
Towards Run-Time Verification of Compositions in the

Web of Things using Complex Event Processing

Javier Cubo
1
, Laura González

2
, Antonio Brogi

3
, Ernesto Pimentel

1
, Raúl Ruggia

2

1Department of Computer Science, University of Málaga, Spain

{cubo,ernesto}@lcc.uma.es
2Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Uruguay

{lauragon,ruggia}@fing.edu.uy
3Department of Computer Science, University of Pisa, Italy

brogi@di.unipi.it

Abstract. Following the vision of the Internet of Things, physical world entities

are integrated into virtual world things. Things are expected to become active

participants in business and social processes. Then, the Internet of Things could

benefit from the Web Service architecture like today’s Web does, so Future ser-

vice-oriented Internet things will offer their functionality via service-enabled in-

terfaces. In previous work, we demonstrated the need of considering the behav-

iour of things to develop applications in a more rigorous way, and we proposed

a lightweight model for representing such behaviour. Our methodology relies

on the service-oriented paradigm and extends the DPWS profile to specify the

order with which things can receive messages. We also proposed a static verifi-

cation technique to check whether a mashup of things respects the behaviour,

specified at design-time, of the composed things. However, a change in the be-

haviour of a thing may cause that some compositions do not fulfill its behaviour

anymore. Moreover, given that a thing can receive requests from instances of

different mashups at run-time, these requests could violate the behaviour of that

thing, even though each mashup fulfills such behaviour, due to the change of

state of the thing. To address these issues, we present a proposal based on me-

diation techniques and complex event processing to detect and inhibit invalid

invocations, so things only receive requests compatible with their behaviour.

Keywords: Composition, Mashup, Verification, Service-Oriented Things, Web

of Things, Internet of Things, Mediation Patterns, Complex Event Processing.

1 Introduction

Following the vision of the Internet of Things (IoT), physical world entities are inte-

grated into virtual world things. Things are expected to become active participants in

business, information and social processes. Future service-oriented Internet devices

will offer their functionality via service-enabled interfaces adopting the vision of the

Web of Things (WoT), inspired from the IoT, e.g., via SOAP-based Web Services or

RESTful APIs [1]. The IoT, including the mass of resource-constrained devices,

could benefit from the Web Service architecture like today’s Web does. Recent work

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62897824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:brogi@di.unipi.it

[2,3] has focused on applying the paradigm of Service-Oriented Architecture (SOA),

in particular Web Services standards, directly on devices. Applying SOA to net-

worked systems is a crucial solution to achieve reusability and interoperability of

heterogeneous and distributed things. Implementing Web Service standards on devic-

es presents several advantages in terms of integration by reducing the needs for gate-

ways and translation between the components. This would enable the direct orchestra-

tion of services running on devices with high-level enterprise services. Hence, the

goal is to provide the functionality of each thing as a Web Service in an interoperable

way that can be used by other entities such as enterprise applications or even other

devices. However, adapting a given device to SOA is not a trivial problem. Then, it is

required to implement efficiently the things, and many efforts are still needed to han-

dle the composition and interaction of things coming from diverse sources.

To address this issue, the new emergent OASIS standard Devices Profile for Web

Services (DPWS)
1
 has been designed as a set of guidelines based on WS-* specifica-

tions to provide interoperability among different devices and services in a networked

environment, e.g., a printer, a smartphone, a sensor or other new devices can detect

DPWS-enabled devices on a network. Some convincing points in favor of DPWS are

that it is an OASIS standard, it employs a Web Service mode being built on the stand-

ard W3C Web Service architecture (SOAP + WSDL + XML-Schema), and it is na-

tively integrated into from Windows Vista and 7. In DPWS, every device is abstracted

as a service where features of the device are exhibited as hosted services. DPWS is

lightweight, supports dynamic discovery in local networks, and can be used by or-

chestration or choreography standards, such as WSBPEL or WS-CDL. However, the

comparison between the important properties of reuse and research challenges of Web

Services shows a gap in the use of DPWS in the future focused on reusability [4]. For

example, business processes, context dependencies or quality factors have to get more

focus to increase the reuse of DPWS devices. Hence, some points in this sense have

been detected so that DPWS become more used and accepted in software engineering.

