Atlanta, Sun, Pioro

networks —



Electronics 2023, 12, 1265 11 of 24

Huang et al. [72] design a protection method for failures in the SDN control channel in
Heterogeneous Networks (HetNets), usually implemented as in-band. Under a link failure,
existing approaches rely on local rerouting that can bring congestion in the neighbouring
links. They propose a weighted cost-minimization problem, where the traffic load balancing
and path cost are jointly considered. This is an NP-hard problem and their solution is a
near-optimal Markov approximation. After simulation in Python with diverse network
types, number of controllers, and multiple failures, it proves to have better results (in
resource utilisation and recovery time) than other standard routing algorithms.

Park et al. [73] define an algorithm for fast in-band control channel recovery after link
failure. On receiving a port down message from the failure affected switch, the controller
finds the shortest paths to the affected switch and searches the target switches (Tswitch)
where the flow addition or modification is required. Then, the controller tests the shortest
paths, transmitting 1000 flows on each paths. After that, it sends an special check message
(request-reply) to each “Tswitch” switch to measure response time. Finally, it selects the
path with the smallest delay. They compare it with other conventional detour approaches
and it reduces both the recovery time and the detour traffic used for it.

Akhtar et al. [74] focus their proposal in mitigating the effects of delay and losses on
the control plane traffic. They propose to use Network Coding (NC) on control flows to
reduce both the number of transmissions in case of packet losses and the delay incurred.
A NC switch combines (codes) packets to the same destination in a new packet before
forwarding, which adds some redundancy, on a per link basis. In case of a packet loss
the receiver can recover from it during the decoding process, eliminating end-to-end
multiple re-transmissions. The drawback of NC is an additional delay to encode and
decode packets and a slight packet size increase. They tested NC in Mininet and concluded
that it overcomes packet losses satisfactorily and, at the same time, it is also able to reduce
the delay.

An et al. [75] consider a protection method that is required for potential interferences in
in-band wireless SDN deployments. For this reason, they design, implement, and evaluate
a proposal using ONOS and Raspberry Pi boards in an IEEE 802.11 network. They test it
with a six-node mesh network, but do not provide any code repository.

Alowa et al. [76] propose an in-band control protection system based on finding a set
of ideal paths for the control channel. They simulate it in diverse SNDlib networks, but do
not test it with real and multiple SDN controllers.

Ochoa-Aday et al. [77] define Self-Healing Protocol (SHP) as a protocol with minimum
overhead and no controller intervention. The protocol is capable of recovering in-band
control plane from multiple failures in multiple-controller environments, resulting in
recovery times below 20 µs, which accomplishes the 50 ms requirement of carrier-grade
networks [78].

4.4. Network Bootstrapping

This section examines works that include network bootstrapping in their design.
Additionally, some of them might provide automatic routing and/or failure recovery as
well. As a summary, Table 4 gathers all works, ordered by publication year.

Sharma et al. [79] devise an automatic bootstrapping method to set up the in-band
control connection. To the best of our knowledge, they were the first to implement an
in-band configuration channel for OpenFlow. They provide a very detailed and thorough
explanation of the bootstrapping process. The switch relies on Dynamic Host Configuration
Protocol (DHCP) to learn the IP address and Address Resolution Protocol (ARP) to learn
the MAC address of the controller. The controller uses packet probes similar to Link Layer
Discovery Protocol (LLDP) to acquire the full network topology. The method is tested on
emulated networks of different shapes (linear, ring, star, and mesh topologies) and sizes,
using the NOX controller. The tests show minimal bootstrapping times and good scalability
response.



Electronics 2023, 12, 1265 12 of 24

Tu et al. [80] apply an in-band SDN control plane in which they use standard Ethernet
switches on a DC network for the communication of Virtual Machines (VMs). They place a
special software agent in each server and a central SDN controller with a directory server
and a route algorithm server to control all communications. Based on the in-band control
plane, they could also implement load balancing and fast failure recovery.

Table 4. Summary table of in-band proposals that support network boostrapping.

Article Year Key Features Evaluation & Tools Available
Code?

Overall
contribution

Sharma
et al. [79] 2013 Bootstrapping and routing Emulation: NOX/OVS/Linux namespaces/BT

network, ring and mesh networks —

Tu et al. [80] 2014 Bootstrapping, routing and link failure Real testbed: Proprietary controller/1 GE and
10 GE generic switches/Spine-leaf network —

Suo et al. [6] 2016 Bootstrapping, routing, link failure
recovery and hybrid control mode

Emulation: Floodlight/OVS/Mininet/Fat tree
network —

Heise
et al. [81] 2017 Bootstrapping, routing and link failure Emulation: Ryu/OVS/Mininet/linear, ring and

mesh networks —

Su et al. [82] 2017 Bootstrapping, routing and link failure
recovery

Emulation: ODL, Floodlight/OVS/Fat-tree
network —

Bentstuen
et al. [83] 2018 Bootstrapping and routing Emulation: ONOS/OVS/Linear network —

Asadujjaman
et al. [84] 2018 Bootstrapping, routing and link failure

recovery Simulation: OMNeT++ —

Lopez-Pajares
et al. [85,86] 2020 Bootstrapping, routing and link failure

recovery
Simulation: OMNeT++; Emulation: ONOS/
BOFUSS/Waxman, Barabasi-Albert networks X(GitHub)

Sakic
et al. [87] 2020 Bootstrapping, routing and link failure

recovery
Emulation: ODL/OVS/line, star, ring, mesh
networks X(GitHub)

Silva-Freitas
et al. [88] 2020 Bootstrapping and routing Analytical model —

Wu et al. [89] 2021 Bootstrapping Emulation: Ryu/OVS, Mininet/Fat tree
network —

Li et al. [90] 2021 Bootstrapping and routing Emulation: OVS —

Álvarez-
Horcajo
et al. [91]

2022 Bootstrapping, routing and link failure
recovery

Emulation: ONOS/BOFUSS/Waxman, Barabasi-
Albert networks X(GitHub)

Wong
et al. [92] 2023

Bootstrapping, routing, link failure
recovery, topology discovery and
network monitoring

Emulation: BMv2/Testbed/P4Runtime X(GitHub)

Suo et al. [6] devise a new in-band control plane called ERIC, a hybrid-band scalable
control designed for DC networks. They use pre-computed rules installed in the switches,
both for the initial bootstrapping and in case of link failures or network congestion; however,
they do not provide further details about it. They tested ERIC against the out-of-band
approach on a Mininet simulator with the Floodlight controller and show similar RTT with
a 9% throughput loss.

Heise et al. [81] propose a SDN in-band control plane to be deployed on standard
avionic and industrial Ethernet networks to simplify network configuration and save addi-
tional cabling, which otherwise, means weight, complexity, and cost. Using the OpenFlow
protocol in aeronautical use-cases requires: (1) the network has to be configurable via
in-band, (2) the configuration must be done within a certain time, and (3) the configuration
traffic must not interfere with data traffic. Two mechanisms are devised: (1) when a switch
starts, it needs some preinstalled rules to connect to the controller, while at the same time,
packet storm should be avoided; (2) a limitation to the in-band channel traffic based on
traffic policing and admission-control techniques. They implement a proof-of-concept in
Mininet and evaluate bootstrapping, fail-over times, and the influence of rate limitation in
the overall configuration time under linear, ring, and mesh topologies.

Su et al. [82] define FASIC, which permits automatic bootstrapping of an OVS-based
network by leveraging OVS Database (OVSDB), which allows the configuration of the
SBI in the ODL controller. With the Floodlight controller, they monitor the congestion
of the in-band connections. They use the ODL controller as a manager to move in-band

https://github.com/NETSERV-UAH/Amaru
https://github.com/ermin-sakic/sdn-automated-bootstrapping
https://github.com/NETSERV-UAH/ieHDDP
https://github.com/commlab513/P4-Inband-Network


Electronics 2023, 12, 1265 13 of 24

connections from congested links, as through the OVSDB protocol, they send rules to OVS
switches. They test it on a fat-tree network with ODL and Floodlight, proving recovery
times that range from 0 to 5 s (faster than using stand-alone OVS, without OVSDB).

