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Abstract 

 
Wireless sensor networking (WSN) is an 

emerging technology that has a wide range of 

potential applications including environment 

monitoring, surveillance, medical systems, and 

robotic exploration. These networks consist of 

large numbers of distributed nodes that 

organize themselves into a multihop wireless 

network. Each node is equipped with one or 

more sensors, embedded processors, and low-

power radios, and is normally battery 

operated. Reporting constant measurement 

updates incurs high communication costs for 

each individual node, resulting in a significant 

communication overhead and energy 

consumption. A solution to reduce power 

requirements is to select, among all data 

produced by the sensor network, a subset of 

sensor readings that is relayed to the user such 

that the original observation data can be 

reconstructed within some user-defined 

accuracy. 

 

This paper describes the implementation of an 

adaptive data reduction algorithm for WSN, on 

a Xilinx Spartan-3E FPGA. A feasibility study 

is carried out to determine the benefits of this 

solution. 

 
Index Terms 

 
Wireless Sensor Network (WSN), Power 

Reduction Technique, Field Programmable 

Gate Array (FPGA).   
 
 

1. Introduction 

 

Wireless Sensor Networks (WSNs) consist of a 
number of spatially distributed, autonomous 
sensor nodes equipped with sensing, data 
processing and communications capabilities 
for monitoring purposes. Since these nodes are 
battery powered they have a limited supply of 
energy. However, most WSN applications, for 
example habitat monitoring and traffic control, 
require very long periods of operation with 
minimum or no human intervention. The  

 
 
 
 
 
lifetime of a WSN heavily relies on the 
existence of power efficient algorithms for the 
acquisition, aggregation and transmission of 
sensor readings [1]. Communicating over the 
radio is the most energy demanding factor. 
Hence a lot of research is currently underway 
to develop efficient energy conservation and 
management techniques. 
 
The main challenges related to WSN 
implementation are the following [2]: 
(1) Energy Conservation – Sensor nodes are 
battery powered, and therefore contain a 
limited supply of energy. Moreover the sensor 
nodes are getting smaller in size, lowering the 
capacity of the battery even more. Despite this 
scarcity of energy, the sensor network is 
expected to operate for a relatively long time. 
Replacing batteries is most often an impossible 
task, hence one of the primary design goals is 
to use this limited amount of energy as 
efficiently as possible. 
 
(2) Operation in hostile environments and 

fault tolerance – In extreme conditions sensor 
nodes must be able to endure harsh 
environments, thus the protocols for network 
operation should be resilient to sensor faults 
which can be considered a relatively likely 
event. 
 
(3) Hardware limitations – The cost of a 
sensor network depends on the amount of 
hardware each sensor node contains. Hence 
complex hardware should be avoided as this 
will increase the cost of a sensor network and 
its up keeping.  
 
The sensor node must be inexpensive such that 
if it fails, due to insufficient energy or physical 
damage, it would be more feasible to discard 
that node rather than replacing its battery pack 
on site. It must be appreciated that most of the 
WSN applications require that they work in 
harsh and hostile environments which are 
inaccessible to humans.   
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The aim of a data reduction algorithm is to 
drastically reduce the amount of reportings 
done by a sensor node without imposing any 
hardware constraints which may lead to 
expensive nodes. Moreover the hardware 
implementing the algorithm must consume a 
minimal amount of power. The size of 
hardware determines the cost of the sensor 
node and the power consumption. Therefore 
the algorithm must be small and simple, yet 
effective and robust. 
 
The data reduction employed was proposed by 
Santini et al. in [3]. This approach exploits the 
Least Mean Squares (LMS) adaptive 
algorithm. This algorithm is used since it 
provides an important trade-off between 
complexity and convergence time. It is very 
simple and it requires a few computations and 
a small memory footprint. However it provides 
excellent performance. Moreover, this 
approach does not require a priori knowledge 
or statistical modelling of the observed signals. 
These features make this algorithm versatile 
and robust to a variety of real-world 
phenomena. Furthermore, this approach does 
not require nodes to be assisted by a central 
entity since no global model parameters need 
to be defined. Therefore, this scheme can be 
applied to any network topology (example: star 
network, clustered network or tree networks) 
without undergoing any modifications.  
 
