8 research outputs found

    Cold Storage Data Archives: More Than Just a Bunch of Tapes

    Full text link
    The abundance of available sensor and derived data from large scientific experiments, such as earth observation programs, radio astronomy sky surveys, and high-energy physics already exceeds the storage hardware globally fabricated per year. To that end, cold storage data archives are the---often overlooked---spearheads of modern big data analytics in scientific, data-intensive application domains. While high-performance data analytics has received much attention from the research community, the growing number of problems in designing and deploying cold storage archives has only received very little attention. In this paper, we take the first step towards bridging this gap in knowledge by presenting an analysis of four real-world cold storage archives from three different application domains. In doing so, we highlight (i) workload characteristics that differentiate these archives from traditional, performance-sensitive data analytics, (ii) design trade-offs involved in building cold storage systems for these archives, and (iii) deployment trade-offs with respect to migration to the public cloud. Based on our analysis, we discuss several other important research challenges that need to be addressed by the data management community

    Hardware-conscious query processing for the many-core era

    Get PDF
    Die optimale Nutzung von moderner Hardware zur Beschleunigung von Datenbank-Anfragen ist keine triviale Aufgabe. Viele DBMS als auch DSMS der letzten Jahrzehnte basieren auf Sachverhalten, die heute kaum noch Gültigkeit besitzen. Ein Beispiel hierfür sind heutige Server-Systeme, deren Hauptspeichergröße im Bereich mehrerer Terabytes liegen kann und somit den Weg für Hauptspeicherdatenbanken geebnet haben. Einer der größeren letzten Hardware Trends geht hin zu Prozessoren mit einer hohen Anzahl von Kernen, den sogenannten Manycore CPUs. Diese erlauben hohe Parallelitätsgrade für Programme durch Multithreading sowie Vektorisierung (SIMD), was die Anforderungen an die Speicher-Bandbreite allerdings deutlich erhöht. Der sogenannte High-Bandwidth Memory (HBM) versucht diese Lücke zu schließen, kann aber ebenso wie Many-core CPUs jeglichen Performance-Vorteil negieren, wenn dieser leichtfertig eingesetzt wird. Diese Arbeit stellt die Many-core CPU-Architektur zusammen mit HBM vor, um Datenbank sowie Datenstrom-Anfragen zu beschleunigen. Es wird gezeigt, dass ein hardwarenahes Kostenmodell zusammen mit einem Kalibrierungsansatz die Performance verschiedener Anfrageoperatoren verlässlich vorhersagen kann. Dies ermöglicht sowohl eine adaptive Partitionierungs und Merge-Strategie für die Parallelisierung von Datenstrom-Anfragen als auch eine ideale Konfiguration von Join-Operationen auf einem DBMS. Nichtsdestotrotz ist nicht jede Operation und Anwendung für die Nutzung einer Many-core CPU und HBM geeignet. Datenstrom-Anfragen sind oft auch an niedrige Latenz und schnelle Antwortzeiten gebunden, welche von höherer Speicher-Bandbreite kaum profitieren können. Hinzu kommen üblicherweise niedrigere Taktraten durch die hohe Kernzahl der CPUs, sowie Nachteile für geteilte Datenstrukturen, wie das Herstellen von Cache-Kohärenz und das Synchronisieren von parallelen Thread-Zugriffen. Basierend auf den Ergebnissen dieser Arbeit lässt sich ableiten, welche parallelen Datenstrukturen sich für die Verwendung von HBM besonders eignen. Des Weiteren werden verschiedene Techniken zur Parallelisierung und Synchronisierung von Datenstrukturen vorgestellt, deren Effizienz anhand eines Mehrwege-Datenstrom-Joins demonstriert wird.Exploiting the opportunities given by modern hardware for accelerating query processing speed is no trivial task. Many DBMS and also DSMS from past decades are based on fundamentals that have changed over time, e.g., servers of today with terabytes of main memory capacity allow complete avoidance of spilling data to disk, which has prepared the ground some time ago for main memory databases. One of the recent trends in hardware are many-core processors with hundreds of logical cores on a single CPU, providing an intense degree of parallelism through multithreading as well as vectorized instructions (SIMD). Their demand for memory bandwidth has led to the further development of high-bandwidth memory (HBM) to overcome the memory wall. However, many-core CPUs as well as HBM have many pitfalls that can nullify any performance gain with ease. In this work, we explore the many-core architecture along with HBM for database and data stream query processing. We demonstrate that a hardware-conscious cost model with a calibration approach allows reliable performance prediction of various query operations. Based on that information, we can, therefore, come to an adaptive partitioning and merging strategy for stream query parallelization as well as finding an ideal configuration of parameters for one of the most common tasks in the history of DBMS, join processing. However, not all operations and applications can exploit a many-core processor or HBM, though. Stream queries optimized for low latency and quick individual responses usually do not benefit well from more bandwidth and suffer from penalties like low clock frequencies of many-core CPUs as well. Shared data structures between cores also lead to problems with cache coherence as well as high contention. Based on our insights, we give a rule of thumb which data structures are suitable to parallelize with focus on HBM usage. In addition, different parallelization schemas and synchronization techniques are evaluated, based on the example of a multiway stream join operation