Bentstuen et al. [83] propose a technique to set up in-band control connections for
dynamic environments like defense and emergency networks. They split the bootstrapping
process into three steps: (1) to identify and register the new switches, (2) to set up flow
rules on intermediate switches to enable a control channel, and (3) to discover and maintain
the link topology database. Step 1 can be done using a registration protocol such as ARP
or DHCP. In step 2, the connection is set up starting from the switch using either TCP or
Transport Layer Security (TLS). The necessary flow rules on the intermediate switches
must be preinstalled by the controller. Finally, for step 3, they propose to use a standard
protocol like LLDP. They test their proposal using ONOS and OVS. However, they only
check the case of a link failure but do not take into account the case of a node failure.

Asadujjaman et al. [84] propose a protocol for bootstrapping and routing in-band
control connections, with a reactive approach for multiple link failure recovery. The only
drawback is that controller-to-switch communication is source-routed, which increases
packet overhead and should be improved for scalability reasons.

Lopez-Pajares et al. [85,86] present Amaru, an in-band protocol that provides boot-
strapping and scalable shortest path routing for SDN networks, as well as multiple protec-
tion routes for link failures that guarantee very low fault recovery times with almost no
overhead. The proposal leverages network exploration techniques to propagate a packet
from the root switch (the one directly connected to the controller) to the rest of the net-
work, in order to collect topological information, while installing the routes. In this way,
each device in the network can reach the controller with the information contained in the
exploration packets via various routes in order to establish the in-band control channel.
However, it requires slight modifications in the SDN switches to be supported.

Sakic et al. [87] focus on the design of a full-fledged in-band control channel, consider-
ing it should implement features such as automatic bootstrapping, controller provisioning,
multiple controller support, and fault resilience. It should also not be dependent on addi-
tional protocols or proprietary switch extensions. Based on these requirements, they design
two approaches. The first option uses a pre-configuration to build a tree in sequential
order by progressively adding new devices to the tree according to their distance from the
controller. The second option relies on the Rapid Spanning Tree Protocol (RSTP) protocol to
build a minimum-cost tree from the controller. Once the control channel is built using the
RSTP tree, the tree is removed to avoid interference with the SDN network. Both options
are very slow, providing convergence times of a few seconds, and they do not test failure
recovery times.

Silva-Freitas et al. [88] propose a bootstrap protocol that provides network topology
discovery and an automatic set of in-band control connections. Motivated by the high
message number of OpenFlow Discovery Protocol (OFDP) and its security concerns, they
propose ConForm, which is based on a spanning tree rooted at controller that spans towards
every switch in the network. Initially, each switch is manually configured with a unique
device ID and a cryptographic key, which only the controller can validate. When a SDN
starts up, it does not forward any packet and, instead, it broadcasts a special message
(reg_req) (to the controller) with its key. The controller initially only receives that message
from the directly connected switches, authenticates them, and replies with their assigned ID.
The process is repeated with the rest of the switches. There are additional steps to discover
the topology than can be consulted in the paper. They provide an analytical model to
calculate the number of exchanged messages, which is lower than other topology discovery
protocols such as LLDP, OFDP, and OFDPv2. Additionally, ConForm has motivated the
design of other configuration protocols, like the ETArch Switch Configuration Protocol
(ETSCP) [93].

Wu et al. [89] devise a mechanism called rXstp to set up the in-band control connection
with the controller. rXstp uses RSTP besides the basic layer 2 forwarding capacity of a



Electronics 2023, 12, 1265 14 of 24

switch to prevent loops. The node directly connected to the controller is the root node, so it
is necessary to manually configure its switch priority to be the highest. When there are no
more RSTP proposal messages in the network, it means that the network has converged (it
is stable) and the in-band connections can be set up. The mechanism also uses a modified
RSTP to allow the controller to discover the network topology. They implemented rXstp
using OVS and the Ryu controller with Mininet. They compare rXstp with a SDN network
that uses RSTP to set a topology and in-band control connections. They then use OFDP
to discover the topology. The latter uses more messages and only discovers the tree links.
This proposal only works with a single SDN controller.

Li et al. [90] propose One-Pass IBAB, a bootstrapping method for SDN in-band control,
able to deploy control paths for 50 switches in 2 s. For this purpose, it builds a spanning tree
rooted at the controller. If multiple controllers coexist, only the first messages exchanged
are considered, so the switch connects to the first controller it is aware of. The authors
envision fast failure recovery as future work.

Álvarez-Horcajo et al. [91] define an in-band control protocol with emphasis in hybrid
networks (composed of both SDN and non-SDN) and also heterogeneous (both wired and
wireless) devices. They evaluate their design with Waxman and Barabasi–Albert network
topologies.

Wong et al. [92] propose in-band control plane called P4IBN for P4 networks with
network bootstrapping, status monitoring, topology discovery, and fast failover. Among
the challenges it manages to overcome is the fact that unlike OpenFlow switches, P4
switches are passive. The controller has to actively search for new P4 switches and initiate
the control channel. Finally, they have been able to modify the restriction that a P4 switch
can only have one control port to communicate with the controller. The evaluation was
carried out using emulation and a Linux testbed. The results of the experiments indicate
that the in-band control system proposed effectively carries out network bootstrapping and
accomplishes rapid failover, even being able to handle multiple simultaneous failures.

4.5. Distributed Control

Finally, this section compiles surveyed works related to the use of distributed con-
trollers (regardless of whether they provide automatic routing, failure recovery, or network
bootstrapping). All articles are summarised in Table 5 and, later on, explained in detail in
the rest of the section.

Table 5. Summary table of in-band proposals that support distributed control.

Article Year Key Features Evaluation & Tools Available
Code?

Overall
contribution

Schiff
et al. [94] 2015 Bootstrapping, routing and link failure recovery,

and controller-to-controller connectivity Simulation: Java/Fat-tree network —

Schiff
et al. [95] 2016

Distributed control plane that supports
discovery topology and controller-to-controller
connectivity

Simulation: Java —

Schiff
et al. [96] 2016 Shared memory OF-table system with atomic

operations for distributed network control
Emulation: Mininet/OVS/ovs-ofctl
Python Wrapper X(GitHub)

Görkemli
et al. [97] 2016 Distributed dynamic control plane architecture Emulation: Floodlight/OVS/Mininet —

Hark et al. [98] 2017 Control traffic isolation mechanisms and
controller-to-controller connectivity Emulation: Floodlight/OVS/Mininet X(GitHub)

Canini
et al. [99] 2017 Bootstrapping and topology discovery Analytical model —

Canini
et al. [100] 2018 Restoration method for link-node-controller

failure recovery in multi-controller networks Emulation: Floodlight/OVS/Mininet X(GitHub)

Kwan-Yee
et al. [101] 2018 Fast failure recovery mechanism in multi-

controller networks Real testbed: ONOS/HP5900 —

Holzmann
et al. [102] 2018 Routing for distributed controller clusters Analytical model —

Canini
et al. [103] 2022 Bootstrapping, routing, and link failure recovery Emulation: Floodlight/Mininet,

OVS/B4, Clos, EBONE+ networks X(GitHub)

https://github.com/lironsc/of-sync-lib
https://github.com/rhaban/In-band-SDN-Control-Communication
https://github.com/eladschiller/Renaissance-SDN
https://github.com/eladschiller/Renaissance-SDN


Electronics 2023, 12, 1265 15 of 24

Schiff et al. [94] present Medieval, which allows the switches in the network to set
up an in-band connection to a single controller and also to establish routes to support
connectivity among controllers. Medieval sets up the in-band control plane by creating and
maintaining two spanning trees for each controller: (1) A “per-region” spanning tree spans
over the region owned by a controller. The region owned by a controller is a connected
graph containing the controller and the switches it controls. (2) A “network-wide” spanning
tree spans over the whole network to allow controller-to-controller connectivity. However,
they do not detail how the controller-to-controller connectivity is achieved. The switches
need a pre-configured controller IP and a set of a priori rules for the system to work. They
provide a preliminary evaluation based on a Java emulator prototype.

