TECHNISCHE UNIVERSITAT ILMENAU

Transactional and Analytical Data
Management on Persistent Memory

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der

Technischen Universitat [lmenau
Fakultat fir Informatik und Automatisierung
Fachgebiet Datenbanken und Informationssysteme

eingereicht von

Philipp Gotze, M. Sc.

geboren am 2. Februar 1991 in Strausberg

Gutachter: Prof. Dr.-Ing. habil. Kai-Uwe Sattler
Technische Universitat Ilmenau

Prof. Dr.-Ing. habil. Alfons Kemper
Technische Universitdt Miinchen

Prof. Dr.-Ing. habil. Bernhard Seeger
Philipps-Universitat Marburg

Tag der Einreichung: 02. November 2021
Tag der wissenschaftlichen Aussprache: 08. April 2022

DOI: 10.22032/dbt.51870
URN: urn:nbn:de:gbv:11m1-2022000119

This work is licensed under a Creative Commons “Attribution 4.0 International” license.

Philipp Gétze: Transactional and Analytical Data Management on Persistent Memory © April, 2022

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

ABSTRACT

The increasing number of smart devices and sensors, but also social media are causing the vol-
ume of data and thus the demanded processing speed to grow steadily. At the same time, many
applications need to store data persistently or even comply with strict transactional guarantees.
The novel storage technology Persistent Memory (PMem), with its unique properties, seems to
be a natural candidate to meet these requirements efficiently. Compared to DRAM, it is more
scalable, less expensive, and durable. In contrast to disks, it is significantly faster and directly
addressable.

Therefore, this dissertation investigates the deliberate employment of PMem to fit the needs
of modern applications. After presenting the fundamental work of and with PMem, we focus
primarily on three aspects of data management. First, we disassemble several persistent data
and index structures into their underlying design primitives to reveal the trade-offs for various
access patterns. It allows us to identify their best use cases and vulnerabilities but also to gain
general insights into the design of PMem-based data structures. Second, we propose two storage
layouts that target analytical workloads and enable an efficient query execution on arbitrary
attributes. While the first approach employs a linked list of multi-dimensional clustered blocks
that potentially span several storage layers, the second approach is a multi-dimensional index
that caches nodes in DRAM. Third, we show how to improve stream and event processing
systems involving transactional state management using the preceding data structures and
insights. In this context, we propose a novel Transactional Stream Processing (TSP) model with
appropriate consistency and concurrency protocols adapted to PMem. Together, the discussed
aspects are intended to provide a foundation for developing even more sophisticated PMem-
enabled systems. At the same time, they show how data management tasks can take advantage
of PMem by opening up new application domains, improving performance, scalability, and
recovery guarantees, simplifying code complexity, plus reducing economic and environmental
costs.

ZUSAMMENFASSUNG

Die zunehmende Anzahl von Smart-Geraten und Sensoren, aber auch die sozialen Medien lassen
das Datenvolumen und damit die geforderte Verarbeitungsgeschwindigkeit stetig wachsen.
Gleichzeitig miissen viele Anwendungen Daten persistent speichern oder sogar strenge Transak-
tionsgarantien einhalten. Die neuartige Speichertechnologie Persistent Memory (PMem) mit
ihren einzigartigen Eigenschaften scheint ein natiirlicher Anwérter zu sein, um diesen An-
forderungen effizient nachzukommen. Sie ist im Vergleich zu DRAM skalierbarer, giinstiger
und dauerhaft. Im Gegensatz zu Disks ist sie deutlich schneller und direkt adressierbar.

Daher wird in dieser Dissertation der gezielte Einsatz von PMem untersucht, um den An-
forderungen moderner Anwendung gerecht zu werden. Nach der Darlegung der grundle-
genden Arbeitsweise von und mit PMem, konzentrieren wir uns primér auf drei Aspekte der
Datenverwaltung. Zunéchst zerlegen wir mehrere persistente Daten- und Indexstrukturen in
ihre zugrundeliegenden Entwurfsprimitive, um Abwagungen fiir verschiedene Zugriffsmuster
aufzuzeigen. So konnen wir ihre besten Anwendungsfille und Schwachstellen, aber auch
allgemeine Erkenntnisse iber das Entwerfen von PMem-basierten Datenstrukturen ermitteln.
Zweitens schlagen wir zwei Speicherlayouts vor, die auf analytische Arbeitslasten abzielen
und eine effiziente Abfrageausfithrung auf beliebigen Attributen erméglichen. Wéhrend der
erste Ansatz eine verkniipfte Liste von mehrdimensionalen gruppierten Blocken verwendet,
handelt es sich beim zweiten Ansatz um einen mehrdimensionalen Index, der Knoten im DRAM
zwischenspeichert. Drittens zeigen wir unter Verwendung der bisherigen Datenstrukturen
und Erkenntnisse, wie Datenstrom- und Ereignisverarbeitungssysteme mit transaktionaler Zu-
standsverwaltung verbessert werden konnen. Dabei schlagen wir ein neuartiges Transactional
Stream Processing (TSP) Modell mit geeigneten Konsistenz- und Nebenlaufigkeitsprotokollen
vor, die an PMem angepasst sind. Zusammen sollen die diskutierten Aspekte eine Grundlage
fiir die Entwicklung noch ausgereifterer PMem-fahiger Systeme bilden. Gleichzeitig zeigen sie,
wie Datenverwaltungsaufgaben PMem ausnutzen kénnen, indem sie neue Anwendungsgebiete
erschlieffen, die Leistung, Skalierbarkeit und Wiederherstellungsgarantien verbessern, die
Codekomplexitat vereinfachen sowie die 6konomischen und 6kologischen Kosten reduzieren.

DANKSAGUNG

Zunachst mochte ich hervorheben, dass diese Arbeit zwar nur mich als Autor ausweist, dass sie
aber ohne die Unterstiitzung vieler weiterer Personen in dieser Form nicht moglich gewesen
wire. Ich mochte allen Kollegen, Co-Autoren und auch Studierenden, die mich bei meinen
Forschungen unterstiitzt haben und mit denen ich zusammenarbeiten durfte, meine tiefe
Dankbarkeit aussprechen.

In erster Linie mochte ich meinem Doktorvater Kai-Uwe Sattler fir seine Unterstiitzung
wihrend meiner nahezu gesamten Zeit an der TU Ilmenau danken. Urspriinglich war eine Pro-
motion meinerseits nicht geplant gewesen. Kai hatte mich nach Abschluss meiner Masterthesis
dann dazu ermutigt diesen Schritt weiterzugehen. Dadurch hatte ich die Gelegenheit an vielen
spannenden Projekten zu arbeiten und eine Vielzahl interessanter Menschen kennenzulernen.
Tatsdchlich wiren einige dieser Projekte ohne seine Unterstiitzung, auch auf praktischer Seite,
in diesem Umfang nicht moglich gewesen. Auch bin ich sehr dankbar fiir die stetigen Freiraume
zur eigenstindigen Forschung und Entwicklung.

Weiterhin bedanke ich mich bei meinen Gutachtern Alfons Kemper und Bernhard Seeger
fur ihre Zeit und ihren Aufwand, die sie in meine Arbeit investiert haben, sowie fur die
Erstellung der Gutachten. Durch gemeinsame Projekte oder der Teilnahme an Workshops und
Konferenzen konnten wir iiber die letzten Jahre auch bereits einige Anregungen austauschen
und aufschlussreiche Diskussionen fithren.

Dariiber hinaus danke ich nochmal ausdriicklich all meinen (auch ehemaligen) Kollegen fiir
die ergiebigen fachlichen Diskussionen, aber auch fiir die unterhaltsamen Mittagspausen,
Kaffeerunden und Betriebsausflige. Besonderer Dank gilt Stefan, der all die Jahre fast taglich
meine Spriiche im Biiro ertragen musste. Gerade unsere musikalischen Untermalungen haben
so manche stressigen oder tristen Phasen stark entlastet. Auch danke ich Jens und Matthias fiir
die stets hilfreiche technische Betreuung.

Die vorliegende Arbeit entstand im Rahmen des 2017 gestarteten Schwerpunktprogramms
“Scalable Data Management for Future Hardware” (SPP 2037), gefordert durch die Deutsche
Forschungsgemeinschaft (DFG). Innerhalb dieser Forschungsgruppe konnten wir viele Erken-
ntnisse gewinnen und austauschen, besonders in den Breakout-Sessions oder wihrend der
Social-Events. Dies fiihrte zu einigen Kooperationen und gemeinsamen Veroffentlichungen,
welche mir viel Vergniigen bereitet haben.

viI

Ich mochte zudem meinen Freunden, sowohl nah als auch fern, danken, die mich wahrend dieser
Zeit unterstiitzt und auf andere Gedanken gebracht haben. Explizit gilt mein Dank Alexander
und Antonia sowie deren Kindern. Vor allem unser korrespondierender Sinn fiir Humor, aber
auch die Kinderbespafiung hat mir immer eine Menge Heiterkeit beschert. Auch danke ich
insbesondere Christoph fiir die anfangliche gesellschaftliche Eingliederung in Ilmenau sowie die
zahlreichen Spieleabende, Wandertouren und anderen diversen Unternehmungen. Schlief}lich
mochte ich mich selbstverstandlich zutiefst bei meiner Familie bedanken, die immer an mich
geglaubt hat, mich bedingungslos unterstiitzt und motiviert hat, und auch in stressigen Zeiten
nachsichtig mit mir war. Vielen Dank fiir alles!

Philipp Gotze
[Imenau, April 25, 2022

CONTENTS

1 INTRODUCTION
1.1 Problem Statement and Objectives

1.2 Contributions and Outline.

2 PERSISTENT MEMORY - A NEw PARADIGM
2.1 Persistent Memory .
2.1.1 Technologies .
2.1.2 Properties
2.1.3 Access Model .
2.2 Integration into the Hardware Landscape
2.2.1 PMem below DRAM .
2.2.2 PMem side-by-side with DRAM.
2.2.3 PMem-only .
2.3 Data Management Challenges .
2.3.1 Failure Atomicity
2.3.2 Concurrency
2.3.3 Property Utilization
2.3.4 Data Placement .
2.4 Persistent Memory Programming .
2.5 Initial Measures .

2.6 Conclusion .

. 10
. 10
.11
.12
.13
.13
. 14
. 15
. 16
. 16
. 17
. 17
. 18
. 19
. 22

. 24

3

4

PERSISTENT INDEX AND DATA STRUCTURES
3.1 Related Work .
3.1.1 Index and Data Structures for PMem.
3.1.2 Evaluating Data Structure Design Primitives
3.2 Data Structure PMem Adaptions .
3.2.1 Glimpse into the Design Space .
3.2.2 Bt-Trees .
3.2.3 LSM-Trees .
3.2.4 Skip-Lists & Tries
3.3 Design Primitives .
3.3.1 Design Goals .
3.3.2 Overview and Definitions .
3.3.3 Micro-Operations
3.3.4 Primitives
3.3.5 Extendability .
3.3.6 Metrics
3.4 Evaluation .
3.4.1 Read Operations .
3.4.2 Insert-based Operations .
3.4.3 Erase-based Operations .
3.4.4 Performance Profiles .
3.5 General Insights & Design Guidelines .
3.5.1 Challenges & Characteristics .
3.5.2 Insights

3.6 Summary.

PERSISTENT ANALYTICAL STORAGE LAYOUTS

4.1 Related Work .

4.1.1 PMem-based Engines targeting Analytical Workloads .

4.1.2 Selective Persistence .
4.2 Clustering Approach .

4.2.1 Bitwise Dimensional Co-Clustering .

25

. 26
. 26
. 30
. 31
. 31
. 31
. 34
. 36
. 38
. 38
. 39
. 39
. 41
. 45
. 45
. 45
. 46
. 50
. 56
. 59
. 61
. 62
. 62
. 64

65

. 65
. 65
. 66
. 67
. 67

5

XI

4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

4.2.2 Analytical Table Structure .
4.2.3 Operations and Optimizations
4.2.4 Evaluation .
Multi-dimensional Index Approach .
4.3.1 The Elf Data Structure

4.3.2 Persistent Memory Adaptions
4.3.3 Selective Caching

4.3.4 Evaluation .

Summary.

STATEFUL STREAM PROCESSING

Transactional Stream Processing Model .

5.1.1 Linking Operators .

5.1.2 Transaction Boundaries .

5.1.3 Transactional State Management .

5.1.4 Shared Queryable States.

Related Work .

5.2.1 Transactional Stream Processing

5.2.2 Scalable Stateful Stream Processing .
5.2.3 Multi-Version Concurrency Control .
Snapshot Isolation Protocols .

5.3.1 Data Structures .

5.3.2 Multi-Version Concurrency Control Protocol
5.3.3 Lightweight Two-Phase Commit Protocol.
Persistent Memory Adaptions .

Query and State Recovery .

Query Planning for Transactional Stream Processing .

5.6.1 Hardware Considerations .
5.6.2 Cost Factors.

5.6.3 Prototypical Cost Model.
Use Case: Event Stream Processing .

5.7.1 ChronicleDB

. 68
.71
.71
.75
.75
. 76
. 78
. 80
. 87

89

.92
.93
. 94
. 94
. 95
. 96
. 96
. 97
. 98
.99
.100
.101
.104
.106
.107
.108
.109
.109
111

.114

114

5.7.2 TABT-Tree Adaption forPMem.117

5.7.3 Storage Layout Simplifications through PMem.120

5.7.4 Out-of-Order Handling with PMem121

5.8 Evaluation L L oo A22

5.8.1 Transactional Stream Processing122

5.8.2 EventProcessing. 132

59 Summary. L. 136

6 CONCLUSION 139
6.1 Contributions. .. 139

6.2 FutureWork L oo oo s s 42
BIBLIOGRAPHY X111
ACRONYMS XXIX
LisT OoF FIGURES XXXI
LisT oF TABLES XXXIII
LisT OF ALGORITHMS XXXIV

XII

INTRODUCTION

longside the regular operation through transactional systems, it is often essential for

companies to run real-time analyses on their data to make strategically sound and

rapid decisions. This trend is also evident in the ever more frequent emergence of
Hybrid Transactional/Analytical Processing (HTAP) systems such as SAP HANA [FCP"11],
HyPer [KN11], Hyrise [DKB"19], or SingleStore [Sin20]. Their feasibility, however, also
depends heavily on the hardware. As the quantity of sensors, smart devices, and other data
sources continues to grow, the abundance and heterogeneity of data are increasing as well.
That, in turn, places enormous demands on the necessary processing speed. Existing Database
Management System (DBMS) designs can quickly reach their limits here. On the one hand,
conventional disk-based systems that use DRAM as buffer are unlikely to achieve the required
latencies due to their long I/O path, which the architecture inherently assumes. Alternatively,
more recent in-memory systems are conceivable that maintain the entirety of the data in DRAM
and ensure persistence, e.g., by logging or snapshotting. The issues with this implementation
are first, the cost of the vast amount of DRAM required and second, the density of DRAM,
which has already reached its scalability limit. At the same time, heterogeneous data sources
combined with stringent processing requirements also call for novel processing models. Thus,
application domains with naturally unbounded data sources such as cyber-physical systems,
Internet of Things (I0T), Industry 4.0, streaming graphs, streaming data warehouses, cloud
services, and others have recently emerged. To meet the size, speed, heterogeneity, and other
challenges, these domains expedite the coalescence of high-speed data stream processing with
traditional transactional and analytical processing.

The various data sources can thus be present either as a stream or as previously stored data. An
elucidatory example is to combine real-time sensor data streams with historical or specification
data to detect anomalies. Apart from the direct processing of data streams in operator nodes,
the streams can also be interpreted as sequences of inserts, updates, or other modifications to a
DBMS. Figure 1.1 illustrates such a scenario in a simplified form, which in turn contains several
use cases. It bases on smart metering, where the energy consumption of various devices is
measured. We can assume one or multiple tables containing specification data about cautionary
or critical device conditions. On these tables, well-known transactional or analytical queries
can be executed using SQL @. When introducing streams, a lot more applications and use cases
are feasible. Stream data is normally processed with continuous queries, whose operators can

1. INTRODUCTION

Input Stream 1 (M) Join (M,S,on=Type) @® Output Stream 1
Device, Type, Power, Time 9 Device, Action

D1,T100,[D2,7200 M-Power> S-Pyar D1
. 1!1 2) 0;7’1 L ‘_> — (M.Device, “Notify”) —> oo NOtI%y coe |
M.Power > S.P
Input Stream 2 ﬁ' — (M.Device, “Shutdown”) Output Stream 2
Type, Pyams Perit X Type, Pyarms Perit

T100, © ~— T400, (4]
1.1,1.3 oo _. Type Pwarn Pcrit > coe 0.7.0.0 coe |
TI00 | 1 12
Insert Into S (1) T200 | 0.8 0.9 Select * 1]
Values (“T400”, 0.7, 0.9 > L | From S
— (—) T30 ! 18 4 Where Pwarn >1

Specification Table/s (S)

Figure 1.1: Simplified scenario mixing streams, tables, and queries. Adapted from [BFKT12].

be stateful or stateless @. Tables and states can be treated similarly or even interchangeably
when bringing both concepts together. Thus, another use case is that the specifications are not
extended or manipulated via ad-hoc queries, but the data arrives via streams @. In addition,
data streams may also need to be derived from table modifications @. A more complex case
is the joining of stream and table data since both use different query concepts (continuous
vs. ad-hoc queries). In our example, the specification could be provided as a table while the
measurement data arrives as a stream. The stream data would have to be combined with the
stored data to generate alerts or the like @.

These modern scenarios, which we classify as stateful stream processing applications, implicate
some requirements. First and foremost is the fast processing and thus a low latency since results
are often expected in real time (as in the example above generating alarms). For integrity, statis-
tical, historical, or similar reasons, it is also imperative to persist the data. Especially when there
are integrity constraints, it requires compliance with Atomicity, Consistency, Isolation, Durabil-
ity (ACID) guarantees as known from the database field. It means traditional concurrency and
consistency protocols have to be redesigned and reevaluated for such scenarios. Apart from
the non-functional requirements, there are additionally rather practical or functional demands.
Depending on the workload on the states or tables, the requirements for the underlying data
structures also vary. We can broadly distinguish between more read-intensive analytical and
more write-focused transactional designs. Moreover, interfaces that determine how tables and
streams can interact with each other are necessary. As highlighted in [CFKK20], future data
management systems — pre-eminently stream processing systems — should be further enhanced
by new features such as shared queryable states, cross-state versioning, and modern hardware
support, among others.

Addressing the latter mentioned feature directly, current developments on the hardware level
offer new possibilities to cope with these requirements. New storage and memory solutions are
of primary interest here to close the access gap between them. In particular, Persistent Memory
(PMem) seems to be a natural candidate to tackle both the low latency and fast durability
requirements since it provides byte-addressability and direct persistence at near-DRAM speed.
Figure 1.2 shows the memory and storage hierarchy of modern computer architectures and
where PMem fits in. The large gap between memory and storage technologies stems from
the monetary costs, performance, and density. Since PMem should fill this gap, researchers

1.1. PROBLEM STATEMENT AND OBJECTIVES

CPU
Registers

CPU Caches

(L1, L2, L3)

DDR DRAM

Persistence |

NAND SSD

HDD, Tape

Capacity

Figure 1.2: Memory and Storage Hierarchy.

sometimes refer to it as storage-class memory (SCM). As symbolized by the coloring of the
figure, we can now distinguish warm data in addition to the typical hot and cold data. That
would be applicable, for example, for a three-layer buffer manager or cache system. However,
other integrations and individual solutions such as PMem-centric or hybrid data structures
and engines are also conceivable, which we want to explore in this work.

Considering the modern data management and application requirements, it becomes clear
that offline processing of large data volumes is not suitable anymore for current and future
business needs. Instead, it rather requires a system that can process data and answer queries in
real time while fulfilling transaction guarantees. However, using (only) block-oriented devices
such as SSDs or HDDs to meet the durability guarantees would lead to extensive logging or
snapshotting overhead, compromising the real-time requirement. PMem, on the other hand,
with its latency close to DRAM and simultaneous persistence, seems to resolve this conflict.
Therefore, we envisage Transactional Stream Processing (TSP) with PMem-aware states as a
novel processing model to meet the above requirements. Such a model could cover all the use
cases outlined above in one system. In addition to real-time performance and more efficient
persistence, PMem can yield further benefits such as instant recovery, no or less data loss, and
code simplifications. Of course, PMem is not a panacea and also entails its downsides and
challenges. Identifying and addressing these will be among the endeavors of this work.

1.1 PROBLEM STATEMENT AND OBJECTIVES

We have outlined above the requirements of modern data management scenarios and how we
envision dealing with them. As we enter uncharted territory with PMem, new challenges arise
that are not present in the classic DRAM-disk environment. The main questions we want to
tackle are:

e How can PMem be exploited, and what role does it play in conjunction with the other
technologies in the memory and storage hierarchy?

1. INTRODUCTION

e How must existing algorithms, data structures, and systems be adapted to work duly

with PMem while meeting the requirements of transactional data management?

These questions are not straightforward to answer. Especially particular properties and the
integration into the hardware landscape require a rethinking of certain aspects such as failure
atomicity. This dissertation pursues four objectives derived from these questions:

Exploring Architectural Patterns for PMem-based Data Management. Since PMem is a new
component in the memory and storage hierarchy, as shown above, its primary and most
profitable application has not been fully explored yet. As its properties allow it to perform
both the memory and the storage layer tasks, a single-level system would be feasible
and possibly very cost-effective. The simultaneous exploitation of several levels and the
respective advantages of the technologies are also highly promising. Consequently, multi-
level data structures, data management, and caching strategies would be worth exploring.
Hence, the goal is to investigate various patterns of PMem and data placements crossing
multiple levels in the memory hierarchy.

Design and Analysis of Data and Index Structures. Especially concerning our targeted TSP
model - also for data management systems in general — stateful data processing cannot
do without corresponding efficient data structures. Primarily, there need to be universal
adjustments to account for the unique properties of PMem. In addition, optimization
measures depending on the workload and access patterns of the queries must also be
considered. Apart from transactional data structures, it is thus also interesting to take a
look at adaptations for analytical scenarios.

Specification and Implementation of a Unified TSP Model. To combine data streams and stored
data and enrich them with transactional guarantees, their linkage and the semantics of the
operators need to be defined beforehand. An important aspect is also the interpretation of
transaction boundaries for unbounded data streams. Furthermore, appropriate integration
of the developed data structures for, e.g., state representations is necessary. The final goal
is to implement and evaluate this model as a prototype in a data stream processing system.

Evaluation of PMem-optimized Data Structures and Algorithms on Real Hardware. Finally,
we aim to support all our approaches and statements about them with experimental
evaluations. In particular, we plan to provide a set of micro-benchmarks applicable to a
multitude of data structures. Since we have real PMem hardware available, we expect to
contribute meaningful and reusable results.

1.2 CONTRIBUTIONS AND OUTLINE

The investigated issues regarding data management with PMem form different building blocks
from the hardware level to the application layer. In the following, we give an overview of the
contributions of this dissertation. We have tagged the objectives they address inline.

4

1.2. CONTRIBUTIONS AND OUTLINE

Persistent Memory Access & Data Management

We start with the introduction of the different PMem technologies and the properties that
they entail. These are, for instance, the near-DRAM latency, read-write asymmetry, and
byte-addressability. Especially the last property changes the access model compared to other
persistent media. Furthermore, we show various integration possibilities of this new technology
in the hardware landscape (O1). These fundamentals give rise to several challenges for data
management, which we resolve in the course of the remaining chapters. The material presented
for this contribution was peer-reviewed and published in:

[GVRL"18] Philipp Gétze, Alexander van Renen, Lucas Lersch, Viktor Leis, and Ismail Oukid.
Data Management on Non-Volatile Memory: A Perspective. Datenbank-Spektrum,
18(3):171-182, https://doi.org/10.1007/s13222-018-0301-1, 2018

Persistent Index Structures

Building on the fundamentals and general data management challenges, it is possible to design
data structures optimized for PMem (O2). While examining existing PMem-based index and
data structures, we found that their comparison does not always allow accurate conclusions
about design decisions. Most proposals only compare complete designs and thus follow a
black-box approach. Here, we take a different path and instead disassemble the existing
data structures to identify a set of appropriate design primitives. Combined with common
low-level access patterns, we can derive performance profiles assigned to a precise primitive
or combination thereof (O4). Based on these, we can further infer general design goals for
PMem-based storage and data structures. The material presented for this contribution was
peer-reviewed (where [GTS20a] is an extended but not reviewed version of [GTS20b]) and
published in:

[GTS20b] Philipp Gotze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. Data Structure
Primitives on Persistent Memory: An Evaluation. In Danica Porobic and Thomas
Neumann, editors, 16th International Workshop on Data Management on New
Hardware, DaMoN 2020, Portland, Oregon, USA, June 15, 2020, pages 15:1-15:3.
ACM, https://doi.org/10.1145/3399666.3399900, 2020

[GTS20a] Philipp Gotze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. Data Structure
Primitives on Persistent Memory: An Evaluation. CoRR, abs/2001.02172, http:
//arxiv.org/abs/2001.02172, 2020

Persistent Analytical Structures

Besides index structures — which are primarily intended for Online Transaction Processing
(OLTP) - analytical data structures can also benefit from PMem, for example, by the increased
capacity and direct persistence in contrast to DRAM. We present two approaches for utilizing
PMem for analytical data structures and accelerating queries on these (02). The first approach
relies on clustering and organizes the data into a sorted linked list of data nodes, which in
turn are append-only. Especially the unsorted nodes convert random-access updates into more
efficient sequential append operations. With an additional index and pruning steps that exclude
ranges of nodes, queries can run efficiently on arbitrary attributes (O4). The second approach

https://doi.org/10.1007/s13222-018-0301-1
https://doi.org/10.1145/3399666.3399900
http://arxiv.org/abs/2001.02172
http://arxiv.org/abs/2001.02172

1. INTRODUCTION

is a multi-dimensional index that is much more compact but less update-friendly. With the
help of various developed caching strategies, it is possible to achieve near-DRAM performance
(O4). The material presented for this contribution was peer-reviewed (where [JGBS21] is an
extended version of [JGBS20]) and published in:

[GBS18] Philipp Gotze, Stephan Baumann, and Kai-Uwe Sattler. An NVM-Aware Storage
Layout for Analytical Workloads. In 34th IEEE International Conference on Data
Engineering Workshops, ICDE Workshops 2018, Paris, France, April 16-20, 2018,
pages 110-115. IEEE Computer Society, https://doi.org/10.1109/ICDEW.
2018.00025, 2018

[JGBS20] Muhammad Attahir Jibril, Philipp Gotze, David Broneske, and Kai-Uwe Sattler.
Selective Caching: A Persistent Memory Approach for Multi-Dimensional Index
Structures. In 36th IEEE International Conference on Data Engineering Workshops,
ICDE Workshops 2020, Dallas, TX, USA, April 20-24, 2020, pages 115-120. IEEE,
https://doi.org/10.1109/ICDEW49219.2020.00010, 2020

[JGBS21] Muhammad Attahir Jibril, Philipp Go6tze, David Broneske, and Kai-Uwe Sat-
tler. Selective Caching: A Persistent Memory Approach for Multi-Dimensional
Index Structures. Distrib Parallel Databases, https://doi.org/10.1007/
s10619-021-07327-0, 2021

Transactional Stream Processing

Using our PMem-based data structures and design goals, we prototyped the envisioned TSP
model (O3). This model combines the traditional relational database approach with more
modern data stream management systems. We use PMem to persistently store states as tables
and application-specific metadata needed to guarantee the ACID properties. We propose a
concurrency control and consistency protocol utilizing the byte-addressability of PMem to
eliminate logs and locks. Therefore, we simultaneously achieve near-instantaneous recovery
of states and query pipelines (04). On top of the stream processing model, query optimization
is another considerable step that drastically influences the system throughput. In this context,
we address the questions about which parameters are essential for a cost model and how query
planning changes with PMem and stream processing (in contrast to the relational model). We
opt for a hardware-conscious approach since the access latency and bandwidth of the various
memory and storage technologies can vary widely. The material presented for this contribution
was peer-reviewed (where [GS21] has been submitted but not yet published) and published in:

[PGS17] Constantin Pohl, Philipp G6tze, and Kai-Uwe Sattler. A cost model for data stream
processing on modern hardware. In Rajesh Bordawekar and Tirthankar Lahiri,
editors, International Workshop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architectures, ADMS@VLDB 2017,
Munich, Germany, September 1, 2017, http://www.adms-conf.org/2017/
camera-ready/adms2017_final.pdf, 2017

[GS19] Philipp Gotze and Kai-Uwe Sattler. Snapshot Isolation for Transactional Stream
Processing. In Herschel et al. [HGR™19], https://doi.org/10.5441/002/
edbt.2019.78, pages 650-653

https://doi.org/10.1109/ICDEW.2018.00025
https://doi.org/10.1109/ICDEW.2018.00025
https://doi.org/10.1109/ICDEW49219.2020.00010
https://doi.org/10.1007/s10619-021-07327-0
https://doi.org/10.1007/s10619-021-07327-0
http://www.adms-conf.org/2017/camera-ready/adms2017_final.pdf
http://www.adms-conf.org/2017/camera-ready/adms2017_final.pdf
https://doi.org/10.5441/002/edbt.2019.78
https://doi.org/10.5441/002/edbt.2019.78

1.2. CONTRIBUTIONS AND OUTLINE

[GPS19] Philipp Gétze, Constantin Pohl, and Kai-Uwe Sattler. Query Planning for Trans-
actional Stream Processing on Heterogeneous Hardware. In Holger Meyer,
Norbert Ritter, Andreas Thor, Daniela Nicklas, Andreas Heuer, and Meike Klet-
tke, editors, Datenbanksysteme fiir Business, Technologie und Web (BTW 2019), 18.
Fachtagung des GI-Fachbereichs ,Datenbanken und Informationssysteme" (DBIS),
4.-8. Mdrz 2019, Rostock, Germany, Workshopband, volume P-290 of LNI, pages
71-80. Gesellschaft fiir Informatik, Bonn, https://doi.org/10.18420/
btw2019-ws-05, 2019

[GS21] Philipp Gotze and Kai-Uwe Sattler. Transactional Stream Processing on Persistent
Memory. Inf. Syst. 7., 2021. submitted in April 2021

Event Stream Processing

In addition to the TSP model, we also consider a more specialized form of stream processing,
namely event processing. This kind of processing usually operates on massive temporal data
streams. Especially for maintaining data in so-called event stores (O2), PMem offers new
possibilities to improve query performance and recovery guarantees. Based on an existing
event store, we show several approaches to build a modern three-layer architecture consisting
of DRAM, PMem, and secondary storage (O1). Along with the performance and recovery
guarantees (O4), we show that such an architecture can also offer significant economic and
ecological advantages. The material presented for this contribution was peer-reviewed and

published in:

[GGK™20] Nikolaus Glombiewski, Philipp Gotze, Michael Kérber, Andreas Morgen, and
Bernhard Seeger. Designing an Event Store for a Modern Three-layer Storage
Hierarchy. Datenbank-Spektrum, 20:211-222, https://doi.org/10.1007/
s13222-020-00356-6, 2020

Figure 1.3 visualizes the thematically classified contributions and which chapters discuss
them. As indicated by the color shading, the main focus is on the storage and processing
layers. The hardware and optimization layers, on the other hand, build on existing libraries

Cost Model & Continuous Query Planning

Optimization

Eventful Stream Processing .
Processing
Chapter 5
Storage
Chapter 3 Chapter 4

PMem Access & Data Management

Hardware Access

Layers

Figure 1.3: Overview of contributions allocated to the chapters of this dissertation.

https://doi.org/10.18420/btw2019-ws-05
https://doi.org/10.18420/btw2019-ws-05
https://doi.org/10.1007/s13222-020-00356-6
https://doi.org/10.1007/s13222-020-00356-6

1. INTRODUCTION

or are considered less extensively, respectively. We give a more detailed motivation for each
contribution at the beginning of its respective chapter. Furthermore, we examine related
work separately per contribution. Each chapter validates its theses on real PMem hardware
in an associated evaluation section to demonstrate the suitability of the proposed approaches.
Eventually, each chapter summarizes its main consequences and insights.