This paper first discusses the theory behind the 
data reduction algorithm. In section 3 a 
description of the implementation is given 
while section 4 displays the results obtained. 
Finally section 5 gives the conclusions made 
from the results obtained. 
 
 
2. Theory 
 
2.1. Introduction to Adaptive Filters 
 
Adaptive filters are typically used in 
applications where the statistical 
characteristics of the signals to be filtered are 
either unknown a priori or are slowly time-
variant (non-stationary signals) [3]. The 
generic structure of an adaptive filter is shown 
in figure 1. 
 
 
 
 
 
 
 
 

A linear adaptive filter takes at each step k a 
sample x[k] of the input sample x and 
computes the filter output y[k] as: 
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The output sample y[k] is a linear combination 
of the last N samples of the input signal x. 
Each input signal is weighted by the respective 
filter coefficient wi[k]. The output signal y[k] 
is then compared to the reference signal d[k], 
which is the desired signal the filter tries to 
adapt to. The error e[k] is the difference 
between the filter output y[k] and the desired 
signal d[k]. 
                         ][][][ kykdke −=           (2) 

 
This error is fed into the adaptation algorithm, 
which accordingly updates the filter weights. 
The adaptation algorithm modifies the weights 
at each time step k with the aim to iteratively 
approach an optimal criterion which is 
typically the minimization of the Mean-
Square-Error (MSE) [3].   
 
2.2. Least Mean Squares Algorithm 

 

Many adaptive algorithms have been 
developed. The choice of one algorithm over 
another depends on the trade-off among 
different factors, including convergence speed, 
robustness, stability and computational 
complexity. One of the simplest, yet 
successful, adaptive algorithm is the Least-
Mean-Square algorithm (LMS). The advantage 
of the LMS is that despite its low 
computational overhead it provides very good 
performance in a wide spectrum of 
applications. The LMS algorithm is defined 
through three equations that are listed in table 
1 [3]. 
 

Filter output  y[k] = wt[k]x[k] 
Error signal  e[k] = d[k] – y[k] 

Weights adaptation  w[k+1] = w[k] + µx[k]e[k] 

 
 
where w[k] and x[k] denote N x 1 column 
vectors: 
 
          w[k] = [w1[k], w2[k], …., wN[k]]T      (3) 
 
  x[k] = [x[k - 1], x[k - 2], ...., x[k - N]]T       (4) 
 
Parameter µ is the step-size which tunes the 
convergence speed of the algorithm. 
 
2.3. Prediction Filter 

 
The LMS algorithm can be used to perform 
prediction when the general filter structure in 

Figure 1. General structure of Adaptive Filter [3]. 

Table 1.  LMS-Algorithm 
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figure 1 is modified to obtain the predictive 
structure of figure 2 [3]. 
 
 
 
 
 
 
 
 
As figure 2 illustrates, the present input value 
x[k] is delayed by one step and is used as the 
reference signal d[k]. The filter computes an 

estimation ][
^

kx  of the input signal at the step 

k, as a linear combination of the previous N 
readings: 
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The prediction error, e[k], is then computed 
and fed back to adapt the filter weights. The 
adaptation process depends on two parameters: 
the step-size µ and the filter order N. Step-size 
µ tunes the convergence speed whilst filter 
order N is a measure of the computational load 
and memory size of the filter. From equations 
3 to 5 it is straightforward to realize that the 
LMS algorithm requires 2N + 1 multiplications 
and 2N additions per iteration. Therefore in 
order to keep the computational load and 
memory requirements low, the number of 
weights N must be kept as low as possible.  
 
 
3. Implementation 
 
3.1 Prediction – Based Monitoring 

Figure 3 illustrates two sensor nodes: a data 
source (A) and a data sink (B).  Data source 
(A) holds a stream of sensor data, {x [k]}, that 
has to be transmitted to data sink (B). A 
minimal error budget (accuracy) emax is given 
and known by both the source and the sink, 
such that the sink requires to know a value in 
the range x[k] ± emax rather than the exact 
value x[k]. 
 