Schiff et al. [95] propose a plug and play distributed control plane which supports
automatic topology discovery and management, as well as flexible controller membership:
controllers can be added and removed dynamically. This is achieved by managing two
STP trees, one for membership and is a switch with controller, and the other, which
provides connectivity between controllers. The implementation relies on OpenFlow and pre-
configured rules at startup, so that the network is autonomously self-stabilising. Network
resilience is achieved by applying timeout policies and low-priority rules that will only
take effect in the event that a switch runs out of an associated controller. Additionally, it
uses ARP for topology discovery.

Schiff et al. [96] propose an in-band synchronization framework for a distributed
control plane based on atomic transactions. The synchronisation primitives and atomic
operations have been designed so that they can be implemented exclusively with Open-
Flow. The distributed control framework could be deployed without modifying any of
the code of current software switches. It makes use of OF tables to generate a shared
memory system to manage the distributed control plane of the network. In order to avoid
inconsistencies, a series of synchronisation mechanisms have been proposed in addition to
atomic operations. The validation has been carried out using Mininet and OVS switches
to test the atomic operations described above. All three previous works seem to follow a
progressive evolution of their preliminary idea for distributed SDN control.

Görkemli et al. [97] propose a dynamic control plane architecture for SDN networks
that can adapt to changes in high controller load and new flow demands. The proposed
architecture allows the activation and deactivation of controllers on-the-fly based on au-
tomatic measurement of network control traffic and changing service requirements. The
authors describe a series of base scenarios and operations that can be performed with this
dynamic data plane management architecture. The proposed architecture was evaluated
using Mininet, OVS switches, and Floodlight as the controller. The results show that the
architecture effectively addresses bottlenecks on switch–controller links and handles high
CPU usage in controllers.

Hark et al. [98] propose a low-cost inter-controller communication service, which
requires few resources in terms of state, communication overhead and computational
complexity, and provides isolation between control and data plane traffic using shared
in-band channels. The implementation has been carried out using the Floodlight con-
troller. It leverages port-changed event messages to embed additional information that
controllers can manage to decide the best route among them. Additionally, Virtual Local
Area Networks (VLANs) are employed to isolate the control traffic. They study the mes-
sages generated for the convergence of the bi-directional communication channel between
controllers and its subsequent activation. They observe that the number of messages grows
linearly with the number of controllers in the network.

Canini et al. [99] present two procedures to ensure that each switch in the SDN net-
work obtains routes to support connectivity, both between every switch and all controllers,
and also among controllers. These procedures are classified according to the use or lack
of usage of the timeouts available in the OpenFlow tables. In the methodology that re-
quires timeouts, low-priority rules have been used together with pre-configured anycast
addresses so that the switches periodically try to connect to a new controller when they are



Electronics 2023, 12, 1265 16 of 24

unmanaged. The second procedure is based on running a topology discovery algorithm
on each controller and iteratively adding each switch to each controller pi on a first-come,
first-served basis.

Canini et al. [100] present Renaissance as an evolution of their previously mentioned
work, which is a group of algorithms for an in-band and distributed control plane for
SDNs designed to overcome the shortcomings of Medieval [94]. It is not self-stabilising
because its design depends on the presence of non-corrupted configuration data (e.g., the
controller’s IP addresses). This solution ensures that, after the occurrence of an arbitrary
combination of failures, every non-faulty SDN controller can eventually reach any switch
in the network within a bounded communication delay and every switch is managed by at
least one non-faulty controller. The validation is accomplished using Mininet, OVS, and
Floodlight. The extensive, performed tests show start-up and recovery times for different
topologies (Telstra, EBONE, and Exodus). Their prototype experiments exhibit promising
results. Complementarily, M. Tran, in his PhD thesis [104], also implements Renaissance.
Preliminary tests measure bootstrapping time, number of messages, and recovery time in
Mininet using OVS under DC networks. These tests show promising results as well.

Kwan-Yee et al. [101] present a software solution scheme for fast failure detection and
fast failure location identification in multi-controller SDN networks. Multiple monitoring
probing cycles that cover all links and nodes in the network are performed. When a failure
is detected in a monitoring cycle, the controller initiates failure location identification
processes to identify the failure type and the failure location. In terms of validation, they
set up a real network composed of two servers running two ONOS server instances each,
HP5900 switches, and two other servers as host machines. The experimental results show
that the average time to recover from any single device failure is less than 50 ms, even if
the failure disconnects both working control and data channels at the same time.

Holzmann et al. [102] present Seedling, an algorithm that divides the controllers
managing an SDN network into groups based on their proximity. This work is the evolution
of another work by the same authors, in which they presented Izzy [67], another algorithm
that provided robust connectivity between controllers and all managed switches by means
of shortest-path spanning trees. In this article, they propose to use Seedling to save
computational cost, memory in the forwarding tables, and all the overhead that it entails at
the traffic level, instead of running instances of Izzy on each controller.

Canini et al. [103] present an enhanced and comprehensively evaluated version of
Renaissance [100], an in-band and distributed control plane for SDN with a particular
focus on network robustness and self-stabilisation. As already known, Renaissance is
based on Medieval [94] (proposed by common authors), but the former is self-stabilised,
as it recovers from failures in a bounded time. Renaissance’s paper provides a rigorous
algorithm and an analytical proof of self-stabilisation. They comprehensively evaluate their
algorithm in emulated scenarios with multiple types of networks and measuring various
parameters (bootstrapping, failure recovery, etc.). Additionally, their code (based on the
Floodlight controller) is publicly available.

4.6. Other Related Approaches

Although not directly implementing in-band control, Municio et al. [105] present
Whisper, which provides end-to-end programmability for networks composed of IPv6
over the Time Synchronized Channel Hopping (TSCH) mode of IEEE 802.15.4e (6TiSCH)
and wired devices. This is particularly interesting for IoT networks, in which some com-
ponents might be constrained in energy or battery and out-of-band control is unfeasible.
Therefore, Whisper aims to act as a middleware capable of applying directives from the
SDN controllers by translating them into distributed routing messages understood by the
IoT devices.



Electronics 2023, 12, 1265 17 of 24

5. Discussion: Research Trends and Future Challenges

According to the performed survey, automatic routing and bootstrapping for in-band
control in SDN is still an ongoing research field. Different proposals tackle both features
using different techniques. Several proposals provide comprehensive implementations and
evaluation, even with a publicly available code. Regarding failure recovery, some proposals
exist, but just a few guarantee low recovery times with reduced overhead. From our point
of view, the area could still be improved, particularly if combined with high-performance
routing and automatic bootstrapping and if they are implemented in real testbeds (or at
least emulated and deployed with SDN popular platforms in industry environments, like
ONOS). Finally, distributed control planes still require additional research efforts. Even if
several works are mentioned in this survey, most of them belong to a few authors.

Regarding research trends and future challenges, we envision potential research topics,
including

• Considering IoT and Low-power and Lossy Networks (LLNs) as a key use case
for leveraging in-band control, since network devices in these scenarios are usually
constrained and cannot fully deploy out-of-band SDN control.

• Testing in-band approaches in big telecommunication networks (even if emulated) to
check the feasibility of these approaches.

• Leveraging in-band as an East/Westbound Interface (EWBI) protocol to grant an
effective and reliable communication among distributed controllers (which are the
most common deployment option). This aspect is barely covered in the current
literature [106].

• Evaluating potential security risks of in-band control and methods to tackle them, as
just a few works mention it.

• Measuring Key Performance Indicators (KPIs) to compare in-band, out-of-band and
hybrid-band approaches, as well as their implementation and compatibility with
diverse SDN frameworks. Currently, few works tried to provide a holistic overview
about it [7,107,108].