    Make the most out of your SIMD investments: counter control flow divergence in compiled query pipelines

    Get PDF
    Increasing single instruction multiple data (SIMD) capabilities in modern hardware allows for the compilation of data-parallel query pipelines. This means GPU-alike challenges arise: control flow divergence causes the underutilization of vector-processing units. In this paper, we present efficient algorithms for the AVX-512 architecture to address this issue. These algorithms allow for the fine-grained assignment of new tuples to idle SIMD lanes. Furthermore, we present strategies for their integration with compiled query pipelines so that tuples are never evicted from registers. We evaluate our approach with three query types: (i) a table scan query based on TPC-H Query 1, that performs up to 34% faster when addressing underutilization, (ii) a hashjoin query, where we observe up to 25% higher performance, and (iii) an approximate geospatial join query, which shows performance improvements of up to 30%

    Transactional and analytical data management on persistent memory

    Get PDF
    Die zunehmende Anzahl von Smart-Geräten und Sensoren, aber auch die sozialen Medien lassen das Datenvolumen und damit die geforderte Verarbeitungsgeschwindigkeit stetig wachsen. Gleichzeitig müssen viele Anwendungen Daten persistent speichern oder sogar strenge Transaktionsgarantien einhalten. Die neuartige Speichertechnologie Persistent Memory (PMem) mit ihren einzigartigen Eigenschaften scheint ein natürlicher Anwärter zu sein, um diesen Anforderungen effizient nachzukommen. Sie ist im Vergleich zu DRAM skalierbarer, günstiger und dauerhaft. Im Gegensatz zu Disks ist sie deutlich schneller und direkt adressierbar. Daher wird in dieser Dissertation der gezielte Einsatz von PMem untersucht, um den Anforderungen moderner Anwendung gerecht zu werden. Nach der Darlegung der grundlegenden Arbeitsweise von und mit PMem, konzentrieren wir uns primär auf drei Aspekte der Datenverwaltung. Zunächst zerlegen wir mehrere persistente Daten- und Indexstrukturen in ihre zugrundeliegenden Entwurfsprimitive, um Abwägungen für verschiedene Zugriffsmuster aufzuzeigen. So können wir ihre besten Anwendungsfälle und Schwachstellen, aber auch allgemeine Erkenntnisse über das Entwerfen von PMem-basierten Datenstrukturen ermitteln. Zweitens schlagen wir zwei Speicherlayouts vor, die auf analytische Arbeitslasten abzielen und eine effiziente Abfrageausführung auf beliebigen Attributen ermöglichen. Während der erste Ansatz eine verknüpfte Liste von mehrdimensionalen gruppierten Blöcken verwendet, handelt es sich beim zweiten Ansatz um einen mehrdimensionalen Index, der Knoten im DRAM zwischenspeichert. Drittens zeigen wir unter Verwendung der bisherigen Datenstrukturen und Erkenntnisse, wie Datenstrom- und Ereignisverarbeitungssysteme mit transaktionaler Zustandsverwaltung verbessert werden können. Dabei schlagen wir ein neuartiges Transactional Stream Processing (TSP) Modell mit geeigneten Konsistenz- und Nebenläufigkeitsprotokollen vor, die an PMem angepasst sind. Zusammen sollen die diskutierten Aspekte eine Grundlage für die Entwicklung noch ausgereifterer PMem-fähiger Systeme bilden. Gleichzeitig zeigen sie, wie Datenverwaltungsaufgaben PMem ausnutzen können, indem sie neue Anwendungsgebiete erschließen, die Leistung, Skalierbarkeit und Wiederherstellungsgarantien verbessern, die Codekomplexität vereinfachen sowie die ökonomischen und ökologischen Kosten reduzieren.The increasing number of smart devices and sensors, but also social media are causing the volume of data and thus the demanded processing speed to grow steadily. At the same time, many applications need to store data persistently or even comply with strict transactional guarantees. The novel storage technology Persistent Memory (PMem), with its unique properties, seems to be a natural candidate to meet these requirements efficiently. Compared to DRAM, it is more scalable, less expensive, and durable. In contrast to disks, it is significantly faster and directly addressable. Therefore, this dissertation investigates the deliberate employment of PMem to fit the needs of modern applications. After presenting the fundamental work of and with PMem, we focus primarily on three aspects of data management. First, we disassemble several persistent data and index structures into their underlying design primitives to reveal the trade-offs for various access patterns. It allows us to identify their best use cases and vulnerabilities but also to gain general insights into the design of PMem-based data structures. Second, we propose two storage layouts that target analytical workloads and enable an efficient query execution on arbitrary attributes. While the first approach employs a linked list of multi-dimensional clustered blocks that potentially span several storage layers, the second approach is a multi-dimensional index that caches nodes in DRAM. Third, we show how to improve stream and event processing systems involving transactional state management using the preceding data structures and insights. In this context, we propose a novel Transactional Stream Processing (TSP) model with appropriate consistency and concurrency protocols adapted to PMem. Together, the discussed aspects are intended to provide a foundation for developing even more sophisticated PMemenabled systems. At the same time, they show how data management tasks can take advantage of PMem by opening up new application domains, improving performance, scalability, and recovery guarantees, simplifying code complexity, plus reducing economic and environmental costs