 
 
 
 
 
 
Instead of transmitting the complete data 
stream {x[k]} from source to sink, the data 
reduction algorithm selects a subset of sensor 
readings that is transmitted to the sink, such 
that the original observation data, {x[k]}, can 
be reproduced within the given accuracy. 

The data reduction is achieved by introducing 
identical predictive filters (shown in Figure 2) 
both in the source and in the sink. The 
prediction filter produces an estimate of the 
next sensor reading in the data stream. This 
estimate depends on the previous sensor 
readings and on the adaptation weights which 
the LMS algorithm calculates from the 
resultant errors. Both the sensor node and the 
sink apply the same prediction algorithm, 
hence computing the same prediction of the 
upcoming reading. 
 
Since the sensor node holds the actual sensor 
value, it is able to compute the prediction error 
and compare it with the user-defined error 
threshold emax. The sensor node only reports 
the actual value to the sink node when the 
threshold is exceeded.  Otherwise, the sensor 
node does not transmit its reading. The sink 
interprets the missing reporting as a 
confirmation that the predicted sensor value 
lies within the error budget. Therefore it 
includes this value in its memory instead of the 
actual reading.  Similarly, the sensor node 
discards the real measurement and also stores 
the predicted value. This scheme ensures that 
at any time instant k, both the sensor node and 
the sink node share the same knowledge of the 
observed physical phenomenon. 
 
3.2 Data Reduction using the LMS 

Algorithm 

 

The LMS algorithm is used for implementing 
the dual prediction scheme that was described 
in the previous section. This adaptive 
algorithm significantly reduces the amount of 
data that a sensor node is required to report to 
the sink node, whilst guaranteeing the user-
defined error budget emax. The aim of this 
algorithm is to frequently switch the node’s 
operational mode from its normal mode to the 
stand-alone mode. In the latter mode the node 
does not need to report sensor readings to the 
sink. In order to be able to run the prediction 
algorithm, the node needs to go through an 
initialisation phase. These three states of node 
operation are described below.  
 
(1) Initialization mode: Before performing 
prediction, both the node and the sink must 
compute the step-size µ. This parameter is 
calculated using a set of sensor readings that 
the sensor node reports to the sink. To ensure 
convergence, the step-size µ must satisfy the 
following condition: 
 
                           

xE

1
0 ≤≤ µ
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Figure 2. Adaptive filter as a prediction filter [3]. 

A B 
{x[k]} {x[k]} ± emax 

Figure 3. Communication between Source A and 
Sink B 



where Ex is the mean input power computed 
as: 
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and M is the number of iterations used to train 
the filter. Since the input mean power Ex is 
time-varying, an approximation Ēx can be 
computed over the first M samples and used to 
compute the upper bound in inequality (6). It is 
practical to choose the step-size µ two orders 
of magnitude smaller than this bound. This 
guarantees the robustness of the filter. The 
filter length N is set to very small values that 
have proven to be efficient for the analyzed 
data sets. Once the initialization phase is 
complete, both the node and the sink will start 
performing prediction on the collected 
readings and operate in either normal or stand-
alone mode. 
 
(2) Normal mode: Whilst in this mode, both 
the sensor node and the sink use the last N 
readings to compute a prediction for the 
upcoming measurement, and update the set of 
filter coefficients w on the basis of the actual 
prediction error using equation (8). 
 

                w[k+1] = w[k] + µx[k]e[k]           (8) 
 
The initial value of the filter coefficients, w[0], 
is zero. It is imperative that both the prediction 
filter, located at the sensor node and the 
prediction filter located at the sink node start 
with the same initial weights.  This guarantees 
that both compute the same set of filter 
coefficients and thus, the same predictions, at 
each time instant k. As long as the prediction 
error exceeds the user-defined error budget 
emax, the node keeps working in normal mode, 
thus collecting and reporting its readings to the 
sink. Only when the prediction error drops 
below the threshold emax, does the node switch 
to stand-alone mode. Whilst the sensor node is 
in normal mode, the sink will let the prediction 
filter run over the received sensor readings, in 
order to update the filter weights w coherently 
with the node. 
 