The rest of this dissertation is structured as follows. In Chapter 2, we start by elaborating the
fundamentals of the PMem technology like its properties, possible integrations into the memory
hierarchy, and resulting data management challenges. We describe our employed access
methods and show the characteristics of our available system based on initial measurements.
Subsequently, in Chapter 3, we survey existing data and index structures proposed for PMem.
Based on those, we discuss significant design decisions and extract their underlying design
primitives. Combined with ordinary micro-operations, we evaluate their respective impact in
detail. Then, Chapter 4 presents two different storage layout approaches targeting analytical
workloads. Chapter 5 demonstrates how the before elaborated data structures and design goals
can be used to build a stateful stream processing system. Besides the detailed description of
the TSP model, we present the practical realization of the necessary concurrency control and
consistency protocols. This description starts generic and then details the feasible tweaks
for PMem. Furthermore, this chapter considers query optimization for our model and the
special form of eventful stream processing. Finally, Chapter 6 concludes this dissertation with
a summary of the results and an outlook on future research directions.

PERSISTENT MEMORY - A NEWwW
PARADIGM

he general motivation behind PMem is the better scalability and direct persistence in

contrast to DRAM that is reaching its physical limits. It combines valuable character-

istics of both DRAM and flash technology and thus eliminates the large performance
gap between them, as sketched in Figure 2.1. It becomes apparent that this type of memory is
much closer to DRAM than to storage technologies in terms of performance. Depending on the
use case, PMem can be used either as memory extension, memory or storage replacement, or
even as a replacement of the complete memory hierarchy. Although only a few of the PMem
technologies have arrived at the broad market yet, they present several attractive features,
which are missing in either DRAM or flash storage. With these combined characteristics,
new opportunities but also challenges arise, such as the general integration into the memory
hierarchy but also more specific novelties regarding data access and management. In this
chapter’, we describe the fundamentals of this new technology type, go into deeper detail
about its properties and possible hardware architectures, as well as arising challenges for data
management tasks. Furthermore, we elaborate on the usage of PMem from a developer’s point
of view and report first measurements for the setup of our evaluation server. The contents of
this chapter serve as a basis for the reader to understand the unique features and new way of
programming introduced by PMem. That is important to comprehend design decisions, neces-
sary adjustments, and performance impacts, among other things, in the subsequent chapters.
Furthermore, it can provide a guide for the first own steps with the integration of PMem.

Cache _ Memory Storage

in cycles

! |
1 1
! 1
1 1
! |
| |I|:I 1T T 17
! 1
! \

[PREp SN

Figure 2.1: Typical access latency of memory and storage technologies in terms of processor cycles.
Adapted from [QGR11].

The material in this chapter is partly based on [GVRL™18].

2. PERSISTENT MEMORY - A NEW PARADIGM

This chapter is structured as follows. In Section 2.1, we start by presenting various PMem
candidates, their common properties, and how to access these devices. Subsequently, Section 2.2
goes into detail about how to integrate PMem into the existing hardware landscape. These
fundamentals already allow us to derive common challenges for efficient data management,
which we cover in Section 2.3. Then, Section 2.4 discusses how to program with PMem and
how existing libraries already solve some of the mentioned issues. In Section 2.5, we describe
the first steps to set up the PMem devices. Moreover, we examine the performance of our
system with the help of microbenchmarks to confirm the discussed properties and to reveal
potential conspicuities. Finally, Section 2.6 summarizes the most important insights of this
chapter and outlines what we can conclude for the following chapters.

2.1 PERSISTENT MEMORY

In this first section, we describe how the term PMem can be practically realized and which
technologies are possible candidates. We then discuss the properties resulting from these
technologies. In principle, the approaches share many characteristics, but there are also
peculiarities that we will address here. Finally, we will show options to access PMem devices
- that we expect in the DIMM form factor — from the perspective of the operating system.

2.1.1 Technologies

The first practical approaches of PMem tried to use the available technology and enhance it with
additional controllers, batteries/ultracapacitors, or flash such as Vikings ArxCisNV [Pro12],
Vikings NVDIMM-N [Vik20], or AGIGARAM NVDIMMs [Agil4]. These DIMMs backed by
batteries and NAND flash are classed under the term NV-DIMMs. Usually, the flash is not
visible to the host system and is only used as a persistent backup. In the case of a power
loss, a signal triggers the controller to write the DRAM content to the NAND flash using the
onboard battery or capacitors. As soon as power resumes the content is restored. The big
advantage of this approach is the low monetary cost since it is entirely based on commodity
hardware [NH12, WJ14].

One of the first discussions about possible native PMem technologies started already 1971 where
Leon Chua predicted the existence of the memristor [Chu71] as the fourth fundamental circuit
element. It belongs to the later termed class of Resistive RAM (RRAM) [SSSW08, GKC*11].
Consisting of two layers of titanium dioxide between two electrodes, the resistance of a
memristor changes as an electric current passes through. This is due to the thereby varying
thickness of the insulating layer. The difference in resistance is then used to store and retrieve
data.

One of the best-known technologies is Phase-Change Memory (PCM) [LZY "10], where data is
stored by changing the state of a chalcogenide to a low or high resistance state. For that, the
memory cells consist of two electrodes, a resistor, and the phase change material. For reading
an electrical current is injected for measuring the electrical resistance. The writing process
applies current to the chalcogenide to either crystallize (moderate, long pulse) it or switching
it back into an amorphous state (high, short pulse).

10

2.1. PERSISTENT MEMORY

Another candidate is Spin Transfer Torque Magnetic RAM (STT-MRAM) [HYY " 05], where
magnetic properties are utilized. Magnetic RAM uses two ferromagnetic plates separated by a
thin insulator, each holding a magnetic field. Since one of the plates is a permanent magnet with
a certain polarity and the other can be set at will by applying a current-induced magnetic field,
it is possible to store bits. The constructed fields generate a magnetic tunnel, whose electrical
resistance depends on the field’s orientation. The special feature of spin torque transfer MRAM
is the write mechanism, which uses a spin-polarized current to flip the spin of the field.

Carbon nanotubes can also potentially be used to realize PMem and are often referred to as
Nanotube RAM (NRAM) [RKJ 700, KRM*10]. One way is to lay out these tubes as I/O wire
arrays with bistable cross points. The bistability is achieved when the intersecting nanotubes
are either separated or in contact. The state can be read via the resistance of the junction.
Temporary charging of the nanotubes generates attractive or repulsive electrostatic forces that
change the state.

After tens of years of research, Intel’s Optane Data Center Persistent Memory Module (DCPMM),
the first broadly commercially available PMem hardware, was released in 2019. It bases on the
3D XPoint [MT20] technology, but its underlying physical mechanism is not completely known.
However, the characteristics show a similarity to PCM and NRAM. Due to its availability, we
focus on the 3D XPoint technology for the rest of the thesis.

2.1.2 Properties

What all technologies have in common is the low latency and byte-addressability like DRAM
combined with the density, non-volatility, and economic characteristics of traditional storage
like SSD and HDD. Byte-addressability is actually a theoretical aspect. Even if both DRAM
and PMem could be accessed byte by byte, modern CPU architectures still access them in
cache-line granularity - typically 64 bytes. However, an additional feature is the option to
access the persistent memory modules directly via the CPU (or its caches). This means that
no costly copying processes into DRAM are necessary. Almost all PMem technologies show a
read-write asymmetry concerning performance (latency and bandwidth), cell wear, and power
consumption. That means writes are more costly than reads. Exact measurements of the latency
and bandwidth for reads and writes for our system are given in Section 2.5. Similar to flash,
some PMem technologies support only a limited number of writes. However, we think that
cell wearing is addressed at the hardware level like it is the case for SSDs. Due to its persistent
property, idle PMem cells do not consume power which is another edge over DRAM.

In addition to the general properties, the 3D XPoint technology exhibits a few more peculiar-
ities. Although the transfer size from the CPU to PMem (and also DRAM) is 64 bytes, the
DCPMMs internally operate on 256-byte blocks. A write-combining buffer is used here to
reduce write amplification by combining four cache lines to one block write. Interestingly,
read operations also benefit when a multiple of the block size is used [VRVL"19, YKH"20].
Not too relevant for our research purposes, but still interesting is the security aspect, i.e., only
encrypted data becomes persistent. Therefore, DCPMMs offer encryption as a built-in hardware
feature [Int20a]. As mentioned before, performance numbers are reported in Section 2.5.

11

2. PERSISTENT MEMORY - A NEW PARADIGM

2.1.3 Access Model

Similar to HDD and SSD, the Storage Networking Industry Association (SNIA) recommends
managing PMem by a file system [SNI17]. As shown in Figure 2.2, applications then have two
options of accessing the device. The first option is to access files through standard system calls
like open, read, write, and close. This makes it easy to migrate existing disk-based applications
to PMem since the file system interface is the same. On top of that, when developing new
applications, file systems already provide a lot of the functionalities required for managing
the underlying media such as naming, corruption handling, and allocation. Several PMem-
enabled file systems have already been proposed that try to better exploit the media’s special
properties, such as BPFS [CNF09], SCMFS [WR11, WQR13], PMFS [RKK ™" 14], HiNFS [OSL16],
and NOVA [XS16a, XS16b]. This access path can be realized either traditionally via the operating
systems page cache or directly to the PMem device. According to SNIA [SNI17], this corresponds
to NVM.FILE and NVM.PM.FILE mode, respectively. A disadvantage of the first is the extra
copy to DRAM before the data can be accessed. For the second option, the file system must
provide zero-copy memory mapping bypassing the page cache of the operating system. Hence,
applications are provided with direct access to the device via load and store instructions
through the CPU caches. This feature is called Direct Access (DAX) [Lin21] and is supported,
for instance, in ext4 [Lin18] and xfs [Lin19] starting from Linux kernel 4.7. A drawback of this
access option is the loss of transparent memory defragmentation and swapping that is only
possible with the duality of PMem and DRAM pages. Nevertheless, the benefits prevail and the
virtual memory indirection still provides features like process isolation, position-independent
code and data, and memory sharing between processes. Without virtual memory, applications
would have to be reconsidered in a much more complex manner.

Besides these basic access models, Optane DCPMM offers explicit operating modes when setting
up the DIMMs [Int20c]. These are Memory Mode intended to extend the DRAM capacity and
App Direct mode allowing byte-addressable access and persistent guarantees. In more detail,
in Memory Mode, DRAM acts as a cache above PMem with a larger capacity. The cache
management is implemented in the processor’s memory controller. For every memory request,
the DRAM cache is checked first. If the data is present, it is returned with DRAM latency and
if not, it is directly read from PMem. The advantage of this mode is, similar to the native file
API above, that existing applications can work transparently, however, with a much higher

Application
(Address Space) Pages - mmap
Native A Native | Load/ | User
File AP File API I sStore | Space
]]
&~ v I I
N\ T)
File System PMem-aware | MMU 1
i | i |
) \Flle System | Mappings | Kernel
Page A | | Space
) Caching Y v I I
[[] File File PMem
L DRAM Device

Figure 2.2: Application’s basic file access options to PMem devices.

12

2.2. INTEGRATION INTO THE HARDWARE LANDSCAPE

memory capacity. This mode is entirely volatile and has no persistence guarantees that are
only enabled with App Direct Mode. In this mode, applications are aware of the two different
memory types and can directly control which to access. The PMem device is accessed in the
form of memory-mapped files as described above. Furthermore, it is possible to separate the
device to support both modes (Mixed Mode). Since we need persistence and want to control the
placement, we focus on the App Direct Mode in the remainder. Next, we consider the possible
incorporation of PMem in the hardware landscape.

2.2 INTEGRATION INTO THE HARDWARE LANDSCAPE

Since the access model is close to that of hard drives and flash storage, the emergence of
PMem could cause a similar paradigm shift to further close the access gap. In the early 90s,
flash devices (NAND SSDs) were introduced and are today virtually standard in modern data
centers. Technologically, flash is even closer to PMem than to mechanically rotating HDDs
what can ease the transition. However, in contrast to PMem, both flash and HDDs expose a
block-based interface to the applications. It leads to the fact that data must always be converted
from a logical (possibly object-oriented) form in DRAM into a serialized format to store them
persistently. Conversely, the data must then be deserialized again to be able to work with them.
Flash is certainly faster than HDDs here, but they have higher procurement costs and are not
as durable. Due to the common interface and the respective strengths, both flash and HDDs
have found their place in the storage hierarchy. With PMem the same file system interfaces can
be used, but with direct access. Therefore, the detour via DRAM described above is no longer
mandatory. It is this aspect of byte-addressability that allows much greater flexibility for the
utilization of PMem and its placement in the hardware landscape. Thus, we are convinced that
PMem will sooner or later become a standard component of a modern storage hierarchy, just
like flash once did. In addition, DRAM has apparently reached its maximum density level and
PMem could thus also serve as a main-memory extension or even replacement. There are many
conceivable approaches, how this technology can be integrated into modern and future systems.
Below, we classified these into three strategies, which can naturally be combined and extended.
They are visualized in Figure 2.3 and were similarly discussed in [OKW 17, GVvRL"18].

2.2.1 PMem below DRAM

The first and probably most intuitive option is to place PMem between DRAM and SSD/disk
according to their performance and pricing. Here, the access always passes DRAM. PMem
thus serves as the first persistent zone and can be further used as persistent caching in front
of SSDs [EGA ™18, LPD17]. The opposite is also possible, with PMem acting as a so-called
anti-cache [DPT " 13] capturing data from DRAM as soon as it reaches a defined limit [DAP " 14].
The idea of anti-caching also includes the concept that there is only a single copy of each data
element at any given time. It eliminates synchronizations between cached and major copies.

Besides caching, two other data placement strategies are applicable here. Either the data is
statically placed in the persistent layers, or the data is dynamically moving between the layers.
The logic of when and where parts of the data are placed is defined by the application. Similar
to anti-caching, but here related to the persistent domain, it could be implemented in the same

13

2. PERSISTENT MEMORY - A NEW PARADIGM

PMem below DRAM PMem side-by-side with DRAM PMem only

Persistent Memory

Persistent
Memory

SSD/Disk SSD/Disk

Figure 2.3: Placement strategies for PMem in the hardware landscape. Dotted lines denote optional
component.

way that there is always only one durable copy of the data. This distinguishes the dynamic
strategy from typical caching. However, depending on the data formatting, dynamically moving
data between block devices and PMem may incur additional serialization and deserialization
costs. Therefore, this movement should probably be done rather occasionally, and if so, then in
batches. Alternatively, it is possible to agree on the highest common denominator, the page
size of the deepest device in the hierarchy, and work exclusively with byte blocks.

Overall, PMem basically fulfills the role of a storage device in this placement strategy. As it is
the case for disks or SSDs, the data would first be copied into DRAM to be further processed
in the CPU. The difference here, however, lies in the granularity of the data. Whereas SSDs
and HDDs use several KiB for a page, PMem can work, for example, at cache-line scale (or 256
bytes in case of DCPMMs). Another difference to block devices is that developers can control
exactly when data is flushed/persisted and do not have to rely on the operating system. This
can eliminate many developed mechanisms for consistency maintenance, which significantly
reduces code complexity.

2.2.2 PMem side-by-side with DRAM

If the access and processing of the data on PMem shall happen directly, it moves in the hierarchy
to the same level as DRAM. Thus it can be addressed directly via the CPU through the memory
bus, and there are no more copies or movements of the data, which allows more targeted and
faster access. This strategy has the highest potential to improve the performance of the system,
although the implementation is more complex. If systems have high performance or real-time
requirements, such as OLTP or stream processing, the primary data will most likely still reside
in DRAM. However, from an economic and ecological perspective, it can be worthwhile to
switch to a slightly slower device if this results in significantly lower hardware and energy
costs. A sophisticated combination of both technologies and a well-conceived data placement
can lead to a perfect compromise.

14

2.2. INTEGRATION INTO THE HARDWARE LANDSCAPE

Similar to the previous strategy, the placement can be organized statically or dynamically.
However, the difference is that, for example, the buffering strategy can be more sophisticated by
dynamically deciding whether a page or element should be accessed directly in PMem or copied
to DRAM first [LLO19]. Another example would be to dynamically move frequently accessed
nodes of a tree-like structure to DRAM to exploit its lower latency and higher bandwidth.
This could again be implemented as part of a buffer pool or use cost functions to predict or
even learn access patterns to help in decision-making regarding the movement. Sequential
scans, for example, that typically can trash a buffer, could access PMem directly and hide
its higher latency through hardware prefetching. Especially for the DCPMMs, we see that
the performance difference for sequential accesses is much lower than for random patterns
compared to DRAM (cf. Section 2.5). In the course of this work, this aspect of the access pattern
will also be taken up a few times.

If the developer can accurately distinguish between primary data and recoverable secondary
data, static placement is a conceivable option. The obvious compromise is a longer recovery
time to rebuild the secondary data, which can also happen on-demand or in the background.
This can result not only in hybrid high-level components but also in hybrid data structures.
The most prominent example is a hybrid B™-Tree as proposed by [OLN"16]. Here, only the
leaf nodes are stored in PMem while inner nodes reside in DRAM and are recovered in the
case of failure. Different node sizes can then be set to leverage the properties of the underlying
technology. This approach saves both DRAM space and recovery time while maintaining a
DRAM-like performance. The former is because the number of inner nodes is logarithmically
smaller than the total number of nodes. The latter is due to the fact that leaf nodes do not need
to be rebuilt. However, the static placement is not always applicable and is limited since it can
not react to workload or hardware changes.

In this setup, PMem can serve both the memory and the storage role. Therefore, we believe
this is the most versatile and promising strategy.

2.2.3 PMem-only

The third and last discussed strategy considers PMem as universal memory completely taking
over both the fast memory and persistent storage tasks. This eliminates the need to distinguish
between volatile and persistent domains as well as the movement of data between devices. In
order to fundamentally fulfill this task, the PMem technology would have to provide better or
at least the same performance characteristics as current volatile memory technologies such as
DRAM. For the current two generations of Intel’s DCPMMs, this is not the case (yet). Thus, this
strategy would be more suitable for embedded systems or similar purposes. However, the latest
Xeon® Scalable processor generation provides a new feature called extended Asynchronous
DRAM Refresh (eADR) [Int21a, Int21b]. This feature basically makes CPU caches also persistent
by introducing dedicated ultracapacitors as well as backup and recovery logic. Therefore, the
data does not have to be flushed to ensure persistence, which in turn could enable a competitive
performance to DRAM. In principle, a discussion about a PMem-only solution thus makes total
sense.

The idea of a universal memory is not entirely new and was already discussed in [AJ89]. In
the context of databases, the authors describe various algorithms for storage and recovery
using non-volatile main-memory. With the announcement of upcoming persistent memory

15

2. PERSISTENT MEMORY - A NEW PARADIGM

technologies, this discussion was resumed recently [APD15]. Basically, such an architecture
would massively reduce code complexity since recovery and buffering can completely be
omitted. Waiting times for copy operations between devices are also eliminated. All the more
the focus will shift towards cache-optimized designs while ensuring cache coherence. As above,
this strategy can also include additional economic and ecological benefits.

On the other hand, having an always persistent main-memory can also be undesirable. Often
systems maintain a clear separation between data to be stored and runtime-related data. For
example, persisting usually volatile reference counters, locks, latches or similar states could
lead to persistent memory leaks and deadlocks since the associated thread(s) does not exist
anymore in case of failure. Thus, in addition to the advantages, new challenges also arise,
particularly concerning consistency and fault tolerance.

2.3 DAtTA MANAGEMENT CHALLENGES

Since we envisage a transactional data management system built on PMem, we describe below
important aspects and our derived issues or challenges in this regard. Recalling the ACID
properties as known from transactional database systems, the challenges raised by PMem can
be classified into failure atomicity and concurrency. There is also the general question of how
to make the best use of the properties of this medium. Finally, after we have already seen the
various integration options above, there remains the open question of which and where data
and data structures should be placed.

2.3.1 Failure Atomicity

Just as with DRAM, memory accesses to PMem pass through the cache hierarchy of the CPU(s).
While this drastically improves performance, modifications that initially happen in the cache
are not immediately on the memory device. Although it is possible to control when data should
be transmitted to PMem, failures can occur at any time. This is not a problem for DRAM
because everything is volatile and intermediate results are no longer visible. However, with
PMem, there is now a volatile and a persistent area. On modern CPUs, the size of a failure
atomic write is only 8 bytes. Therefore, for modifications beyond this, intermediate and possibly
inconsistent changes to a data structure could be persisted. So the challenge is either to prevent
inconsistencies in the event of a failure or to eliminate them on restart. The former way is
usually realized with shadowing techniques and atomic operations such as Compare-and-Swap
(CAS) or fetch-add. Sometimes a sole use of atomics is even applicable. The elimination of
inconsistencies on restart is typically done with logging techniques. The traditional write-ahead
logging, for instance, records a before (undo) or an after (redo) image prior to applying the
changes. During a restart, this log is used to recover corrupted or incomplete data regions.
In Section 2.4, we will go into more detail on how these two ways can be programmatically
implemented.

16

2.3. DATA MANAGEMENT CHALLENGES

2.3.2 Concurrency

Threads simultaneously working on the same set of data have to synchronize with each other.
This aspect is already known from DRAM and flash. However, the question is whether the
existing approaches are also applicable and follow the same criteria in the case of PMem. Once
again, the CPU caches have a major impact here. If two caches contain data from the same
memory region, a modification in one of the caches leads to the invalidation of cache lines
in the other cache. This is necessary to maintain cache coherence, i.e., data consistency. Due
to the higher latency of PMem, the impact of cache misses caused by this procedure is much
higher. In addition, a new phenomenon arises: changes often become visible to other threads
through the caches before the data is actually persistent. Thus, data visibility and persistence
should be kept in mind and not be confused when developing concurrency control mechanisms.
Another new problem occurs, for example, when locks or latches are kept persistent. As we
already mentioned in Section 2.2, this can lead to persistent deadlocks in the case of failure.
Furthermore, setting locks by different threads can again introduce the cache invalidation issue
mentioned above. However, it is often useful, especially for latches, to store them close to the
data to avoid random access patterns and increase throughput. Overall, this conflict seems
difficult to resolve, which is why locking may not be suitable for PMem. Other options would
be optimistic validations, timestamp comparisons, or versioning. On top of that, modern CPUs
provide hardware transactions. A combination of hardware and software-based concurrency is,
for instance, demonstrated in [OLN " 16]. Here, a hardware transaction is initiated first and if
this fails a defined number of times, it falls back to the programmer-defined approach.

2.3.3 Property Utilization

In Section 2.1, we already discussed the properties of PMem. Here, we will outline how these
can be exploited or circumvented. Essentially, we see three aspects that should be considered.
The first is the reduction of writes (or even reads) to PMem to tackle the read-write asymmetry
and the poorer performance compared to DRAM. Furthermore, due to the limited capacities
compared to block devices and partly also for performance reasons, the general storage space
occupation should be reduced. Secondly, the direct and fine-granular access allows for new
and more optimal algorithms for the storage layer, which are partly already known from
in-memory structures. Simply reusing these algorithms, however, is probably not ideal due to
the read-write asymmetry. Finally, following the same argument of the direct access and thus
the almost direct persistence allows a much faster recovery process than with disks. However,
depending on the data placement, auxiliary structures in DRAM might still have to be rebuilt.

The open question is how to achieve all three aspects. Anticipating this, we have already given
a few examples in Section 2.2. In the literature, the most common optimization steps include
leaving data nodes or blocks unsorted to avoid unnecessary writes resulting from entry shifting.
However, this can result in the entire block having to be traversed when searching, while for
sorted blocks it is possible to terminate the search prematurely. Therefore, new approaches
are needed to achieve a good compromise between insertion and search operations. The first
two aspects are consequently closely linked. By contrast, in the recovery case, a trade-off must
be found between fast restarts and general access times in operational mode. Thus, keeping
secondary structures in DRAM provides better performance, but at the same time, leads to
higher recovery overhead due to rebuilding.

