
An FPGA Implementation of an Adaptive Data Reduction Technique

for Wireless Sensor Networks

Nicholas Paul Borg
Department of Communications and

 Computer Engineering

University of Malta
Email: nicky.borg@gmail.com

Abstract

Wireless sensor networking (WSN) is an

emerging technology that has a wide range of

potential applications including environment

monitoring, surveillance, medical systems, and

robotic exploration. These networks consist of

large numbers of distributed nodes that

organize themselves into a multihop wireless

network. Each node is equipped with one or

more sensors, embedded processors, and low-

power radios, and is normally battery

operated. Reporting constant measurement

updates incurs high communication costs for

each individual node, resulting in a significant

communication overhead and energy

consumption. A solution to reduce power

requirements is to select, among all data

produced by the sensor network, a subset of

sensor readings that is relayed to the user such

that the original observation data can be

reconstructed within some user-defined

accuracy.

This paper describes the implementation of an

adaptive data reduction algorithm for WSN, on

a Xilinx Spartan-3E FPGA. A feasibility study

is carried out to determine the benefits of this

solution.

Index Terms

Wireless Sensor Network (WSN), Power

Reduction Technique, Field Programmable

Gate Array (FPGA).

1. Introduction

Wireless Sensor Networks (WSNs) consist of a
number of spatially distributed, autonomous
sensor nodes equipped with sensing, data
processing and communications capabilities
for monitoring purposes. Since these nodes are
battery powered they have a limited supply of
energy. However, most WSN applications, for
example habitat monitoring and traffic control,
require very long periods of operation with
minimum or no human intervention. The

lifetime of a WSN heavily relies on the
existence of power efficient algorithms for the
acquisition, aggregation and transmission of
sensor readings [1]. Communicating over the
radio is the most energy demanding factor.
Hence a lot of research is currently underway
to develop efficient energy conservation and
management techniques.

The main challenges related to WSN
implementation are the following [2]:
(1) Energy Conservation – Sensor nodes are
battery powered, and therefore contain a
limited supply of energy. Moreover the sensor
nodes are getting smaller in size, lowering the
capacity of the battery even more. Despite this
scarcity of energy, the sensor network is
expected to operate for a relatively long time.
Replacing batteries is most often an impossible
task, hence one of the primary design goals is
to use this limited amount of energy as
efficiently as possible.

(2) Operation in hostile environments and

fault tolerance – In extreme conditions sensor
nodes must be able to endure harsh
environments, thus the protocols for network
operation should be resilient to sensor faults
which can be considered a relatively likely
event.

(3) Hardware limitations – The cost of a
sensor network depends on the amount of
hardware each sensor node contains. Hence
complex hardware should be avoided as this
will increase the cost of a sensor network and
its up keeping.

The sensor node must be inexpensive such that
if it fails, due to insufficient energy or physical
damage, it would be more feasible to discard
that node rather than replacing its battery pack
on site. It must be appreciated that most of the
WSN applications require that they work in
harsh and hostile environments which are
inaccessible to humans.

Dr. Carl James Debono
Department of Communications and

 Computer Engineering
University of Malta

Email: cjdebo@eng.um.edu.mt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/83021424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/220566249_Topology_Control_in_Wireless_Ad_Hoc_and_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==

The aim of a data reduction algorithm is to
drastically reduce the amount of reportings
done by a sensor node without imposing any
hardware constraints which may lead to
expensive nodes. Moreover the hardware
implementing the algorithm must consume a
minimal amount of power. The size of
hardware determines the cost of the sensor
node and the power consumption. Therefore
the algorithm must be small and simple, yet
effective and robust.

The data reduction employed was proposed by
Santini et al. in [3]. This approach exploits the
Least Mean Squares (LMS) adaptive
algorithm. This algorithm is used since it
provides an important trade-off between
complexity and convergence time. It is very
simple and it requires a few computations and
a small memory footprint. However it provides
excellent performance. Moreover, this
approach does not require a priori knowledge
or statistical modelling of the observed signals.
These features make this algorithm versatile
and robust to a variety of real-world
phenomena. Furthermore, this approach does
not require nodes to be assisted by a central
entity since no global model parameters need
to be defined. Therefore, this scheme can be
applied to any network topology (example: star
network, clustered network or tree networks)
without undergoing any modifications.

This paper first discusses the theory behind the
data reduction algorithm. In section 3 a
description of the implementation is given
while section 4 displays the results obtained.
Finally section 5 gives the conclusions made
from the results obtained.