To develop Future Internet service-oriented applications and exploit correctly the

composition among things, it is crucial to define rigorous methodologies. These

methodologies should not only consider features as signature, eventing mechanisms,

security and discovery as it is currently done by DPWS, but also complex real world

integration, such as those involving complex business processes. In our previous work

[5], we detected the need to explicitly represent the (implicit) behaviours of things to

develop applications in a more rigorous way. Specifically, we promoted the usage of

WS-* technologies to specify service interfaces of things by extending the standard

DPWS with behavioural descriptions. The main purpose of this is to facilitate to de-

velopers the implementation of DPWS-compliant things (or devices) that host ser-

vices by considering their behaviour in terms of the (partial) order in which the ac-

tions visible at the interface level are performed. We consider this challenge is crucial

to control the behaviour of heterogeneous things during their compositions in highly

dynamic environments of the Future Internet. These compositions will allow the crea-

tion of new applications generated as mashups of things where some concerns have to

1 http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01

be handled, such as that the composition may violate the behaviour of the things (pro-

voking lock situations) and some of their features may change at run-time. We pro-

posed a static verification technique to check whether or not a composition or mashup

of things respects the behaviour of the composed things specified at design-time.

However, a change in the behaviour of a thing may cause that various composi-

tions do not fulfill its behaviour anymore. Although compositions could be redesigned

to comply with the new behavior, it would be appropriate to design run-time verifica-

tions techniques to react when this situation occurs. Moreover, given that a thing can

receive at run-time requests from instances of different mashups, these requests could

violate the behaviour of that thing, even though each mashup fulfills such behaviour,

because of the state’s change of the thing. This kind of situations cannot be detected

at design-time, so run-time mechanisms are required to become aware of it and act

accordingly. To address these issues, as main contribution, in this ongoing work, we

present a proposal based on mediation techniques and Complex Event Processing

(CEP) [6] to detect and inhibit invalid invocations, so that things only receive requests

compatible with their behaviour. Also, as a future plan, issues such as temporal re-

strictions or quality of services aspects could be managed using this proposal.

This paper is organized as follows. Section 2 introduces the background for our

work. In Section 3, we present our proposal in a nutshell to detect invalid invocations

at run-time during the composition of things. Section 4 briefly compares our approach

to related works. Finally, Section 5 outlines some conclusions and perspectives.

2 Background

This section presents background information on the technologies used in this work.

2.1 Behavioural Description of Things and Static Verification

As aforementioned, in [5] we motivated the necessity of extending DPWS to facilitate

the implementation of a device (or thing) as a full-service considering that its WSDL

description should specify not only signature, but also the behaviour with the order in

which input and output actions are performed while the networked system interacts

with its environment. To include this extension in the DPWS profile, our previous

proposal aimed to maintain a compromise between the DPWS-compliant incorporated

expressiveness and the scalability issues in a world composed by billions of resource-

constrained devices. We applied lightweight methodologies to develop things. The

proposal consists of promoting WS-* technologies to specify service interfaces of

things by adding the behaviour of things to the DPWS profile. In such a way, this

extended DPWS specification will facilitate to the developers (the user profile using

our proposal to specify the behaviour of things) the implementation of DPWS-

compliant things (or devices) that host services. The behavior of things will be taken

into account in terms of the order in which the actions visible at the interface level are

performed while the things are composed, by means of constraints or full-sequences.

- Constraints. When only a partial order of the behavior of things is required, we

propose to use three types of behavioural “constraints” to be added to the guidelines

(statements) exposed by DPWS: {bi}afterAll{ai}, {bi}afterSome{ai}, onlyO-

neOf{ai}, where {bi} and {ai} are actions of a service hosted in a device.

- Finite State Machines. In those cases where it is required to specify not only the

partial order, but also the ordered “full-sequence” among operations with the corre-

sponding states changes according to the messages execution, we propose to use Fi-

nite State Machines (FSMs) to represent the complex relationships between messages.