17

2. PERSISTENT MEMORY - A NEW PARADIGM

2.3.4 Data Placement

We expect that the PMem side-by-side with DRAM strategy can best exploit the properties of all
technologies. However, with the coexistence of two or three manually accessible technologies,
several questions arise regarding data placement. For instance, should the whole primary data
be on PMem, what can be outsourced to disk, is it possible to efficiently cache hot data in
DRAM, or should PMem be the cache in front of disks? Furthermore, should these placement
decisions be statically, dynamically, or even adaptive’?

To give a first glimpse, we considered different costs depending on how the data is placed in
the context of event stores using all three memory/storage layers [GGK™20]. In particular, we
consider processing, recovery, and monetary costs. The results are illustrated in Figure 2.4.
It bases on a realistic ratio taken from ChronicleDB - which we will further elaborate on in
Section 5.7 — with 1 TB primary data and 100 GB reconstructable secondary data. While the
monetary costs are exact numbers based on [HHL20], the processing and recovery costs are
estimated according to the performance and characteristics of the used technologies. Option
2, 3, and 4 are not always possible since they place high demands on the available capacity
of PMem or DRAM. In our system, for example, these are not met (see Table 2.1). Moreover,
these options are the most expensive. The traditional placement is given with option 1, which
is currently the most affordable solution. We expect that forthcoming generations of PMem
will be more cost-effective in monetary terms, especially once there are competitors. This
assumption is motivated by the price development of DRAM and flash [HHL20]. Therefore,
option 5 comprising only PMem and flash could become the most economical and ecological
data placement strategy. This would also lead to the fact that option 6, which spans across all
three layers, would provide the best-balanced system considering all aspects.

Capacity Limit Capacity Limit Capacity Limit I Processing (time)
X X X B Recovery (time)
59708 E222%i Monetary DRAM ($)
5720% BN Monetary PMem ($)

EEE Monetary SSD ($)

1. Current 2. in-Memory 3. SSD 4. PMem-only 5 Pure 6. Three

Estimated Costs (lower is better)

(1 TB SSD (1 TB SSD Replacement (1.1 TB PMem) Persistence Layers
100 GB DRAM) 1.1 TB DRAM) (1 TB PMem (750 GB SSD (750 GB SSD
100 GB DRAM) 350 GB PMem) 300 GB PMem
50 GB DRAM)

Memory-Storage Placement

Figure 2.4: Various costs depending on the data placement (cf. [GGK ' 20]).

*While a dynamic strategy has a fixed set of data migration thresholds, an adaptive strategy goes even further
and might adjust (or learn) these thresholds depending on, e.g., runtime statistics.

18

2.4. PERSISTENT MEMORY PROGRAMMING

2.4 PERSISTENT MEMORY PROGRAMMING

When programming with PMem, the challenges discussed above have to be kept in mind
especially to maintain consistency even in the event of failure. The resulting programming
style can be quite different from the typical development with DRAM and disk. The good news is,
many of the general programming challenges identified, for instance, by [OBL" 17] are already
addressed by software libraries like Persistent Memory Development Kit (PMDK) [Int20d]. Still
there remain basically two ways to address the challenge of consistency and failure atomicity.
The first is to use easier high-level abstractions which follow a transactional-memory-like
approach but also introduce the overhead of systematic logging. This provides a generic
solution and makes PMem programming more accessible. The logging overhead comprises
at least one or two additional writes for every modification. At first, a snapshot of the data
to be modified is taken (undo logging) and second the undo log is zeroed out (e.g., for PMDK
versions <1.7). The second rather low-level approach to ensuring consistency and durability is
the usage of dedicated CPU persistence primitives. These are instructions to flush cache lines
(clflush, clflushopt, and cache line write back (clwb)), memory barriers (mfence and sfence),
and non-temporal stores (movnt). Together with atomic loads and stores, this approach has the
great advantage of enabling low-level optimizations. On the downside, it is a bit more difficult,
prone to errors, and requires that the possible application states are considered carefully. Let
us consider a typical example of appending an entry to a preallocated list or array, which could
have the following structure:

| struct Array {

| Entry entries[64];
| size_t size;
|

¥
The transactional way of appending an entry would look like this:

| void append(Array &array, const Entry &entry) {
| TX_BEGIN {

| array.entries[array.size] = entry;

| ++array.size;

|} TX_END

| 3

As it can be seen there is not much difference to an in-memory implementation except the
transaction wrapper. Most of the work happens in the background like writing to the undo log.
In contrast, the low-level optimized variant could look like the following:

#define pmem_clwb (addr) \

asm volatile("clwb %0" : "+m" (*(volatile char *) (addr)));
void append(Array &array, const Entry &entry) {
array.entries[array.size] = entry;

pmem_clwb(&array.entries[array.size]);
_mm_sfence();

++array.size;

pmem_clwb(&array.size);

_mm_sfence();

}

19

2. PERSISTENT MEMORY - A NEW PARADIGM

That is much more verbose than the first solution but would need only two writes (depending
on the type size of Entry and cache line boundaries). The transactional way would need
at least double the number of writes. Thus, if high performance is demanded, the low-level
approach is highly recommended. However, looking at the code snippet, it becomes clear that
this approach is much more prone to errors if the instructions are not correctly placed.

Persistent Memory Development Kit

With PMDK, different levels of abstractions also including the just described consistency meth-
ods are provided. In this thesis, we mainly relied on its C++ bindings within the libpmemobj++
library. As a high-level abstraction, the transaction::run lambda function can be used to encap-
sulate all modifications that should happen atomically. Starting from version 1.7 the log is no
longer zeroed out and instead, the log data is invalidated alongside the log metadata. Therefore
the generic method is a bit faster than before. Considering the example again, the code would
change into the following (the pool concept is discussed soon):

| void append(Pool pop, Array &array, const Entry &entry) {
| transaction::run(pop, [&] {

\ array.entries[array.size] = entry;

| ++array.size;
|

|

1)
}

For complete control on the lower level, PMDK offers the methods pmem_flush, pmem_drain,
and pmem_persist. The first corresponds to the cache line flush instructions and the second
enforces the ordering of stores (i.e., memory barriers). The last method is a wrapper to combine
the former two. The advantage of these methods is, on the one hand, the prevention of
assembler and thus a cleaner and more understandable code. On the other hand, the library
already checks the hardware architecture during initialization and automatically uses the best
possible instructions. Furthermore, larger areas than one cache line can be specified and PMDK
will then perform multiple optimized flushes. With these wrappers the low-level way becomes
much more clearer:

| void append(Array &array, const Entry &entry) {

| array.entries[array.size] = entry;

| pmem_persist(&array.entries[array.size], sizeof(Entry));
| ++array.size;

| pmem_persist(&array.size, sizeof(size_t));

|

}

Below, we briefly describe other used terms and concepts of PMDK for transaction and object
management (cf. [Int16]).

Persistent memory pools: As we discussed in the section about the access model, PMem is
managed by the operating system using a PMem-aware file system. The direct access method
via memory mapping is referred to as pools in this context. PMDK provides the three basic
operations create, open, and close to initiate or end the memory mapping. It also offers more
advanced features like wrappers to the flush and barrier methods from above. With the C++
implementation, it is also possible to manipulate memory alignments.

Persistent pointers: To allow for a recoverable addressing scheme the concept of persistent
pointers is introduced. This pointer must be valid across application and system restarts.

20

2.4. PERSISTENT MEMORY PROGRAMMING

Furthermore, it has to be mapped back to the application’s accessible virtual address space. For
this, PMDK provides the persistent_ptr template that contains an 8-byte ID of the persistent
memory pool plus another 8 bytes for the offset of the target object within this pool. The
template can be used in the same way as C++ smart pointers wrapping an object type. However,
the creation usually happens during object construction using the make_persistent function,
which returns a persistent pointer. This allocation process must be mandatorily encapsulated
by a transaction to prevent persistent memory leaks. Calling the corresponding complementary
function delete_persistent passing a persistent pointer deallocates the underlying object.

Root object: The root object is highly coupled with the persistent memory pool initialization.
It is the entry point to which all other data structures and variables are attached in the pool.
Hence, for each pool exactly one root object always exists. It is initially zeroed and can have
any user-defined size. The position of the root object in the pool itself is not fixed. However, a
persistent pointer to the current root is kept at a known offset. This allows the application to
recover its data.

Persistent properties: Besides persistent pointers, another object wrapper is a persistent property
(simply p). Modifications to such wrapped objects are automatically added to the enclosing
transaction, i.e., its undo log. This helps to prevent consistency issues caused by forgetting
to register changes. If transactions are not used anyway, these properties are accordingly not
necessary. However, they do not add any extra storage overhead and can also just be used as
an indicator for an in-place persistent field.

It follows a minimal example of how all the above terms can be used together. Comments
describing the process are given inline.

/// target object

struct Array {
persistent_ptr<Entry[]> entries;
/// alternatively in-place: p<std::array<Entry, 64>>
p<size_t> size;

}s

/// the entry point for the pool - the root object
struct root {
persistent_ptr<Array> array_ptr;

}s

/// pool initialization and object construction

auto path = "/mnt/pmem0O/array";

auto pop = pool<root>::create(path, ...); ///< or open if existing

auto &arr = pop.root()->array_ptr;
transaction: :run(pop, [&] {
arr = make_persistent<Array>();
arr->entries = make_persistent<Entry[]>(64); ///< if not in-place

1)
/// do something with array

/// 1f not needed anymore delete it again

transaction: :run(pop, [&] {
delete_persistent<Entry[]>(arr->entries, 64); ///< if not in-place
delete_persistent<Array>(arr);

1)
pop.close();

21

2. PERSISTENT MEMORY - A NEW PARADIGM

Non-Uniform Memory Access Control

Another important aspect when programming close to the memory bus is constituted by
Non-Uniform Memory Access (NUMA) effects. These arise through the differences in speed of
processor access to memory found in multi-socket CPUs. Remote access has a higher latency
than local access. Local access means that the requested memory region maps to the same
socket as the requesting core and can happen directly. Remote, on the other hand, implies in this
context to read or write to memory regions of another socket, i.e., different to the core’s socket.
The higher latency is caused by the additional communication between the local and remote
memory controller as well as the lower throughput of the cross-chip interconnect. Typically,
the latency deteriorates by 2x [MG11]. Furthermore, each socket has its own cache hierarchy.
Modifying data in the caches of one socket has to invalidate the same cached memory location
in other sockets to maintain cache coherence. Therefore, frequent access to the same memory
regions of different CPUs leads to regular cache misses and thus poor performance. However,
the same principle can be found for all caches at the same level, i.e., also all L1 and L2 caches
have to synchronize among themselves. Most of our experiments we run on a single socket
to avoid both these effects and complicating the experiments. Especially, we expect to limit
fluctuations in performance measures. With the numactl [KS04] command, it is possible to
control where computing and memory resources are allowed to be allocated. The PMem socket
is fixed by the file system path (see Section 2.5).

2.5 INITIAL MEASURES

Throughout our experiments and evaluations, we use a two-socket system as outlined in
Table 2.1. In the following, we will describe our initial measures to set up the PMem devices
which are similarly described in [Int20c, vRVL " 19]. Each socket consists of twelve DIMM slots
and six channels. The PMem and DRAM DIMMs are plugged in so that both cover all channels.
To increase the possible bandwidth the DCPMMs are interleaved and grouped to one region
per socket. This can be done in the BIOS or via the ipmctl command like this:

| ipmctl create -goal -socket <number> PersistentMemoryType=AppDirect

Next, we create a namespace — similar as for SSDs to represent storage units appearing as a
separate device — on top of both regions using the ndct] command:

| ndctl create-namespace --mode fsdax --region <number>

Table 2.1: Server setup used throughout our experiments.

PROCESSOR 2 Intel® Xeon® Gold 5215, 10 cores / 20 threads each, max. 3.4 GHz
CACHES 32 KB L1d/L1i, 1024 KB L2, 13.75 MB LLC
MEMORY 2x6x32 GB DDR4 (2666 MT/s),

2x6x128 GB Intel® Optane™ DCPMM (2666 MT/s)

STORAGE 4x1 TB Intel® SSD DC P4501 Series

OS & SorTwWARE CentOS 7.9, Linux 5.10.6 kernel, cmake 3.15.3, GCC 9.3.1 (-O3), OpenJDK 14.0.1,
PMDK 1.9.1

22

2.5. INITIAL MEASURES

Since we want to have DAX support, we have to pass fsdax as mode (which is actually the
default). The region number(s) can also be determined by ndctl. After that, we can create a
file system on top of both namespaces, as known from block devices. We opted for ext4. After
determining the mapped block device path, the file system can be created simply by:

| mkfs.ext4 /dev/pmem<number>

Finally, the file system has to be mounted to be accessible by applications. It is important to
specify the dax option here again:

| mount -o dax /dev/pmem<number> /mnt/pmem<numbers>

With the mount path, it is now possible to create files and memory map them into the user
space or to use PMDK pools as described in the previous section.

In order to confirm the PMem properties described above and also to identify peculiarities
of our server setup, we measured typical performance indicators like latency and bandwidth.
We excluded write latencies as these are hard to measure on PMem due to the write-combing
buffers and the write pending queue. We also measured the same indicators for DRAM and the
installed SSDs (xfs) to enable a better classification. For this, we used Intel’s Memory Latency
Checker [Int20b] for DRAM and PMem as well as Flexible I/O Tester [Axb20] for the flash device.
For DRAM and PMem the measurements were done from and to the same socket (local). Our
results are given in Table 2.2. We created a 100 GiB file on one of the flash drives. Since the
measurements were fluctuating, we report the 99" percentile latency. For the bandwidth, we
iterated through a range of different block sizes and parallelism degrees (i.e., threads and I/O
depth). From these, the best throughput achieved is listed in the table. Similarly, we report the
best results achieved for DRAM and PMem as well. As it can be seen, PMem is for both latency
and bandwidth about 2-4x slower than DRAM. Considering the latency, the difference between
sequential and random access is highly salient for PMem and even more for flash. With DRAM,
on the other hand, it is almost negligible. Similarly, we also observe the read-write asymmetry
for PMem and flash. One anomaly, we noticed here is the low sequential write bandwidth
for DRAM. This should be closer to the read bandwidth since DRAM cells are not read-write
asymmetric. For the random bandwidth measurements (number of reads/writes) this behavior
blurs. The big difference between the device types stems from the various utilized block sizes

Table 2.2: Measured performance and other characteristics of memory/storage technologies within
our server.

DRAM DCPMM NAND TLC FLasH

IDLE SEQUENTIAL READ LATENCY 81 ns 174 ns 14 ps
IpLE RANDOM READ LATENCY 88 ns 325 ns 206 ps
MAxiMUM READ BANDWIDTH 85GB/s 32GB/s 3GB/s
MaxiMum WRITE BANDWIDTH 46 GB/s 13GB/s 0.6 GB/s
RaNDOM READS 931 M/s 45 M/s 299 K/s
RaNDOM WRITES 703 M/s 30 M/s 61 K/s
WRITE ENDURANCE > 10 10° — 107 103 — 10°
DENSITY 1X 2X —8X 8 — 64X

23

2. PERSISTENT MEMORY - A NEW PARADIGM

(64 bytes for DRAM, 256 bytes for PMem, 4 KiB for flash). Regarding the endurance data, we
relied on the typical known write cycles for DRAM and flash. For the used flash device an
endurance value of 1.85 PWS is reported [Int17]. Having 1 TB corresponds to 1,850 write cycles
per cell. In the case of PMem, we could not find actual numbers for the first generation used
here. Thus, we base the numbers on the report for the second generation [Int21b]. The density
factor is based on today’s maximum capacity per module of available commodity hardware.
Besides the DRAM anomaly, our measurements are largely consistent with specifications
and other reports [HHL20, Int19, LHO" 19, vRVL" 19, YKH"20] and we can thus confirm the
properties from above.

2.6 CONCLUSION

The new and unique properties introduced by PMem will cause a paradigm shift closing the
large access gap between memory and storage. In this chapter, we have covered the basics of
accessing and managing data on this new type of technology. We have described the anticipated
characteristics and possible ways of access and integration into the existing hardware landscape.
Based on this, we have pinpointed evolving challenges for data management tasks. Furthermore,
we have explained the preparation and practical use of PMem devices in more detail, and last
but not least, we discussed the idiosyncrasies of the system available to us. All in all, the
PMem fundamentals presented in this chapter are necessary to make essential decisions when
designing PMem-enabled data structures and systems, which we elaborate on in the following
chapters. In particular, the data management challenges will be of further interest for defining
general design goals.

24

PERSISTENT INDEX AND DATA
STRUCTURES

or the design of PMem-aware index and data structures, it is of immense importance to

be familiar with the characteristics of this technology type as described in the previous

chapter. Data structures in general play a crucial role in all data management systems.
According to [AKM ™ 16], each design is always a compromise among the three performance
trade-offs read, write, and memory amplification. Thus, any structure and variations of it must
always fit the application purpose. With the emergence of new hardware technologies like
PMem, however, these trade-offs can be diminished more and more. During the last few years,
a number of PMem-aware data structures have already been presented that have attempted to
address just that. However, from our perspective, there are some issues with these in terms of
evaluation. First of all, the hardware is reasonably new and is only available since 2019, which
means that some proposals have only been tested on an emulation basis. Furthermore, different
benchmarks were used and mainly complex designs were compared that contained several
new aspects at once. It leads to a kind of black-box testing and makes the approaches less
transparent and less comparable. In this chapter, we look at the problem from a different angle
by evaluating initially identified design primitives for PMem individually at the micro-level in
order to make tangible statements about design decisions’.

Our idea of identifying core primitives for data structure designs bases on the periodic table of
data structures [[ZA " 18]. With this table and the presented systematic study, the authors claim
to be able to argue about nearly the entire design space. Here, we try to support this approach
by extending it by primitives of tree-based structures and evaluate different realizations of
these primitives on real PMem. In [LHO" 19], existing B™-Tree design proposals were already
neutrally and intensively tested on real hardware. Yet again, this took place at the macro-level
and obscured the impact of the individual underlying ideas. Instead of a black-box (or end-
to-end) approach, we focus on read and write primitives including structural changes and
analyze their behavior in terms of three PMem-critical design goals: reducing writes, fine-
grained access, and consistent and durable operations. Furthermore, we generalize the found
approaches for various types of tree-like structures such as B*-Trees, Skip-Lists, Tries, and

The material in this chapter is based on [GTS20a, GTS20b].

25

3. PERSISTENT INDEX AND DATA STRUCTURES

Log-Structured Merge-Trees (LSM-Trees). The goal is to get deep insights into PMem-optimized
design patterns for data structures typically found in data management systems. In summary,
this chapter makes the following contributions:

e Design Primitives for PMem: We identify several data structure design primitives on
PMem based on the literature and our own hands-on experience.

e PMem-critical Design Goals: We categorize the primitives into the three PMem-critical
design goals mentioned above (write reduction, fine-grained access, failure atomicity).

o Identify Mirco-operations: To enable a white-box evaluation, we identified the typical
low-level access patterns that apply to the primitives.

e Extensive White-Box Evaluation: We extensively evaluate and report on most of
these access patterns using our Optane DCPMM-equipped server.

e Performance Profiles: From the results, we conclude a performance profile for each of
the prime primitives and also give general recommendations.

We explicitly exclude concurrency control because we assume that it is part of upper levels or
an explicit transaction manager, which is common in practice [HSH07, LLS 15]. Instead, we
will study concurrency as part of Chapter 5.

The remainder of this chapter is structured as follows. We start by surveying related work
in Section 3.1. Based on the literature, Section 3.2 gives an overview of the possible and
unexplored design space, while Section 3.3 more specifically extracts the design primitives
and corresponding rudimentary design goals. The primitives are here juxtaposed with the
recognized micro-operations on which they exert an influence. According to this matching, in
Section 3.4, these operations are benchmarked in detail on the primitives. Concluding from
our experiments and challenges, we define general guidelines for designing PMem-based data
structures in Section 3.5. Section 3.6 summarizes the contributions and insights of this chapter.

3.1 RELATED WORK

In this section, we describe related work regarding two aspects: data structures made for PMem
and modern approaches studying data structure designs.

3.1.1 Index and Data Structures for PMem

Especially index structures are traditionally not directly persisted but backed by logging or
shadowing techniques to secondary storage. The properties described in Section 2.1 allow
new and more fine-grained methods when designing PMem-based data structures. Several
publications addressed particularly the byte-addressability and write reduction.

26

3.1. RELATED WORK

B -Trees

One of the first proposals was consistent and durable data structures (CDDS) from Venkatara-
man et al. [VTRC11] assuming single-level storage. Their primary focus was on the B*-Tree
relying on versioning, atomics, and shadowing to guarantee failure atomicity. The versions
become only visible once the global timestamp is atomically updated.

The B”-Tree proposed by Hu et al. [HLN " 14] is a B*-Tree variation that reduces writes to
PMem by buffering changes in DRAM first. Also, leaf nodes are kept unsorted and new entries
are simply appended. With an additional volatile histogram, the future access patterns shall be
predicted. It is used to allocate nodes in advance to reduce key movements and thus writes
caused by splits and merges.

Chen et al. [C]15] also proposed new B*-Tree designs, which exploit indirection and keep nodes
unsorted to save writes. The indirection is realized by a sorted array at the beginning of each
node that maintains the index positions of the entries. They also compare the approaches and
effects when adding specific primitives such as bitmaps. Their final product is the wB™-Tree,
which is especially targeting a fast insert and delete performance. Due to the atomic update
of the bitmap after insertion into a free slot and the indirection array, this process is entirely
fault-tolerant. Since the nodes are unsorted, no record shifting is necessary. A deletion simply
flips a bit in the bitmap. Overall, this can massively decrease the number of writes. Nevertheless,
search performance might suffer from the indirection as the binary search now must navigate
between the data and the metadata.

With the NV-Tree, Yang et al. [YWC™15] introduce the term selective consistency. That means
that the consistency of leaf nodes is enforced but for inner nodes, it is not. For that, the inner
nodes are not flushed directly and instead rebuilt in case of failure. Again, leaf nodes are
maintained in an unsorted manner by just appending the new entries. Even updates and deletes
are treated as appends. By atomically updating the size field, the new data is made visible. To
look up a key and get its latest version, each leaf node is scanned in reverse.

Instead of selective consistency, the FPTree presented by Oukid et al. [OLN " 16] extends this
idea by proposing selective persistence. So far, most described trees have been based on a pure
PMem solution. The FPTree, on the other hand, is a hybrid approach where only the leaf nodes
are kept in the persistent layer while inner nodes are placed in DRAM. It has the consequence
that any navigation of the tree is significantly faster, but it also requires recovery measures.
Compared to the NV-Tree, however, this only happens in DRAM, and compared to a transient
BT -Tree, this only affects a logarithmically smaller fraction. A further design principle is the
use of fingerprints in the leaf nodes, which are arrays of 1-byte hashes of the keys. Scanning
these first when searching for a key reduces the number of actual keys probed and thus leads
to less PMem accesses. A derivative of the FPTree that is more specifically optimized for the 3D
XPoint technology was presented in [LCW20], namely the LB*-Tree. The authors extend the
FPTree by features such as node sizes of 256 bytes or multiples of it, foresighted entry moving
between two PMem lines that are written anyway, and distributed headers to avoid random
access patterns for larger nodes.

HiKV [X]JXS17] is another hybrid memory approach. It consists of a B -Tree in DRAM and
a partitioned hash index in PMem. Hence, costly structure reorganizations only happen in
DRAM and no logging is necessary. The B -Tree is mainly used to accelerate range queries
but must be completely rebuilt during recovery.

27

3. PERSISTENT INDEX AND DATA STRUCTURES

In [HKWN18], the two PMem-optimized algorithms failure-atomic shift (FAST) and in-place
rebalance (FAIR) are proposed and applied to the BT -Tree. FAST is targeting inserts as well as
deletes and shifts the sorted entries in nodes in a way that reduces the number of cache line
flushes and explicit barriers. In particular, cache lines are only flushed as soon as cache line
boundaries are crossed within a node during a shift. Premature cache line flushes could still
lead to duplicate entries in a such a case. However, these are easily detectable, can be skipped
by reads, and thus are a tolerated inconsistency. FAIR, on the other hand, is responsible for
splits as well as merges and uses sibling pointers to avoid costly logging operations. Similar to
FAST, duplicates and inconsistencies are still possible but are tolerable.

In [KSKN18] the authors propose the clfB-tree that utilizes cache-line-sized inner nodes to
improve cache locality. To enable a higher fan-out with these small nodes they propose
differential encoding. That has the additional advantage of reducing the number of writes and
cache line flushes.

With the BzTree [ALML18] the authors demonstrate the usage of the persistent multi-word
compare-and-swap (PMwCAS) [WLL18] operation. This operation is a software abstraction to
allow latch-free atomic updates greater than 8 bytes. It maintains a descriptor table to keep track
of the metadata needed to complete an operation. PMwCAS can be seen as a general-purpose
method to achieve failure atomicity and concurrency and is fundamentally based on before
and after images. Besides the control bits necessary for the operation to work, the nodes of the
BzTree built with it consist of several further fields. The complexity is mainly reduced due to
the failure atomicity realization being hidden within the operator implementations.

Similar to the BP-Tree, the DPTree [ZSC " 19] also buffers recent changes in a volatile B*-Tree.
This buffer is backed by a PMem log and merged into the base tree once it reached a defined
capacity. The base tree is implemented as a volatile radix tree and a linked list of persistent
leaves. Internally, the leaf nodes use the bitmap, indirection, and fingerprinting features as
introduced by the wB*-Tree and the FPTree, respectively. To achieve failure atomicity, the
leaves are coarsely versioned based on the merging times.

As mentioned at the beginning, some of these B -Trees variants have already been reevaluated
on real hardware in [LHO ™" 19]. However, this was done again based on the whole tree designs
and not based on the underlying individual primitives. That causes, for example, the wB™-tree
to always underperform due to the persistence of the inner nodes, which leads to costly traversal.
Moreover, it is not clear, which of these design ideas can be applied to other data structures
besides the B*-Trees. Although, such write-optimized data structures like the LSM-Tree could
be a promising alternative. Therefore, we will now briefly survey some other data structures
adapted for PMem.

LSM-Trees

Several modern key-value stores like RocksDB [Fac20] or Cassandra [Thel6] are based on
the LSM-Tree. There already exist some approaches to converge this concept for PMem.
In [LOLS17], for instance, a first approach is given, which adapts the caching policy of SSTables.
The authors utilize a dynamic strategy to identify hot blocks and move them to DRAM. On top
of that, it is also allowed to access cold blocks directly in PMem.

With NoveLSM [KBG ' 18], the authors present a PMem-aware redesign of a well-established
LSM-Tree implementation, namely LevelDB. They propose a mutable PMem-resident MemTable

28

3.1. RELATED WORK

implemented as a persistent skip-list in addition to the DRAM MemTable. This larger persistent
MemTable is used for concurrent queries as soon as the volatile part is filled and needs to be
compacted to an SSTable. Due to the byte-addressable persistence, no logs are needed in this
case, and serialization costs are also eliminated.

Based on RocksDB, NVMRocks [LPD17] is another PMem enhanced LSM-Tree. It contains two
possible adaptions. The first one moves everything from flash to PMem and omits unnecessary
components used for flash optimization. Similar to NoveLSM, the second redesign considers
the in-memory components and moves the MemTable to PMem to avoid logging and speed up
recovery. In addition, they propose a multi-tiered read cache over the SSTables.

Also built on top of RocksDB, MyNVM [EGA 18] is an LSM-Tree-based key-value store with
the ambition to reduce the DRAM footprint while maintaining comparable performance. The
aim is to ensure that data center providers have a significantly lower total cost of ownership.
Fundamentally, the authors utilize PMem as a block device and use it for a second-level cache
while reducing the block size and partitioning the index. The database and logs are still kept
on flash.

Concluding the discussion about LSM-Tree, it is arguable whether the log-based design is
inherently appropriate for PMem since bandwidth is more important than latency in this case.
Though, that is where PMem is very limited. Thus, combining it with, for instance, more
fine-grained merge techniques could provide an immense benefit.