2. Theory

2.1. Introduction to Adaptive Filters

Adaptive filters are typically used in
applications where the statistical
characteristics of the signals to be filtered are
either unknown a priori or are slowly time-
variant (non-stationary signals) [3]. The
generic structure of an adaptive filter is shown
in figure 1.

A linear adaptive filter takes at each step k a
sample x[k] of the input sample x and
computes the filter output y[k] as:

 ∑
−

=

+ −=
1

0
1][*][][

N

i

i ikxkwky (1)

The output sample y[k] is a linear combination
of the last N samples of the input signal x.
Each input signal is weighted by the respective
filter coefficient wi[k]. The output signal y[k]
is then compared to the reference signal d[k],
which is the desired signal the filter tries to
adapt to. The error e[k] is the difference
between the filter output y[k] and the desired
signal d[k].
][][][kykdke −= (2)

This error is fed into the adaptation algorithm,
which accordingly updates the filter weights.
The adaptation algorithm modifies the weights
at each time step k with the aim to iteratively
approach an optimal criterion which is
typically the minimization of the Mean-
Square-Error (MSE) [3].

2.2. Least Mean Squares Algorithm

Many adaptive algorithms have been
developed. The choice of one algorithm over
another depends on the trade-off among
different factors, including convergence speed,
robustness, stability and computational
complexity. One of the simplest, yet
successful, adaptive algorithm is the Least-
Mean-Square algorithm (LMS). The advantage
of the LMS is that despite its low
computational overhead it provides very good
performance in a wide spectrum of
applications. The LMS algorithm is defined
through three equations that are listed in table
1 [3].

Filter output y[k] = wt[k]x[k]
Error signal e[k] = d[k] – y[k]

Weights adaptation w[k+1] = w[k] + µx[k]e[k]

where w[k] and x[k] denote N x 1 column
vectors:

 w[k] = [w1[k], w2[k], …., wN[k]]T (3)

 x[k] = [x[k - 1], x[k - 2],, x[k - N]]T (4)

Parameter µ is the step-size which tunes the
convergence speed of the algorithm.

2.3. Prediction Filter

The LMS algorithm can be used to perform
prediction when the general filter structure in

Figure 1. General structure of Adaptive Filter [3].

Table 1. LMS-Algorithm

https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==

figure 1 is modified to obtain the predictive
structure of figure 2 [3].

As figure 2 illustrates, the present input value
x[k] is delayed by one step and is used as the
reference signal d[k]. The filter computes an

estimation][
^

kx of the input signal at the step

k, as a linear combination of the previous N
readings:

][*][][
1

^

ikxkwkx
N

i

i −=∑
=

 (5)

The prediction error, e[k], is then computed
and fed back to adapt the filter weights. The
adaptation process depends on two parameters:
the step-size µ and the filter order N. Step-size
µ tunes the convergence speed whilst filter
order N is a measure of the computational load
and memory size of the filter. From equations
3 to 5 it is straightforward to realize that the
LMS algorithm requires 2N + 1 multiplications
and 2N additions per iteration. Therefore in
order to keep the computational load and
memory requirements low, the number of
weights N must be kept as low as possible.

3. Implementation

3.1 Prediction – Based Monitoring

Figure 3 illustrates two sensor nodes: a data
source (A) and a data sink (B). Data source
(A) holds a stream of sensor data, {x [k]}, that
has to be transmitted to data sink (B). A
minimal error budget (accuracy) emax is given
and known by both the source and the sink,
such that the sink requires to know a value in
the range x[k] ± emax rather than the exact
value x[k].

Instead of transmitting the complete data
stream {x[k]} from source to sink, the data
reduction algorithm selects a subset of sensor
readings that is transmitted to the sink, such
that the original observation data, {x[k]}, can
be reproduced within the given accuracy.

The data reduction is achieved by introducing
identical predictive filters (shown in Figure 2)
both in the source and in the sink. The
prediction filter produces an estimate of the
next sensor reading in the data stream. This
estimate depends on the previous sensor
readings and on the adaptation weights which
the LMS algorithm calculates from the
resultant errors. Both the sensor node and the
sink apply the same prediction algorithm,
hence computing the same prediction of the
upcoming reading.

