450,494 research outputs found

    Prototype Sistem Penetralisir Asap Rokok Menggunakan Filter Karbon Aktif Tempurung Kelapa Berbasis Internet Of Things (IOT)

    Get PDF
    Berdasarkan pemantauan Greenpeace pada semester pertama 2016 tercatat tingkat polusi udara Jakarta dalam kondisi sangat mengkhawatirkan yaitu berada pada level 45 μg/m3, atau 4,5 kali dari ambang batas ketetapan WHO. Dari  permasalahan tersebut maka penulis terinspirasi merancang Prototype  Sistem Penetralisir Asap Rokok Menggunakan Filter Karbon Aktif Tempurung Kelapa Berbasis Internet Of Things (IoT) dengan menggunakan microcontroller NodeMCU ESP32. Tujuan dari penelitian ini adalah Memonitoring dan menganalisa Sistem Penetralisir Asap Rokok berbasis Internet Of Things dan menguji karbon aktif Tempurung Kelapa dengan menggunakan Microcontroller NodeMCU ESP32. Dari hasil pengujian dan pengukuran dari alat ini, yang dilakukan sebanyak dua kali dengan volume karbon aktif 400 gram dan 500 gram, ditemukan bahwa, semakin banyak volume karbon aktif yang digunakan maka proses penetralisiran akan semakin cepat. Karbon aktif dengan volume 400 gram, asap rokok dapat dinetralisir selama 11 sampai 14 menit, sedangkan dengan volume karbon aktif 500 gram waktu yang dibutuhkan adalah 7 sampai 8 menit. 

    A Fast and Scalable Authentication Scheme in IoT for Smart Living

    Full text link
    Numerous resource-limited smart objects (SOs) such as sensors and actuators have been widely deployed in smart environments, opening new attack surfaces to intruders. The severe security flaw discourages the adoption of the Internet of things in smart living. In this paper, we leverage fog computing and microservice to push certificate authority (CA) functions to the proximity of data sources. Through which, we can minimize attack surfaces and authentication latency, and result in a fast and scalable scheme in authenticating a large volume of resource-limited devices. Then, we design lightweight protocols to implement the scheme, where both a high level of security and low computation workloads on SO (no bilinear pairing requirement on the client-side) is accomplished. Evaluations demonstrate the efficiency and effectiveness of our scheme in handling authentication and registration for a large number of nodes, meanwhile protecting them against various threats to smart living. Finally, we showcase the success of computing intelligence movement towards data sources in handling complicated services.Comment: 15 pages, 7 figures, 3 tables, to appear in FGC

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    Integration of heterogeneous devices and communication models via the cloud in the constrained internet of things

    Get PDF
    As the Internet of Things continues to expand in the coming years, the need for services that span multiple IoT application domains will continue to increase in order to realize the efficiency gains promised by the IoT. Today, however, service developers looking to add value on top of existing IoT systems are faced with very heterogeneous devices and systems. These systems implement a wide variety of network connectivity options, protocols (proprietary or standards-based), and communication methods all of which are unknown to a service developer that is new to the IoT. Even within one IoT standard, a device typically has multiple options for communicating with others. In order to alleviate service developers from these concerns, this paper presents a cloud-based platform for integrating heterogeneous constrained IoT devices and communication models into services. Our evaluation shows that the impact of our approach on the operation of constrained devices is minimal while providing a tangible benefit in service integration of low-resource IoT devices. A proof of concept demonstrates the latter by means of a control and management dashboard for constrained devices that was implemented on top of the presented platform. The results of our work enable service developers to more easily implement and deploy services that span a wide variety of IoT application domains

    Challenges of Internet of Things and Big Data Integration

    Full text link
    The Internet of Things anticipates the conjunction of physical gadgets to the In-ternet and their access to wireless sensor data which makes it expedient to restrain the physical world. Big Data convergence has put multifarious new opportunities ahead of business ventures to get into a new market or enhance their operations in the current market. considering the existing techniques and technologies, it is probably safe to say that the best solution is to use big data tools to provide an analytical solution to the Internet of Things. Based on the current technology deployment and adoption trends, it is envisioned that the Internet of Things is the technology of the future, while to-day's real-world devices can provide real and valuable analytics, and people in the real world use many IoT devices. Despite all the advertisements that companies offer in connection with the Internet of Things, you as a liable consumer, have the right to be suspicious about IoT advertise-ments. The primary question is: What is the promise of the Internet of things con-cerning reality and what are the prospects for the future.Comment: Proceedings of the International Conference on International Conference on Emerging Technologies in Computing 2018 (iCETiC '18), 23rd -24th August, 2018, at London Metropolitan University, London, UK, Published by Springer-Verla

    Towards Run-Time Verification of Compositions in the Web of Things using Complex Event Processing

    Get PDF
    Following the vision of the Internet of Things, physical world entities are integrated into virtual world things. Things are expected to become active participants in business and social processes. Then, the Internet of Things could benefit from the Web Service architecture like today’s Web does, so Future ser-vice-oriented Internet things will offer their functionality via service-enabled in-terfaces. In previous work, we demonstrated the need of considering the behav-iour of things to develop applications in a more rigorous way, and we proposed a lightweight model for representing such behaviour. Our methodology relies on the service-oriented paradigm and extends the DPWS profile to specify the order with which things can receive messages. We also proposed a static verifi-cation technique to check whether a mashup of things respects the behaviour, specified at design-time, of the composed things. However, a change in the be-haviour of a thing may cause that some compositions do not fulfill its behaviour anymore. Moreover, given that a thing can receive requests from instances of different mashups at run-time, these requests could violate the behaviour of that thing, even though each mashup fulfills such behaviour, due to the change of state of the thing. To address these issues, we present a proposal based on me-diation techniques and complex event processing to detect and inhibit invalid invocations, so things only receive requests compatible with their behaviour.Work partially supported by projects TIN2008-05932, TIN2012-35669, CSD2007-0004 funded by Spanish Ministry MINECO and FEDER; P11-TIC-7659 funded by Andalusian Government; and Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tec
    corecore