Tries

Additionally, prefix trees, radix trees, or tries such as Adaptive Radix Tree (ART) [LKN13] were
considered for PMem and have already been exemplarily implemented [FUJ20]. This type of
tree could be even more appropriate for PMem as fewer key comparisons and rebalancing
operations are necessary. Therefore, in [LLS™17], the authors propose three write-optimized
versions of a radix tree, namely the Write Optimal Radix Tree (WORT), the Write Optimal
Adaptive Radix Tree (WOART), and the Copy-on-Write Adaptive Radix Tree (CoW+ART). They
commonly enhanced the trees by failure-atomic updates and path compressions. While the first
is build on a basic radix tree, the latter two are adaptions of ART, as the name suggests. For
the former two, memory barriers and cache line flushes were used to achieve failure atomicity.
Similar to [CJ15], they also use a combination of unsorted keys, bitmaps, and indirection arrays
in this process. The Cow+ART, on the other hand, makes use of copy-on-write techniques to
maintain consistency.

Hash Tables

The final data structure we will discuss here is the hash table. With PFHT [DHK " 15], the authors
propose a PCM-friendly cuckoo hash table variant that reduces writes and thus improves insert
performance. By preventing continuous movements if a bucket is full and using larger buckets,
cascading writes as typical for cuckoo hashing are avoided. However, this is traded for a worse
lookup performance.

The NVC-Hashmap [SDUP15] realizes the hash table with so-called split-ordered lists [SS06].
As a result, resizing the hash table requires fewer displacements of entries and easy atomic
updates.

29

3. PERSISTENT INDEX AND DATA STRUCTURES

In [ZHW 18], the level hashing scheme is proposed as another approach to reducing the resizing
costs and avoiding cascading writes. It consists of two separate hash levels: the main hash
table and another level of overflow buckets, where each is usable by two buckets of the main
level. On top of that, two hash locations and respective functions are used to achieve better
load balancing.

The cache line-conscious extendible hashing (CCEH) [NCC"19] is another hash table approach
adapted for PMem. Compared to the original extendible hashing, the authors add another layer
of indirection and use cache line-sized buckets. Here, the most significant bits of the hash key
are looked up in a directory to determine the address of a segment of buckets. The offsets of the
buckets are calculated by adding the least significant bits times the bucket size on top. Thus, a
search always accesses only two cache lines, i.e., the directory entry and the bucket. Essential
is also the failure-atomic split operation, if resizing is necessary. Similar to [HKWN18] a failure
can lead to inconsistencies, but these are easy to detect and resolve on restart.

Even beyond B*-Trees, in the evaluation parts of the approaches above, we saw that most were
evaluated only for operator or end-to-end performance. As this hides the details and trade-offs
of the underlying design primitives, little can be inferred about custom designs or use cases.
Therefore, we want to take a closer look at precisely that detailed analysis and evaluation in
this chapter.

3.1.2 Evaluating Data Structure Design Primitives

There already exist several approaches to analyzing access patterns and hardware aspects to
choose a suitable data structure or a special variation of it. Like us, some of them also break
down the data structures into primitives. A good example is the Data Calculator [IZH" 18]
and the periodic table of data structures [IZA " 18]. The authors interpret data structures as an
assembly of first principles and combine analytical models, benchmarks, and even machine
learning to gain deeper insights into their performance implications. The goal is to calculate
this performance for any design without the need for implementation or having access to the
actual hardware. They built a prototypical engine that takes a rough specification of a data
structure and its primitives and can predict its performance for an input workload and hardware
profile. During this process, a user can interactively exchange features getting direct feedback
on the effects. A part of the engine learns a basic set of cost models for given access patterns.
From these, it derives the cost for more complex operations. The learning is based on manually
added micro-benchmarks per access pattern or hardware aspect. Thus, the whole prediction
process heavily depends on appropriate benchmarks. That is where our envisioned evaluation
and benchmarks for PMem access patterns can very well tie in. Especially in [[ZA*18], the
classification of design primitives and their already realized combinations is shown. Here,
a large gap in the design space is revealed that has not been investigated so far. Therefore,
the examination of PMem-specific designs is another connection point where we want to
contribute in this chapter.

30

3.2. DATA STRUCTURE PMEM ADAPTIONS

3.2 DATA STRUCTURE PMEM ADAPTIONS

Before unveiling the individual design primitives, this section will provide a brief outline of the
big picture we envisage. Along with this, we address the potentially huge design space as well
as our implementations of corresponding data structures in the PMem context” to populate it.

3.2.1 Glimpse into the Design Space

To get an overview, Figure 3.1 summarizes the typical data and index structures used within a
DBMS. They can be categorized into more flat or more branched data structures, with some of
them converging. Each of these data structures has its particular application purpose and is more
or less suitable for certain scenarios and access patterns than others. According to [AKM " 16]
and [[ZA"18], there is always a trade-off between read, write, and space optimization. Besides
the workload running on the data structures, also the underlying hardware has a high impact
on performance. As we have seen in Section 3.1, basic structures like the B-Tree/B™-Tree
can be extended with features or combined with other structures to fit the circumstances and
requirements. This extension and combination can additionally create the opportunity for new
access primitives and thus access patterns. However, looking at the figure and related work
above, it is evident that the design space is vast and thousands of variations exist that have not
yet been explored. In particular, with respect to PMem, there are still numerous gaps. In order
to be able to cover these on a large scale, we attempt to center our investigations on aspects
that can be found in most structures. Accordingly, we have focused on tree structures such
as BT-Trees and LSM-Trees and examined access patterns and design primitives in these on a
per-node and per-level basis, respectively.

3.2.2 B™-Trees

As they have been most discussed in the literature, B*-Trees also represent the largest part of
the object of study in our work. Here, we were particularly inspired by the work of [OLN"16]
and [CJ15]. Accordingly, we symbolically outline our implementation of the extracted and
adopted features of these two works.

Basic
Data
Structures

< - SIEIZD (J - Trie) G’ . B“’—Tre%(LSM> < b ?aabslrg(Log>< Szr;z?/)
! . : ! !

©) ° o o o O o o O ° o O° o o O
Partitioning o Zone Maps O o Ordering o o Adaptivity o Placement Feature
o ° o Compression o o HashFilter o© o Pruning o o, Bitmap o ° _ Pool

Branched

Figure 3.1: Overview of typical data and index structures in DBMSs.

2Qur implementations are open source at https://github.com/dbis-ilm/PMem_DS.

31

https://github.com/dbis-ilm/PMem_DS

3. PERSISTENT INDEX AND DATA STRUCTURES

FPTree

From the FPTree, we were mainly interested in the fingerprinting and bitmap feature as well as
the hybrid DRAM/PMem placement’. While the inner nodes stay sorted and in DRAM using
only a size field besides the keys and children pointers, the leaf nodes in PMem were adapted
like shown in the following:

/// LeafNode structure; M - Number of entries per leaf

struct alignas(64) LeafNode {
p<Bitmap<M>> bits; ///< bitmap for valid entries
p<array<uint8_t, M>> hashes; ///< fingerprint array
persistent_ptr<LeafNode> nextLeaf; ///< the subsequent sibling
persistent_ptr<LeafNode> prevLeaf; ///< the preceding sibling

char padding[PaddingSize]; ///< padding to align keys
p<array<KeyType, M>> keys; ///< the keys
p<array<ValueType, M>> values; ///< the values

}s

We wrapped most of the fields as persistent property and used persistent pointers from PMDK.
Additionally, we created and used our own bitmap to be able to extend it by hardware-optimized
bit operations. The auxiliary structures are always in a separate cache line (or multiple), and
the actual keys and values are aligned to the next.

The differences on an algorithmic basis are mostly related to the accesses to the leaf nodes.
Therefore, in Algorithm 1 and Algorithm 2, the lookup and insert operations are shown at the
leaf node level and are intended to serve exemplary purposes. The other operations and more
details can be looked up in the repository. We excluded concurrency and failure-atomic actions
for the time being. As stated before, concurrency will be handled at a higher level. Failure
atomicity will be discussed as part of the primitive considerations and the evaluation.

During the lookup of a key, the node is traversed item by item. Since the hashes/fingerprints
and the bitmap are checked first, the access optimally remains in the same cache line. Only
when both are evaluated as positive, the actual key is checked. If there is no corresponding
key, then the payload part is never touched.

Algorithm 1 FPTree::lookupPositionInLeaf(leaf, key)

1: pos <+ 0

2: while pos < M do

3: if lea fhashes[p0S] = FINGERPRINT(key) and
lea foits[pos] =1 and
lea freys[pos] = key then

4: return pos

5: pos < pos + 1
6: return pos

The insert part is rather trivial and simply sets the new data accordingly. Due to the bitmap,
a simple append is inappropriate and, instead, a free slot must first be determined. For this,
we used a 64-bit based multiply and lookup algorithm that counts the consecutive number of
one bits*. The result corresponds to the first free position in our leaf. That is much faster than
iterating through the bits individually as it constantly only costs about five CPU instructions.

3Steffen Klébe did the groundwork of the FPTree reimplementation as part of a student assignment.
It was adapted based on the 32-bit variant presented at https://graphics.stanford.edu/~seander/
bithacks.html.

32

https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html

3.2. DATA STRUCTURE PMEM ADAPTIONS

Algorithm 2 FPTree:insertInLeaf(leaf, key, value)

pos + GETFREESLOT(lea frits)

lea freys[pos] + key

lea fyalues [pOS] +— value

lea fhashes[pos] <— FINGERPRINT (key)
lea frits[pos] < 1

LA S

wB-Tree

Next, we consider the features of indirection and again a bitmap as found in the wB*-Tree.
Unlike the FPTree, both leaf and inner nodes are stored on PMem. The remainder is quite
similar and shown below:

/// LeafNode structure; M - Number of entries per leaf

struct alignas(64) LeafNode {
p<array<uint8_t, M + 1>> slots; ///< slot array for indirection
p<Bitmap<M>> bits; ///< bitmap for valid entries
persistent_ptr<LeafNode> nextLeaf; ///< the subsequent sibling
persistent_ptr<LeafNode> prevLeaf; ///< the preceding sibling

char padding[PaddingSize]; ///< padding to align keys
p<array<KeyType, M>> Kkeys; ///< the actual keys
p<array<vValueType, M>> values; ///< the actual values

}s

/// InnerNode structure; N - Number of entries per inner node
struct alignas(64) InnerNode {
p<array<uint8_t, N + 1>> slots; ///< slot array for indirection

p<Bitmap<N>> bits; ///< bitmap for valid entries
char padding[PaddingSize]; ///< padding to align keys
p<array<KeyType, N>> keys; ///< the actual keys

p<array<Node, N + 1>> children; ///< pointers to child nodes

}s

Important to note is that the first slot in the indirection array is used as the size field. Again, we
made use of our own bitmap and aligned the metadata and payload accordingly. Algorithmically,
however, things change a bit, as is apparent in Algorithm 3 and Algorithm 4.

The lookup is now a binary search for a key but with additional sorted indirection slots. Unlike
the FPTree, the number of accesses is logarithmically smaller, but there is always a jump
between metadata and payload data.

The insert part is slightly more complex than for the FPTree. Here, in addition to the data
position determined by the bitmap, the position in the slot array must also be calculated
for indirect order preservation. Depending on the latter, the entries must then be shifted
accordingly.

Own Adaptions

In addition to the two remakes just described, we have also created a few adaptations of our
own that combine or isolate the features of these. First, we implemented a completely persistent
B -Tree with sorted entries as traditionally known. The only adjustment is the 64-bit alignment
of the metadata (size field and sibling pointers) and payload (keys and values). This adaption is
also available as a hybrid DRAM/PMem version. Then the next isolated feature is unsorted
nodes. It has the same structure as the sorted ones, but the algorithms change (e.g., append-only

33

3. PERSISTENT INDEX AND DATA STRUCTURES

Algorithm 3 wBPlusTree::lookupPositionInLeaf(leaf, key)

pos < 1
left <1
right < lea fqots[0] /// current size of the leaf
while left < right do
pos < (left + right)/2
if lea fireys[lea folors[pos]] = key then
return pos
if lea freys|lea fsiors[pos]] < key then
pos < pos + 1
left < pos
else
12: right < pos — 1

R A A T T

U
_- O

13: return pos

Algorithm 4 wBPlusTree::insertInLeaf(leaf, key, value)

pos <— GETFREESLOT(lea fi;ts)
slot Pos + LookuPPosITIONINLEAF(leaf, key)
lea freys[pos] < key
lea fyalues[pos| < value
/// shift entries in indirection array
(R leafslots[o]
while 7 > slotPos do
leafslots [Z + 1] <~ leafslots[i]
i4—1—1
lea fsiots[slot Pos] < pos
. lea fois[pos] 1
o leafsots [0] < leafots [O] +1

R A A R o A

= e
N = O

inserts and linear search lookups). We also created a hybrid and non-hybrid tree adaption,
which both only substitute the size field with a bitmap without indirection or fingerprint arrays.
Finally, we also introduce a hybrid wB*-Tree variant that we claimed to be missing in most
comparisons before. Overall, this should cover all variants of node structures that combine or
isolate the features found in the literature. Their layouts are summarized again in Figure 3.2,
with the metadata highlighted in gray. It also shows the size ratios depending on the number of
entries per node. Interesting to note is that only the first layout has a fixed metadata structure
of one cache line, while for the rest, it grows with the number of entries, possibly resulting
in multiple cache lines. Removing the sibling pointers and replacing the values with child
pointers will yield the corresponding inner node layouts. Furthermore, these node structures
can hence also be applied to other trees or node-based structures.

3.2.3 LSM-Trees

Next, we elaborate on the implementation of PMem-based LSM-Trees as presented in [Tha19].
While B™-Trees are often used as indexes and could thus also be stored completely in DRAM,
LSM-Trees always have one or more persistent layers. These are typically write-optimized
differential structures and can form a good contrast to our B*-Trees. However, according
to [DI18], the design space of an LSM-Tree ranges between write-optimized tiering and read-
optimized leveling policies. Tiering means that a merge process within a level is only executed

34

3.2. DATA STRUCTURE PMEM ADAPTIONS

numKeys | nextPtr | prevPtr | padding Keys (Kq ... ky) Values (vq ... vyy)

0 8 24 40 64

(a) Sorted/Unsorted data nodes.

bitmap nextPtr | prevPtr | padding Keys (kq ... ky) Values (v; ... vy)

0 M/8 M/8 +16 M/8+32 64*J

(b) Bitmap-only data nodes.

slots bitmap | nextPtr | prevPtr | padding Keys (K ... Ky) Values (V4 ... Vy)

0 M+1 M+1+M/8 .. 64*J

(c) Indirection data nodes.

bitmap hashes nextPtr | prevPir | padding Keys (kq ... ky) Values (v; ... V)
0 M/8 M + M/8 64 *J
(d) Hashing data nodes.

Figure 3.2: Different data node layouts, where: M - number of entries and J € Ns.

when it and all runs are full. With leveling, on the other hand, a merge is done whenever a new
run within a level is created. In the most extreme cases, tiering degenerates into a log while
leveling degenerates into a sorted array. Without going into too much detail, we have opted
for a tiered variant here because we are aiming for write optimization.

The approach presented here is similar to NVMRocks and keeps the first level (Ly) in DRAM
while the persistent layers can be configured to remain on PMem, disk, or both. The latter case
is visualized in Figure 3.3.

Level Legend
) e
’ [Disk
L
Ly
L, 57,10,12,21,34,43,56 | |

Figure 3.3: PMem-based LSM-Tree Layout.

35

3. PERSISTENT INDEX AND DATA STRUCTURES

The example has a buffer size of one and a so-called tuning ratio of two, meaning that the size
per run doubles in the following level. Furthermore, there are two PMem and two disk levels,
which are also configurable. Besides the levels and runs, each level is supported by bloom filters
as well as minimum and maximum aggregates in DRAM to accelerate lookups. The object of
investigation in our analysis and evaluation of the primitives is mainly the moving of runs to
PMem and the merging step. That is because these processes are not covered in this form by
BT -Trees yet. We will discuss the details in the next section.

3.2.4 Skip-Lists & Tries

Finally, we look at possible PMem adaptions for tries as it was presented in [Lie20] and for
skip-lists’. Currently, we have implemented all variants as PMem-only solutions.

For the tries, we created a standard trie and a radix tree with radix equal to two (= PATRICIA-
Trie). As mentioned above, the ART was already adapted for PMem in [FUJ20] and was therefore
not investigated further. In all trie variants, the alphabet is arbitrary and can be, for instance,
bits, characters, or integers. The path from the root to a leaf composes an entire key, where the
leaf contains the corresponding value. The standard trie always saves only one letter of the
alphabet per node and has a fixed number of children pointers (depending on the alphabet).
The combination of common prefixes in the radix tree results in path compression for memory
and traversal optimization. That is utterly reasonable to avoid persistent pointer dereferencing.
A possible node structure in PMem could look like the following:

/// Patricia node structure; M - Maximum number of key characters
struct alignas(64) TrieNode {

p<array<char, M> key; ///< key prefix

p<size_t> keylen; ///< length of key up to here
p<bool> isLeaf; ///< true if leaf node
p<ValueType> value; ///< value if leaf node

persistent_ptr<TrieNode> children[2]; ///< pointer to children

}s

Here, we assume the alphabet to be characters. Since each node can hold prefixes of different
lengths, storing them in a fixed structure is not straightforward. One option is to reserve space
with a defined maximum size, as shown above. Similar to the ART, it would also be possible to
define a few structures with different capacities, chosen according to the prefix size. Another
option is the allocation of the prefixes at an external location and using a fixed-size persistent
pointer. While the first solution costs additional memory, the second leads to frequent jumping
back and forth and thus a random access pattern. So both have advantages and disadvantages.
As noticed above, isLeaf marks leaf nodes and that a corresponding value is stored. Since
the radix is equal to two, there are two children pointers. Different from the structures before,
a lookup operation needs a key length parameter if different lengths are allowed. Within a
leaf, there would only be a simple key prefix comparison. That is why we show the complete
lookup operation in iterator form in Algorithm 5.

The loop checks the key with the key part of the current node as long as the check is positive
and a result is still possible. The match function depends and should be optimized based on the
alphabet. Once all characters have been validated true, the value of the reached leaf is returned.

SThe skip-list implementations were created as part of a student assignment by Alexander Baumstark.

36

3.2. DATA STRUCTURE PMEM ADAPTIONS

Algorithm 5 PatriciaTrie::lookup(key, length, value)

1: node < root

2. while node # null and length > nodexeyien and
DOESKEYMATCH(key, nodeyey , nodexeyien) do

3 if nodeyeyien = length then

4: value + nodeyaiue

5 return true

6 node < nodechildren EXTRACTBIT(key, nodexcyien)]

7. return false

During the traversal, the child is chosen based on the most significant bit of the last character
of the node.

The insert operation proceeds similarly. The difference is that the value is updated when found,
and a new node is inserted when not found. An update also includes the possibility that an
inner node is promoted to a leaf node. The value is then set for the first time. However, a new
node can lead to a split if the last comparison is negative and, thus, the search stops between
two nodes. Therefore, two new nodes are inserted. One leaf node with the new value and the
unequal suffix and an inner node above with the common prefix of the last compared node.
Furthermore, pointers and prefixes in the existing nodes have to be adjusted. In general, the
operations in these trie variants can be seen as a special form of other tree structures with only
one element per node. Hence, its primitives are already covered by our considerations based
on the B*-Trees and LSM-Trees above and in Section 3.3.

The skip-lists are available having a single key-value pair per node and a write-optimized
variant with multiple key-value pairs per node. While the former is more simple, it also leads
to a higher rate of pointer chasing during traversals and also more frequently produces small
distributed writes. The latter can compensate for this by grouping key-value pairs together.
This results in the following structure for a node:

/// SkipNode structure; M - Maximum number of levels, N - Bucket size
struct alignas(64) SkipNode {
p<Bitmap<N>> bits; ///< bitmap for valid entries
p<KeyType> minKey; ///< SMA min
p<KeyType> maxKey; ///< SMA max
p<size_t> nodelLevel; ///< height of node
array<persistent_ptr<SkipNode>, M>
forward; ///< pointers to following nodes
char padding[PaddingSize]; ///< padding to align keys
p<array<KeyType, N>> keys; ///< the keys
p<array<vValueType, N>> values; ///< the values
}s

It is noticeable that this structure is almost identical to the node structure of the B™-Tree except
for a few extra fields. The operations are also more or less similar. For a lookup, for instance,
the corresponding node is first searched following the forward pointers. The search of the key
within a node is then the same as with B™-Tree nodes. In the current implementation with
unsorted entries, this is a linear search checking first the bitmap and then the key. However,
this could be sorted or use fingerprinting or indirection features as well. Therefore, in the
following sections, we will consider both structures as interchangeable when extracting and
evaluating the structural and access primitives.

37

3. PERSISTENT INDEX AND DATA STRUCTURES

3.3 DESIGN PRIMITIVES

After considering the basic data structure adaptions for PMem, the next step is to extract the
design primitives from these and investigate their impact in various access scenarios. The
primary goal is to reveal their trade-offs to facilitate design decisions. It is necessary to do this
using white-box tests to eliminate side effects in the measurements. Therefore, preferably only
one primitive should be exchanged during comparison. As a tangible result, we envision a
profile per design primitive, from which performance and memory implications for each type
of access pattern are derivable.

3.3.1 Design Goals

To classify the primitives, we first identified three central design goals that the primitives
address. These are based on the PMem properties and related work.

Reduce Writes

We have seen that PMem has a lower write endurance than DRAM. Furthermore, there is a
read-write asymmetry, where writes require more energy and time than reads and cause the
above-said cell wear. That leads to the first design goal of reducing writes (DG1) and trading
off with more reads. For example, consistency constraints can be relaxed, or sorting can be
abandoned, both compensated by more frequent reading.

Fine-granular Access

Compared to disks, with PMem, storage is now byte-addressable. Even if this is limited to cache
lines with typical 64-byte granularity in x86 architectures, much more fine-grained access
methods are now possible (DG2). That was previously realized by combining DRAM and disk.
For instance, while the structures are held and processed in DRAM, an append log on disk
traditionally provides persistence. With PMem, both byte-addressability and persistence are
enabled on the same device. That introduces fine-granular operations to the storage layer.

Failure Atomicity

The byte-addressability combined with the direct load and store semantics leads additionally to
a zero-copy memory mapping. It opens up new possibilities for realizing consistency constraints
and durability (DG3). For example, atomic primitives can now be used for efficient persisting,
in addition to concurrency. The primitives for this design goal explicitly tackle our first posed
data management challenge in Section 2.3.

In the following, we extract the design primitives and access patterns focusing on tree-based
structures from the literature and connect them with our defined design goals.

38

3.3. DESIGN PRIMITIVES

3.3.2 Overview and Definitions

In order to be able to classify the terms correctly, our two axes — namely design primitives and
micro-operations - should first be explained more precisely.

Definition (Design Primitive). In our context, we define a design primitive as an indivisible
layout or access concept, as it was similarly specified by [IZA"18].

It is necessary to break down the possible primitives taking into account the properties of PMem,
to recognize their advantages and disadvantages. To this end, we examine the approaches as
described in Sections 3.1 and 3.2 and map the ideas to the appropriate design goals.

Related to the derived primitives are typical micro-operations, as found for trees or nodes.

Definition (Micro-Operation). We define a micro-operation in this context as a low-level
access pattern whose (logical) result is independent of the employed primitive(s).

Lower operations — which would yield a different result or are irrelevant depending on the
primitive — are of no interest because they are no longer comparable. An example of such
an operation would be the shifting of entries in a node after a delete or before an insert. If a
bitmap is used, this step is unnecessary. On the other hand, higher-order macro-operations can
be formed by combining the micro-operations. Typical examples are get, insert, update, delete,
and scan on a data structure. Therefore, we have classified the micro-operations into read-,
insert-, and erase-based as well as recovery operations. Table 3.1 summarizes our findings
and the relation of design primitives and micro-operations. For design primitives that are not
applicable or only indirectly relevant to a few operations, we have left the cells blank. In the
following subsections, we will describe these in more detail.

3.3.3 Micro-Operations

By studying micro-operations, it is possible to identify bottlenecks and optimization potentials
that would remain hidden at the macro-level. For example, inserts are often faster in hybrid
DRAM/PMem solutions than in fully persistent approaches, almost regardless of the node
layout. As already mentioned in related work, this causes, e.g., the wB™-Tree to perform always
worse than the FPTree only due to the more costly traversal to the leaf. Thus, maintaining both
the access patterns and the design space concise is crucial for a meaningful comparison.

The first category starts with the micro-operation of searching (or lookup) for a key within a
node. That is strongly dependent on the selected node layout and, thus, possible access methods.
According to our definition, it is the smallest possible operation still giving the same result in
the end, no matter how it is retrieved. To reach a target node, there are typically two ways to
navigate in a tree, either vertically (tree traverse from top) or horizontally (tree iterate from
left/right). Combining navigations and the searching within nodes builds macro-operations
like get and scan.

39

0v

Table 3.1: Design primitives and micro-operations for PMem-aware trees (g — applicable).

‘ Read-based ‘ Insert-based Erase-based ‘
% 5 <l s £ 5| F
PMem-aware Trees S o5 o2 s o2 BlEOZ2 OZ|s
S8 £ g1 F & =z Z0< g 2|
design primitives S < S H = < = = L;j A =

DesignGoall ~ sorted [VTRC11, HLNT 14, LPD17, ALML18, EGAT18, HKWN18, KBG"18]
(reduce unsorted [HLN 14, CJ15, YWCT 15, OLN 16, LLST17, ALML18, KSKN18,
writes) ZSC'19]

bitmaps [CJ15, OLN*16, LLST17, KSKN18, ZSC*19]

indirection [CJ15, LLST17, ZSC*19]

hashing [OLN*16, XJXS17, ZSC™ 19, LCW20]

2-way merge

K-way merge

split move [VTRC11, HLN*14, CJ15, YWC™'15, ALML18, HKWNI1S8,

KSKN18, ZSC*19, LCW20]

hybrid placement [HLN 14, YWC™ 15, OLN " 16, LPD17, XJXS17, EGA ™18,

KBG™'18,zSCt19, LCW20]
DesignGoal2 linear search [HLN™ 14, YWC™ 15, ALML18, HKWN18, KSKN18]
(fine- search with bit check [CJ15, OLN*16, KSKN18, ZSC' 19, LCW20]
grained search with hash probing [OLN 16, ZSC*19, LCW20]
access) binary search [VTRC11, HLN*14, YWCT 15, ALML18]

search with indirection [C]J15, ZSC119]

split copy [OLN*16]

cache sensitive [CJ15, YWC™15, OLNT 16, ALML18, KSKN18, ZSC™'19,

LCW20]
DesignGoal3 ~ PMDK Transactions [GBS18, Int20d]
(failure PMwCAS [ALML18, WLL18]
atomicity) individually [VTRC11, CJ15, YWC™ 15, OLN*16, LLST 17, LPD17, XJXS17,

HKWN18, KBGT 18, KSKN18, ZSC' 19, LCW20]

Evaluation reported in Experiment No. E1 E2 E3 ‘ E4 E5 E6 E7 ‘ E8 E9 E10 ‘

STINLONYLS VIVA ANV XAANI LNALSISYdd "€

3.3. DESIGN PRIMITIVES

The next category contains the micro-operations that can be triggered by adding new data to
the structure. Foremost, this is the placement of new records such as key-value pairs into a node.
Similar to the lookup, this operation is not divisible further than inserting a record without
position reference into a node. Deeper operations return a different result depending on the
primitive, such as the position or the division of the data. Inserting new data can cause further
structure-changing operations. For BT -Trees, tries, and skip-lists, this is usually a type of split
that leads to the allocation of new nodes and the division of content. These two steps can be
considered as separate micro-operations, although the allocation is independent of the primitive
for the same node size and thus can be omitted. Hence, it is mainly the type of data separation
that is of interest during a node split. The macro-operations to insert or update entries in a
tree would require the micro-operations lookup, traverse, insert, and split. Considering hybrid
structures, such as LSM-Trees in general or more specific solutions like the B”-Tree, introduces
further structure-changing operations. That is, for instance, the movement or migration of
nodes, runs, or levels from DRAM to PMem. Depending on the realization, data can just be
copied or must still be adapted beforehand, e.g., by sorting. Another micro-operation is to
merge multiple nodes into a new larger one. A representative example is the compaction/merge
step of a level in LSM-Trees.