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities

    Merging Queries in OLTP Workloads

    Get PDF
    OLTP applications are usually executed by a high number of clients in parallel and are typically faced with high throughput demand as well as a constraint latency requirement for individual statements. In enterprise scenarios, they often face the challenge to deal with overload spikes resulting from events such as Cyber Monday or Black Friday. The traditional solution to prevent running out of resources and thus coping with such spikes is to use a significant over-provisioning of the underlying infrastructure. In this thesis, we analyze real enterprise OLTP workloads with respect to statement types, complexity, and hot-spot statements. Interestingly, our findings reveal that workloads are often read-heavy and comprise similar query patterns, which provides a potential to share work of statements belonging to different transactions. In the past, resource sharing has been extensively studied for OLAP workloads. Naturally, the question arises, why studies mainly focus on OLAP and not on OLTP workloads? At first sight, OLTP queries often consist of simple calculations, such as index look-ups with little sharing potential. In consequence, such queries – due to their short execution time – may not have enough potential for the additional overhead. In addition, OLTP workloads do not only execute read operations but also updates. Therefore, sharing work needs to obey transactional semantics, such as the given isolation level and read-your-own-writes. This thesis presents THE LEVIATHAN, a novel batching scheme for OLTP workloads, an approach for merging read statements within interactively submitted multi-statement transactions consisting of reads and updates. Our main idea is to merge the execution of statements by merging their plans, thus being able to merge the execution of not only complex, but also simple calculations, such as the aforementioned index look-up. We identify mergeable statements by pattern matching of prepared statement plans, which comes with low overhead. For obeying the isolation level properties and providing read-your-own-writes, we first define a formal framework for merging transactions running under a given isolation level and provide insights into a prototypical implementation of merging within a commercial database system. Our experimental evaluation shows that, depending on the isolation level, the load in the system, and the read-share of the workload, an improvement of the transaction throughput by up to a factor of 2.5x is possible without compromising the transactional semantics. Another interesting effect we show is that with our strategy, we can increase the throughput of a real enterprise workload by 20%.:1 INTRODUCTION 1.1 Summary of Contributions 1.2 Outline 2 WORKLOAD ANALYSIS 2.1 Analyzing OLTP Benchmarks 2.1.1 YCSB 2.1.2 TATP 2.1.3 TPC Benchmark Scenarios 2.1.4 