2,000 research outputs found

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Internet Censorship: An Integrative Review of Technologies Employed to Limit Access to the Internet, Monitor User Actions, and their Effects on Culture

    Get PDF
    The following conducts an integrative review of the current state of Internet Censorship in China, Iran, and Russia, highlights common circumvention technologies (CTs), and analyzes the effects Internet Censorship has on cultures. The author spends a large majority of the paper delineating China’s Internet infrastructure and prevalent Internet Censorship Technologies/Techniques (ICTs), paying particular attention to how the ICTs function at a technical level. The author further analyzes the state of Internet Censorship in both Iran and Russia from a broader perspective to give a better understanding of Internet Censorship around the globe. The author also highlights specific CTs, explaining how they function at a technical level. Findings indicate that among all three nation-states, state control of Internet Service Providers is the backbone of Internet Censorship. Specifically, within China, it is discovered that the infrastructure functions as an Intranet, thereby creating a closed system. Further, BGP Hijacking, DNS Poisoning, and TCP RST attacks are analyzed to understand their use-case within China. It is found that Iran functions much like a weaker version of China in regards to ICTs, with the state seemingly using the ICT of Bandwidth Throttling rather consistently. Russia’s approach to Internet censorship, in stark contrast to Iran and China, is found to rely mostly on the legislative system and fear to implement censorship, though their technical level of ICT implementation grows daily. TOR, VPNs, and Proxy Servers are all analyzed and found to be robust CTs. Drawing primarily from the examples given throughout the paper, the author highlights the various effects of Internet Censorship on culture – noting that at its core, Internet Censorship destroys democracy

    Towards a Rigorous Methodology for Measuring Adoption of RPKI Route Validation and Filtering

    Full text link
    A proposal to improve routing security---Route Origin Authorization (ROA)---has been standardized. A ROA specifies which network is allowed to announce a set of Internet destinations. While some networks now specify ROAs, little is known about whether other networks check routes they receive against these ROAs, a process known as Route Origin Validation (ROV). Which networks blindly accept invalid routes? Which reject them outright? Which de-preference them if alternatives exist? Recent analysis attempts to use uncontrolled experiments to characterize ROV adoption by comparing valid routes and invalid routes. However, we argue that gaining a solid understanding of ROV adoption is impossible using currently available data sets and techniques. Our measurements suggest that, although some ISPs are not observed using invalid routes in uncontrolled experiments, they are actually using different routes for (non-security) traffic engineering purposes, without performing ROV. We conclude with a description of a controlled, verifiable methodology for measuring ROV and present three ASes that do implement ROV, confirmed by operators

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    An Adaptive Policy Management Approach to BGP Convergence

    Full text link
    The Border Gateway Protocol (BGP) is the current inter-domain routing protocol used to exchange reachability information between Autonomous Systems (ASes) in the Internet. BGP supports policy-based routing which allows each AS to independently adopt a set of local policies that specify which routes it accepts and advertises from/to other networks, as well as which route it prefers when more than one route becomes available. However, independently chosen local policies may cause global conflicts, which result in protocol divergence. In this paper, we propose a new algorithm, called Adaptive Policy Management Scheme (APMS), to resolve policy conflicts in a distributed manner. Akin to distributed feedback control systems, each AS independently classifies the state of the network as either conflict-free or potentially-conflicting by observing its local history only (namely, route flaps). Based on the degree of measured conflicts (policy conflict-avoidance vs. -control mode), each AS dynamically adjusts its own path preferences—increasing its preference for observably stable paths over flapping paths. APMS also includes a mechanism to distinguish route flaps due to topology changes, so as not to confuse them with those due to policy conflicts. A correctness and convergence analysis of APMS based on the substability property of chosen paths is presented. Implementation in the SSF network simulator is performed, and simulation results for different performance metrics are presented. The metrics capture the dynamic performance (in terms of instantaneous throughput, delay, routing load, etc.) of APMS and other competing solutions, thus exposing the often neglected aspects of performance.National Science Foundation (ANI-0095988, EIA-0202067, ITR ANI-0205294

    RAPTOR: Routing Attacks on Privacy in Tor

    Full text link
    The Tor network is a widely used system for anonymous communication. However, Tor is known to be vulnerable to attackers who can observe traffic at both ends of the communication path. In this paper, we show that prior attacks are just the tip of the iceberg. We present a suite of new attacks, called Raptor, that can be launched by Autonomous Systems (ASes) to compromise user anonymity. First, AS-level adversaries can exploit the asymmetric nature of Internet routing to increase the chance of observing at least one direction of user traffic at both ends of the communication. Second, AS-level adversaries can exploit natural churn in Internet routing to lie on the BGP paths for more users over time. Third, strategic adversaries can manipulate Internet routing via BGP hijacks (to discover the users using specific Tor guard nodes) and interceptions (to perform traffic analysis). We demonstrate the feasibility of Raptor attacks by analyzing historical BGP data and Traceroute data as well as performing real-world attacks on the live Tor network, while ensuring that we do not harm real users. In addition, we outline the design of two monitoring frameworks to counter these attacks: BGP monitoring to detect control-plane attacks, and Traceroute monitoring to detect data-plane anomalies. Overall, our work motivates the design of anonymity systems that are aware of the dynamics of Internet routing

    Multi-homing tunnel broker

    Get PDF
    A proper support for communications has to provide fault tolerance capabilities such as the preservation of established connections in case of failures. Multihoming addresses this issue, but the currently available solution based in massive BGP route injection presents serious scalability limitations, since it contributes to the exponential growth of the BGP table size. An alternative solution based on the configuration of tunnels between the multihomed site exit routers and the ISP border routers has been proposed for IPv6 in RFC 3178. However, the amount of manual configuration imposed by this solution on the ISP side prevents its wide adoption. In particular, this solution requires at the ISP the manual configuration of a tunnel endpoint per each multihomed client that it serves. We present a multihoming tunnel broker (MHTB) that provides automatic creation of the tunnel endpoint at the ISP side.This work was supported by the SAM (Advanced Servers with Mobility)project, funded by the Spanish National research and Development Programme as TIC2002-04531-C04-03.Publicad

    End-Site Routing Support for IPv6 Multihoming

    Get PDF
    Multihoming is currently widely used to provide fault tolerance and traffic engineering capabilities. It is expected that, as telecommunication costs decrease, its adoption will become more and more prevalent. Current multihoming support is not designed to scale up to the expected number of multihomed sites, so alternative solutions are required, especially for IPv6. In order to preserve interdomain routing scalability, the new multihoming solution has to be compatible with Provider Aggregatable addressing. However, such addressing scheme imposes the configuration of multiple prefixes in multihomed sites, which in turn causes several operational difficulties within those sites that may even result in communication failures when all the ISPs are working properly. In this paper we propose the adoption of Source Address Dependent routing within the multihomed site to overcome the identified difficulties.Publicad
    • …
    corecore