Next, we consider operations that downsize trees and remove data. The most basic micro-
operation here is the removal of entries from a node. The cases where these are implemented
by inserting tombstone records, such as for LSM-Trees, are already covered by the micro-
operations insert in node and merge level. Thus, the erase operation checks primitives that
actually delete data instead. Such an erase can trigger an underflow in a node, which can be
handled by balancing or merging with other nodes. The typical delete macro-operation in a
tree comprises searching, traversing, erasing, balancing, and merging.

The final category is recovery. During the examination of it, we realized that the steps are
basically composed of the operations of the read category plus the recreation of the volatile
DRAM parts. Thus, no new or other micro-operations based on PMem are arising anymore.
Only the reconstruction can now be done in bulk rather than by individual inserts, which is
why this category is still listed separately here. However, since our focus is on PMem and not
DRAM, the reconstruction step is left out of the evaluation. What is more interesting for us are
the measures, which have to take place before a failure occurs to restore the data in the first
place. This is not an explicit micro-operation but is reflected in all modifying procedures and is
thus considered more concomitant as part of the primitives of DG3.

3.3.4 Primitives

In the following, we describe the set of our found design primitives. For the sake of clarity, we
will explain these alongside the design goals they pursue.

Reducing Writes

Per the first design goal, i.e., reducing writes, the node layout was reconsidered. The main
consensus in the literature was to keep the data nodes unsorted to avoid costly shifting
operations. However, this can cause the search for entries to take longer. To compensate for
this, features such as indirection, hashing, and bitmaps, as well as combinations of these, were

41

3. PERSISTENT INDEX AND DATA STRUCTURES

' ______ | bramBuffer [volatile
0 [persistent
o Sort

sorted unsorted

PMem Nodes
[| | | (1. Leve)

Figure 3.4: Move DRAM data to a PMem node.

introduced. In Section 3.2 and Figure 3.2, we already discussed the conceivable layouts in detail.
What has become clear is that these options are not limited to B™-Trees, but apply to almost
all tree-like structures. To have a fair comparison in the evaluation (see Section 3.4), all of
our implementations align the search structure at the beginning and the keys to cache-line
boundaries.

The node layout is also decisive when moving nodes from DRAM to PMem, as it occurs with
LSM-Trees. For example, initially, the data could be buffered in DRAM and later transferred to
a sorted PMem-resident node. The sorting can be done @ directly during buffering or @ during
propagation. Figure 3.4 illustrates these two methods. If presorted, the DRAM data is simply
copied to the PMem node, or else it must be sorted before a copy operation. The cost of sorting,
in the first case, would be spread over time, while in the latter, it is done only once but to
a greater extent. However, the sorting should always already be done in DRAM to prevent
unnecessary writing to PMem. Which method runs faster or whether the copy process to
PMem costs the majority of performance anyway is hard to assess. However, the size of the
node will play a decisive role.

Also more commonly found in LSM-like structures is the merge process of multiple nodes
into a larger one. That is typically necessary if all nodes in a level are filled and need to be
merged to a new node at the next level. Basically, we see two common approaches, namely
the 2-way and the K-way merge. Although the design space for merge algorithms is more
exhaustive, we think these two methods cover the main distinctions. Figures 3.5a and 3.5b
visualize both methods. The 2-way merge only merges two nodes at once until all nodes are
processed. The K-way merge, on the other hand, simultaneously compares all nodes at once
and can directly produce a final result. The former way is easier to implement but also leads to
more intermediate results. For both methods, the final result can be written either @ directly
by performing the merge in PMem or @ by merging the nodes in DRAM first and copying
the complete result to PMem. Unlike the previously considered micro-operation (moving of
nodes), no reordering is necessary, so the number of bytes written is for unique keys the same.
However, a direct write-out initiates many smaller writes, which can lead to cache lines being
flushed multiple times in the case of unpredictable flushes by the operating system. It becomes
even more problematic when duplicates exist, i.e., the same key was updated in multiple nodes,
and already written data has to be updated. The second variant via DRAM, however, requires
an additional copy step.

Splitting full nodes, as found in B -Trees, skip-lists, and to some extent tries, can be done in two
ways. The first primitive, split move, involves fewer writes and thus more closely pursues DG1.
The idea is to move all keys greater than the split key to a new node. Alternatively, the data
could also be moved to two new nodes. That would be slightly easier but would also trigger
double the writes and tends thus not to be suitable. The second split primitive is applicable
when a bitmap is present in the nodes. It copies the complete full node and only resets the

42

3.3. DESIGN PRIMITIVES

| PMem Nodes

(1. Level)
| ______ | ______ | ______ | ______ | PMem Nodes
C — (1. Level)

TN @ buffered
PMem Node ! PMem Node
(2. Level) < (2. Level)
(a) 2-way merge into a PMem node. (b) K-way merge into a PMem node.

Figure 3.5: Design primitives for merging multiple nodes to the next level.

bits in the bitmap for greater keys in the original node. The inverted bitmap, i.e., enabling
the smaller keys, is then applied to the new node. Depending on the allocation process, this
split type involves more written bytes but could be faster due to algorithmic simplicity and
exploitation of more fine-granular accesses. Therefore, this method is rather fitting DG2.

A final step to reduce the write load is given by the hybrid approaches storing only a necessary
part in PMem and managing the rest in DRAM. The best example is the selective persistence of
the FPTree, where the inner nodes are in DRAM, and the leaves are on PMem. This type of
data placement has an impact on almost all micro-operations. Its influence is thus quantified at
the very beginning of the evaluation.

Fine-granular Access

The different search and access methods assigned to DG2 depend strongly on the underlying
node layout. Therefore, the design primitives in this category have, for the most part, already
been explained along with it. While a linear search — where all keys are examined - is always a
possibility, binary searches are only feasible if some kind of sorting is given. This can be done
either by sorting the entries themselves or by an indirection array. If a bitmap is present, the
corresponding bit must be checked or flipped, in addition to the entries in each case, so that
no deleted or unset data slots are read. With hash probing, a linear search can be accelerated.
However, this always requires extra hashes to be calculated. At this point, other algorithms
such as interpolation or exponential searches would also be conceivable but have not been
mentioned in the literature so far.

The major innovation with PMem is now that the data does not have to be loaded into DRAM
first but can be processed or searched directly. Especially the support by features like indirection,
bitmaps, and fingerprints/hashing seems to be very well suited for cache sensitive and fine-
granular accesses without having to touch the entire node.

Failure Atomicity

Regarding the last design goal, we extracted three different methods to achieve failure atomicity.
The easiest method for developers is by using PMDK transactions. It provides a general-purpose
way by encapsulating appropriate sections to happen atomically. As we discussed in Section 2.4,
this process usually costs more performance than necessary. Another general-purpose solution
is the PMwCAS operation, which provides CAS operations for ranges bigger than eight bytes,
as we explained in Section 3.1. There are similar concerns as with PMDK transactions, though.

43

3. PERSISTENT INDEX AND DATA STRUCTURES

The final method that was mainly used in the literature is to individually persist the data using
flush and fence instructions.

In principle, the methods are relevant for all micro-operations that involve writes to PMem.
While we could simply place PMDK transactions around any micro-operation, manually setting
instructions must take into account the individual operation and also the primitive(s) used.
Thus, deleting an entry in a node with a bitmap can be efficiently implemented by a bit flip,
a flush, and surrounding fences. For sorted or unsorted nodes without auxiliary structures,
however, the procedure becomes more complicated since the entries on the right must be shifted
one to the left, and the counter must be decremented. To make this procedure fault-tolerant,
there is probably no way around a before or after image, like in PMDK transactions. Only if
duplicates are not allowed, one could detect and fix a failed delete based on such duplicates,
as it was similarly done in FAST and FAIR [HKWN18]. In our experiments, we mostly left
out correct failure atomicity because of its individual treatment and just persisted all changes.
Instead, we consider them exemplarily using the micro-operations move node and merge level.
With these, an individual implementation by flushes and fences independent of the primitive is
easily possible, which makes it more comparable with the transactional approach. The idea
is to introduce an array storing the pointers or offsets for each level to the next free node, as
shown in Figure 3.6.

These pointers can be atomically updated - if aligned correctly — after the move or merge
process is finished. It is possible since, on x86 architectures, 8-byte aligned writes are failure
atomic. Hence, by limiting the size of the pointers or offsets to 8 bytes, we can completely avoid
transactions. Assume a crash occurs while the write operation in node 1 is not complete yet.
After the restart, no undo is necessary because the pointer is still at position 0. A new merge
or move process would just overwrite the partial changes in node 1. Similarly, this could also
be implemented with PMDK transactions or PMwCAS instructions (instead of atomics), only
encapsulating the pointer adjustments. It would be necessary if larger pointers than 8 bytes are
required. Data consistency remains unchanged irrespective of whether the entire node or just
the pointer is added into the log. Consequently, the performance penalty of PMDK transactions
could be significantly reduced. All of these methods, we refer to as individual failure atomicity
in the evaluation. If all the changed data is simply flushed, ignoring the reordering abilities of
the CPU, we term this as no failure atomicity. The third variant we evaluate encapsulates the
complete micro-operation and is marked as PMDK transaction. Regarding Table 3.1, all variants
fall under DG3. The individual and no failure atomicity variants could also be counted to DG1
as they reduce the number of writes, whereby the latter serves more as a theoretical baseline.

5,6,7,8 DRAM Buffer
\\ f’ PMem Nod
em Nodes
1’2{3’4 e (1. Level)
0 1 Offset/Pointer per Level

Figure 3.6: Individually realizing failure atomicity with an LSM-Tree as an example.

44

3.4. EVALUATION

3.3.5 Extendability

As it already became clear in Section 3.2, the design space is tremendous and, thus, Table 3.1
only covers an excerpt. However, it can be easily extended by more design primitives and micro-
operations. Conceivable extensions can be expected, for example, in the fields of hardware
utilization and concurrency. Concerning the former, we already applied cache-line alignment
and specific CPU instructions. The latter was excluded as it does not fit into our micro-
consideration. Instead, concurrency control is discussed separately and on a higher level in
Chapter 5. Also, failure atomicity could be explored more deeply. For the time being, we have
focused on PMDK transactions and individual persist operations. Finally, future proposals
for the node layout — that we have not thought about yet — can also be incorporated later. In
principle, our currently considered micro-operations and primitives should already cover a large
part of PMem-aware trees while serving as inspiration for future extensions or applications to
other technologies.

3.3.6 Metrics

Now that the primitives and operations and their mapping have been inspected, the next step
is to evaluate the applicable options from Table 3.1 using appropriate white-box benchmarks.
The correspondingly assigned experiments are noted in the last row of the table. Thus, all
PMem-based operations are fully covered. Before we delve into the experiments, however, we
must first consider relevant metrics. From our point of view, the throughput does not provide
usable values at this point because we are at the micro-level. The average time of the micro-
operations, i.e., the latency, is more meaningful here in terms of performance. Furthermore,
performance counters on the hardware level, such as cache misses or instructions per cycle,
can also provide valuable information. We think that especially the number of flushes (persist
operations) and written bytes are crucial factors due to the read-write asymmetry. General
memory consumption is also a factor that should not be ignored since PMem typically has less
capacity than disks.

3.4 EVALUATION

The benchmarks in this evaluation represent the micro-operations on tree-like data structures
as presented in the previous section. From the design primitives, we focused on the following
candidates for the node layout: sorted, unsorted, indirection + bitmap (indirection), hash-probing
+ bitmap (hashing), and bitmap only, in most of the experiments. Accordingly, we reviewed the
access primitives: binary search with and without using indirection as well as linear search
with and without using hashing and a bitmap. In Section 3.2, we already discussed how we
reimplemented these approaches to isolate the primitives. A brief recap will still be given for
each corresponding experiment. The primary goal is to evaluate the design primitives inde-
pendently of their original context and identify their benefits and costs. As a comprehensible
result, a performance profile for our main primitives shall be created exemplarily at the end.

As already mentioned during the discussion about failure atomicity, we mainly report the
results for manually persisting the modified data. We will compare the impact of individual

45

3. PERSISTENT INDEX AND DATA STRUCTURES

handling of failure atomicity and PMDK transactions only for the move node (experiment E6)
and merge level (experiment E7). Alternatively, we could also use PMwCAS operations. Since
these were not yet integrated with PMDK at the time of the experiments, they were omitted
for the time being.

Regarding the data used, we mostly worked with fixed-size keys and values being 8-byte
identifiers and 16-byte tuples (<int, int, double>), respectively. In cases where this format
differs, this will be indicated. The chosen size of the values also corresponds to the size of a
persistent pointer (e.g., to the actual payload). As it was already shown in Figure 3.2, we stored
the keys, values, and child pointers in separate arrays within the nodes to provide better locality
benefits when iterating through the keys. Furthermore, the payload was always cache-line
aligned. The fill ratio of the trees was set to 100%, but this ratio is actually irrelevant in most
experiments since we access predefined positions. With the different node layouts, also the
number of maximum elements differs. That is in particular apparent for smaller node sizes.

In all benchmarks, we created several nodes (and sometimes even trees) with the same content to
avoid reporting cache instead of PMem performance. Together, they stretched over a multiple
of the LLC size. For each benchmark iteration, a different randomly chosen instance was
accessed. Thus, it is rather unlikely for the CPU to prefetch or cache the correct instances.
For comparison purposes, we nevertheless ran the measurements additionally always on the
same instance, what we refer to as a cached case in the text. In any scenario, the data points
in our graphs are supported by several thousand iterations. Like the data structures, also our
benchmarks and used scripts can be reviewed in our public repository®.

3.4.1 Read Operations

Node Search (E1)

First of all, we consider performance of the most basic micro-operation, namely searching for a
key within a node. It is used for nearly all macro-operations such as get, update, and delete
and, thus, a crucial performance indicator. The most decisive factor is the node layout and the
corresponding possible access primitives, which we have all tested. We varied the node size
and the position of the target key, as these can also have a large impact on performance. As
a result, we expect binary searches to be faster with and without the help of an indirection
array for the middle and last node positions. Figure 3.7 visualizes our measurements. Besides
the PMem implementations, we included the results for all variants when running on DRAM
summarized in one curve. That should serve as a baseline.

It is visible that the binary search is performing worse than expected. Just when the key
is exactly in the middle and, thus, only one access happens, it can keep up with the linear
approaches in the PMem case. Also, contrary to our expectations, indirection does not yield
any advantages over a direct binary search. It should be noted, however, that it takes much
fewer writes to insert and delete, which we will look at later. The problem that causes the
slowdown is the alternate access to the indirection and key array, which are all the more apart,
the larger the node. The direct binary search only scans through the latter. With one or two
exceptions, the hashing approach is the fastest of the linear methods. That is since most of
the comparisons are made in the front cache line(s). Only if a hash comparison is positive, the

SPMem-based Data Structures - https://github.com/dbis-ilm/PMem_DS

46

https://github.com/dbis-ilm/PMem_DS

3.4. EVALUATION

—@—Dbinary #--linear --@--indirection =<=-hashing =—¢=bitmap ===DRAM

2.5
key position: first key position: middle
2.0t
—~
w
=
- 1.5
2
8 1.0F
<
=
0.5F
0.0
256 512 1024 2048 4096 256 512 1024 2048 4096
Node size (Bytes) Node size (Bytes)
25
2.0F
2
3
=150
P
2
o 10f
<
—
0.5
0.0
256 512 1024 2048 4096

Node size (Bytes)

Figure 3.7: Searching for a key within a node (E1).

corresponding key is checked. Since in our scenario the hashes are unique, it amounts to a
single key comparison. Thus, on average, the fewest cache lines need to be loaded from PMem.

When doing the same experiments with DRAM-resident nodes, binary searches performed
much better, especially with the target key in the middle. In a cached case, both for DRAM and
PMem, even the back access areas were faster with binary search. However, it is important to
mention that the unsorted approaches are not suitable for inner nodes in B™-Trees since the
search is based on key ranges and not key equality. That is particularly relevant for hybrid
structures as binary search performs better in DRAM anyway.

Furthermore, with the indirection and hashing approach, it can be seen that there are sometimes
rapid rises in latency when the node size is increased. It is related to the also increasing search
structure at the beginning of the nodes. Thus, for 1 KiB and 2 KiB already two cache lines are
needed for the auxiliary structures, and for 4 KiB, three. However, unlike indirection, hashing
usually reads fewer of the cache lines. Overall, both approaches (and slightly also the bitmap)
have a higher memory footprint.

Staying on the subject of memory footprint, Table 3.2 shows the exact number of possible
entries per node depending on their size and layout as well as the total PMem space required
for a given number of 50M records. Without a search structure — as with sorted and unsorted
nodes — more records will naturally fit in a node. If auxiliary structures like the indirection
or fingerprint array are introduced, one additional byte per entry is required. The bitmap
requires an additional bit per entry. As we already clarified above, for a fair comparison, we
have aligned the base node structure as well, so that the keys also start in a new cache line. In
percentage terms, it can be seen that smaller nodes entail a higher memory overhead. However,
this is also very dependent on the size of the keys and values. The poorer utilization of space
also leads to potentially longer traversing paths.

47

3. PERSISTENT INDEX AND DATA STRUCTURES

Table 3.2: Calculated number of records per node and memory consumption of a node chain (50M
records) for a given node size.

NobE Si1zE

256 B 512B 1KiIB 2KiB 4KiB UnNi1T
Base NoDE 9 19 41 83 169 | records/node
1,32 1,25 1,16 1,15 1,13 GB
ALIGNED NODE 8 18 40 82 168 | records/node
1,49 1,32 1,19 1,16 1,14 GB
NODE WITH SEARCH STRUCTURE 8 18 37 79 160 | records/node
1,49 1,32 1,25 1,22 1,19 GB

OVERHEAD ALIGNED +13% +6% +3% +1% +1%

OVERHEAD SEARCH STRUCTURE +13% +6% +8% +6% +5%

Overall, apart from the higher memory requirements, we see the hashing approach as the best
solution for searches in a persistent node. For nodes that are in DRAM (e.g., inner nodes) or
that are very likely to be cached, the traditional sorted layout is better suited.

Tree Traversal (E2)

In the next experiment, we consider the traversal cost from the root to the leaf level, as
known from navigations in B™-Trees. Therefore, most of the accesses concern inner nodes.
Since the search within nodes is already covered in experiment E1, we only measure timings
for dereferencing and chasing pointers. Again, we want to avoid prefetching and cached
measurements. Therefore, a random child pointer is always chosen and chased. Without the
search, the node layout is hardly decisive. Instead, we thus compare the times for traversing
nodes placed in PMem or DRAM. Merely the last access ends in a persistent leaf node, reflecting
the idea of hybrid data structures and placement. Regarding the parameters, we varied the depth
of the tree or the length of the node chain. Since the node size made virtually no difference here,
the results are reported in aggregate form. We expect that the latency per node visit increases
by about the corresponding idle random read latency measured in Table 2.2, depending on the
technology. Our results are illustrated in Figure 3.8.

3| ESE PMem
E==3iDRAM

Latency (us)
5

—_

4 5
Tree depth (levels)

Figure 3.8: Traversing a tree w/o search (E2).

48

3.4. EVALUATION

As it can be seen, with increasing tree depth or frequent pointer chasing in general, the use of
PMem can lead to a drastic loss of performance. For DRAM nodes, the latency increases by
about 50-100 ns for each extra level, like anticipated. In the case of exclusively used PMem-
resident nodes, on the other hand, each level increases the latency by about 400-500 ns. That
is already almost 50% more than the latency measured at the beginning and also reported
in [LHO" 19, vRVL"19]. It may be due to the additional software overhead (such as PMDK)
and possibly not yet fully developed optimizations on the compiler and hardware level.

Apart from that, it becomes clear anyway that all structures would benefit greatly from a
hybrid layout. In the previous experiment, we had already pointed out that, in the case of
DRAM, sorted nodes can be searched faster and are also necessary. Both direct and indirect
sorting is possible. The direct search is more memory efficient, and the indirect one saves write
operations, but this is not as vital for DRAM. However, it should always be considered that the
DRAM parts have to be restored in case of a crash and, thus, the restart takes longer. A decision
must be made here depending on the use case and requirements. For example, if performance
is most important and failures are rare, a hybrid approach should definitely be applied.

Tree Iterate (E3)

The orthogonal navigation direction is the horizontal traversal of nodes, also called scan or
iteration. Since we traverse the nodes not in an ordered manner, we prefer to use the term iterate
to avoid confusion with range scans. This micro-operation is the last in the read category that
we want to wield. Unlike the experiment before, this one includes pointer chasing and iteration
over all keys and values. The number of entries per node has a great influence here. Therefore,
we limit the number to the maximum possible based on the nodes having a search structure
(see Table 3.2). The benchmark was implemented by letting a tree grow horizontally by making
the single inner node, i.e., the root, progressively larger. The size of the leaf nodes also has an
influence, but the results are proportionally the same. Hence, we show representatively only
the measurements for node sizes of 1 KiB. There are three variants for the access primitives.
The sorted and unsorted approaches use the same algorithm since the order is not of interest,
and the key and value arrays can be iterated directly. The three approaches with a search
structure also share the same algorithm. They all have a bitmap that must be checked for
valid entries. Since this causes branching in the loop and alternating accesses, we expect it
to perform poorer than the direct variant. The third variant is enabled if an indirection array
is present. As this also stores the number of entries in the first byte, the indirection array
can be traversed to the fill level using this number, which thus only refers to valid entries.
However, since this approach does not necessarily correspond to the order of the key and value
arrays — and, hence, results in more random accesses — better performance is rather disputable.
Nevertheless, we have tested all three variants and present the results in Figure 3.9.

Interestingly, the iteration via indirection is even worse than expected and slower than the
bitmap variant. As a consequence, it can be stated that even if an indirection array is available,
the bitmap should be used for iteration. It might look different though if the order should be
respected when iterating. In any case, as expected, the direct approach is the fastest. Based on
its performance, the overhead of the bitmap is 31%, and that of the indirection is 58%, in the
largest tested case. Especially alternating between the cache lines (bitmap/indirection slots, key,
and value array) as mentioned above is a drawback. However, the nodes in this scenario are
100% filled, which is already favorable for the bitmap procdedure. Thus, the branch prediction

49

3. PERSISTENT INDEX AND DATA STRUCTURES

100

—o—(direct m
801 —®= indirection /
==+ bitmap 7
60 2

Latency (us)

102 103 104
of tree elements

Figure 3.9: Iterating through nodes (E3).

should always be positive, and moreover, the number of checked entries is the same as with
the other methods (i.e., the loop passes). In the case of indirection and direct iteration, the loop
only needs to step over the number of entries actually present. Since our iteration function
only reads the keys and values and copies them into a variable, its effort is quite manageable.
Also, the bulk of performance goes thus to the algorithmic part of iterating. We assume that
with an increasing complexity of the underlying function, the approaches converge in terms of
performance.

Overall, we saw that for iterating through persistent data nodes, the direct iteration used for
a plain sorted and unsorted layout performs the best. In order to realize range scans based
on this micro-operation, sorting must be available. It remains open to verify the overhead of
on-demand sorting per node versus the already sorted approaches. Experiment E6 will provide
partial insights into this. Finally, this experiment has shown us, in particular for DCPMMs,
that frequent alternating between non-sequential cache lines should be avoided.

3.4.2 Insert-based Operations

Node Insert (E4)

The basic operation for inserting new data into a tree is the placement of a new entry in a
target data node. Again, like in experiment E1, the node layout is the main category of the
primitives as it determines what else has to be modified. In the benchmarks, we varied the
node size and the insert position regarding the order of the already existing keys. Since we now
modify data on PMem, we additionally report the number of bytes modified and the actually
written bytes to the device (a multiple of cache lines). In preparation, all key-value pairs except
the target key are inserted into a node with precisely the space needed. For example, if a pair
is to be inserted at the first position in a node with ten slots, the pairs with the keys from 2-10
are inserted in advance. The measured part is confined to the insertion of key 1, i.e., the search
for the target position is not included. In order to obtain the macro-operation insert into a tree,
we can add approximately the time to traverse, the respective node searches, and the node
insert as presented here. Theoretically, the sorted layout has the most overhead since other
entries must also be moved. That results in many writes and flushed cache lines. Therefore, we
expect it to perform the worst for this micro-operation. In the other approaches, however, the

50

3.4. EVALUATION

payload is only appended. The difference becomes apparent when adapting the metadata. Our
results are shown in Figure 3.10.

It is quickly evident that maintaining sorted nodes in PMem has an essential performance
impact. The direct sorting approach worsens as the node size increases, corresponding to the
higher number of bytes written. It can only keep up with 256-byte nodes, which can be justified
by the approximately equal number of flushed cache lines. The unsorted variants, on the other
hand, perform significantly better. For instance, for the plain unsorted case, only the key and
the value need to be appended and the size field updated. In the hashing and bitmap case, the
hash and bit are set accordingly instead of the size field. The indirection approach performs
much better than the directly sorted layout, especially when the key position is in the front and
all slots have to be shifted to the back to keep the indirect ordering. Compared to the unsorted
approaches, however, the maintenance of metadata costs significantly more time. As can be
seen particularly in the last case with the key position at the back, the overhead is not due to
sorting the slots. Instead, it is constituted by the determination of a free bit position plus the
given slot position. The indirection approach is thus the only approach that has to find two
positions, which is why we have included the overhead of one of them.

In general, the direct sorting of node entries is not suitable for read-write asymmetric devices
like PMem. Although the number of changes is similar for indirection, the total number of
modified bytes is much smaller, and several slots can be persisted at once. Therefore, apart
from the additional determination of the position, indirection can compete with the unsorted
variants, which in turn perform all equally well.

sorted = =r-unsorted -*r-- indirection ===-hashing == bitmap
35 2560
key position: first key position: middle §
_28f {2048 2
2 z
= =
=
52.1 11536 @
5 =
2 3
= o)
— 1.4} 11024 €
!)
8
S =
0.7 512 m
-
0.0
256 512 1024 2048 4096 256 512 1024 2048 4096
Node size (Bytes) Node size (Bytes)
35 2560
key position: last g
28| 12048 2
el s
2o 11536 B
= =
2 3
< =]
=l 11024 £
S TS L L L %)
...................... 3
3 E— — g
0.7 1512 @
-
0.0

256 512 1024 2048 4096
Node size (Bytes)

Figure 3.10: Inserting a key into a node (E4).

51

3. PERSISTENT INDEX AND DATA STRUCTURES

Node Split (E5)

The next experiment in the insert category is the splitting of nodes. We have focused on data
or leaf nodes since these must always be stored persistently to be fail-safe. We chose a similar
setup as for experiment E4, except this time, the nodes were filled completely in advance.
Therefore, we again report the number of bytes modified and actually written, besides the
latency. The two split strategies, as presented in Section 3.3, can be applied to the indirection,
hashing, and bitmap approach. The move variant changes fewer bytes, which theoretically
leads to a reduction of writes and thus supports DG1. The copy variant, on the other hand,
exploits the fine-grained access and thus pursues DG2. If there is no bitmap in the node layout,
the copy strategy is not reasonable as it would trigger duplicate writes. The reason for this
is that the entire node is copied first, and then all entries are reordered to the left and thus
written again. In general, we expect that sorted approaches should be faster since nodes that
are already sorted can be split into larger and smaller parts more quickly. Unsorted approaches
would have to check each entry against the split key, while with sorted nodes, everything
starting from the middle can simply be copied. The measurements are shown in Figure 3.11.
Since the bitmap and hashing approach exhibited exactly the same performance, and to keep
the figure neat, we summarized them in the diagram as bitmap.

As expected, the approaches with ordered entries are generally faster than the unordered ones.
Using an indirection layout and the move strategy results in a similar curve as the sorted
variant. It requires, however, a bit more effort for transferring and setting the slots and the bits
of the entries. In the case of direct sorting, only the size field has to be adapted at this point.
With the bitmap (and hashing) approach, more time is needed by searching for the median in an
unsorted array. For this search, we used the quickselect algorithm with an average complexity
of O(n), although other selection algorithms could conceivably be used. Accordingly, this
procedure is even more dependent on the node size.