(3) Stand-alone mode: Whilst in this state, the 
node keeps collecting data and computes the 
prediction at each time step. As long as the 
prediction error remains below the given 
threshold emax, the node discards the reading 

and feeds the filter with the prediction ][
^

kx  

instead of with the real measurement x[k]. This 
ensures that the state of the filter at the sensor 
node side remains consistent with the state of 
the filter at the sink side. During this mode the 

filter weights are not updated, thus saving half 
of the computational overhead. Once the 
sensor node observes that the prediction error 
exceeds the threshold emax, it will report the 
reading x[k] to the sink node and switch back 
to normal mode. While the sensor node 
operates in stand-alone mode, the sink, 
receiving no readings from the node, assumes 
that the predicted readings lie within x[k] ± 
emax and keeps running the prediction filter on 
these values. 
 
3.3. Implementation of the LMS Algorithm 

on FPGA 

The algorithm computes the prediction of the 
upcoming measurement. The prediction error 
is then computed and compared with the error 
budget. As long as the prediction error remains 
below the given threshold emax, the node 
discards the real sensor reading x[k] and feeds 
the filter with the prediction . The filter 
coefficients (weights) are only updated if the 
prediction error exceeds emax. The filter order 
(N) was set to 4, hence the computational cost 
of the LMS algorithm is 17 when the node 
operates in normal mode and 8 in stand-alone 
mode.  Moreover this algorithm requires nine 
memory registers: four 14-bit registers to store 
the filter coefficients, four 16-bit registers to 
store the last four sensor readings and one 16-
bit register to store the prediction error. The 
algorithm uses a 22x22 bit multiplier, a 16-bit 
adder and a 17-bit subtractor. These hardware 
blocks share the same data bus. The data is 
routed to the intended hardware by means of a 
multiplexer. Both the adder and the subtractor 
were implemented using Carry Look-ahead 
addition techniques. The multiplier was 
implemented using the embedded hardware 
multipliers. The FPGA that was used contains 
four 18-bit multipliers [4]. All the available 
multipliers were used to implement the 22x22 
bit multiplier. All the computations were 
carried out using two’s complement, fixed 
point arithmetic. The logic circuits of fixed 
point hardware are less complicated than those 
of floating point hardware. This means that 
fixed point hardware is smaller in size and 
consumes less power. Moreover fixed point 
calculations require less memory and less 
processor time to perform. In order to avoid 
overflow the fixed-point values were scaled 
after each computation. The step-size µ was set 
to a constant of 2-13 (1.2207 x 10-4). This 
fraction can be represented in binary using at 
least fourteen bits. The filter coefficients 
(weights) are represented in binary as 14-bit 
fractions, thus avoiding quantization effects. 
However the sensor reading contains an 
integer part which is eight bits. The LMS 



algorithm requires that sensor measurements 
are multiplied to weights and/or the constant µ. 
Since fixed point is used then twenty-two bits 
(eight bits for integer and fourteen bits for 
fraction) are required to perform the 
computations.    
 
 
4. Testing and Results 
 
The LMS-based data reduction strategy was 
tested on a set of real world data which is 
publicly available at [5]. Once every 31 
seconds, humidity, temperature, light and 
voltage values were collected from 54 
Mica2Dot sensor nodes [6] that were deployed 
in the Intel Berkley Research Lab [7] between 
February 28th and April 5th, 2004.  The 
temperature measurements of four sensor 
nodes, namely nodes 1, 11, 13, and 49 were 
used. Six thousand temperature sensor 
readings for each sensor node, reported 
between March 6th and March 9th, were applied 
to the data reduction algorithm. 
 
4.1. Determining Parameters for Data   

Reduction Algorithm  

 
By illustrating simulation examples, this 
section describes how the parameters namely 
the convergence speed µ and filter order N 
were chosen. 
 