• Improving in-band connection routing with Artificial Intelligence (AI)/Machine Learn-
ing (ML). In computer science, AI is also known as machine intelligence. ML is a
category of AI based on natural intelligence that can learn from data, make decisions,
identify patterns, and perform various actions with less human intervention. ML
can potentially be used to solve many problems in networking, including design,
implementation, performance, and verification [109]. ML can be applied to improve
in-band connectivity in many situations, such as finding the path with the highest
QoS [69], finding disjoint paths for MPTCP [63,68], or improving network security
by detecting a malicious node [65]. The use of ML for routing optimisation in SDN
can be found in this survey [109]. A good example is the proposal by Chen [110].
They present a new routing algorithm that they implemented in a real SDN network
with better results than other routing algorithms, such as OSPF and Least Loaded
(LL). Ouamri et al [111] provides another example of using ML on a WAN SDN for
load balancing optimisation, which could also be used for in-band backup links. ML
should also be used to improve network resilience by providing some alternatives or
backup paths for the in-band links.

Finally, we would like to highlight the importance of designing a full-fledged in-band
protocol that covers all four aspects surveyed in this article and comprehensively integrates
with an open source SDN controller like ONOS, ODL, or even TeraflowSDN [112], which
was recently proposed as a SDN controller closely aligned with industry requirements
and is a part of ETSI’s Network Function Virtualization (NFV) and Multi-access Edge
Computing (MEC) ecosystems. Providing such a holistic design would facilitate the actual
usage of automatic in-band control approaches. In the meantime, while partial solutions
are published, industry might still manually deploy in-band control in SDN. Nevertheless,
we are aware this is an ambitious objective and would imply collaboration among more
than one research group together with standardisation bodies.



Electronics 2023, 12, 1265 18 of 24

6. Conclusions

In this survey, we examined all existing works in relation to in-band control in SDN.
We also showed that there was some tendency in the literature for the referenced keywords
SDN and in-band to grow from 2012 to 2018 and stay stable in the later years.

According to the analysis, we classified them in four main categories: (1) automatic
routing: in-band control requires calculation of routes between SDN devices and the
controller/s and vice versa, (2) fast failure recovery: by selecting a different route in the
data plane, the control communication can be recovered after a link or switch failure, (3)
network bootstrapping: refers to the ability of setting up all required parameters before
starting the system, and (4) distributed control: which implies that two or more controllers
are involved in the control decisions and, therefore, a coordination mechanism should be
defined for routing, failure recovery, and bootstrapping.

In order to provide a comprehensive overview, we have summarised them in one table
per category, including a qualitative score based on their overall contribution. These tables
show the year of publication of the article, its main characteristics, the evaluation tools,
whether its code is publicly available, and an overall contribution based on three stars,
which was qualitatively assigned on the basis of all the previous characteristics, together
with its impact in terms of number of citations.

According to our investigation, research efforts are still needed for scalable fast failure
recovery and the use of in-band in distributed control scenarios. Another line of research to
be promoted is the application of ML to improve in-band routing links, network security,
and failure recovery.

As future research trends and challenges, we envision the importance of IoT in which
some components might be constrained in energy or battery and out-of-band control is
unfeasible, leveraging in-band as an EWBI protocol for controller clusters, and research on
tackling potential security risks. Furthermore, most proposals cover partial aspects or are
not fully integrated into real SDN platforms and devices. Therefore, there is still a need for
a holistic in-band control design integrated into an industry-driven SDN framework.

Author Contributions: Conceptualization, E.R. and J.M.A.; methodology, J.M.A. and E.R.; inves-
tigation, E.R., J.M.A. and D.C.; resources, J.M.A.; papers searching and selecting, E.R. and J.M.A.;
writing-original draft preparation, E.R., J.M.A. and D.C.; writing—review and editing, J.A.C., D.L.-P.
and E.R.; visualization, D.L.-P. and J.A.-H.; supervision, E.R. and J.M.A.; project administration, E.R.
and J.M.A.; funding acquisition, E.R. and J.A.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by grants from Comunidad de Madrid through projects TAPIR-CM
(S2018/TCS-4496) and MistLETOE-CM (CM/JIN/2021-006), and by project ONENESS (PID2020-
116361RA-I00) of the Spanish Ministry of Science and Innovation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

5G The fifth generation of mobile technologies
6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e
ARP Address Resolution Protocol
BOFUSS Basic OpenFlow Userspace Software Switch
BMv2 Behavioral Model version 2
DC Data Center
DHCP Dynamic Host Configuration Protocol
D-CPI Data-Controller Plane Interface
EWBI East/Westbound Interface



Electronics 2023, 12, 1265 19 of 24

FRR Fast ReRoute
HetNet Heterogeneous Network
IoT Internet of Things
KPI Key Performance Indicator
LEO Low Earth Orbit
LLDP Link Layer Discovery Protocol
LLN Low-power and Lossy Network
MEC Multi-access Edge Computing
MPTCP MultiPath TCP
NFV Network Function Virtualization
NTN Non-Terrestrial Network
OFDP OpenFlow Discovery Protocol
ODL OpenDaylight
ONF Open Networking Foundation
ONOS Open Network Operating System
OVS Open vSwitch
OVSDB OVS Database
P4 Programming Protocol-independent Packet Processors
PLR Packet Loss Ratio
QoS Quality of Service
RSTP Rapid Spanning Tree Protocol
RTT Round-Trip Time
SBI Southbound Interface
SDN Software-Defined Networking
SNMP Simple Network Management Protocol
STP Spanning Tree Protocol
TCP Transmission Control Protocol
TLS Transport Layer Security
TSCH Time Synchronized Channel Hopping
VLAN Virtual Local Area Network
VM Virtual Machine

References
1. Kreutz, D.; Ramos, F.M.V.; Veríssimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A

Comprehensive Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]
2. Silva, M.M.d.; Guerreiro, J. On the 5G and Beyond. Appl. Sci. 2020, 10, 7091. [CrossRef]
3. ONF. SDN Architecture-Issue 1.1 (ONF TR-521). 2016. Available online: https://opennetworking.org/wp-content/uploads/20

14/10/TR-521_SDN_Architecture_issue_1.1.pdf (accessed on 31 January 2023).
4. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling

Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 2008, 38, 69–74. [CrossRef]
5. Group, T.P.A.W. P4Runtime Specification-Version 1.3.0. 2021. Available online: https://p4.org/p4-spec/p4runtime/main/P4

Runtime-Spec.html (accessed on 31 January 2023).
6. Suo, C.; Tsai, I.C.; Wen, C.H.P. ERIC: Economical & reconfigurable hybrid-band control for software-defined datacenter network.

In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu, Malaysia, 13–15 January
2016; IEEE: New York, NY, USA, 2016; pp. 214–219. [CrossRef]

7. Jalili, A.; Nazari, H.; Namvarasl, S.; Keshtgari, M. A comprehensive analysis on control plane deployment in SDN: In-band
versus out-of-band solutions. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering
and Innovation (KBEI), Tehran, Iran, 22–22 December 2017; pp. 1025–1031. [CrossRef]

8. Rojas, E. From Software-Defined to Human-Defined Networking: Challenges and Opportunities. IEEE Netw. 2018, 32, 179–185.
[CrossRef]

9. Kafetzis, D.; Vassilaras, S.; Vardoulias, G.; Koutsopoulos, I. Software-Defined Networking meets Software-Defined Radio in
Mobile Ad hoc Networks: State of the Art and Future Directions. IEEE Access 2022, 10, 9989–10014. [CrossRef]

10. Awan, I.I.; Shah, N.; Imran, M.; Shoaib, M.; Saeed, N. An improved mechanism for flow rule installation in-band SDN. J. Syst.
Archit. 2019, 96, 1–19. [CrossRef]

11. Khorsandroo, S.; Sánchez, A.G.; Tosun, A.S.; Arco, J.; Doriguzzi-Corin, R. Hybrid SDN evolution: A comprehensive survey of the
state-of-the-art. Comput. Netw. 2021, 192, 107981. [CrossRef]

12. Rojas, E.; Amin, R.; Guerrero, C.; Savi, M.; Rastegarnia, A. Challenges and Solutions for hybrid SDN. Comput. Netw. 2021,
195, 108198. [CrossRef]

http://doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.3390/app10207091
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
http://dx.doi.org/10.1145/1355734.1355746
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
http://dx.doi.org/10.1109/ICOIN.2016.7427117
http://dx.doi.org/10.1109/KBEI.2017.8324949
http://dx.doi.org/10.1109/MNET.2017.1700070
http://dx.doi.org/10.1109/ACCESS.2022.3144072
http://dx.doi.org/10.1016/j.sysarc.2019.01.016
http://dx.doi.org/10.1016/j.comnet.2021.107981
http://dx.doi.org/10.1016/j.comnet.2021.108198


Electronics 2023, 12, 1265 20 of 24

13. Murtadha, M.K. SDN based device to device communication architecture for 5G mobile networks. J. Eng. Sci. Technol. 2021,
16, 3033–3047.