Since the sensor node holds the actual sensor
value, it is able to compute the prediction error
and compare it with the user-defined error
threshold emax. The sensor node only reports
the actual value to the sink node when the
threshold is exceeded. Otherwise, the sensor
node does not transmit its reading. The sink
interprets the missing reporting as a
confirmation that the predicted sensor value
lies within the error budget. Therefore it
includes this value in its memory instead of the
actual reading. Similarly, the sensor node
discards the real measurement and also stores
the predicted value. This scheme ensures that
at any time instant k, both the sensor node and
the sink node share the same knowledge of the
observed physical phenomenon.

3.2 Data Reduction using the LMS

Algorithm

The LMS algorithm is used for implementing
the dual prediction scheme that was described
in the previous section. This adaptive
algorithm significantly reduces the amount of
data that a sensor node is required to report to
the sink node, whilst guaranteeing the user-
defined error budget emax. The aim of this
algorithm is to frequently switch the node’s
operational mode from its normal mode to the
stand-alone mode. In the latter mode the node
does not need to report sensor readings to the
sink. In order to be able to run the prediction
algorithm, the node needs to go through an
initialisation phase. These three states of node
operation are described below.

(1) Initialization mode: Before performing
prediction, both the node and the sink must
compute the step-size µ. This parameter is
calculated using a set of sensor readings that
the sensor node reports to the sink. To ensure
convergence, the step-size µ must satisfy the
following condition:

xE

1
0 ≤≤ µ

 (6)

Figure 2. Adaptive filter as a prediction filter [3].

A B
{x[k]} {x[k]} ± emax

Figure 3. Communication between Source A and
Sink B

where Ex is the mean input power computed
as:

 ∑
=

=
M

k

x kx
M

E
1

2|][|
1 (7)

and M is the number of iterations used to train
the filter. Since the input mean power Ex is
time-varying, an approximation Ēx can be
computed over the first M samples and used to
compute the upper bound in inequality (6). It is
practical to choose the step-size µ two orders
of magnitude smaller than this bound. This
guarantees the robustness of the filter. The
filter length N is set to very small values that
have proven to be efficient for the analyzed
data sets. Once the initialization phase is
complete, both the node and the sink will start
performing prediction on the collected
readings and operate in either normal or stand-
alone mode.

(2) Normal mode: Whilst in this mode, both
the sensor node and the sink use the last N
readings to compute a prediction for the
upcoming measurement, and update the set of
filter coefficients w on the basis of the actual
prediction error using equation (8).

 w[k+1] = w[k] + µx[k]e[k] (8)

The initial value of the filter coefficients, w[0],
is zero. It is imperative that both the prediction
filter, located at the sensor node and the
prediction filter located at the sink node start
with the same initial weights. This guarantees
that both compute the same set of filter
coefficients and thus, the same predictions, at
each time instant k. As long as the prediction
error exceeds the user-defined error budget
emax, the node keeps working in normal mode,
thus collecting and reporting its readings to the
sink. Only when the prediction error drops
below the threshold emax, does the node switch
to stand-alone mode. Whilst the sensor node is
in normal mode, the sink will let the prediction
filter run over the received sensor readings, in
order to update the filter weights w coherently
with the node.

(3) Stand-alone mode: Whilst in this state, the
node keeps collecting data and computes the
prediction at each time step. As long as the
prediction error remains below the given
threshold emax, the node discards the reading

and feeds the filter with the prediction][
^

kx

instead of with the real measurement x[k]. This
ensures that the state of the filter at the sensor
node side remains consistent with the state of
the filter at the sink side. During this mode the

filter weights are not updated, thus saving half
of the computational overhead. Once the
sensor node observes that the prediction error
exceeds the threshold emax, it will report the
reading x[k] to the sink node and switch back
to normal mode. While the sensor node
operates in stand-alone mode, the sink,
receiving no readings from the node, assumes
that the predicted readings lie within x[k] ±
emax and keeps running the prediction filter on
these values.

