39 research outputs found

    Channel Access Management in Data Intensive Sensor Networks

    Get PDF
    There are considerable challenges for channel access in Data Intensive Sensor Networks - DISN, supporting Data Intensive Applications like Structural Health Monitoring. As the data load increases, considerable degradation of the key performance parameters of such sensor networks is observed. Successful packet delivery ratio drops due to frequent collisions and retransmissions. The data glut results in increased latency and energy consumption overall. With the considerable limitations on sensor node resources like battery power, this implies that excessive transmissions in response to sensor queries can lead to premature network death. After a certain load threshold the performance characteristics of traditional WSNs become unacceptable. Research work indicates that successful packet delivery ratio in 802.15.4 networks can drop from 95% to 55% as the offered network load increases from 1 packet/sec to 10 packets/sec. This result in conjunction with the fact that it is common for sensors in an SHM system to generate 6-8 packets/sec of vibration data makes it important to design appropriate channel access schemes for such data intensive applications.In this work, we address the problem of significant performance degradation in a special-purpose DISN. Our specific focus is on the medium access control layer since it gives a fine-grained control on managing channel access and reducing energy waste. The goal of this dissertation is to design and evaluate a suite of channel access schemes that ensure graceful performance degradation in special-purpose DISNs as the network traffic load increases.First, we present a case study that investigates two distinct MAC proposals based on random access and scheduling access. The results of the case study provide the motivation to develop hybrid access schemes. Next, we introduce novel hybrid channel access protocols for DISNs ranging from a simple randomized transmission scheme that is robust under channel and topology dynamics to one that utilizes limited topological information about neighboring sensors to minimize collisions and energy waste. The protocols combine randomized transmission with heuristic scheduling to alleviate network performance degradation due to excessive collisions and retransmissions. We then propose a grid-based access scheduling protocol for a mobile DISN that is scalable and decentralized. The grid-based protocol efficiently handles sensor mobility with acceptable data loss and limited overhead. Finally, we extend the randomized transmission protocol from the hybrid approaches to develop an adaptable probability-based data transmission method. This work combines probabilistic transmission with heuristics, i.e., Latin Squares and a grid network, to tune transmission probabilities of sensors, thus meeting specific performance objectives in DISNs. We perform analytical evaluations and run simulation-based examinations to test all of the proposed protocols

    Efficient Information Access in Data-Intensive Sensor Networks

    Get PDF
    Recent advances in wireless communications and microelectronics have enabled wide deployment of smart sensor networks. Such networks naturally apply to a broad range of applications that involve system monitoring and information tracking (e.g., fine-grained weather/environmental monitoring, structural health monitoring, urban-scale traffic or parking monitoring, gunshot detection, monitoring volcanic eruptions, measuring rate of melting glaciers, forest fire detection, emergency medical care, disaster response, airport security infrastructure, monitoring of children in metropolitan areas, product transition in warehouse networks etc.).Meanwhile, existing wireless sensor networks (WSNs) perform poorly when the applications have high bandwidth needs for data transmission and stringent delay constraints against the network communication. Such requirements are common for Data Intensive Sensor Networks (DISNs) implementing Mission-Critical Monitoring applications (MCM applications).We propose to enhance existing wireless network standards with flexible query optimization strategies that take into account network constraints and application-specific data delivery patterns in order to meet high performance requirements of MCM applications.In this respect, this dissertation has two major contributions: First, we have developed an algebraic framework called Data Transmission Algebra (DTA) for collision-aware concurrent data transmissions. Here, we have merged the serialization concept from the databases with the knowledge of wireless network characteristics. We have developed an optimizer that uses the DTA framework, and generates an optimal data transmission schedule with respect to latency, throughput, and energy usage. We have extended the DTA framework to handle location-based trust and sensor mobility. We improved DTA scalability with Whirlpool data delivery mechanism, which takes advantage of partitioning of the network. Second, we propose relaxed optimization strategy and develop an adaptive approach to deliver data in data-intensive wireless sensor networks. In particular, we have shown that local actions at nodes help network to adapt in worse network conditions and perform better. We show that local decisions at the nodes can converge towards desirable global network properties e.g.,high packet success ratio for the network. We have also developed a network monitoring tool to assess the state and dynamic convergence of the WSN, and force it towards better performance