14. Guo, J.; Yang, L.; Liu, X.; Chen, Q.; Fan, C.; Li, X. Performance Modelling and Evaluation of In-Band Control Mode in Software-
Defined Satellite Networks Based on Queuing Theory. In Proceedings of the 2021 2nd International Conference on Computing, CNIOT
’21, Networks and Internet of Things; Association for Computing Machinery: New York, NY, USA, 2021. [CrossRef]

15. Shi, Y.; Yang, Q.; Huang, X.; Li, D.; Huang, X. An SDN-Enabled Framework for a Load-Balanced and QoS-Aware Internet of
Underwater Things. IEEE Internet Things J. 2022, 1. [CrossRef]

16. Maity, I.; Dhiman, R.; Misra, S. EnPlace: Energy-Aware Network Partitioning for Controller Placement in SDN. IEEE Trans. Green
Commun. Netw. 2022, 7, 183–193. [CrossRef]

17. Chattopadhyay, S.; Chatterjee, S.; Nandi, S.; Chakraborty, S. Aloe: An elastic auto-scaled and self-stabilized orchestration
framework for iot applications. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
Paris, France, 29 April–2 May 2019; IEEE: New York, NY, USA, 2019; pp. 802–810.

18. Guillen, L.; Takahira, H.; Izumi, S.; Abe, T.; Suganuma, T. On Designing a Resilient SDN C/M-Plane for Multi-Controller Failure
in Disaster Situations. IEEE Access 2020, 8, 141719–141732. [CrossRef]

19. Guillen, L.; Izumi, S.; Abe, T.; Suganuma, T. A Resilient Mechanism for Multi-Controller Failure in Hybrid SDN-based Networks.
In Proceedings of the 2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS), Tainan, Taiwan,
8–10 September 2021; IEEE: New York, NY, USA, 2021; pp. 285–290.

20. Neves, R.H.; Silva, A.A.; Gava, V.; Azevedo, M.T.; Sandoval, J.F.; Oliveira, F.S.; Guelfi, A.E.; Kofuji, S.T. DoS Attack on SDN: A
study on control plane strategies in-band and out-of-band. Res. Sq. 2022. [CrossRef]

21. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined Networking: Past, Present,
and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [CrossRef]

22. Jarraya, Y.; Madi, T.; Debbabi, M. A Survey and a Layered Taxonomy of Software-Defined Networking. IEEE Commun. Surv.
Tutor. 2014, 16, 1955–1980. [CrossRef]

23. Rowshanrad, S.; Namvarasl, S.; Abdi, V.; Hajizadeh, M.; Keshtgary, M. A survey on SDN, the future of networking. J. Adv.
Comput. Sci. Technol. 2014, 3, 232–248. [CrossRef]

24. Jammal, M.; Singh, T.; Shami, A.; Asal, R.; Li, Y. Software defined networking: State of the art and research challenges. Comput.
Netw. 2014, 72, 74–98. [CrossRef]

25. Farhady, H.; Lee, H.; Nakao, A. Software-Defined Networking: A survey. Comput. Netw. 2015, 81, 79–95. [CrossRef]
26. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun. Surv. Tutor. 2015,

17, 27–51. [CrossRef]
27. Benzekki, K.; El Fergougui, A.; Elbelrhiti Elalaoui, A. Software-defined networking (SDN): A survey. Secur. Commun. Netw.

2016, 9, 5803–5833. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1737 (accessed on 31 January 2023).
[CrossRef]

28. Masoudi, R.; Ghaffari, A. Software defined networks: A survey. J. Netw. Comput. Appl. 2016, 67, 1–25. [CrossRef]
29. Singh, S.; Jha, R.K. A survey on software defined networking: Architecture for next generation network. J. Netw. Syst. Manag.

2017, 25, 321–374. [CrossRef]
30. Scott-Hayward, S.; O’Callaghan, G.; Sezer, S. Sdn Security: A Survey. In Proceedings of the 2013 IEEE SDN for Future Networks

and Services (SDN4FNS), Trento, Italy, 11–13 November 2013; pp. 1–7. [CrossRef]
31. Ahmad, I.; Namal, S.; Ylianttila, M.; Gurtov, A. Security in Software Defined Networks: A Survey. IEEE Commun. Surv. Tutor.

2015, 17, 2317–2346. [CrossRef]
32. Ali, S.T.; Sivaraman, V.; Radford, A.; Jha, S. A Survey of Securing Networks Using Software Defined Networking. IEEE Trans.

Reliab. 2015, 64, 1086–1097. [CrossRef]
33. Correa Chica, J.C.; Imbachi, J.C.; Botero Vega, J.F. Security in SDN: A comprehensive survey. J. Netw. Comput. Appl. 2020,

159, 102595. [CrossRef]
34. Amin, R.; Reisslein, M.; Shah, N. Hybrid SDN Networks: A Survey of Existing Approaches. IEEE Commun. Surv. Tutor. 2018,

20, 3259–3306. [CrossRef]
35. Sandhya; Sinha, Y.; Haribabu, K. A survey: Hybrid SDN. J. Netw. Comput. Appl. 2017, 100, 35–55. [CrossRef]
36. Oktian, Y.E.; Lee, S.; Lee, H.; Lam, J. Distributed SDN controller system: A survey on design choice. Comput. Netw. 2017,

121, 100–111. [CrossRef]
37. Bannour, F.; Souihi, S.; Mellouk, A. Distributed SDN Control: Survey, Taxonomy, and Challenges. IEEE Commun. Surv. Tutor.

2018, 20, 333–354. [CrossRef]
38. Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access 2016, 4, 5591–5606.

[CrossRef]
39. Bera, S.; Misra, S.; Vasilakos, A.V. Software-Defined Networking for Internet of Things: A Survey. IEEE Internet Things J. 2017,

4, 1994–2008. [CrossRef]
40. Trois, C.; Del Fabro, M.D.; de Bona, L.C.E.; Martinello, M. A Survey on SDN Programming Languages: Toward a Taxonomy.

IEEE Commun. Surv. Tutor. 2016, 18, 2687–2712. [CrossRef]
41. Ali, J.; Lee, G.M.; Roh, B.H.; Ryu, D.K.; Park, G. Software-Defined Networking Approaches for Link Failure Recovery: A Survey.