3.3. Implementation of the LMS Algorithm

on FPGA

The algorithm computes the prediction of the
upcoming measurement. The prediction error
is then computed and compared with the error
budget. As long as the prediction error remains
below the given threshold emax, the node
discards the real sensor reading x[k] and feeds
the filter with the prediction . The filter
coefficients (weights) are only updated if the
prediction error exceeds emax. The filter order
(N) was set to 4, hence the computational cost
of the LMS algorithm is 17 when the node
operates in normal mode and 8 in stand-alone
mode. Moreover this algorithm requires nine
memory registers: four 14-bit registers to store
the filter coefficients, four 16-bit registers to
store the last four sensor readings and one 16-
bit register to store the prediction error. The
algorithm uses a 22x22 bit multiplier, a 16-bit
adder and a 17-bit subtractor. These hardware
blocks share the same data bus. The data is
routed to the intended hardware by means of a
multiplexer. Both the adder and the subtractor
were implemented using Carry Look-ahead
addition techniques. The multiplier was
implemented using the embedded hardware
multipliers. The FPGA that was used contains
four 18-bit multipliers [4]. All the available
multipliers were used to implement the 22x22
bit multiplier. All the computations were
carried out using two’s complement, fixed
point arithmetic. The logic circuits of fixed
point hardware are less complicated than those
of floating point hardware. This means that
fixed point hardware is smaller in size and
consumes less power. Moreover fixed point
calculations require less memory and less
processor time to perform. In order to avoid
overflow the fixed-point values were scaled
after each computation. The step-size µ was set
to a constant of 2-13 (1.2207 x 10-4). This
fraction can be represented in binary using at
least fourteen bits. The filter coefficients
(weights) are represented in binary as 14-bit
fractions, thus avoiding quantization effects.
However the sensor reading contains an
integer part which is eight bits. The LMS

algorithm requires that sensor measurements
are multiplied to weights and/or the constant µ.
Since fixed point is used then twenty-two bits
(eight bits for integer and fourteen bits for
fraction) are required to perform the
computations.

4. Testing and Results

The LMS-based data reduction strategy was
tested on a set of real world data which is
publicly available at [5]. Once every 31
seconds, humidity, temperature, light and
voltage values were collected from 54
Mica2Dot sensor nodes [6] that were deployed
in the Intel Berkley Research Lab [7] between
February 28th and April 5th, 2004. The
temperature measurements of four sensor
nodes, namely nodes 1, 11, 13, and 49 were
used. Six thousand temperature sensor
readings for each sensor node, reported
between March 6th and March 9th, were applied
to the data reduction algorithm.

4.1. Determining Parameters for Data

Reduction Algorithm

By illustrating simulation examples, this
section describes how the parameters namely
the convergence speed µ and filter order N
were chosen.

4.1.1. Energy-Accuracy Trade-off

Figure 4 illustrates the percentage of sensor
readings that node 49 would need to report as
the error budget emax increases. The parameters
for filter order N and step-size µ were set to N
= 4 and µ = 3.0518 x 10-5 respectively.

It is evident that when the error budget is large
then less temperature readings are required to
be reported to the base station. This implies
that more energy is saved, hence increasing the

node’s lifetime. However, as shown in figure
5, energy is saved at the cost of lessening the
degree of accuracy by which the base station
can predict the node’s temperature
measurement.

4.1.2. Filter Order N

No significant changes in the performances
were observed when varying the number of
filter weights from N = 4 to N = 10. Since the
number of operations to be performed at each
time step grows proportionately with N
(computational cost per iteration of the LMS
algorithm is 4N+1 when the node operates in
normal mode and 2N in stand-alone mode),
this value should be kept as small as possible.
Moreover the size of the memory foot print is
strongly related to the filter order. A filter
order (N) of four was chosen for this project.
Simulations have shown that the performance
of the data reduction algorithm deteriorates
when the filter order N increases.

4.1.3. Step-size µ

The step-size µ is a critical parameter since it
tunes the convergence speed of the algorithm.
Choosing a small µ implies fast convergence at
the cost of transmitting more sensor readings.
A larger µ reduces the convergence speed thus
it takes longer for the predicted value to track
the real measurement. However a larger µ
reduces the percentage of reported sensor
readings. If µ is too large the data reduction
algorithm will become unstable. Figures 6 and
7 show how the step-size µ affects the
performance of the prediction algorithm.

In terms of hardware design this parameter
determines the size of the registers inside the

Figure 4. Percentage of data transmitted against
error budget emax for node 49.

Figure 5. Predicted sensor readings when emax is
set to 2.5ºC. The blue curve represents the
prediction whilst the black curve represents the
real measurement.

FPGA. Fixed-point arithmetic is used to carry
out the calculations. Hence this parameter
creates a compromise between accuracy and
area. Choosing a small µ will considerably
increase the size of the hardware since it takes
more bits to represent a fraction.