The explicit specification of the behaviour of things by means of constraints or

FSMs, is the foundation to develop behaviour-aware compositions of things. These

compositions will create applications generated in form of mashups with new func-

tionalities to be remotely accessed (e.g., as Software-as-a-Service, or Mashups-as-a-

Service). But it is required to check whether a composition of things fulfills or vio-

lates their behaviour, so we proposed a simple and efficient verification technique at

design-time. We defined a checker function to perform the static verification, analys-

ing traces and actions executed of the orchestration specified by the user, according to

a set of constraints and/or FSMs, both determining the behaviour of the things.

Example. In order to illustrate this model, we considered in [5] a complex real-world

example: an airport surveillance system composed by heterogeneous devices (a mo-

tion detector and a surveillance camera located in a specific area in the airport, and a

video device located in a control center) and people (using other devices) intercon-

nected. Here, for space reason, we only give an example of two possible constraints

which may be specified for determining the behavior of a service record control host-

ed in the device camera, with actions such as auth, move, record, or halt, as follows:

C1: {move, record} afterAll {auth}; C2: {halt} afterSome {move, record}

2.2 Complex Event Processing and Mediation Patterns

Complex Event Processing (CEP) refers to methods, techniques, and tools for pro-

cessing events while they occur. CEP allows deriving relevant higher-level events

(i.e. complex events) from a combination of lower-level events, in a timely fashion

and permanently [7]. To this end, event queries are continuously monitoring incoming

streams of simple events. The use of production rules is one of the approaches to im-

plement event queries [7]. CEP platforms provide support for various types of event

patterns, which allow specifying combinations of events.

We also review the integration and mediation solutions relevant for our proposal

[8,9,10]. Service virtualization patterns take an existing service and deploy a new

virtual service in a mediation platform [8]. The VETO pattern [9], which consists in

applying a sequence of mediation mechanisms: validate, enrich, transform and oper-

ate, is a frequently applied mediation pattern that can be used in conjunction with the

previous one. Event-driven integration patterns deal with distribution of events in real

time and integration with CEP engines. The event reactor pattern extends the previous

one by supporting a synchronous interaction with a CEP engine to check if the latest

event has triggered a complex event, so that a mediation flow can react to it [10].

3 Our Proposal in a Nutshell

This section presents the proposed approach, which has the goal of enabling the run-

time verification of behaviour-aware compositions of things.

3.1 General Description

The main idea of our proposal consists in processing invocations of services hosted in

devices through a mediation platform, in order to detect and block the invalid ones

using CEP techniques. In this way, devices only receive requests which are compati-

ble with their behaviour. Fig. 1 presents the general architecture of the proposal.

Mediation Platform

CEP Engine

Virtual Service 1

Virtual Service 2

Validate

Virtual Service Mediation Flow

Device 1
Rules

Device 2
Rules

Hosted
Services

Device 1

Mashup

peform operation
(e.g. printJob)

operation response
(e.g. jobId)

Service 1Operate

Hosted
Services

Device 2

Service 2

(1)

(2) (3)

(4) (5)

(6)(7)

(8)

Fig. 1. Overview of the General Architecture

Following the Virtual Services mediation pattern, hosted services are invoked

through virtual services deployed in the mediation platform (1). Virtual services con-

sist of a mediation flow, which is a simplification of the VETO pattern, and comprises

two mediation mechanisms: validate and operate. The validate mechanism synchro-

nously interacts with a CEP Engine (2), following the event reactor pattern, to check

if the invoked operation is invalid. If this is the case, a complex event is triggered (3)

and the invocation is blocked. Otherwise, the operate mechanism is executed (4)

which, in turn, invokes the target operation in the hosted service (5). Finally, the re-

sponse is returned to the invoking client (6), (7) and (8).

3.2 Detecting Invalid Invocations at Run-Time

In order to detect invalid invocations, the platform leverages CEP techniques. Con-

cretely, based on the specified behavior, by means of constraints (this work’s scope,

FSMs will be addressed further), of each device, a set of production rules is deployed

on the CEP Engine. In addition, when the platform receives an invocation a new

event, or fact, is generated and sent to the engine. These events and the deployed rules

constitute the basic elements used to trigger a complex event when an invalid invoca-

tion for a hosted service is received, allowing the platform to detect this situation.

Example. Considering the simple example introduced in Section 2.1, Table 1 presents

the production rules to be deployed for the hosted service record control. Note that

rules can be automatically generated based on the specified constraints.