Sustainability 2020, 12, 4255. [CrossRef]

http://dx.doi.org/10.1145/3468691.3468697
http://dx.doi.org/10.1109/JIOT.2022.3231329
http://dx.doi.org/10.1109/TGCN.2022.3175901
http://dx.doi.org/10.1109/ACCESS.2020.3013323
http://dx.doi.org/10.21203/rs.3.rs-1816989/v1
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1109/COMST.2014.2320094
http://dx.doi.org/10.14419/jacst.v3i2.3754
http://dx.doi.org/10.1016/j.comnet.2014.07.004
http://dx.doi.org/10.1016/j.comnet.2015.02.014
http://dx.doi.org/10.1109/COMST.2014.2330903
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1737
http://dx.doi.org/10.1002/sec.1737
http://dx.doi.org/10.1016/j.jnca.2016.03.016
http://dx.doi.org/10.1007/s10922-016-9393-9
http://dx.doi.org/10.1109/SDN4FNS.2013.6702553
http://dx.doi.org/10.1109/COMST.2015.2474118
http://dx.doi.org/10.1109/TR.2015.2421391
http://dx.doi.org/10.1016/j.jnca.2020.102595
http://dx.doi.org/10.1109/COMST.2018.2837161
http://dx.doi.org/10.1016/j.jnca.2017.10.003
http://dx.doi.org/10.1016/j.comnet.2017.04.038
http://dx.doi.org/10.1109/COMST.2017.2782482
http://dx.doi.org/10.1109/ACCESS.2016.2607786
http://dx.doi.org/10.1109/JIOT.2017.2746186
http://dx.doi.org/10.1109/COMST.2016.2553778
http://dx.doi.org/10.3390/su12104255


Electronics 2023, 12, 1265 21 of 24

42. Karakus, M.; Durresi, A. Quality of Service (QoS) in Software Defined Networking (SDN): A survey. J. Netw. Comput. Appl. 2017,
80, 200–218. [CrossRef]

43. Tan, L.; Su, W.; Zhang, W.; Lv, J.; Zhang, Z.; Miao, J.; Liu, X.; Li, N. In-band Network Telemetry: A Survey. Comput. Netw. 2021,
186, 107763. [CrossRef]

44. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. In-band control, queuing, and failure recovery functionalities for
openflow. IEEE Netw. 2016, 30, 106–112. [CrossRef]

45. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al.
P4: Programming Protocol-Independent Packet Processors. SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]

46. Hauser, F.; Häberle, M.; Merling, D.; Lindner, S.; Gurevich, V.; Zeiger, F.; Frank, R.; Menth, M. A survey on data plane
programming with P4: Fundamentals, advances, and applied research. J. Netw. Comput. Appl. 2023, 212, 103561. [CrossRef]

47. Berde, P.; Gerola, M.; Hart, J.; Higuchi, Y.; Kobayashi, M.; Koide, T.; Lantz, B.; O’Connor, B.; Radoslavov, P.; Snow, W.; et al. ONOS:
Towards an Open, Distributed SDN OS. In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking,
HotSDN ’14, Chicago, IL, USA, 22 August 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1–6.
[CrossRef]

48. Medved, J.; Varga, R.; Tkacik, A.; Gray, K. OpenDaylight: Towards a Model-Driven SDN Controller architecture. In Proceedings
of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, Australia, 19 June
2014; pp. 1–6. [CrossRef]

49. Tomonori, F. Introduction to Ryu SDN framework. Open Netw. Summit 2013, 1–14.
50. Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P.; et al. The Design

and Implementation of Open vSwitch. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), Oakland, CA, USA, 4–6 May 2015; USENIX Association: Oakland, CA, USA, 2015; pp. 117–130.

51. Fernandes, E.L.; Rojas, E.; Alvarez-Horcajo, J.; Kis, Z.L.; Sanvito, D.; Bonelli, N.; Cascone, C.; Rothenberg, C.E. The road to BOFUSS:
The basic OpenFlow userspace software switch. J. Netw. Comput. Appl. 2020, 165, 102685. [CrossRef]

52. P4. Behavioral Model (bmv2): The Reference P4 Software Switch. Available online: https://github.com/p4lang/behavioral-
model (accessed on 31 January 2023).

53. Lantz, B.; Heller, B.; McKeown, N. A Network in a Laptop: Rapid Prototyping for Software-Defined Networks. In Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, Monterey, CA, USA, 20–21 October 2010; Association
for Computing Machinery: New York, NY, USA, 2010. [CrossRef]

54. Varga, A.; Hornig, R. An Overview of the OMNeT++ Simulation Environment. In Proceedings of the 1st International Conference
on Simulation Tools and Techniques for Communications, Networks and Systems, Workshops, Simutools ’08, Marseille, France,
3–7 March 2008; ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering): Brussels,
Belgium, 2008. [CrossRef]

55. Varga, A.OMNeT++. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg, Germany, 2010; pp. 35–59.
[CrossRef]

56. Henderson, T.R.; Lacage, M.; Riley, G.F.; Dowell, C.; Kopena, J. Network simulations with the ns-3 simulator. SIGCOMM
Demonstr. 2008, 14, 527.

57. Riley, G.F.; Henderson, T.R. The ns-3 Network Simulator. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 15–34. [CrossRef]

58. Rojas, E.; Doriguzzi-Corin, R.; Tamurejo, S.; Beato, A.; Schwabe, A.; Phemius, K.; Guerrero, C. Are We Ready to Drive Software-
Defined Networks? A Comprehensive Survey on Management Tools and Techniques. ACM Comput. Surv. 2018, 51, 1–35.
[CrossRef]

59. Waxman, B.M. Routing of multipoint connections. IEEE J. Sel. Areas Commun. 1988, 6, 1617–1622. [CrossRef]
60. Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [CrossRef]
61. Goltsmann, P.; Zitterbart, M.; Hecker, A.; Bless, R. Towards a Resilient In-Band SDN Control Channel. Universität Tübingen 2017.

[CrossRef]
62. Khakhalin, A.S.; Chemeritskiy, E.V. A reliable in-band control in a Software-Defined Network. J. Theor. Appl. Inf. Technol. 2017,

95, 4283–4290.
63. Raza, A.; Gohar, A.; Lee, S. MPTCP based in-band controlling for the software defined networks. In Proceedings of the 2017

International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 18–20 October
2017; pp. 163–167. [CrossRef]

64. González, S.; De la Oliva, A.; Bernardos, C.J.; Contreras, L.M. Towards a Resilient Openflow Channel Through MPTCP. In
Proceedings of the 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Valencia,
Spain, 6–8 June 2018; pp. 1–5. [CrossRef]

65. Mohan, P.M.; Truong-Huu, T.; Gurusamy, M. Towards resilient in-band control path routing with malicious switch detection in
SDN. InProceedings of the 2018 10th International Conference on Communication Systems Networks (COMSNETS), Bengaluru,
India, 3–7 January 2018; pp. 9–16. [CrossRef]

66. Görkemli, B.; Tatlıcıoğlu, S.; Tekalp, A.M.; Civanlar, S.; Lokman, E. Dynamic Control Plane for SDN at Scale. IEEE J. Sel. Areas
Commun. 2018, 36, 2688–2701. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2016.12.019
http://dx.doi.org/10.1016/j.comnet.2020.107763
http://dx.doi.org/10.1109/MNET.2016.7389839
http://dx.doi.org/10.1145/2656877.2656890
http://dx.doi.org/10.1016/j.jnca.2022.103561
http://dx.doi.org/10.1145/2620728.2620744
http://dx.doi.org/10.1109/WoWMoM.2014.6918985
http://dx.doi.org/10.1016/j.jnca.2020.102685
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.4108/icst.simutools2008.3027
http://dx.doi.org/10.1007/978-3-642-12331-3_3
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1145/3165290
http://dx.doi.org/10.1109/49.12889
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.15496/PUBLIKATION-19547
http://dx.doi.org/10.1109/ICTC.2017.8190965
http://dx.doi.org/10.1109/BMSB.2018.8436865
http://dx.doi.org/10.1109/COMSNETS.2018.8328174
http://dx.doi.org/10.1109/JSAC.2018.2871308


Electronics 2023, 12, 1265 22 of 24

67. Holzmann, P.; Zitterbart, M. Izzy: A Distributed Routing Protocol for In-band SDN Control Channel Connectivity. In Proceedings
of the 2019 IEEE 44th LCN Symposium on Emerging Topics in Networking (LCN Symposium), Osnabrück, Germany, 14–17
October 2019; pp. 18–25. Available online: https://doi.org/jt8q (accessed on 31 January 2023). [CrossRef]

68. Raza, A.; Lee, S. Gate Switch Selection for In-Band Controlling in Software Defined Networking. IEEE Access 2019, 7, 5671–5681.
[CrossRef]

69. Fan, W.; Yang, F. Centralized Trust-Based In-Band Control for SDN Control Channel. IEEE Access 2020, 8, 4289–4300. [CrossRef]
70. Ningyuan, W.; Chen, D.; Liang, L.; Wang, M.; Bingyuan, L. An SDN Based Highly Reliable in-Band Control Framework for LEO

Mega-Constellations. In Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems
(ICCCS), Guangzhou, China, 23–26 April 2021; pp. 970–975. [CrossRef]

71. Kumazoe, K.; Shibata, M.; Tsuru, M. A P4 BMv2-Based Feasibility Study on a Dynamic In-Band Control Channel for SDN. In
Proceedings of the Advances in Intelligent Networking and Collaborative Systems; Barolli, L., Miwa, H., Eds.; Springer International
Publishing: Cham, Switzerland, 2022; pp. 442–451.