In terms of IC manufacturing this signifies a
rise in cost. Moreover a larger hardware
increases the power consumption thus limiting
the lifetime of the device. The data reduction
algorithm was simulated with different step-
sizes. Table 2 shows the FPGA device
utilization for two different step-sizes. The
best compromise was obtained when the step-
size was set to 2-13 (1.2207 x 10-4). This entails
that at least 14 bits are required to represent
binary fractions. Therefore the total register
size amounts to 22 bits (8 bits to hold the
integer part and 14 bits to hold the fraction
part).

µ

Hardware

muliplier Slices

Slice Flip

Flops

4 i/p

LUTs

2-13 22 bit 239 288 433

2-15 24 bit 250 304 452

4.2. Results

When applied to a temperature monitoring
system, the data reduction algorithm achieved
a reduction in transmissions of more than 95%
whilst ensuring an accuracy of 0.5 degree
Celcius.

4.3. Feasibility Study

In order to physically test the performance of
this technique, the algorithm was integrated
into a sensor node working on a TDMA
protocol. The sensor node was connected to a
RF transceiver ER400TRS-02 by LPRS [8].
Two cases were considered, namely:

(1) When the sensor node’s transceiver is
always switched on and the node transmits all
temperature measurements. The expected
lifetime of a sensor node running on 2000mA-
hr battery-pack was calculated to be 95.2 hours
(4 days).

(2) When the data reduction algorithm is
integrated into the sensor node. In this case the
sensor node is expected to operate for more
than 25 months.

5. Conclusion

This work has delved into an adaptive
approach that sought to reduce significantly
the amount of data that needs to be reported,
whilst ensuring that the original observation
data is reconstructed within a pre-specified
accuracy. The results have shown that the
method proposed manages to increase the
network life time by 18,962.5 % when
compared to an always on solution. This
scheme necessitated an increase in size of the
IC to contain the necessary hardware blocks
that carry out the computations, hence
increasing the cost of producing these smart
sensor nodes. However, it is envisaged that in
the longer term, the benefits will overweigh
the initial costs, in terms of a longer life
expectancy of the sensor nodes.

6. References

[1] Demetrios Zeinalipour-Yazti, Panayiotis
Andreou, Panos K. Chrysanthis, George
Samaras, and Andreas Pitsillides: The

MicroPulse Framework for Adaptive Waking

Windows in Sensor Networks, International
Workshop on Data Intensive Sensor Networks
2007 (DISN'07), Mannheim, Germany, May
2007.(In conjunction with MDM'07).

A

B

Figure 6. Predicted sensor readings when µ is 2-13
(1.2207 x 10-4). Filter order N is 4. The
percentage of transmitted readings is 3.633%.

Figure 7. Predicted sensor readings when µ is
smaller (3.0518 x 10-5). The percentage of
transmitted readings is 4.38%. Note that
convergence at A and B is faster when µ is smaller.

A

B

Table 2. FPGA device utilization for different µ.

[2] P. Santi “Topology Control in Wireless Ad
Hoc and Sensor Networks”, John Wiley &
Sons, Ltd, 2005.

[3] Silvia Santini, Kay Römer: “An Adaptive
Strategy for Quality-Based Data Reduction in
Wireless Sensor Networks.” In Proceedings of
the 3rd International Conference on Networked
Sensing Systems (INSS 2006). TRF, pp. 29-
36, Chicago, IL, USA, June 2006.

[4] Xilinx Spartan-3E FPGA Family, March
2005.

[5] Intel Lab Data. [Online] Available:
http://db.lcs.mit.edu/labdata/labdata.html

[6] Crossbow. [Online] Available:
http://www.xbow.com/

[7] Intel Berkeley Research Lab. [Online]

 Available:http://www.intel-
research.net/berkeley/index.asp

[8] Low Power Radio Solutions. [Online]
Available: http://www.lprs.co.uk/

View publication statsView publication stats

https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/228704165_An_adaptive_strategy_for_quality-based_data_reduction_in_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/220566249_Topology_Control_in_Wireless_Ad_Hoc_and_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/220566249_Topology_Control_in_Wireless_Ad_Hoc_and_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/220566249_Topology_Control_in_Wireless_Ad_Hoc_and_Sensor_Networks?el=1_x_8&enrichId=rgreq-1091a3f94c005d00de88a98d9dba223f-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4MTE3NjtBUzoxMDQ3MzQ4NzA0NzQ3NTRAMTQwMTk4MjE0NzE4Mw==
https://www.researchgate.net/publication/224381176