Conceptually, the copy strategy modifies more bytes than the move strategy as it copies an
entire node. Reflecting on the write endurance and read-write asymmetry of PMem, this could
be a shortcoming. However, we performed this copy operation together with the allocation.
Since this initiates a sequential write, it seems beneficial for the write-combining buffer on
the DCPMMs. As can be seen, the copy strategy performs better than moving. With only the
bitmap (or plus hashing slots), the difference is more noticeable since only the bitmap has

10 sorted ~ seeeer indirection(move) === bitmap(move) 8192
l4r unsorted indirection(copy) bitmap(copy) 7168 §
o 12F 6144 5
el z
Q>;,IO- 51208
&E 8t I e 2 ; : -40%%
| B AL e . £
"6 é % 3072
5 ak 7+ g é -2048%)‘
nn i
i n) :
2 % % é % 1024 mm

256 512 1024
Node size (Bytes)

)
o
E
3
&
=)
°
=N

Figure 3.11: Splitting a node (E5).

52

3.4. EVALUATION

to be updated after the allocation. With indirection, the corresponding slots must be shifted
additionally, but it does not require searching for the median. In general, we can deduce that the
copy approach is more effective when a bitmap is present. When running the same experiments
on DRAM-based nodes (e.g., for inner nodes), we saw a similar result and again recommend
either a sorted variant or the copy approach.

By profiling, it has been found that the majority of the time in all approaches is required for
allocating the new node (about 80%). As a result, the curves in the figure are all relatively close
to each other. Currently, the allocation was implemented with PMDK, which must always be
encapsulated in a transaction. In addition, we found that the duration depends on the allocated
size. Already in [LHO"19], it was observed that allocations in PMem have a tremendous
impact and, therefore, should be used as rarely as possible. In contrast to DRAM, additional
mechanisms must be employed to prevent persistent memory leaks. To amortize the overhead,
group allocations, as also proposed in [OLN"16], are recommended.

Overall, we would have expected a trade-off of performance against endurance between the
copy and move strategy. That is not the case because the copy process is carried out during
allocation, and the copy strategy can be recommended without reservation. In the end, however,
the sorted variants (direct and indirect) are always better when splitting.

Move Node (E6)

Another insert-based micro-operation is the movement of DRAM data to a persistent node. It
is motivated by LSM-Trees when merging the full DRAM buffer to the first persistent level. In
this setup, we varied the node size and also examined the different strategies regarding failure
atomicity. These are no failure atomicity, individual failure atomicity, and PMDK transaction as
they were explained in Section 3.3. Here, we want to analyze, on the one hand, the effect of the
strategies depending on the node size. On the other hand, we want to determine the additional
overhead to keep sorted nodes in two variants. The first is to keep the DRAM data unsorted and
sort it just before moving it to PMem. Secondly, the DRAM data could be maintained sorted and
directly be moved to PMem Thus, the measurements for the first method additionally contains
the time for sorting in DRAM. The nodes in this experiment have been simplified a bit and
are simple persistent arrays of key-value pairs. In contrast to LSM-Trees, we do not consider
duplicates for this operation and use only unique keys. Our results are given in Figure 3.12.

300

& - unsorted, no failure atomicity

)

O

(=}
T
8

&~ unsorted, individual failure atomicity
| = 8- unsorted, PMDK transaction 8

D
(=3
=

=o— sorted, no failure atomicity

0= sorted, individual failure atomicity

Latency (us)
2

100} —@=sorted, PMDK transaction %
%
50F & @
0 __87
2 4 8 16 32

Node size (KiBytes)

Figure 3.12: Move data from DRAM to a PMem node (E6).

53

3. PERSISTENT INDEX AND DATA STRUCTURES

Obviously, the additional sorting takes more time. The relative overhead continues to increase as
the node size increases. With no failure atomicity measures, the unsorted variant is 4-5x slower
than the already sorted variant. Using individual measures and transactions, the overhead is
3-5x and 2-3.5X%, respectively. However, the overhead of maintaining a sorted source data
structure would be greater. All the more if this is to be done on PMem (see experiment E4).
Theoretically, inserting n elements into a sorted array by shifting the entries has an average
complexity of O(n?). Whereas the one-time sort is possible in O(n log(n)). Alternatively, the
sorted array can be organized as a tree reducing the complexity also to O(n log(n)). In practice,
however, larger nodes will then lead to more frequent cache misses and random accesses. For
smaller DRAM buffers, we thus see it as sensible to keep them sorted. However, larger DRAM
buffers and PMem structures as a whole should be kept unsorted. Since for a typical LSM-Tree
application scenario the DRAM buffer is in the order of a few kilobytes, the unsorted variant is
the more appropriate approach.

Besides the impact of sorting, the overhead of the PMDK transactions is unmissable in Fig-
ure 3.12. These degrade performance in the range of 1.2-3x. Especially with smaller nodes and
the presorted approach, this is decisive. On the other hand, we see that the individual realization
of failure atomicity — adding a single 64-bit persistent variable into a PMDK transaction or
using an 8-byte aligned write (plus manually placed fences) — has almost the same performance
as no failure protection. In both cases, the persistent node is still explicitly flushed. Overall,
this experiment shows that general-purpose implementations such as PMDK transactions can
lead to a significant overhead. Therefore, this should be used exclusively for allocation and
deallocations, if possible. Particularly for performance critical applications, failure atomicity
should definitely be implemented individually.

Merge Level (E7)

Also derived from operations of the LSM-Tree, the next experiment deals with merging multiple
sorted nodes into a larger one. We test performance of the 2-way and K-way merge algorithms,
as introduced in Figure 3.5a and Figure 3.5b, respectively. On top of this, we considered the two
variants of merging, where either the data is merged directly into PMem, or it is first arranged
on DRAM and then copied to PMem. In addition, we investigate two extreme cases regarding
duplicates. That is, either there are only unique keys across all nodes or 100% duplicate keys,
i.e., every key is in all nodes. Again, since the individual implementation of failure atomicity
is independent of the primarily tested primitives, its influence can also be well studied here.
The results of all these combinations with four source nodes of varying sizes are visualized
in Figure 3.13. We summarized no and individual failure atomicity in the same curves because
they resulted in about the same performance.

Once again, we can observe that PMDK transactions massively degrade the runtime. Inter-
estingly, the 2-way merging directly to PMem without duplicates is significantly faster than
with DRAM buffer. With the K-way strategy, this is not so clear. Using transactions, it is even
the other way round. In general, the 2-way strategy with direct merge on PMem performs
better than the K-way strategy. The reason for this is probably the emergence of more frequent
cache misses and random accesses during the K-way merge since all nodes are considered
simultaneously. When duplicates are present (second column of Figure 3.13), the K-way and
2-way merge performance converge. Only when transactions are used the 2-way merge is
again faster.

54

3.4. EVALUATION

#-+ 2-way merge, individual failure atomicity —e—K-way merge, individual failure atomicity

#-+ 2-way merge, PMDK transaction —o— K-way merge, PMDK transaction
250
merge to PMem merge to PMem
200+ w/o duplicates * I w/ duplicates
7
A
~ 150F
>
Q
=
2 100f
<
—
50F
0
250
merge to DRAM merge to DRAM
200+ w/o duplicates I w/ duplicates
q »
= 150f e r
>
Q
=
8 100} L
<
—
50F - o
5
0
32 2 4 8 16 32
Node size (KiBytes) Node size (KiBytes)

Figure 3.13: Merging sorted data in persistent nodes to a new persistent node (E7).

The reason why the merge directly on PMem with transactions behaves this way, we explain
as follows. The resulting node after a merge operation may contain a different number of
elements varying between two extremes. The least number of elements corresponds to one
source node, which is the case with 100% duplicates. If there are no duplicates, the size equals
the sum of the elements of all source nodes. Usually, the result size cannot be predicted. For the
K-way merge, this means that the maximum size must be assumed and added to the transaction.
With the 2-way merge, the size can be reduced by the intermediate results already before, and
only the potential maximum of the last binary merge must be added to the transaction. With
100% duplicates, this corresponds only to the number of elements of two nodes. Therefore, the
2-way merge performs better here with PMDK transactions.

With an intermediate buffer on DRAM (the second row in the figure), the K-way merge can
take advantage of that since it knows the target size on PMem before allocating and copying
the result. Therefore, both merge strategies perform quite similarly. If there are no or only a
few duplicates, the K-way merge is even slightly better than the 2-way merge. However, as
already stated, the DRAM buffer is not suitable here anyway since it does not reduce the final
result size.

So, in summary, we can state the following. In any case, individual failure atomicity should
be preferred instead of PMDK transactions. If duplicates are expected to be rare, the 2-way
merge with the last merge directly to PMem is the best choice. However, if frequent duplicates
are assumed, the approaches show little difference, but the direct merge on PMem uses fewer
resources. Lastly, if an individual realization is not possible or PMDK transactions must be
used, by all means, these should make use of the DRAM buffer to minimize the size of the
logged region.

55

3. PERSISTENT INDEX AND DATA STRUCTURES

3.4.3 Erase-based Operations

Erase from Node (E8)

In the final erase-based category, we start with the basic removal of a single key-value pair
from a node. As with the search (E1) and insertion (E4) of a single pair, performance depends
on the node size and position of the data, which is why they are varied. In addition to latency,
the quantity of bytes written is also of interest. A full node is created in advance so that we can
delete entries at any position. Similar to E4, the search for the position is not included in the
measurement and can instead be added to it using E1. The complete delete macro-operation
excluding underflow handling is composed of traversing the tree, searching each node, and this
erase micro-operation. The traditional sorted approach probably performs the worst since the
keys and values to the right of the deleted position must be moved to fill the created gap. That,
in turn, leads to many writes and flushes. For the unsorted layout without auxiliary structures,
we noticed that this is not necessary. In fact, it is sufficient to copy only the rearmost entry to
the deleted position and eventually decrement the size field. Since the hashing and indirection
approaches are equipped with a bitmap, only one bit has to be reset for them, just like for the
pure bitmap approach. Algorithmically, the same process applies, except that the slot array still
has to be shifted in case of indirection. Because all of these approaches apply their changes
usually in the same cache line, we expect them to run faster than the sorted and unsorted
approach. The visualization of our measurements is given in Figure 3.14.

The suitability of the bitmap for fast erase operations is undeniable. There is never a case it
is not the best-performing approach. Combined with hashing, not much changes since the
algorithm remains the same. Only the slight difference in the node layout seems to have a
minimal influence. Even with indirection, the additional effort for shifting the 1-byte slots is

sorted = =r-unsorted -*r-- indirection ===-hashing == bitmap
3.0 2560
key position: first key position: middle §
24t {2048 ‘&
2 z
= -
=
5 1.8} 11536 @
5 =
2 3
= o)
— 1.2} 11024 €
!)
s &
2
0.6+ e et ettt Bl el 512 m
-
()()r I_‘ - A b - -
256 512 1024 2048 4096 256 512 1024 2048 4096
Node size (Bytes) Node size (Bytes)
3.0 2560
key position: last g
24} {2048 5
E ?
2 1.8} 11536 8
= =
2 3
< =]
— 1.2/ — 11024 £
' e »
5 —_— — it L ’;
- Sl ¥ o
0.6 e e e s b2 {512 A
-
0.0L= = =

256 512 1024 2048 4096
Node size (Bytes)

Figure 3.14: Erasing an entry from a node (ES).

56

3.4. EVALUATION

moderate. Since from 2 KiB, another cache line must be adapted and flushed (more than 64
slots, cf. Table 3.2), the distance to the pure bitmap implementation, which still considers only
one cache line, is a little higher there. Only when the target entry is the greatest key of the
node, i.e., the last slot, performance stays close to the pure bitmap. That is because no slots
have to be shifted and only the bit is reset and the size is updated.

Regarding the remaining two approaches, we would have estimated the alternative approach
for the unsorted layout to be more constant as always the same number of bytes are adapted.
However, the location of the erased and last position from which the entry is moved is decisive.
Furthermore, the size of the node is also crucial since the larger the node, the greater the
probability that three cache lines have to be almost always processed. Interestingly, this access
pattern is even slower for smaller nodes than the shifting in the sorted approach. In this case,
therefore, the original approach should rather be chosen. However, it can be seen that shifting
does not scale well with increasing node size and is thus not suitable. The reasons are too many
writes and flushes that drastically degrades performance when using PMem. For larger nodes,
this approach can only keep up if the last key is deleted and, thus, no shifting is necessary.
Overall, we can state that a bitmap is vital for fast erasures.

Balance Node (E9)

Erasing entries can lead to the underflow of a node, which can be balanced with a full node.
However, there may be other reasons why entries are transferred from one node to another. That
is the process we want to address in this experiment. In preparation for this, we create an array
with full nodes and an array with half-filled nodes (actually one less than half, representing
an underflowed node). The task of the balance micro-operation is to move a quarter of the
entries of the full node into the half-filled node. In tree structures, this is usually done using
sibling nodes located either on the left or on the right. Practically, this means that the entries
are moved either to a node with larger keys or with smaller keys. In the former case, with
sorted nodes, the receiving node has to make room in the front for the new smaller entries in
advance. On the other hand, when balancing a node having smaller keys than the donating
node, the remaining entries of the donor must be shifted to the front. The indirection approach
is similar, only that the shifting is applied to the slot array, and the entries can be placed at any
free position. With unsorted nodes, however, the whole node must be scanned to find the next
minimum or maximum key for every movement, which makes the complexity quadratic. We
expect similar results as with the splitting of nodes (E5) since sorted nodes make this procedure
more simple. Accordingly, we again vary node sizes and report modified as well as written
bytes per operation in addition to the latency. Our results are illustrated in Figure 3.15.

In contrast to our previous results, a contrary pattern emerges so that the number of bytes
written is not directly reflected in performance. As expected, the two sorted approaches are
consistently the fastest. However, it is unexpected that as the nodes get larger, the performance
gap with the unsorted variants becomes so tremendous. In the most extreme case, the directly
sorted approach is four times faster than the hashing one. The layouts with bitmap have to
additionally search for free space on the receiver side at each move step. Due to the fingerprint
array when hashing, extra bytes and possibly even cache lines have to be written. Also, with
the indirection, the search for a free slot in the bitmap seems to play a greater role with larger
nodes. Since there is less writing, we would have expected it to be better as directly sorted
nodes, but the random read and write portion seems more crucial.

57

3. PERSISTENT INDEX AND DATA STRUCTURES

sorted == unsorted =s*+*- indirection === hashing ==+=bitmap

16 5120
balance with node having smaller keys (left) ,// 5
LA =
120 27 Ja0s6 2
e 2 z
g v =
3 8 Vs {3072 3
= ,0. 7 f":
2 - -7 . =
i 2= 7 5
1 4f B S P 7 42048 €
— %)
8
S 2
of- 11024 @
1
[

16 5120

~v - Latency (us)

| - Bytes modified | written

£ R

256 512 1024 2048
Node size (Bytes)

096

Figure 3.15: Balancing two nodes (E9).

If we consider the difference between balancing with the left or right node, we get fewer writes
for the former but lower latency for the latter — which is more visible for the plain sorted and
unsorted approach. The number of writes can be explained for the sorted case as follows. When
balancing with the left node, the entries of the half-filled receiver are first moved to make room,
and then a quarter is copied from the donor (= 3/4 of node entries written). However, on the
other side, a quarter of the donor is first appended to the receiver node, and then the remaining
three-quarters of the donor are shifted (= an entire node written). The second variant involves
more writes, but the access pattern is also more sequential and thus slightly faster. Ultimately,
with respect to our design goals DG1 and DG2, we would consider indirection the best primitive
for this micro-operation as long as the node size does not exceed 2 KiB.

Merge Nodes (E10)

Besides balancing, underflows in nodes can also be handled by a merge with another node. This
merge, unlike experiment E7, affects only two nodes and happens in-place, i.e., no new memory
area is allocated. It means that the 2-way and K-way merge strategies are not applicable.
Duplicates are also irrelevant for this micro-operation. Again, the node layouts and the
corresponding incorporation of the new data are crucial. The merge can be done with a node
having smaller or larger keys, as with the balance operation before. However, in this case,
merging into a node with larger keys would require an additional shift in the receiving node
for the sorted approaches. A merge into a node with smaller keys, on the other hand, does not
need to shift anything since the donor node is deallocated or marked free hereafter. Hence,
this is always the better option, and we only consider this direction. In general, it can also

58

3.4. EVALUATION

9.0 - 6144
append (un-/sorted) 7
o0 =
7.5F = = indirection /// 15120 8
R =
/U? ------ hashing :"/ ;
= O /4

Z0.0F e hi s 14096 —
g bitmap K 9
Q 1
5 =
245 3072 ©
< 3
~ g
, 3.0F 2048 %
e
3 2
[as]
1.5F 1024
-

256 512 1024 2048 4096
Node size (Bytes)

Figure 3.16: Merging two nodes (E10).

be seen as an ordered bulk insertion. Algorithmically, the sorted and unsorted approaches
proceed exactly the same by appending the entries to the receiver node and finally updating
the size field. Accordingly, we have summarized them as append. The other primitives require
to search for free slots for each new entry, which can be at arbitrary positions and, thus, will
lead to a random access pattern. Therefore, we expect them to perform worse than the append
procedure. In our measurements, we excluded the time for deallocation of the donor node as it
is the same for all approaches and could also be solved by adding the node to a free list or node
pool, as indicated before. The measured latencies and modified/written bytes of the approaches
are presented as a function of the node size in Figure 3.16.

As with the previous experiment E9, the bitmap has a negative impact. Again, for a node size of
4 KiB, the difference amounts to a factor of four. In the previous section, we already mentioned
that it leads to a random access pattern, which becomes even more pronounced as the size of
the nodes increases. The iteration of the donor node does not have to check every bit in the
case of indirection. However, the indirect access via the slots still causes a random pattern, and
the receiver’s slot array must also be updated. With the hashing approach, the copying of the
fingerprint array is added again and can lead to even more written cache lines. In a separate
isolated experiment, we measured the time for plainly deallocating a node. Constantly, this was
about 1.6 us independent of the node size. Overall, the result of this experiment is as expected,
and the approaches without auxiliary structures are the most suitable for this merge operation.

3.4.4 Performance Profiles

Now that we have discussed all the individual experiments in detail, we can assemble our said
goal of a PMem-based performance profile per primitive as a comprehensive overview. We
have focused on the main layout primitives (sorted, unsorted, indirection, hashing, and bitmap)
and their corresponding access primitives as these influence most of the micro-operations.
For the access primitives, we have always considered the best-performing of the applicable
algorithms based on the experiments. Figure 3.17 presents our result summarizing and con-
trasting performance and the write reduction of the selected primitives. In the following, we
will recapitulate the individual advantages and disadvantages of the approaches.

59

3. PERSISTENT INDEX AND DATA STRUCTURES

[1Performance [Write Reduction

\,’a\Jo\)\ \,’aﬁou\
n o
Bett e2'C Bett oo
\\AG‘ ge N\e‘ ge etter S \\]\e(g@ etter S
Fair
\Wor;
e \&
wer@ wer?
02" 0o’ gae"®
X (L
\(\56‘ \nse
gres® gres® e
oo s s
Sorted Unsorted Indirection
" %
Loy . vy N
(0@ Better Sea‘o e Better 583‘6
e e /
\erd® \erd®
{8 (L
et) \ns®
g
S s\t
Hashing Bitmap
Figure 3.17: Performance profile of primary design primitives.
Sorted

As it becomes evident when looking at the figure, the original sorted approach has significant
bottlenecks when placing new or deleting entries in a node. In addition, the search performance
is also not optimal in the uncached PMem case. As compensation, iterations and cross-node
operations, such as splitting and merging, can benefit from sorting. Furthermore, the layout is
the most compact but is paid for with significantly more write and flush operations.

Unsorted

Due to the omission of node sorting, the basic operations such as search, insert and erase
perform significantly better. Particularly for the latter two, it is mainly attributable to the write
reduction. If the order is not of interest during the iterations, they also perform equally well as
the sorted variant. In return, structural adjustments such as splitting and balancing are subject
to significantly higher costs because the order in the entire tree must still be maintained. So
if the structure grows and shrinks frequently, these micro-operations will heavily weigh in.
Two ways to counteract this would be to opt for larger nodes to minimize the number of these
operations or not to handle underflows at all.

Indirection

Introducing the indirection feature to the unsorted nodes is another method to overcome the
problem of costly structural adjustments. Indirect sorting results in a good balance between
all micro-operations. In addition, it requires far fewer write operations, which has a positive
effect on PMem cell life. Only the node needs a little more memory due to the additional search

60

3.5. GENERAL INSIGHTS & DESIGN GUIDELINES

Table 3.3: Workload assignment for our main design primitives.

RUM Workload Particularly Positive Particularly Negative

SORTED $v4 - scan-heavy + range scans - point lookups

+ lowest memory footprint - insertions & erasures
UNSORTED }44 - read-heavy & read-write + range scans

+ lowest memory footprint
INDIRECTION ~ y4{ - write-heavy + many structural changes
HASHING $4y - read-write + point lookups - costly underflow
Brrmar $¢¢ - read-write + erase entries

+ lower memory footprint

structures. However, since searching for a key is slower in this case than for the other layouts,
the indirection approach is sooner suitable for write-dominant workloads.

Hashing

The fingerprint or hashing approach is a little worse in terms of restructuring. In return, the
other micro-operations are a bit better than with indirection. Especially for node sizes < 1 KiB,
this design primitive offers the best overall package. As with the unsorted approach, searching,
inserting, and erasing a single entry are the key strengths. Only during iteration, due to the
unavoidable check of the underlying bitmap, does a deficiency arise. If scans are infrequent
and underflow handling is avoided or omitted, hashing is the best choice.

Bitmap

A similar pattern as with the hashing approach can be seen with the pure bitmap primitive. It is
slower only for a few operations, so the combination of fingerprints and bitmap should usually
be chosen when considering these two variants. The advantage of the bitmap-only approach is
the slightly lower memory footprint and, to some extent, faster underflow operations. However,
this minor difference will hardly be noticeable at the macro-level.

To sum up, we assigned the primitives to fitting workloads or application scenarios in Table 3.3.

For a quick comparison, we also added read, update, and memory overhead (RUM) indicators
as defined by [AKM ™ 16].

3.5 GENERAL INSIGHTS & DESIGN GUIDELINES

In this section, we want to briefly review the observations of several studies and our experience
regarding the properties and challenges introduced by PMem - particularly for DCPMMs.
Addressing these, we derive general insights and design guidelines in due consideration of the
above experiments for implementing new data structures on PMem, as it was similarly presented
in [JBGS21]. These should enable developers to avoid common pitfalls when designing novel
efficient data structures or even systems tuned to a modern hardware landscape.

61

3. PERSISTENT INDEX AND DATA STRUCTURES

3.5.1 Challenges & Characteristics

In the first place, PMem has a 3 x higher latency and also a 3x lower bandwidth than
DRAM for a random read pattern. The degradation factor for the write bandwidth is even
about seven [VRVL'19, YKH20].

Reading and writing operations on PMem have an asymmetrical behavior towards each
other. This is manifested in three characteristics, where writes are slower than reads, cost
more energy, and lead to cell wear.

To reduce write amplification, the DCPMMs internally work on 256-byte blocks. An
underlying write-combining buffer summarizes four cache lines to one block write.

The largest failure-atomic store instruction comprises only 8 bytes, which must be aligned
on an 8-byte boundary. Larger atomic changes have to be realized via software, either
individually or via general-purpose libraries.

Allocations on PMem are significantly slower than on DRAM, which stems from the fact
that cache lines have to be flushed and other additional recovery measures have to be
taken. In [LHO"19], it was shown that PMem allocations could take up to 8 x more time.

The dereferencing of persistent pointers may not be optimized by compilers. Since this
concept is not part of the standard (yet), its usage is not automatically optimized, as it is
with volatile pointers [Sca20].

3.5.2 Insights

Besides the statements and inferences about the primitives, our results gave us also some
sustainable general insights when designing data structures, choosing suitable access primitives,
and combining several ideas. Our findings are partly consistent with those in [LHO"19] and,
thus, corroborate them.

Extendability and Combinations. We have already mentioned in Section 3.3.5 and seen
when examining the design space that there are still numerous unconsidered primitives and
combinations thereof. Thus, for example, in the hashing approach, we have always used
a bitmap for foreseeable advantages during erasures. But it would be just as conceivable
to replace it with a size field. Furthermore, there are probably other search variations like
interpolation or exponential search. A more detailed investigation of known techniques
such as compression or zone maps to reduce write and read accesses also seems beneficial. A
more explicit recommendation for tree-like structures is to use 1 KiB data nodes supported
by fingerprints and a bitmap, while 4 KiB inner nodes should be placed in DRAM using a
traditionally sorted layout. If inner nodes should also be persistent (e.g., to keep recovery
short or save DRAM), indirection is advisable since it massively reduces the number of
writes. In addition, it should be noted that hashing is not exploitable for inner nodes since
no exact keys but ranges are searched. The use of indirection for inner nodes and hashing
for data nodes basically represents the combination of the ideas from [CJ15] and [OLN " 16].

62

3.5. GENERAL INSIGHTS & DESIGN GUIDELINES

Save Writes. Not intrinsically a new insight, but derived from the original design goal DG1,
algorithmically saving writes is an important aspect when designing PMem-based data
structures. It reduces not only cell wear and energy consumption but also fundamentally
improves the performance of the algorithms (challenge C1 & C2). This correlation between
the number of writes and performance was observed particularly in experiments E4 and ES.

Hybrid Data Structures. With the help of our first two experiments E1 and E2, it became
clear that in total, there is still a big difference between PMem and DRAM performance
(challenge C1). In particular, the traversal experiment E2 has shown that dereferencing and
pointer chasing have an even greater impact on PMem if they are not cached (challenge
C6). Therefore, we highly recommend adopting a hybrid approach of DRAM and PMem
when facing high performance and simultaneous persistence requirements. As indicated in
insight I1 and as it became clear from our DRAM and cached measurements, the sorted
approaches (direct or indirect) are best suited for inner nodes.

Lightweight Failure Atomicity. Although general-purpose solutions for failure atomicity,
such as PMDK transactions, simplify the implementation, they are usually not recommended
for performance-critical applications (challenge C4). Particularly in experiments E6 and
E7, we observed that the underlying logging and snapshotting of transactions lead to a
noticeable overhead compared to individual solutions. Especially the classic copy-on-write
conversions should generally be avoided and replaced by in-place approaches. Even if
failure atomicity is one of the most intricate aspects of programming with PMem, an
individual solution adapted to the problem using lightweight atomic writes is almost always
preferable.

Strive for Sequential Patterns. Although PMem allows fine-grained random access, unlike
disks, it has been shown that sequential access is still superior (challenge C1). Alternating
or jumping between non-consecutive cache lines proved to be particularly expensive. It was
evident, for example, for in-/direct binary search in experiment E1, iterating while checking
the bitmap or indirection array in experiment E3, and also when erasing and moving entries
in unsorted nodes in experiment E8. Especially the latter was kind of unexpected for us but
showed the importance of physical proximity.

Avoid Frequent De-/Allocations. Since allocations on PMem are much more expensive than
on DRAM and depend on their size as well — at least with PMDK - they should be handled
with care (challenge C5). That was particularly well reflected in experiments E5 (allocation)
and E10 (deallocation). To mitigate costs, it is possible, for example, to perform group
allocations at idle times and reuse nodes instead of frequently deallocating and allocating.

Small Node Sizes. The block or node size on PMem should always be a multiple of 256 bytes,
and in our cases, optimally between 256 bytes and 1 KiB. The lower bound of 256 bytes, as
well as the multiple of it, is justified by the write-combining buffer of the DCPMMs, which
work on this granularity (challenge C3). Also, read operations seem to benefit when using
a multiple of this block size [VRVL"19, YKH"20]. The upper bound was established by the
experiments, where often for larger nodes than 1 KiB, performance deteriorated drastically.
The ordinary 4 KiB for DRAM are thus not optimal here. On the one hand, this could be
due to the larger physical distances between the accesses, which means that prefetching
does not take effect properly. On the other hand, it could be caused by the search structures
at the front, which then occupy more than one cache line. However, smaller nodes also

63

3. PERSISTENT INDEX AND DATA STRUCTURES

lead to longer navigational paths. In the vertical case, i.e., traversing, we refer back to I3.
For the horizontal iteration, however, small node sizes are a real disadvantage.