72. Huang, H.; Guo, S.; Liang, W.; Li, K.; Ye, B.; Zhuang, W. Near-Optimal Routing Protection for In-Band Software-Defined
Heterogeneous Networks. IEEE J. Sel. Areas Commun. 2016, 34, 2918–2934. [CrossRef]

73. Park, Y.; Nguyen, D.T.; Kang, B.; Lee, K.; Lee, J.; Choo, H. A Fast Recovery Scheme Based on Detour Planning for In-Band Openflow
Networks. InProceedings of the 11th International Conference on Ubiquitous Information Management and Communication,
IMCOM ’17, Beppu, Japan, 5–7 January 2017; Association for Computing Machinery: New York, NY, USA, 2017. [CrossRef]

74. Akhtar, F.; Rehmani, M.H.; Davy, A. A Network Coding Approach to In-Band Control Traffic Sharing in Software Defined
Networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC,
Canada, 25–29 June 2018; pp. 267–271. [CrossRef]

75. An, N.; Lim, H. Poster: Protecting Control Planes in In-Band Software-Defined Wireless Networks. In Proceedings of the The
25th Annual International Conference on Mobile Computing and Networking, MobiCom ’19, Los Cabos, Mexico, 21–25 October
2019; Association for Computing Machinery: New York, NY, USA, 2019. [CrossRef]

76. Alowa, A.; Fevens, T. A Dynamic Recovery Module for In-band Control Channel Failure In Software Defined Networking. In
Proceedings of the 2020 6th IEEE Conference on Network Softwarization (NetSoft), Virtual Conference, 29 June–3 July 2020;
pp. 209–217. [CrossRef]

77. Ochoa-Aday, L.; Cervelló-Pastor, C.; Fernández-Fernández, A. Self-healing and SDN: Bridging the gap. Digit. Commun. Netw.
2020, 6, 354–368. [CrossRef]

78. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. OpenFlow: Meeting Carrier-Grade Recovery Requirements.
Comput. Commun. 2013, 36, 656–665. [CrossRef]

79. Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. Automatic bootstrapping of OpenFlow networks. In Proceedings
of the 2013 19th IEEE Workshop on Local & Metropolitan Area Networks (LANMAN), Brussels, Belgium, 10–12 April 2013;
pp. 1–6. [CrossRef]

80. Tu, C.C.; Wang, P.W.; Chiueh, T.c. In-Band Control for an Ethernet-Based Software-Defined Network. In Proceedings of the
International Conference on Systems and Storage, SYSTOR 2014, Haifa, Israel, 10–12 June 2014; Association for Computing
Machinery: New York, NY, USA, 2014; pp. 1–11. [CrossRef]

81. Heise, P.; Geyer, F.; Obermaisser, R. Self-configuring deterministic network with in-band configuration channel. In Proceedings
of the 2017 Fourth International Conference on Software Defined Systems (SDS), Valencia, Spain, 8–11 May 2017; pp. 162–167.
[CrossRef]

82. Su, Y.L.; Wang, I.C.; Hsu, Y.T.; Wen, C.H.P. FASIC: A Fast-Recovery, Adaptively Spanning In-Band Control Plane in Software-
Defined Network. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8
December 2017; pp. 1–6. [CrossRef]

83. Bentstuen, O.I.; Flathagen, J. On Bootstrapping In-Band Control Channels in Software Defined Networks. In Proceedings of the
2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018;
pp. 1–6. [CrossRef]

84. Asadujjaman, A.S.M.; Rojas, E.; Alam, M.S.; Majumdar, S. Fast Control Channel Recovery for Resilient In-band OpenFlow
Networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC,
Canada, 25–29 June 2018; pp. 19–27. [CrossRef]

85. Lopez-Pajares, D.; Alvarez-Horcajo, J.; Rojas, E.; Asadujjaman, A.S.M.; Martinez-Yelmo, I. Amaru: Plug&Play Resilient In-Band
Control for SDN. IEEE Access 2019, 7, 123202–123218. [CrossRef]

86. Constantin, B.N. Desarrollo de una solución de encaminamiento para tráfico de control in-band en entornos SDN. Master’s
Thesis, Universidad de Alcalá, Escuela Politécnica Superior, Alcalá de Henares, Spain, 2020; pp. 1–162.

87. Sakic, E.; Avdic, M.; Van Bemten, A.; Kellerer, W. Automated Bootstrapping of A Fault-Resilient In-Band Control Plane. In
Proceedings of the Symposium on SDN Research, SOSR ’20, San Jose, CA, USA, 3 March 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 1–13. [CrossRef]

88. Silva Freitas, M.; Oliveira, R.; Molinos, D.; Melo, J.; Frosi Rosa, P.; de Oliveira Silva, F. ConForm: In-band Control Plane Formation
Protocol to SDN-Based Networks. In Proceedings of the 2020 International Conference on Information Networking (ICOIN),
Barcelona, Spain, 7–10 January 2020; pp. 574–579. [CrossRef]

https://doi.org/jt8q
http://dx.doi.org/jt8q (accessed on 31 January 2023)
http://dx.doi.org/10.1109/ACCESS.2018.2889868
http://dx.doi.org/10.1109/ACCESS.2019.2963475
http://dx.doi.org/10.1109/ICCCS52626.2021.9449244
http://dx.doi.org/10.1109/JSAC.2016.2615184
http://dx.doi.org/10.1145/3022227.3022334
http://dx.doi.org/10.1109/NETSOFT.2018.8460027
http://dx.doi.org/10.1145/3300061.3343396
http://dx.doi.org/10.1109/NetSoft48620.2020.9165380
http://dx.doi.org/10.1016/j.dcan.2019.08.008
http://dx.doi.org/10.1016/j.comcom.2012.09.011
http://dx.doi.org/10.1109/LANMAN.2013.6528283
http://dx.doi.org/10.1145/2611354.2611359
http://dx.doi.org/10.1109/SDS.2017.7939158
http://dx.doi.org/10.1109/GLOCOM.2017.8254760
http://dx.doi.org/10.1109/ICCW.2018.8403796
http://dx.doi.org/10.1109/NETSOFT.2018.8460079
http://dx.doi.org/10.1109/ACCESS.2019.2937528
http://dx.doi.org/10.1145/3373360.3380829
http://dx.doi.org/10.1109/ICOIN48656.2020.9016580


Electronics 2023, 12, 1265 23 of 24

89. Wu, F.; Tian, A. rXstp: A Topology Discovery Mechanism Based on Rapid Spanning Tree for SDN In-Band Control. In Proceedings
of the 2021 International Conference on Communications, Information System and Computer Engineering (CISCE), Beijing,
China, 14–16 May 2021; pp. 703–706. [CrossRef]

90. Li, C.Y.; Yen, L.H.; Chi, K.H.; Tseng, C.C. One-Pass In-Band Automatic Bootstrapping for OpenFlow Switches. IEEE Access 2021,
9, 153349–153359. [CrossRef]

91. Alvarez-Horcajo, J.; Martinez-Yelmo, I.; Rojas, E.; Carral, J.A.; Carrascal, D. ieHDDP: An Integrated Solution for Topology
Discovery and Automatic In-Band Control Channel Establishment for Hybrid SDN Environments. Symmetry 2022, 14, 756.
[CrossRef]

92. Wong, T.S.; Lee, S.S.W. Design of an In-Band Control Plane for Automatic Bootstrapping and Fast Failure Recovery in P4
Networks. IEEE Trans. Netw. Serv. Manag. 2023, in press. [CrossRef]

93. Oliveira, R.D.; Freitas, M.S.; Molinos, D.N.; Rosa, P.F.; Mesquita, D.G. ETSCP: Flexible SDN data plane configuration based
on bootstrapping of in-band control channels. In Proceedings of the 2021 IFIP/IEEE International Symposium on Integrated
Network Management (IM), Bordeaux, France, 17–21 May 2021; pp. 711–715.