Summary 2.2 Analyzing OLTP Workloads from Open Source Projects 2.2.1 Characteristics of Workloads 2.2.2 Summary 2.3 Analyzing Enterprise OLTP Workloads 2.3.1 Overview of Reports about OLTP Workload Characteristics 2.3.2 Analysis of SAP Hybris Workload 2.3.3 Summary 2.4 Conclusion 3 RELATED WORK ON QUERY MERGING 3.1 Merging the Execution of Operators 3.2 Merging the Execution of Subplans 3.3 Merging the Results of Subplans 3.4 Merging the Execution of Full Plans 3.5 Miscellaneous Works on Merging 3.6 Discussion 4 MERGING STATEMENTS IN MULTI STATEMENT TRANSACTIONS 4.1 Overview of Our Approach 4.1.1 Examples 4.1.2 Why Naïve Merging Fails 4.2 THE LEVIATHAN Approach 4.3 Formalizing THE LEVIATHAN Approach 4.3.1 Transaction Theory 4.3.2 Merging Under MVCC 4.4 Merging Reads Under Different Isolation Levels 4.4.1 Read Uncommitted 4.4.2 Read Committed 4.4.3 Repeatable Read 4.4.4 Snapshot Isolation 4.4.5 Serializable 4.4.6 Discussion 4.5 Merging Writes Under Different Isolation Levels 4.5.1 Read Uncommitted 4.5.2 Read Committed 4.5.3 Snapshot Isolation 4.5.4 Serializable 4.5.5 Handling Dependencies 4.5.6 Discussion 5 SYSTEM MODEL 5.1 Definition of the Term “Overload” 5.2 Basic Queuing Model 5.2.1 Option (1): Replacement with a Merger Thread 5.2.2 Option (2): Adding Merger Thread 5.2.3 Using Multiple Merger Threads 5.2.4 Evaluation 5.3 Extended Queue Model 5.3.1 Option (1): Replacement with a Merger Thread 5.3.2 Option (2): Adding Merger Thread 5.3.3 Evaluation 6 IMPLEMENTATION 6.1 Background: SAP HANA 6.2 System Design 6.2.1 Read Committed 6.2.2 Snapshot Isolation 6.3 Merger Component 6.3.1 Overview 6.3.2 Dequeuing 6.3.3 Merging 6.3.4 Sending 6.3.5 Updating MTx State 6.4 Challenges in the Implementation of Merging Writes 6.4.1 SQL String Implementation 6.4.2 Update Count 6.4.3 Error Propagation 6.4.4 Abort and Rollback 7 EVALUATION 7.1 Benchmark Settings 7.2 System Settings 7.2.1 Experiment I: End-to-end Response Time Within a SAP Hybris System 7.2.2 Experiment II: Dequeuing Strategy 7.2.3 Experiment III: Merging Improvement on Different Statement, Transaction and Workload Types 7.2.4 Experiment IV: End-to-End Latency in YCSB 7.2.5 Experiment V: Breakdown of Execution in YCSB 7.2.6 Discussion of System Settings 7.3 Merging in Interactive Transactions 7.3.1 Experiment VI: Merging TATP in Read Uncommitted 7.3.2 Experiment VII: Merging TATP in Read Committed 7.3.3 Experiment VIII: Merging TATP in Snapshot Isolation 7.4 Merging Queries in Stored Procedures Experiment IX: Merging TATP Stored Procedures in Read Committed 7.5 Merging SAP Hybris 7.5.1 Experiment X: CPU-time Breakdown on HANA Components 7.5.2 Experiment XI: Merging Media Query in SAP Hybris 7.5.3 Discussion of our Results in Comparison with Related Work 8 CONCLUSION 8.1 Summary 8.2 Future Research Directions REFERENCES A UML CLASS DIAGRAM

    Responsible AI and Analytics for an Ethical and Inclusive Digitized Society

    Get PDF
    publishedVersio
    corecore