3.6 SUMMARY

In this chapter, we explored typically used data structures within DBMSs and how to adapt
them for PMem. We saw that the design space is massive and, thus, focused on tree-like data
structures such as B*-Trees, Skip-Lists, Tries, and LSM-Trees. Furthermore, we identified
several data structure design primitives and micro-operations and extensively evaluated them
on real PMem hardware. With the help of our white-box conceived evaluation, we could
derive performance profiles for the main primitives and compile a set of general insights for
designing PMem-based data structures. Essentially, we could already address three of the four
data management challenges that we identified in Section 2.3. These are the failure atomicity,
property utilization, and data placement.

When looking at the primitives, it has become apparent that there is ultimately no single best
solution. Instead, every design decision depends on the target application. Therefore, our
analysis and evaluation serve as guidance in finding optimal PMem-specific design parameters
and primitives, as well as combinations thereof, for a given use case. For example, in write-
heavy workloads with many structural changes as well as for range scans, indirection arrays
can provide a tremendous speedup. The fingerprint or hashing approach, on the other hand, is
best suited for many point queries and also for inserts and deletes when omitting underflow
operations. Especially for frequent deletes, however, the approaches should be supported by a
bitmap. Finally, when mainly running iterations or leaner memory usage is required, the sorted
and unsorted layouts without additional structures are the best choice. Overall, Table 3.1 and
our investigations already include a fair number of primitives and micro-operations. At the
same time, it still offers a lot of potential for further extension.

We will use the collated insights and guidelines from our low-level examination for the following
chapters and the challenges they entail. More precisely, we can apply and extend the experience
to analytical structures in Chapter 4. In addition, the data structures developed in this chapter
serve as possible candidates for maintaining persistent states in our envisaged transactional
stream processing model in Chapter 5.

64

PERSISTENT ANALYTICAL
STORAGE LAYOUTS

key lookups and OLTP-like updates. A feature they all lack is to efficiently query
tuples or records on other attributes than the key. Employing a full-grown Online
Analytical Processing (OLAP) or data warehouse system would cost a lot of installation and
administration effort as well as additional storage. Furthermore, the development of such a
system optimized for PMem would be beyond the scope of this thesis. However, a wide range
of analytical applications would highly benefit from a PMem-enabled storage layout for a table.

T he data and index structures presented in the previous chapter are intended for fast

Considering the global goal of this work to conceive a TSP system, the question could arise
why these analytical layouts are relevant. In fact, the intention is to provide these within a
TSP system to represent a persistent state on which both continuous as well as ad-hoc queries
can be executed simultaneously. In this case, the key used for indexing is most likely the
timestamp of the tuple. That is not very convenient for analytical workloads, which often use
other attributes than the key. Therefore, in this chapter, we discuss two layouts to tackle this
issue, namely, a clustered table design and a multi-dimensional index structure.

4.1 RELATED WORK

We divide related work into two areas. The first subsection focuses on engines using PMem to
improve recovery and build times while still providing efficient analytical query performance.
The second part considers hybrid DRAM-PMem approaches that follow a similar path as our
multi-dimensional index structure.

4.1.1 PMem-based Engines targeting Analytical Workloads

A predominant portion of work involving PMem focuses on OLTP workloads and corresponding
structures, which we already described in Section 3.1. Analytically targeted engines have so far

65

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

mainly been found in the graph domain. For example, Sage [DMK ™" 20] is an approach to parallel
graph analysis on PMem. They store the entire graph as a read-only copy in PMem while smaller
mutable parts are held volatile. One of these parts is an auxiliary structure that tracks deleted
edges for faster graph filtering. In particular, with the proposed parallel semi-asymmetric model,
the authors address the asymmetry properties of PMem and provide fundamental algorithms
to efficiently solve various graph problems. Similarly, Gill et al. [GDH " 20] investigated graph
analytics using PMem. However, they used it in Memory mode and, thus, its serves only as a
DRAM extension. Nevertheless, they were able to show that their NUMA-enabled algorithms
can outperform more expensive DRAM-only cluster organizations on cheaper single-machine
setups with DCPMMs. Another representative from the graph domain is Poseidon' [JBGS21].
However, the authors aim at an architecture for HTAP and not just OLAP, with the current focus
still being transactional processing. Due to the underlying Multi-Version Concurrency Control
(MVCC) approach, older snapshots can potentially be archived to PMem or disk for time travel
analysis. Equally, a storage engine that is more oriented towards HTAP is SOFORT [OBL ™ 14].
This engine implements column-oriented tables that keep the primary part read-optimized in
PMem, similar to Sage. That accelerates analytical workloads. A write-optimized delta storage
structure, on the other hand, is used to efficiently handle OLTP queries. It is periodically
merged into the main store. As with Poseidon, an engine for mixed workloads is envisaged, but
only OLTP and recovery aspects are evaluated. This lack of approaches for analytical purposes
motivates this chapter and our two proposals all the more.

4.1.2 Selective Persistence

We have already described many of the following approaches in Section 3.1. Here, however,
we look at them again from the perspective of a hybrid DRAM-PMem division. The naive
approach towards data structures on PMem is to move everything to the persistent medium.
However, so as not to diminish performance excessively compared to DRAM, only essential
parts should be kept durable, while recoverable portions should be maintained volatile. The
volatile data can then be rebuilt during recovery. The best-known representative is probably
the FPTree [OLN " 16] — and correspondingly the derivative optimized for DCPMMs called
LB*-Tree [LCW20] - which keeps its leaf nodes in PMem as a linked list, while the inner nodes
reside in DRAM. Thus, only the last access when traversing the tree is more expensive than
a pure in-memory solution while at the same time significantly less DRAM is used. With a
persistent hash index and a volatile B™-Tree, HiKV [X]JXS17] offers another hybrid memory
design. Simple searches involving only a key-value pair (e.g., put, get, update, and delete)
can be quickly handled by the hash index. More complex operations such as scanning, which
require ordering of the data, make use of the B*-Tree. It is useful because order preservation
often leads to sorting, splitting, or merging of nodes resulting in many writes that are too
expensive on PMem. A volatile BT -Tree is also used by the DPTree [ZSC " 19] that is backed
by an append-only log on PMem and serves as a buffer. This buffer is merged into the base
tree as soon as it reaches a specified size. The base tree is implemented similar to the FPTree
with volatile inner nodes (radix tree) and a persistent linked list of leaf nodes. Another hybrid
approach is to use a general-purpose multi-tier buffer management that covers DRAM, PMem,
and disk. Examples of this are [vVRLK 18] and [APM19]. This kind of approach is very similar
our dynamic caching design (see Section 4.3.3).

IPoseidon: https://github.com/dbis-ilm/poseidon_core

66

https://github.com/dbis-ilm/poseidon_core

4.2. CLUSTERING APPROACH

4.2 CLUSTERING APPROACH

Our first approach for an analytical storage layout makes use of clustering®. The goal is to
find a suitable layout with efficient data placement for analytical workloads in the presence
of PMem. For this purpose, we have opted for a table design based on multi-dimensional
clustering employing a block-oriented structure. The focus is on significantly speeding up
range queries without essentially slowing down point queries.

4.2.1 Bitwise Dimensional Co-Clustering

As a clustering approach, we used Bitwise Dimensional Co-Clustering (BDCC) [BBS16] that
we briefly describe in the following. BDCC is a processing and storage framework based on
multi-dimensional clustering. It covers data structures, data access, and processing techniques
that have proven highly beneficial for analytical workloads. Although the original work focused
on disk access, BDCC works with fine-grained access to millions of small groups. With PMem’s
byte-addressability, these groups could be fetched even more efficiently. Simultaneously,
the consideration of multiple dimensions empowers rapid query processing beyond the key
attribute(s). The approach was designed for column stores and, thus, decoupled indexing
from clustering. Hence, it can be moved to byte-addressable memory like DRAM or PMem by
calculating data offsets rather than relying on additional indirections.

In summary, BDCC stores similar tuples close to each other using an artificial clustering
key referred to as BDCC key value. The similarity is determined by the specified clustering
dimensions and their weighting. Such a key value is then composed of a bit interleaving
binary representation of the chosen dimensions. The weighting of a dimension results from
the number of assigned bits and their positions in the clustering key. The interleaving of the
BDCC clustering key can utilize different strategies such as round-robin or major-minor, but
also any other interleaving. An optimal choice highly depends on the dataset and the workload.
In order to make the specified dimensions efficiently queryable, they must be sorted according
to the clustering key. The original study proved that for that purpose, multiple lookups on
dimension attributes could be executed as a set of bit operations on the clustering key. It results
in very efficient selection pushdowns and fast data reordering based on the various dimension
sort orders. An example of the generation of a four-digit wide BDCC clustering key is given
in Table 4.1. It is based on two columns, which each is assigned two bits interleaved in a
round-robin fashion. After calculating a binary representation of the columns and composing
the BDCC key from the two major bits (in this case, all bits), the table can be sorted and
partitioned based on this key.

In the original context, the term co-clustered refers to the coherent multi-dimensional storage
of tuples across relations based on their foreign keys. Since we consider mostly independent
tables without foreign key relationships in the TSP model, this part is of no importance for our
purposes. We have chosen BDCC due to its proven flexibility and efficiency. Nevertheless, any
other clustering approach could have been chosen for our design.

2The material in this section is based on [GBS18].

67

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

Table 4.1: Example BDCC key calculation from two dimensional columns.

Original Column Order H Binary and BDCC key calculation H Sorted Columns
column; columns, bin, bin, bdcc column; columny, bdcc
key key
400 B 11 01 1011 200 B 0011
300 C 10 10 1100 100 C 0100
100 C 00 10 0100 100 D 0101
300 D 10 11 1101 400 A 1010
400 A 11 00 1010 400 B 1011
400 D 11 11 1111 300 C 1100
200 B 01 01 0011 300 D 1101
100 D 00 11 0101 400 D 1111

4.2.2 Analytical Table Structure

As the focus is on analytical workloads, reads are more dominant than writes. In particular,
we aim for fast range scans and random point queries. Since our table represents not just a
key-value store, it should also be possible to query multiple attributes apart from the key.

Looking at the PMem characteristics and our expected access patterns, initially, an appropriate
data structure is required. A typical table layout in database systems uses a combination of
a persistent table stored on disk, and a volatile part kept in memory. We strive for a better
performance than these systems while reducing writes to PMem whenever possible to disguise
the read-write asymmetry and avoid premature cell wear. Hence, the data structure should
be optimized and utilized for reading operations. The approach covers a three-layer memory
hierarchy to provide a high query performance and the possibility to swap cold data in case of
a PMem shortage. That is essential both due to the higher latencies compared to DRAM and
the lower capacities compared to flash. Before looking at the complete layout, we start with a
description of the two main aspects of our approach, namely clustering and block design.

Clustering

Since OLAP queries often demand other attributes besides the key for lookups, a technique
is required to answer them without executing a full table scan. A variant would be to create
secondary indexes per attribute. However, this would lead either to a higher write amplification
on PMem or recovery effort when maintaining them on DRAM. Our alternative is to use
clustering, which groups similar tuples within blocks. As a clustering approach, we opted
for BDCC that allows multi-dimensional accesses and accelerates analytical workloads. As
mentioned above, there are also other clustering methods, but BDCC has proven itself quite
effective [BBS16] and is the most flexible approach. The underlying bitwise operations are
utterly suited for PMem and can massively accelerate queries. By storing similar values close
to each other, compression becomes more promising. The clustered blocks are sorted by their
BDCC key value ranges and form a linked list (i.e., chunked vector). However, the block’s
respective contents are heap organized. That results in fewer writes for re-sorting and swapes
it with potentially more PMem read accesses during range scans.

68

4.2. CLUSTERING APPROACH

Block Structure

To allow a simultaneous application of PMem and disk for persistence, we have decided on
a block-like structure on which both technologies can operate. It also results in better data
locality, which, in turn, is beneficial for exploiting caches and prefetching mechanisms. Since
the bytes or cache lines of a block in PMem can still be accessed individually, there are no
restrictions or negative effects. Similar to Data Blocks [LMF*16], we use a PAX-like structure
and extend it with Small Materialized Aggregates (SMAs) [Moe98]. The layout of the block
structure is shown in Figure 4.1.

The header starts with three fixed-size fields, namely the clustering key (BDCC key value)
range, the number of containing tuples, and the free space of this block. The BDCC key values
and the tuple count are four bytes each. For the free space, two bytes are sufficient. After the
fixed part of the header, the offsets to the aggregates of the attributes and the actual data values
are stored. These are calculated based on the number and type of attributes of the tuple. The
main part then consists of mini pages for each column. Three basic types are supported: integer,
double, and string values. While integer and double values (8 bytes each) are handled equally,
the string type must be organized differently due to its variable length property. For integer
and double attributes, the SMAs are copies of the minimum and maximum values, whereas,
for string attributes, these are offsets to the actual values. The total block size is currently set
to 32 KiB as this was proven to be the minimum size before reading from solid-state drives
becomes inefficient [BANSS10]. Apart from that, this corresponds to today’s typical L1 cache
sizes, which could lead to more cache hits when using the same block several times. We also
examine different block sizes experimentally further below. Possible optimizations for future
work could be the application of compression and outsourcing of SMAs in DRAM. Both would
reduce the PMem storage overhead and possibly accelerate query performance.

Storage Layout

The complete three-layer storage layout based on Data Blocks [LMF"16] and BDCC [BBS16]
is sketched in Figure 4.2. There are three top-level components, namely, the table metadata,
an index structure, and the actual table data that is distributed among PMem and disk. The
metadata serves, on the one hand, as a root object into the persistent area to find all data in case

0 8 12 14 14+4*n

|
— —
BDCC Range | Count E SMA + data offsets Header
min, max, data, Minipage 1
(Int/Double)
min offset, max offset, string offsets, .. Minipage 2
(String)
data,
Minipage n
T2 — fixed 32 KiB

Figure 4.1: Single clustered block structure.

69

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

of a restart. It holds a persistent pointer to both the index structure as well as the first data node.
On the other hand, the schema and clustering information is stored here that is determined by
the client on table creation. The default index is currently a basic PMem-persistent B*-Tree
version, but it is not limited to a specific structure. Alternatively, a complete in-memory variant
could be used, but this must be restored in case of failure. Furthermore, hybrid variants would
also be conceivable, such as the FPTree. The key of an index entry complies with the table’s
primary key. However, the value is not directly the searched tuple but a separate class called
PTuple. It consists of a persistent pointer to the data node and the offsets of all attributes in
the corresponding clustered block. That allows more precise queries (and updates) of selected
attributes to touch fewer data areas. The data nodes themselves consist, in addition to the
actual clustered data, of a vector of deleted tuple offsets and optionally a histogram. As inserts
can trigger splits, the deleted vector marks the positions of tuples which can be skipped during
the split procedure or possibly reused for an insertion. Another option would be a bit vector.
However, since deletes are rarely expected in analytical workloads, the first variant seems more
efficient. Similarly, the histogram is currently only necessary for splits. Depending on the data
distribution, the use of the mean on the BDCC range as the pivot key does not necessarily lead
to a favorable split. The histogram allows more options such as the median as a split key or the
creation of a separate node for frequent BDCC key values.

Persistent pointers are dereferenced once to avoid too much pointer chasing, and then virtual
references are used. It yields a higher optimization potential for the compiler and the CPU. For
the time being, a persistent pointer is PMem exclusive, and a transcending variant for both
disk and PMem will be part of future work. A practical solution would be to use a boolean field
associated with a union structure that, in turn, can represent a PMem pointer or disk file offset.
Additionally, only the 32 KiB clustered blocks could be moved to disk while the secondary data
and links of the data nodes are always kept within PMem. The distinction between hot and
cold blocks is another point of discussion. Besides the location (disk or PMem), the question
of structural differences would also be interesting, such as the general layout or compression
techniques. In the current implementation, however, all structures are stored on PMem. In
combination with atomic transactions, the recovery effort is thus almost zero.

g & !De'ete! !Se'ect! g GevaKev {1 table operation
table metadata — persistent pointer
index — PTuple
data nodes Index
table info

BDCC info ; ; ; * ; ;
- Data Node Data Node
g clustered block clustered block hot block
- deleted tuples deleted tuples ot blocks
> BDCC info [histogram] [histogram]
Data Node Data Node Data Node
clustered block | _ |clustered block | | |clustered block cold blocks —» table data
deleted tuples deleted tuples deleted tuples
[histogram] [histogram] [histogram]

Figure 4.2: Three-layer storage layout of a table for analytical workloads.

70

4.2. CLUSTERING APPROACH

4.2.3 Operations and Optimizations

Besides the basic data manipulation operations - i.e., insert, delete, and update — the table
structure supports the primarily targeted analytical operations such as range scans, point
queries on the key, and other selections with arbitrary predicates. All operations always store
their intermediate results and variables in DRAMs since query recovery was not intended
here. The insert operation first calculates the BDCC value of the new tuple and puts it into the
appropriate block. Since the entries within a block are unsorted, this process is additionally
accelerated. Subsequently, a PTuple is created and added to the index. Due to PMem, the data
can be directly persisted and read later without detouring via memory to disk and vice versa.
Once a block is full, it must be split. It can be done based on the BDCC range distribution
using either a histogram, the middle of the minimum and maximum, or the average. Since this
process can be very costly due to reading, comparing, and copying, it is also conceivable to use
bulk loading, which avoids splits. In order to delete a tuple again, its position is queried via
index, marked as deleted in the corresponding data node, and finally removed from the index.
An update is currently implemented as a sequence of delete and insert.

For the typical search and scan requests based on a key, the index is used. If all data are
desired, additionally, a conversion from a PTuple to a proper tuple must be conducted. But also
individual attributes can be materialized. The goal of our clustering approach is to provide fast
and robust range scans even for non-key attributes. To achieve that, the number of required data
block accesses must be limited. We introduce a separate block iterator, which first collects all
candidates and prunes blocks that do not qualify. Subsequently, only the blocks in the candidate
list are scanned. The pruning is accomplished by comparing the BDCC range in the block
headers with the selection predicate applying the same BDCC mask to the attributes. If the
columns used within the predicate are not part of the clustering, the SMAs can be used instead.
An additional block index, such as a binary search tree or a sparse index, could accelerate this
process further.

4.2.4 Evaluation

With the following microbenchmarks, we want to demonstrate the potential of our clustering
layout compared to other PMem-based solutions and the classical DRAM + disk approach.
Our procedure is briefly labeled PTable in the figures. If an index is used, its corresponding
type will be part of the label (e.g., PTable+PBPTree). Since this is an analytical approach, we
focus exclusively on reading performance in the form of point and range queries. We execute
these on the key as well as on non-key attributes, where we expect in particular for the
latter a better runtime of our approach than the competitors. These competitors include our
own implemented B*-Tree versions based on PMem, namely the PBPTree and FPTree. Any
of these trees can be used as an index within our table implementation. Apart from these
PMem-based competitors, we have further added an upper and lower baseline. Due to its
wide usage in the research community as a persistent key-value store, RocksDB [Fac20] was
added as a disk-based reference. It is relevant to point out that RocksDB writes to disk (SSD)
for persistence and simultaneously keeps a transient version of the data in memory. As a
simple improvement, we also present a variant where RocksDB is writing durably on PMem.
Again, the label indicates which version is used. However, it still employs unsuitable disk-based
instructions like msync, which means that the improvement will probably be limited. Finally,

71

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

we also included a proprietary in-memory BT -Tree as a volatile reference implementation. We
presume the performance of the PMem-based approaches to be located between these two
baselines.

Since we strive for structured data, the values are always tuples of four elements (<int, int,
string, double>) and an integer key (same as the first attribute). An essential part that influences
the performance is the serialization, deserialization, or dereference overhead. It affects both
RocksDB and our approach since tuples are not directly stored as such. While RocksDB packs
these into so-called Slides, the tuples in our case are distributed across mini pages. In both
cases, the internal representation of the result must be converted after a query. Because of this
impact, we examine the performance both with and without this kind of materialization. Based
on our insights of the previous chapter, the node size of the PMem-based index structures is
set to 1 KiB. For the transient version, 4 KiB has revealed the best performance. That is most
likely due to the OS being optimized for a 4 KiB page size. The FPTree has a leaf size of 1 KiB
and a branch size of 4 KiB accordingly.

Point Queries

We start with the point lookups based on the key. Figure 4.3 shows the performance curve
with increasing table size. As can be seen, RocksDB is far behind, although the measures here
do not include materialization. Furthermore, it is evident that only for larger tables a difference
between SSD and PMem placement becomes apparent. That is most likely since cache hits
become increasingly rare and the actual non-volatile devices need to be accessed more often.
Since the identical B*-Tree versions are used within our layout, a similar performance is
achieved. The difference is that the BDCC approach uses PTuples, whereas the isolated tree
uses C++ tuples. The two lines shown for the PTable contain the materialization. Without
materialization, the results would be identical to the standalone trees. For one million tuples,
point queries on the PTable with volatile BT-Tree and materialization would be just as fast
as the pure PBPTree. Overall, the larger the table, the more the curves of the persistent trees
and the PTable converge. For the same reason, as already mentioned for RocksDB, PMem
is accessed more frequently, which makes the slightly higher complexity of the PTable less
prominent. The standalone transient B*-Tree (80-400 ns) outperforms all other solutions.
However, it obviously does not provide the desired persistence and, when used for a TSP
system, transactional guarantees. As expected, our approach is between both baselines with a
clear tendency towards the lower limit. That is already a partial success because we did not
want to make queries based on the key much slower than an isolated persistent index structure.

Range Scans

Next, we consider range scans with typical key-based scans as well as scans on non-key
attributes. In particular, the latter is of essential interest. As mentioned before, our later
use case shall exploit this structure to represent persistent states in a transactional stream
processing system. The key is highly likely the timestamp and, thus, usually not the target
of the range predicate. For the following experiments, the data structures were initially filled
with one million tuples, and subsequently, the scans were performed varying the selection
percentage. For scans based on non-key attributes, we used the first (integer) and fourth
(double) fields for the range predicates. The ranges were chosen to overlap by 50 percent and
result in the same selection ratio as the key-based scans.

72

4.2. CLUSTERING APPROACH

—&—PTable+PBPTree
%~ PTable+BPTree

=]

RocksDB-SSD =& =PBPTree = #=BPTree
RocksDB-PMem ====FPTree

Lol

a
101; dh
= & ® N
= o
P
2 10%F g
g =
A _ ot __—A
® T el
______ T STk
107 g T IS T e e
102 103 10* 10° 100

Number of pre-inserted tuples

Figure 4.3: Point queries on clustering approach.

—e—2KiB =#=-4KiB == 8KiB =+=:16KiB =—=32KiB =<+=64KiB

105 10
2 2
= =
N N
210 2 10¢
= =
8 3
< <
— 10° — 103

102 102

0.1 1 10 100 0.1 1 10 100
Selection (in %) Selection (in %)
(a) Without materialization. (b) Including materialization.

Figure 4.4: Range scan varying block sizes using non-key attributes.

The block size, as already stated, was chosen due to efficient SSD I/O operations and the L1
cache size with 32 KiB. In the following, we will investigate whether a similar block size is
sensible in connection with PMem. Thus, in a preliminary experiment, the block size was
varied while running non-key range scans via the block iterator. Figure 4.4 shows the best-
achieved execution times of this query, both with and without materialization. Interestingly,
the performance difference is particularly visible for a low selection percentage. That is due to
the relatively more frequent chasing of pointers for smaller block sizes. For broader ranges, the
performance converges. Including materialization, the curves approach each other even more.
However, a 16 KiB, 32 KiB, and 64 KiB block size achieve similar performance. Overall, we thus
conclude that a 32 KiB block size is a good choice for this workload on both SSDs and PMem.

Now, we compare the performance with the other structures and competitors. Our approach
can fall back on two types of iterators for range scans. The first is the block iterator that uses
an antecedent pruning mechanism as described in the previous section. The second approach
is the iterator of the underlying index. We reflect the used variant in the label. Our results
of the key-based range scans without and including materialization (for PTable variants and
RocksDB) are visualized in Figures 4.5a and 4.5b, respectively.

Although our focus was on queries with non-key attributes, the BDCC based table implemen-
tation combined with an index performs similar or even better than the competitor systems
when excluding materialization. Despite the fact that the PTuple, in this case, has the same

73

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

—o—PTable =#= PTable+PBPTree o PTable+BPTree #='RocksDB =<¢=PBPTree =<=FPTree = #=BPTree

Lid

105 105 L
£l g
~ 10* Z 104k
> >
2 2
S 103 S 10%F
3 3

10? 102}

10! 10!

0.1 1 10 100
Selection (in %) Selection (in %)
(a) Without materialization. (b) Including materialization.

Figure 4.5: Key-based range scan on a table of one million tuples.

—o—PTable =%= PTable+PBPTree o--PTable+BPTree %= RocksDB =<¢=PBPTree =<=FPTree = #=BPTree
- &= = e SL Trrrrer = &= = = e = e = o =

Latency (us)
Latency (us)

10
10 100 0.1 10 100

0.1 1 1
Selection (in %) Selection (in %)

(a) Without materialization. (b) Including materialization.

Figure 4.6: Range scan using non-key attributes on a table of one million tuples.

memory footprint as the original tuple, it seems to be more efficient to process. However, as
soon as these have to be transformed, it clouds the picture a little. Figures 4.6a and 4.6b show
the results for non-key attributes.

With non-key attributes for RocksDB and the B*-Trees, all the scan queries degenerate to
full-table scans. Using the block iterator in our approach can outperform even the non-volatile
BT -Tree and, thus, provides persistence and best performance simultaneously. However, the
execution time increases linearly with the selection percentage as fewer blocks can be pruned
from the scan. The index iterator gets faster, starting at around 10-20%, still achieving the
same performance range as the transient and persistent B*-Tree. For small range windows,
the index iterators of the PTable are even faster with materialization than their stand-alone
counterparts. Overall, the choice of iterator highly depends on the table size and selectivity.
For larger volumes (>1M tuples) and a low selection amount, the block iterator is most likely to
be preferred over the index utilization. It is expected that with larger table size, the intersection
point will move further to the right. That is because the index structures take longer for a
complete scan, regardless of the selection. Consequently, the system would benefit from a cost
model which autonomously decides on the appropriate iterator. All in all, it has been shown
that our approach can keep up with and sometimes surpass the other compared structures in
all aspects considered.

74

4.3. MULTI-DIMENSIONAL INDEX APPROACH

4.3 MULTI-DIMENSIONAL INDEX APPROACH

The second layout targeting analytical workloads is a multi-dimensional index approach®. The
particular challenge of exploiting PMem for multi-dimensional index structures is their inability
to reconstruct inner tree nodes from the leaf nodes, as it is done, e.g., for B"-Trees. That is
because the dimensional data is only stored in the inner nodes to avoid massive amounts of
stored data. Therefore, we need another method that universally leverages PMem for multi-
dimensional index structures. Accordingly, in this section, we present a selective caching
approach that buffers index nodes statically or dynamically in DRAM. We use the Elf data
structure [BKSS17] as a representative for multi-dimensional index structures. It employs an
explicit main-memory optimized layout, making it ideal for byte-addressable PMem.

4.3.1 The Elf Data Structure

Since we have chosen Elf as a multi-dimensional index structure to be the investigation target,
we start by introducing its original layout and operation. Elf clusters the column values by
their prefix. Because of the DRAM-optimized storage layout, it can efficiently answer analytical
queries. Furthermore, all column values are part of the structure and, thus, can be used as
a standalone structure or as a supporting index. Below, we explain the fundamental design
principles of Elf, followed by the extension to enable parallel search.

Design Principles and Optimizations

Clustering column values by prefix conceptually makes Elf a prefix tree similar to ART [LKN13].
However, ART does not work with column values but with characters or digits of the key domain.
Each level in the Elf tree representation contains all values of a specific column. The nodes in
the tree itself keep their entries sorted, thus achieving a total order and allowing pruning. In Elf,
two types of nodes are distinguished, called DimensionLists, which are inner nodes with sorted
column values, and MonoLists, which represent a sort of leaf nodes. While DimensionLists
contain values of the same column concerning various tuples, MonoLists comprise values
of a single tuple over multiple columns. Based on the example table in Figure 4.7, which
is composed of four columns and seven tuples, Figure 4.8 shows the conceptual Elf in tree
representation. The DimensionLists in this example are labeled (D1)-(D5), whereas (M1)-(M7)
are MonoLists. The differentiation of the node types serves the optimization of data access
and memory consumption. Therefore, the idea of the MonoLists is that if there is no more
branching at the end of the tree, the linked single-valued DimensionLists are combined into a
single MonoList. It reduces the number of pointers and random accesses. In this sense, Elf starts
as a kind of column store and gradually converges to a row-oriented layout when traversing
down the tree. As shown in [BKSS19], this design can efficiently compress the dataset at hand.