4.1.1. Energy-Accuracy Trade-off 

 
Figure 4 illustrates the percentage of sensor 
readings that node 49 would need to report as 
the error budget emax increases. The parameters 
for filter order N and step-size µ were set to N 
= 4 and µ = 3.0518 x 10-5 respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is evident that when the error budget is large 
then less temperature readings are required to 
be reported to the base station. This implies 
that more energy is saved, hence increasing the 

node’s lifetime. However, as shown in figure 
5, energy is saved at the cost of lessening the 
degree of accuracy by which the base station 
can predict the node’s temperature 
measurement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1.2. Filter Order N 
 
No significant changes in the performances 
were observed when varying the number of 
filter weights from N = 4 to N = 10. Since the 
number of operations to be performed at each 
time step grows proportionately with N 
(computational cost per iteration of the LMS 
algorithm is 4N+1 when the node operates in 
normal mode and 2N in stand-alone mode), 
this value should be kept as small as possible. 
Moreover the size of the memory foot print is 
strongly related to the filter order. A filter 
order (N) of four was chosen for this project. 
Simulations have shown that the performance 
of the data reduction algorithm deteriorates 
when the filter order N increases. 
 
4.1.3. Step-size µ 
 
The step-size µ is a critical parameter since it 
tunes the convergence speed of the algorithm. 
Choosing a small µ implies fast convergence at 
the cost of transmitting more sensor readings. 
A larger µ reduces the convergence speed thus 
it takes longer for the predicted value to track 
the real measurement. However a larger µ 
reduces the percentage of reported sensor 
readings. If µ is too large the data reduction 
algorithm will become unstable. Figures 6 and 
7 show how the step-size µ affects the 
performance of the prediction algorithm.  
 
In terms of hardware design this parameter 
determines the size of the registers inside the 

Figure 4. Percentage of data transmitted against 
error budget emax for node 49. 

Figure 5. Predicted sensor readings when emax is 
set to 2.5ºC. The blue curve represents the 
prediction whilst the black curve represents the 
real measurement. 



FPGA. Fixed-point arithmetic is used to carry 
out the calculations. Hence this parameter 
creates a compromise between accuracy and 
area. Choosing a small µ will considerably 
increase the size of the hardware since it takes 
more bits to represent a fraction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In terms of IC manufacturing this signifies a 
rise in cost. Moreover a larger hardware 
increases the power consumption thus limiting 
the lifetime of the device. The data reduction 
algorithm was simulated with different step-
sizes. Table 2 shows the FPGA device 
utilization for two different step-sizes. The 
best compromise was obtained when the step-
size was set to 2-13 (1.2207 x 10-4). This entails 
that at least 14 bits are required to represent 
binary fractions. Therefore the total register 
size amounts to 22 bits (8 bits to hold the 
integer part and 14 bits to hold the fraction 
part). 
 

µ 

Hardware 

muliplier Slices 

Slice Flip 

Flops 

4 i/p 

LUTs 

2-13 22 bit 239 288 433 

2-15 24 bit 250 304 452 

 

4.2. Results 

 

When applied to a temperature monitoring 
system, the data reduction algorithm achieved 
a reduction in transmissions of more than 95% 
whilst ensuring an accuracy of 0.5 degree 
Celcius. 
 
4.3. Feasibility Study 
 
In order to physically test the performance of 
this technique, the algorithm was integrated 
into a sensor node working on a TDMA 
protocol. The sensor node was connected to a 
RF transceiver ER400TRS-02 by LPRS [8]. 
Two cases were considered, namely: 
 
(1) When the sensor node’s transceiver is 
always switched on and the node transmits all 
temperature measurements. The expected 
lifetime of a sensor node running on 2000mA-
hr battery-pack was calculated to be 95.2 hours 
(4 days). 
 
(2) When the data reduction algorithm is 
integrated into the sensor node. In this case the 
sensor node is expected to operate for more 
than 25 months. 
 
 
5. Conclusion 
 
This work has delved into an adaptive 
approach that sought to reduce significantly 
the amount of data that needs to be reported, 
whilst ensuring that the original observation 
data is reconstructed within a pre-specified 
accuracy. The results have shown that the 
method proposed manages to increase the 
network life time by 18,962.5 % when 
compared to an always on solution. This 
scheme necessitated an increase in size of the 
IC to contain the necessary hardware blocks 
that carry out the computations, hence 
increasing the cost of producing these smart 
sensor nodes. However, it is envisaged that in 
the longer term, the benefits will overweigh 
the initial costs, in terms of a longer life 
expectancy of the sensor nodes. 
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