    A bio-inspired scheduling scheme for wireless sensor networks

    Get PDF
    Author name used in this publication: Chi K. TseAuthor name used in this publication: Francis C. M. LauRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    An FPGA implementation of an adaptive data reduction technique for wireless sensor networks

    Get PDF
    Wireless sensor networking (WSN) is an emerging technology that has a wide range of potential applications including environment monitoring, surveillance, medical systems, and robotic exploration. These networks consist of large numbers of distributed nodes that organize themselves into a multihop wireless network. Each node is equipped with one or more sensors, embedded processors, and low- power radios, and is normally battery operated. Reporting constant measurement updates incurs high communication costs for each individual node, resulting in a significant communication overhead and energy consumption. A solution to reduce power requirements is to select, among all data produced by the sensor network, a subset of sensor readings that is relayed to the user such that the original observation data can be reconstructed within some user-defined accuracy. This paper describes the implementation of an adaptive data reduction algorithm for WSN, on a Xilinx Spartan-3E FPGA. A feasibility study is carried out to determine the benefits of this solution.peer-reviewe

    Veröffentlichungen und VortrĂ€ge 2007 der Mitglieder der FakultĂ€t fĂŒr Informatik

    Get PDF

    A Bio-Inspired Scheduling Scheme for Wireless Sensor Networks

    Full text link
    Sensor networks with a large amount of sensor nodes usually have high redundancy in sensing coverage. The network lifetime can be further extended by proper scheduling and putting unnecessary sensor nodes into sleep mode. In this paper a bio-inspired scheduling scheme is proposed. The proposed scheme is a kind of adaptive "selective on-off" scheduling scheme which uses only local information for making scheduling decisions. The scheme is evaluated in terms of target 3-coverage hit-rate, averaged detection delay, and energy consumption per successful target detection. Simulation results show that our proposed scheme can reduce energy consumption by as much as 2/3 when comparing with other generic scheduling schemes while maintaining the detection delay and target hit-rate at a comparable level. Optimization of the network lifetime and other performances is possible by adjusting some parameters.Department of Electronic and Information EngineeringAuthor name used in this publication: Chi K. TseAuthor name used in this publication: Francis C. M. LauRefereed conference pape

    Power efficiency through tuple ranking in wireless sensor network monitoring

    Get PDF
    In this paper, we present an innovative framework for efficiently monitoring Wireless Sensor Networks (WSNs). Our framework, coined KSpot, utilizes a novel top-k query processing algorithm we developed, in conjunction with the concept of in-network views, in order to minimize the cost of query execution. For ease of exposition, consider a set of sensors acquiring data from their environment at a given time instance. The generated information can conceptually be thought as a horizontally fragmented base relation R. Furthermore, the results to a user-defined query Q, registered at some sink point, can conceptually be thought as a view V . Maintaining consistency between V and R is very expensive in terms of communication and energy. Thus, KSpot focuses on a subset Vâ€Č (⊆ V ) that unveils only the k highest-ranked answers at the sink, for some user defined parameter k. To illustrate the efficiency of our framework, we have implemented a real system in nesC, which combines the traditional advantages of declarative acquisition frameworks, like TinyDB, with the ideas presented in this work. Extensive real-world testing and experimentation with traces from University of California-Berkeley, the University of Washington and Intel Research Berkeley, show that KSpot provides an up to 66% of energy savings compared to TinyDB, minimizes both the size and number of packets transmitted over the network (up to 77%), and prolongs the longevity of a WSN deployment to new scales

    Positioning and Scheduling of Wireless Sensor Networks - Models, Complexity, and Scalable Algorithms

    Get PDF
    corecore