94. Schiff, L.; Schmid, S.; Canini, M. Medieval: Towards A Self-Stabilizing, Plug & Play, In-Band SDN Control Network. In
Proceedings of the ACM Sigcomm Symposium on SDN Research (SOSR), Santa Clara, CA, USA, 17–18 June 2015.

95. Schiff, L.; Schmid, S.; Canini, M. Ground control to major faults: Towards a fault tolerant and adaptive SDN control network.
In Proceedings of the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop
(DSN-W), Toulouse, France, 28 June–1 July 2016; IEEE: New York, NY, USA, 2016; pp. 90–96. [CrossRef]

96. Schiff, L.; Schmid, S.; Kuznetsov, P. In-Band Synchronization for Distributed SDN Control Planes. SIGCOMM Comput. Commun.
Rev. 2016, 46, 37–43. [CrossRef]

97. Görkemli, B.; Parlakışık, A.M.; Civanlar, S.; Ulaş, A.; Tekalp, A.M. Dynamic management of control plane performance in
software-defined networks. In Proceedings of the 2016 IEEE NetSoft Conference and Workshops (NetSoft), Seoul, Korea, 6–10
June 2016; IEEE: New York, NY, USA, 2016; pp. 68–72.

98. Hark, R.; Rizk, A.; Richerzhagen, N.; Richerzhagen, B.; Steinmetz, R. Isolated in-band communication for distributed SDN
controllers. In Proceedings of the 2017 IFIP Networking Conference (IFIP Networking) and Workshops, Stockholm, Sweden,
12–15 June 2017; pp. 1–2. Available online:https://doi.org/jvb5 (accessed on 31 January 2023). [CrossRef]

99. Canini, M.; Salem, I.; Schiff, L.; Schiller, E.M.; Schmid, S. A Self-Organizing Distributed and In-Band SDN Control Plane. In
Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8
June 2017; pp. 2656–2657. [CrossRef]

100. Canini, M.; Salem, I.; Schiff, L.; Schiller, E.M.; Schmid, S. Renaissance: A Self-Stabilizing Distributed SDN Control Plane. In
Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6
July 2018; pp. 233–243. [CrossRef]

101. Chan, K.Y.; Chen, C.H.; Chen, Y.H.; Tsai, Y.J.; Lee, S.S.W.; Wu, C.S. Fast Failure Recovery for In-Band Controlled Multi-Controller
OpenFlow Networks. In Proceedings of the 2018 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 396–401. [CrossRef]

102. Holzmann, P.; Hecker, A.; Zitterbart, M. Towards a Distributed Routing Protocol for In-Band Control Channel with Elastic
Controller Clusters. InProceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13
December 2018; pp. 1–6. [CrossRef]

103. Canini, M.; Salem, I.; Schiff, L.; Schiller, E.M.; Schmid, S. Renaissance: A self-stabilizing distributed SDN control plane using
in-band communications. J. Comput. Syst. Sci. 2022, 127, 91–121. [CrossRef]

104. Tran, M. A Floodlight Extension for Supporting a Self-Stabilizing In-Band Control Plane for Software Defined Networking.
Master’s Thesis, Computer Science and Engineering, Chalmers Lindholmen, Gothenburg, Sweden, 2018.

105. Municio, E.; Balemans, N.; Latré, S.; Marquez-Barja, J. Leveraging Distributed Protocols for full End-to-End Softwarization in
IoT Networks. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC), Las
Vegas, NV, USA, 10–13 January 2020; pp. 1–6. [CrossRef]

106. Saeed, K.; Ullah, M.O. Toward Reliable Controller Placements in Software-Defined Network Using Constrained Multi-Objective
Optimization Technique. IEEE Access 2022, 10, 129865–129883. [CrossRef]

107. Wazirali, R.; Ahmad, R.; Alhiyari, S. SDN-openflow topology discovery: An overview of performance issues. Appl. Sci. 2021,
11, 6999. [CrossRef]

108. Zopellaro Soares, A.A.; Lucas Vieira, J.; Quincozes, S.E.; Ferreira, V.C.; Uchôa, L.M.; Lopes, Y.; Passos, D.; Fernandes, N.C.;
Monteiro Moraes, I.; Muchaluat-Saade, D.; et al. SDN-based teleprotection and control power systems: A study of available
controllers and their suitability. Int. J. Netw. Manag. 2021, 31, e2112. [CrossRef]

109. Amin, R.; Rojas, E.; Aqdus, A.; Ramzan, S.; Casillas-Perez, D.; Arco, J.M. A Survey on Machine Learning Techniques for Routing
Optimization in SDN. IEEE Access 2021, 9, 104582–104611. [CrossRef]

110. Chen, Y.R.; Rezapour, A.; Tzeng, W.G.; Tsai, S.C. RL-routing: An SDN routing algorithm based on deep reinforcement learning.
IEEE Trans. Netw. Sci. Eng. 2020, 7, 3185–3199. [CrossRef]

http://dx.doi.org/10.1109/CISCE52179.2021.9446027
http://dx.doi.org/10.1109/ACCESS.2021.3125716
http://dx.doi.org/10.3390/sym14040756
http://dx.doi.org/10.1109/TNSM.2023.3242222
http://dx.doi.org/10.1109/DSN-W.2016.48
http://dx.doi.org/10.1145/2875951.2875957
https://doi.org/jvb5
http://dx.doi.org/jvb5 (accessed on 31 January 2023)
http://dx.doi.org/10.1109/ICDCS.2017.328
http://dx.doi.org/10.1109/ICDCS.2018.00032
http://dx.doi.org/10.1109/ICTC.2018.8539715
http://dx.doi.org/10.1109/GLOCOMW.2018.8644346
http://dx.doi.org/10.1016/j.jcss.2022.02.001
http://dx.doi.org/10.1109/CCNC46108.2020.9045233
http://dx.doi.org/10.1109/ACCESS.2022.3228039
http://dx.doi.org/10.3390/app11156999
http://dx.doi.org/10.1002/nem.2112
http://dx.doi.org/10.1109/ACCESS.2021.3099092
http://dx.doi.org/10.1109/TNSE.2020.3017751


Electronics 2023, 12, 1265 24 of 24

111. Ouamri, M.A.; Barb, G.; Singh, D.; Alexa, F. Load Balancing Optimization in Software-Defined Wide Area Networking (SD-WAN)
using Deep Reinforcement Learning. In Proceedings of the 2022 International Symposium on Electronics and Telecommunications
(ISETC), Timisoara, Romania, 10–11 November 2022; IEEE: New York, NY, USA, 2022; pp. 1–6.

112. Vilalta, R.; Muñoz, R.; Casellas, R.; Martínez, R.; López, V.; de Dios, O.G.; Pastor, A.; Katsikas, G.P.; Klaedtke, F.; Monti, P.; et al.
TeraFlow: Secured Autonomic Traffic Management for a Tera of SDN flows. In Proceedings of the 2021 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; pp. 377–382. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/EuCNC/6GSummit51104.2021.9482469

	Introduction
	Related Work and Contribution of This Survey
	Survey Methodology and Statistics
	A Survey of In-Band SDN Control in SDN
	Preliminary Survey Overview and Classification
	Automatic Routing
	Fast Failure Recovery
	Network Bootstrapping
	Distributed Control
	Other Related Approaches

	Discussion: Research Trends and Future Challenges
	Conclusions
	References