Table 1. Rules for the Service Record Control with two Behavioural Contraints

Rule Name Rule Description Rule Specification Pseudo-code

overlaps If a mashup instance is

running, it detects if

 CONDITION:

an invocation for the service was received and

invocations to the service

from other instances were

received.

a mashup instance using the service was running

ACTION:

Trigger an “invalid invocation” event with description:

“Overlapping instances”

check-c1 It detects when a received

invocation violates the

constraint C1: {move,

record} afterAll

{auth}

 CONDITION:

an invocation for the service was received and

the invoked operation is “move” or “record” and

an “auth” operation was not received before for the mashup

instance

ACTION:

Trigger an “invalid invocation” event with description:

“Constraint C1 violated”

check-c2 It detects when a received

invocation violates the

constraint C2: {halt}

afterSome {move,

record}

 CONDITION:

an invocation for the service was received and
the invoked operation is “halt” and

a “move” operation or a “record” operation was not received

before for the mashup instance

ACTION:

Trigger an “invalid invocation” event with description:

“Constraint C2 violated”

There are several CEP engines in which this kind of rules can be deployed. In par-

ticular, Drools Fusion is the module responsible for enabling CEP capabilities within

the Drools platform
2
. Fig. 2 presents how a simplified version of the rule “check-c1”

can be specified in Drools Fusion, using the Drools Rule Language (DRL).

Fig. 2. Rule “check-c1” specified with the Drools Rule Language

4 Related Work

CEP and mediation techniques are being increasingly used for runtime monitoring,

verification and adaptation in service-oriented and event-based solutions.

In [11] the authors describe a general approach to deal with differences between

Web Services protocols, by using CEP to adapt their interactions and resolve their

conflicts. Compared to our approach, message consumption and transmission are

2 http://www.jboss.org/drools/

http://www.jboss.org/drools/

modeled as events, and the adaptation is specified using automata and deployed as

CEP adapters. In [12] an event-based approach to verify the compliance of the overall

sequence of inter-organizational choreography operations is presented. In this case,

each message received or sent by an organization is associated to an event and CEP is

used to verify whether the participating parties have performed their tasks according

to the control flow constructs of the choreography. And in [13] the authors propose an

integrated solution for run-time compliance governance in SOA, focusing on quality

of service, security and licensing issues. In a similar way to our proposal, this solution

uses CEP to monitor the compliance of business processes during their execution.

However, although these proposals leverage CEP and mediation techniques for run-

time verification, none of them focus neither in the field of the Web of Things nor in

verifying the compliance of invocations according the specified behaviour of services.

Nevertheless, recently, CEP techniques and mediation solutions have been applied

and considered relevant in the field of the Web of Things in a separate way.

As regards CEP applied to the things world, in [14] the authors propose a solution

to deal with imprecise timestamps and events order in this highly distributed context.

Also, in [15] a solution to solve the integration of heterogeneous event information

resources is proposed. However, none of these solutions uses CEP techniques for the

run-time verification of invocations. Mediation solutions have been also proposed in

the field of the Web of Things. In [16] a middleware infrastructure focused on ena-

bling an efficient collaboration between device-level services and enterprise applica-

tions is presented. In [17] the authors propose the concept of Gateway as a Service: a

cloud computing framework for the Web of Things, focused on integrating devices

into service compositions and business processes. Also, in [18] an integrated devel-

opment and runtime environment for the future internet is proposed, which include a

Light Service Bus to address the access to things considering their resource con-

straints and leveraging DPWS. All these proposals focus on using mediation capabili-

ties to enable the connectivity to heterogeneous things; but unlike our proposal, they

do not provide mechanisms to detect invalid invocations to things according their

behaviour. Therefore, to the best of our knowledge there is not any effort in the field

of the Web of Things that uses both CEP and mediation techniques jointly to address

the run-time verification of the behaviour of things.

5 Conclusions and Perspectives

We have briefly presented our ongoing work to detect and inhibit invalid invoca-

tions at run-time while things are composed, by using mediation techniques and CEP.

We complement our previous static verification mechanism, and we check at run-time

things only may receive requests compatible with their behavior. We have illustrated

our proposal generating production rules for a service with two behavioural con-

straints, and deploying them in a particular CEP engine. We are currently working on

applying, implementing, and deploying this proposal not only to create rules based on

constraints but also determined by FSMs. We also plan to extend the general architec-

ture with (i) a Discovery Proxy to discover services in a managed network, (ii) an

Integrated Developer Environment (IDE) as Mashup Editor to specify the orchestra-

tion corresponding to mashups, and (iii) a Mashups Execution Environment to deploy

the generated mashups. Furthermore, we could control other future issues related to

the behaviour including temporal restrictions, or quality of services (e.g., managing

the maximun number of invocations that a thing may receive) with this new approach.

In addition, as a long-term future work we are considering to study the inclusion of

some recovery strategy in case an invalid invocation occurs. We are also planning the

evaluation of potential performance issues in scenarios with many things interacting.

Acknowledgements

Work partially supported by projects TIN2008-05932, TIN2012-35669, CSD2007-0004 funded

by Spanish Ministry MINECO and FEDER; P11-TIC-7659 funded by Andalusian Government;

and Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech.

References

1. Guinard, D., Ion, I., Mayer, S.: In Search of an Internet of Things Service Architecture:

REST or WS-*? A Developers’ Perspective. In Proc. of MobiQuitous’11, volume 104 of

LNICST, pages 326–337. Springer (2012).

2. de Souza, L.M.S., et al.: Socrades: A Web Service Based Shop Floor Integration Infra-

structure. In Proc. of IoT’08, volume 4952 of LNCS, pages 50–67. Springer (2008).

3. F. Jammes and H. Smit. Service-Oriented Paradigms in Industrial Automation. IEEE

Trans. Ind. Informatics, 1(1):62–70 (2005).

4. M. Zinn et al.: Device Services as Reusable Units of Modelling in a Service-Oriented En-

vironment-An Analysis Case Study.In Proc. of ISIE’10,pages 1728–1735.IEEE CS (2010).

5. Cubo, J., Brogi, A., Pimentel, E.: Behaviour-Aware Compositions of Things. In Proc. of

iThings'12 in conjunction with GreenCom'12, pages 1–8. IEEE CS (2012).

6. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-

tributed Enterprise Systems. Addison-Wesley (2002).

7. Eckert, M., et al.: A CEP Babelfish: Languages for Complex Event Processing and Query-

ing Surveyed. Studies in Comp Intelligence, volume 347, pages 47–70. Springer (2011).

8. Wylie, H., Lambros, P.: Enterprise Connectivity Patterns: Implementing integration solu-

tions with IBM’s Enterprise Service Bus products. Accessible at IBM website.

9. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004).

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Addison-Wesley Professional (2003).

11. Taher, Y., et al.: Adaptation of Web Service Interactions using Complex Event Processing

patterns. In Proc. of ICSOC’11, volume 7084 of LNCS, pages. 601–609. Springer (2011).

12. Baouab, A., et al.: An Event-Driven Approach for Runtime Verification of Inter-

Organizational Choreographies. In Proc. of SCC’11, pages 640–647. IEEE CS (2011).

13. Birukou, A., et al.: An Integrated Solution for Runtime Compliance Governance in SOA.

In: Maglio, P.P., et al. (eds.) Service-Oriented Computing,pages 122–136. Springer (2010).

14. Fengjuan, W., et al.: The Research on Complex Event Processing Method of Internet of

Things. In Proc. of ICMTMA’13, pages 1219–1222 (2013).

15. Wang, W., Guo, D.: Towards Unified Heterogeneous Event Processing for the Internet of

Things. In Proc. of IOT’12, pages 84–91 (2012).

16. De Souza, et al.: SOCRADES: A Web Service based Shop Floor Integration Infrastructure.

In Proc. of IOT’08, pages 50–67. Springer (2008).

17. Wu, Z., et al.: Gateway as a Service: A Cloud Computing Framework for Web of Things.

In Proc. of ICT’12, pages 1–6 (2012).

18. Hamida, A.B., et al.: An Integrated Development and Runtime Environment for the Future

Internet. In: Álvarez, F., et al. (eds.) The Future Internet, pages 81–92. Springer (2012)