To further reduce random access patterns, the conceptual tree is linearized into a flat array,
as it is shown in Figure 4.9. It is especially beneficial for read-intensive analytical workloads.
The DimensionLists and MonoLists are stored in the contiguous array in the same order as a
depth-first search through the tree. Furthermore, child pointers are converted to offsets within

3The material in this section is based on [JGBS20, JGBS21].

75

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

, G, D1| 1 | 5 | 3 | Column C,

o
N O
O
Y

T1 1 51 0 1 I !

T[8]8]2]|1 D2 D4 Column C
25 3 3 2

e T [25 [3 | W KN

T,{3|3]|]0]|3 03[] M > D5| o | 1 | 2 | Column C,

Ts1 2 o5 2| 2

Te{ 33|12 Fl L_+ aT| |2 i v =

T, 1 3 1 3 M1l T, M2 T, MS5| 5 T, Mé| 5 T, M7(T, Column C,

Figure 4.7: Example table. Figure 4.8: Conceptual Elf based on example table.

0 1 2 3 4 5 6 7 8 9

o1 [2 [21] 3 [25 25 [10] 3 [i8§]

! M2 M3

D3 M1]
110 (4 1 [1 T, 0 T, 1 3
y I

,,,,,,,

D4 D5
2T, 05 2 2 T, 3 [271 O [33] 1

M7

3lps 2 @3 T, 2 T, 1T,

Figure 4.9: OLAP and DRAM optimized array layout based on example table.

the array. In [BKSS19], it has already been shown that this approach can accelerate filter queries
by a factor of 10. Furthermore, this was also similarly realized already for B-Trees [RR00].

Parallel Search Algorithms

To make range queries more efficient, among other things, EIf also offers the possibility of
searching the structure in parallel with multiple threads. The division of the search space can
be done in various manners. Blockhaus [Blo19] has proven that a too fine-granular separation
— such as one DimensionLists per thread — results in too much synchronization overhead.
Splitting threads by subtrees, on the other hand, has emerged as the best strategy. More
precisely, it means that each thread is assigned an entry from the first DimensionList and
processes the corresponding subtree. If there are more entries than available threads in the first
DimensionList, those threads that are already finished will be assigned to another remaining
entry until all entries are covered. Using our example in Figure 4.8 and assuming two threads,
the first thread would be designated for the first entry 1 and process the subtree D2-D3-M1-
M2-M3. The second thread would get assigned the second entry 2 and would only evaluate M4.
The first thread to finish — most likely the second one — would process the last entry 3 and
its subtree D4-D5-M5-M6-M7. In [Blo19], this approach has also been shown to work most
efficiently for imbalanced subtrees.

4.3.2 Persistent Memory Adaptions

After the basic structure and procedure of the Elf have been described, we will now discuss
possible adaptations for PMem. Before we present our idea of selective caching, we start with
two baseline implementations. Both consider a naive translation of the Elf from DRAM to
PMem. The first approach is to store the Elf exclusively on PMem providing full persistence

76

4.3. MULTI-DIMENSIONAL INDEX APPROACH

and simple data management, albeit with performance losses compared to the DRAM variant.
Quantifying this degradation in performance is the objective of our first experiment in the
evaluation section. The second naive approach — which we refer to as hybrid Elf — maintains
both a PMem and DRAM copy. It gives us both DRAM performance and persistence but also
costs us double the memory consumption.

Pure PMem-based EIf

For the translation of EIf to PMem, we used the features and libraries of PMDK, as shown
in Figure 4.10. The Elf is stored as a data object located in a file on PMem. For that, we used the
pool class template and its basic methods create, open, and close. When the pool is opened, the
offset of the Elf object is obtained by following the root and the succeeding persistent object
pointer. Subsequently, we use only the virtual pointer of the current application instance to
access the Elf object. Besides some member variables, the linearized array occupies the major
part, which is stored separately and accessible via the Elf object. The outsourcing of the array
took place because of its variable, unpredictable size. Analogous to the entire Elf object, the
persistent pointer for the array is dereferenced only once at the beginning, and then the virtual
address is always used directly. It eliminates expensive dereferencing on every access and, at
the same time, halves the used pointer sizes. In the figure, the virtual pointer is part of the
persistent structure, but this is not necessary and only serves visualization purposes. To ensure
atomicity during the creation of the Elf, we used PMDK transactions for the persistent memory
allocations. Furthermore, we wrapped the member variables, such as the sizes and the number
of dimensions, with the persistent property class. Since the focus is on analytical read-only
workloads, it is superfluous but paves the way for consistent in-place updates and inserts. The
array itself was not maintained as a persistent property since otherwise, updates would cause
the entire array to be copied to the undo log. Therefore, when making changes, it is more
efficient to manually add the respective ranges to the transaction.

Hybrid EIf

As mentioned initially, a hybrid structure, where primary data is held in PMem and recon-
structable secondary data is kept in DRAM (selective persistence), is desirable but not possible
with Elf. Because of its layout, persisting only the MonoLists or TIDs would render recovery
impossible as the prefixes are irreversibly lost. Thus, the only viable option of a hybrid approach
is to create a volatile copy in DRAM after the initial building in PMem or at the restart. All

— — + virtual pointer

PM Pool — persistent pointer
M’—» root |—> ELF
elf l— elf array pptr
o elf array vptr
e p<dim sizes>

e 2 o s e .
[6] [21] [25] [10] [8] p<#d|ms>

fffffffff

T, %0 T, 1 s

1
T, %5 2 2 T, %3 pn®o @3 1 L]
T

T T 7
[35] 2 [37] 3 s 2 T 1 T,

Figure 4.10: Organization of persistent Elf in PMem pool.

77

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

queries are then answered by the volatile copy leading to a query performance at DRAM speed.
At the same time, a persistent copy is preserved, and the structure does not need to be recreated
from the original data (if any) in the case of failure. Alternatively, the persistent version is still
available to execute query workloads if the available DRAM capacity for the copy is insufficient.

The evident disadvantage of the hybrid Elf is the memory overhead since it maintains two
copies now. In addition, it also has a performance overhead since extra time is necessary for
copying it to DRAM after building. However, this only happens once, and then only the copying
mechanism has to be repeated. We estimate the actual cost of copying to be comparatively low
but will evaluate this below. For the native application purpose of Elf, namely data warehousing,
periodic inserts would occur, whose modifications must always be propagated to the DRAM
copy, too.

4.3.3 Selective Caching

Having presented our two more naive approaches, we now come to our more complex idea
based on the pure persistent EIf to build an additional cache in DRAM that is significantly
smaller than a complete copy (as in the hybrid EIf). This cache should only hold the crucial
parts that are frequently or most likely traversed by the queries. The question now is which
parts of the Elf these are and how to find and cache them. In general, a cache entry in our
approach corresponds to a DimensionList. Since MonoLists only store parts of a single tuple, we
excluded them from caching. For selective caching, we devised two strategies for building up
the DRAM cache:

e Dynamic Caching: The first strategy is to cache the DimensionLists dynamically while
traversing the Elf. In a naive way;, all visited nodes can first be stored in a DRAM-resident
hash table. Since this will sooner or later become quite large and inefficient, it should be
supplemented with an eviction/replacement strategy. We discuss below what eviction
policies are conceivable. However, it must be considered that CPU caches also already
use a dynamic strategy. Whether an additional DRAM layer with a similar procedure
can thus provide significant improvements at all remains to be investigated.

e Static Caching: Alternatively, only predetermined (static) parts of the EIf could be
kept in DRAM. For instance, these could be the first x dimension levels that need to
be copied at build or recovery time. It would virtually ensemble an FPTree-like hybrid
layout [OLN16] that maintains inner nodes in DRAM and leaf nodes in PMem. However,
it is also conceivable to statically cache entire subtrees or paths if it is known in advance
that these will be queried very frequently. The static strategy would prevent the situation
that the cache has to be probed first and, in the negative case, the persistent part also
has to be accessed. That means fewer branch predictions and, thus, mispredictions are
necessary. Instead, it is always known which part is in DRAM and which part is in PMem.

Besides these two isolated strategies, it is also possible to combine both of them. Thus, the
upper levels could be cached statically and the lower dimensions dynamically, resulting in a
sort of split cache.

78

4.3. MULTI-DIMENSIONAL INDEX APPROACH

Replacement Strategies for Dynamic Caching

Principally, all classical eviction policies, such as Least Recently Used (LRU), Least Frequently
Used (LFU), and First In, First Out (FIFO), are conceivable for the dynamic strategy. Briefly
recapped, LRU evicts the last element in a list ordered by access time, which is also updated
when parts are retrieved from the cache. With LFU, each element is associated with an access
counter, and the one with the smallest number gets evicted. FIFO is the most modest approach
as elements are evicted in the same order as they came in without positional updates. In the
context of PMem, Lersch et al. [LOLS17] already investigated the application of a dynamic cache
with an eviction policy for LSM-Trees. They achieved some performance gains for read-only
workloads using the LRU and the more sophisticated 2Q policy. Especially for our analytical
intent, this appears promising. 2Q divides the cache into two separate queues, which, in turn,
can have different eviction policies like LRU. The first queue contains the actual data elements
and is called AM. The second, on the other hand, stores only the IDs of elements — offsets,
in the case of Elf — referred to as A1l. Once an element is requested that is not in any of the
queues, only the ID is initially cached in A1, and the data is still loaded from PMem. If it is
already present in Al, the data is copied from PMem to AM, and the access is made via the
DRAM cache. If the element is in AM, it is accessed directly, which corresponds to a cache hit.

Apart from the existing policies, we have also developed our own candidate based on LFU. In
fact, our idea is to populate the cache using access probabilities calculated from the proportion
of a DimensionList and its subtree to the total tree. More precisely, given the total set of tuples as
T = {ti,...,t,} and the set of reachable tuples by DimensionList D; as Tp, = {t,,...,t;,} C T,
the assigned probability for a DimensionList is Pp, = % The sum of the probabilities of the
same level is one if there is no MonoList. Accordingly, the first DimensionList (the root) always
has a probability of one. In contrast, each MonoList has a probability of the inverse of the
number of all tuples (%) since it is only a suffix of a single tuple. For the remaining nodes,
the probability results in accordance with the prefix redundancy. Considering the example
in Figure 4.8 with a total of seven tuples again, D2 covers three tuples (T1, T3, T7) and, thus,
has a probability of % Analogously, D1, D3, D4, and D5 yield probabilities of one, %, %, and %,
respectively. The MonoLists M1-M7 have a probability of % An important observation is that
DimensionLists at a lower level do not necessarily have a lower probability than the nodes of
the previous level (cf. D2/D4 and D5). After we calculated all probabilities, the next step is to
copy designated DimensionLists into the DRAM cache. The selection happens depending on
the intended cache size and cut-off probabilities. The copy operation can be either static on
build and reboots or dynamically as part of the eviction policy. We refer to the latter as Least
Likely to be Accessed (LLA). Essentially, it works in the same way as LFU, except that fixed
probabilities are used instead of the frequency values. Furthermore, DimensionLists are only
evicted if the lowest probability is smaller than the new one to be inserted. It is not the case for
the original LFU, where an entry is always evicted, and the access must go through the cache.
Another possibility would be to use the probabilities only as a starting value and increase them
with each request. However, this would mean additional effort and would eventually converge
to LFU.

All in all, both of our caching strategies (i.e., dynamic and static) have their ups and downs,
which we will examine in more detail in the following evaluation. However, it should be noted
at the outset that selective caching causes the query execution to often switch between DRAM
and PMem while both devices use the same CPU caches. Especially for the dynamic variant,

79

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

there is thus a higher probability for cache misses. The static strategy, on top of that, costs
extra time when building and restoring,.

4.3.4 Evaluation

The subject of the evaluation will be all three persistent Elf variants (pure, hybrid, and cached)
explained above. Since we target analytic workloads, the focus will be on read-only queries,
in addition, to build and recovery time. More specifically, these are exact-match, range, and
partial-match queries which we will describe further below. For the pure persistent Elf, we
will first quantify the performance overhead to the DRAM counterpart. Then we look at our
optimizations, starting with the hybrid Elf and followed by the caching techniques to reduce
this overhead. Overall, it will be seen that with suitable fine-tuning, a DRAM-like performance
is achievable.

Experimental Setup

For the experiments, we prepared two datasets. The first test dataset consists of 100M tuples
having ten dimensions, whose values are uniformly distributed using various ranges. The
dimensions are of integer type* with a range of 100 as default. That resulted in about 4 GiB. In
addition to our uniform dataset, we considered another dataset with more realistic data and
properties, such as the correlation of dimensions. Namely, this is the TPC-H Lineltem table
with 15 dimensions. Using a scale factor of ten, this resulted in about 3.5 GiB. Since the EIf
is designed to make efficient use of shared prefixes, the ordering of dimensions is essential.
Therefore, in preparation, we sorted the columns of the table in ascending order of cardinality
to take advantage of prefix redundancy and improve caching benefits.

The queries use a Zipfian distribution [GSE*94] with skewness parameter § = 0.5 to set the
query parameters. It simulates a more realistic access pattern than a uniform random number
generator. All experiments were executed for at least ten iterations and, by default, in a single-
threaded environment to produce robust results. Exclusively our final investigation will cover
multi-threaded executions. The three query types used are described below. Their throughput
is reported in queries per second (gps).

Exact-Match Query: For exact-match queries, all dimension values are checked for equality
with the query parameters, and the TID of the matching tuple is returned in the positive case.
In order not to measure the computation times of the Zipfian distribution, we extracted the
dimension values of the tuples according to this distribution before each run and, thus, only
had to execute the queries successively during measurement.

Range Query: For this type of query, a lower and upper bound is specified for each dimension x,
and it returns a list of TIDs of the tuples whose dimension values are included in all x ranges.
As with the exact-match queries, we precomputed the query parameters. For range queries,
the extracted dimension values were used as lower boundaries, and the upper ones were set
according to the given range size (to be specified in due course).

*Larger or even variable data types would also be possible but bring additional parameters into play due to the
typical use of dictionaries, making the measurements harder to interpret. Furthermore, they would increase the
used cache size in DRAM and put more pressure on CPU caches. Hence, the DRAM cache will most likely be
more beneficial as an additional layer between CPU caches and PMem.

80

4.3. MULTI-DIMENSIONAL INDEX APPROACH

Partial-Match Query: The last query type is a more extensive variant of range queries. In
partial-match queries, upper and lower limits are not given for each dimension but only for
preselected ones. Dimensions that are not specified are wildcarded, and the entire cardinality
of these dimensions is traversed accordingly. From a technical point of view, the lower limit is
set to the minimum and the upper limit to the maximum of the dimension’s data type. The
creation of the queries is the same as for the range queries except that we additionally pass a
boolean array indicating which dimensions are wildcarded.

PMem versus DRAM

As a first experiment, we juxtapose the pure PMem solution with the DRAM-based Elf. Fig-
ure 4.11 shows our measurements based on the uniform dataset. The runtimes presented
are means of 1M, 10K, and 1K executed queries for the query types exact-match, range, and
partial-match, respectively. For the range and partial-match queries, we plotted a range size of
2% and 100% per set dimension to illustrate the influence of selectivity. In general, we expected
that DRAM would outperform PMem. It is interesting to note, however, that the initial building
of the Elf entails an overhead of just 18%. We estimated that this is because the build process is
writing the array to PMem sequentially. The write-combining buffer of the DCPMMs seems to
be quite efficient if there is only a single sequentially writing thread. Similar results can be
observed for range and partial-match queries with 100% selectivity, where the overhead is also
only 70% and 66%, respectively. Again, the structure is traversed sequentially across long ranges
(depth-first search), only this time in a read-only manner. The wide ranges also lead to more
commonly passed DimensionLists, which will result in more hits in the CPU cache for both the
volatile and the persistent Elf. However, this is different for the exact-match queries and the
two range-based queries with a low value for selectivity. These queries only have a very tiny
query window and, thus, often produce a random access pattern. That results in an overhead
of 223%, 210%, and 236%, respectively, which corresponds roughly to the difference between
the PMem and DRAM random read latency. Since the resulting random access patterns offer a
higher potential for improvement by caching, we will mainly focus on small query windows in
the following experiments.

400 B PMcm BB DRAM

(3
(=3
(=}

Normalized Runtime
(in % of DRAM perf.)

build exact-match range range partial-match partial-match
2% selectivity 100% selectivity 2% selectivity 100% selectivity
Query Type

Figure 4.11: Build and query performance of EIf.

81

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

Hybrid E1f

After considering the two pure variants, we will next look at their combination in the form
of the hybrid Elf. Since the query performance will be the same as for DRAM, we evaluate
only the build and recovery times here. What is added in comparison to the pure PMem EIf
is the allocation and copying of the array into the main memory. For our 100M tuples from
the uniform dataset (~4 GiB), this process took 1770 ms. This amount is in addition to the
building time and results in 58.28 s. Thus, this process takes only 3% more time in total, while
at the same time causing the recovery in DRAM to shrink from 47.71 s to 1.77 s (i.e., about 27 x
faster). Hence, if enough DRAM and PMem are available, this is the best performing solution
across all tasks (except for the negligible copying overhead).

Dynamic Caching - Eviction Policies

If the last condition, namely enough DRAM, is not given - as is often the case for analytical
tasks — our caching approaches offer an alternative, which we will evaluate in the following.
Initially, we examine the efficacy of the eviction policies for dynamic caching dependent on
the query type. We implemented the naive, LRU, LFU, LLA, and 2Q strategies as described
above. Furthermore, we have included two baselines. The first is the pure persistent Elf without
DRAM caching (labeled as w/o caching), which serves as a lower limit that must be reached as a
minimum in order to achieve performance benefits. The second baseline is more theoretical to
indicate the possible upper limit for our caching approach (labeled as dual access). It makes use
of the hybrid version and retrieves all DimensionLists from the DRAM copy and the MonoLists
from the PMem copy. Hence, this simulates the case where all DimensionLists are cached but
exclusive of probing if they are. Our results on the uniform dataset are presented in Figure 4.12a
for exact-match queries and Figure 4.12b for range queries. Since the results for partial match
queries behave similarly to the range queries, we have omitted them. An influential parameter
that we have varied along the x-axis is the cache size.

Prior to the measurements, we warmed up the caches for 100M and 100K queries, each for
exact-match and range queries, respectively. The measurements themselves are then reported
as the average of 1M and 1K subsequent queries. As can be seen for exact-match queries, the
best setting with dynamic caching is LLA, with a capacity of about 1M entries. Concerning the
total number of DimensionLists, this capacity corresponds to 3.8%. For range queries, the best
setting is the naive approach and a capacity of about 4M entries. It is equivalent to 15.2% of

—e&—naive =%= [LRU --®--LFU =+%=LLA =—e=2Q

{07 T ompeyevppyeoppye ey e ———— ~ 40

o 1 dual access 8_‘

o Look o » 1 dual access

= p

= 0.75F | w/o caching (=R :

PR Pl S Sy =Y X = Ny = - R=] . -

::/ i ‘_‘..‘..‘—Hx}.*.\\ il \: H—‘...--*-H_; a-' % ég .g?.k*—*_*

5 0.50] Gy e b= ; 5 o} Swiivits it gt OTETET B 0 O =0

2. ; }323333333@23&323}'@ = S

< N o naallaabL L TTT- S = Bm g,

o0 0.25F i L LY - en gl @&-a

= i i ‘Ermew 2 i

o i > 10K entries i > IM entries] > 10K entries ! > 1M entries

= o0 ‘ ‘ 2 o ‘

F 0.001 0.0]. X 0.1 1 . 10 . X 100 H 0.001 0.01 0.1 1 10 100
Cache size (in % of total DimensionLists) Cache size (in % of total DimensionLists)

(a) Exact-match queries. (b) Range queries.

Figure 4.12: Throughput of dynamic caching variants on the uniform dataset.

82

4.3. MULTI-DIMENSIONAL INDEX APPROACH

the total DimensionLists. We also ran the experiments on the TPC-H dataset and saw similar
results for range queries. Therefore, for this dataset, we also opted for the naive approach with
a capacity of 4M entries. The exact-match queries also reached their peak using the LLA policy,
however, with only 64K entries.

Overall, we can state that our initial concerns - that an additional dynamic DRAM cache may
not give salient advantages above dynamic CPU caches - have turned out to be true. With only
two of the tested eviction policies, it was possible to outperform the pure PMem variant and
even with those only for a few cache sizes. During profiling, we were able to confirm that the
number of instructions is about the same for both the caching and pure variants. However,
another concern was proven true in this investigation, namely that dynamic caching leads to
more LLC misses, which is mainly responsible for the inferior performance. In the warmed-up
state, three hotspots were found to cause this performance degradation and cache misses.

Lookups in the hash table® (~25% performance impact)
The hash table constitute the central part of the cache structure. The bottleneck becomes
particularly noticeable starting at around 100K entries.

Accesses to the DimensionLists (~25% performance impact)
These are both in PMem and DRAM.

Accesses to the MonoLists (~50% performance impact)
They are always located on PMem.

Hotspot HS2 and HS3 arise because the DRAM and PMem parts evict each other from the CPU
caches, especially when DimensionLists are continually copied from PMem to DRAM. In the
pure persistent variant, PMem practically occupies the CPU caches alone, and DimensionLists
cannot be cached twice. However, not much more is optimizable for these two hotspots since
these are essential accesses that work algorithmically the same as without caching. Therefore,
only hotspot HS1 remains as a possible tuning option. The reason for the bottleneck is the
following conflict of the used hash table. While increasing the cache size provides better
chances for a DRAM cache hit, it decreases the odds for a CPU cache hit and, thus, the general
lookup performance. A countermeasure we have applied is the partitioning of the cache into
multiple smaller hash tables (Figure 4.12 is already based on this optimization). For larger cache
sizes, this already led to a significant performance boost. Nevertheless, even this could not
consistently outperform the non-caching variant and probably needs further tweaking. The
dual access baseline plotted shows theoretically what performance would be possible if HS1 is
eliminated. HS2 and HS3, i.e., the competition of DRAM and PMem for free slots in the CPU
cache, are still present. While the exact-match case still offers some room for improvement, we
seem unable to achieve much more for range queries.

In [JGBS20], dynamic caching has shown to be significantly more beneficial. However, this was
due to the fact that the same series of queries was executed twice, which is a sort of selective
warm-up. Here instead, we have always queried other tuple or dimension ranges using the
Zipfian distribution and observe that dynamic caching can only provide minimal gains. As
so often, this means that the benefits depend heavily on the workload and its skewness. In
the subsequent experiments, we use the best settings for dynamic caching (LLA and naive), as
pointed out above.

5I“Obin_hood unordered map: https://github.com/martinus/robin-hood-hashing

33

https://github.com/martinus/robin-hood-hashing

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

Performance of Selective Caching over Time

In the following, we now include static caching in addition to dynamic caching. For both
datasets, we show the throughput over time for all three query types. It is to be understood as
total queries that ran up to this point in time. The caches are not warmed up and, thus, we
show the process of warming up the system and its final steady performance. Besides the best
dynamic caching setting, we report the throughput of the pure persistent Elf and the static
caching approach. The label static x levels means that the first x dimension levels in the
Elf tree are statically cached in DRAM. On top of that, we also tested the combination of static
and dynamic caching. Figure 4.13 shows the throughput over time for exact-match queries.

Since dynamic caching (LLA) has to additionally populate another cache (DRAM), it takes the
most time to reach the steady state. However, after this is reached (about 1M-10M queries),
it can surpass the non-caching variant of Elf on the uniform data set by 25%. For the TPC-H
dataset, dynamic caching reaches its peak performance faster, but it is only 1-2% higher than for
the pure PMem EIf. Since too many graphs clutter the figures, we have included only a selection
for static caching. If the first one or two levels are statically cached, the performance will
hardly change since they will likely end in the CPU cache anyway. The best performance for
the uniform dataset is achieved with four cached levels. Three or more than four cached levels
settle at static 6 levels in Figure 4.13a. It is contrary to the raised hypothesis in [JGBS20]
that more cached levels would successively increase the performance. Similar results can be
seen with the correlated Lineltem table, which achieves the best throughput with eleven levels
and more. Once again, the behavior is not linear since, for example, four levels are faster than
three, but five levels are worse again, and from nine levels onwards, it improves continuously.
Other factors besides the number of levels that influence performance are the size of the DRAM
cache compared to the CPU caches and, accordingly, the size of the used hash table®, the rate
of successful branch predictions, and frequently traversed DimensionLists. For the uniform
dataset, for example, levels one and two completely fit in the L1 cache, together with the third
level, it becomes a little larger than the L2 cache, and the higher levels are all greater than the
LLC. Summing up to level four - the best-performing setup here — results in 136 MiB being

= = gtatic 4 levels ~ ====== LLA
— = static 2 levels ====== LLA static 5 levels ~ =-=LLA + static 9
= = static 4 levels =-=LLA + static 4 = == static 9 levels w/o caching
o~ == == gstatic 6 levels w/o caching —~ = == static 11 levels
C‘L().‘) — - R Q“().‘)
o /—- = L KA i o o e l_._=_
S L — T T T T e T —— = o7t ”ﬂ‘
=} N . ==
= 0.5 s 083 o = 0.5 R ——
— 0. < B - + 0.5F * o —
= " oL L :—-Nv“\ = o -y g e n o Y
----- — "
..% oot 0.83+ E* ‘‘‘‘‘‘ 0,77 = "y =
PR L " — —
%00.3» “““ . - R %00.3 o ‘,: -—." ~" by
'g 0.81—= ,}:9 e
0.1 0.1
= 103 10* 10° 109 107 108 = 103 10* 10° 109 107 108
run Queries # run Queries
(a) On uniform synthetic data. (b) On TPC-H Lineltem table.

Figure 4.13: Continuous throughput of cached Elf variants for exact-match queries.

The partitioning of the hash table did not have a positive effect with static caching.

84

4.3. MULTI-DIMENSIONAL INDEX APPROACH

10x larger than the LLC. In comparison with the total size of the tree, this is only 3% more
space in exchange for 30% more performance.

Combining the best dynamic approach with the best static one in the uniform case, we get
the overall best result. Similarly, for the TPC-H dataset, the combination achieves a better
result than the individual approaches. Since the higher dimension levels do not contain many
common DimensionLists and, thus, there is not much left to be cached by the dynamic
part, we used nine static levels instead of eleven. The reason for it is the reordering of the
columns of the Lineltem table. That leads to the fact that dimensions twelve to fifteen are the
unique primary and mostly unique foreign keys. Overall, when putting the performance gain
in relation to the use of additional DRAM, this combination of dynamic and static caching
seems not worthwhile, though. Separately, both caching strategies provide a considerable
compromise here.

Next, we will look at the range and partial-match queries using a range size of 2% per dimen-
sion. Because many more tree paths are traversed, the throughput is significantly lower than
with exact-match queries. The results for the uniform dataset are visualized in Figures 4.14a
and 4.15a. The best-performing dynamic approach here is the naive variant. For range-based
queries, it does not achieve quite as sound improvements as for point queries since much more
DimensionLists are probed per query. This leads to more dynamic cache misses as well as a
sequential access pattern. Since PMem can handle this pattern more efficiently (cf. Figure 4.11),
an additional cache provides less value. Nevertheless, range queries achieve a gain of about
20% for the uniform dataset. For partial queries, however, it is reduced to 5-10% due to the
wildcarded dimensions leading to even more DimensionLists being probed. On the TPC-H
dataset, as shown in Figures 4.14b and 4.15b, the difference is much more evident. While the
dynamic approach speeds up range queries by 30%, it degrades partial-match queries by as
much as 10%.

The static approach appears to be more reliable for both data sets, albeit subject to some
fluctuations. Similar to the exact-match queries, four and eleven levels perform best for the
range-based queries. Range queries are accelerated by 50% and 40% compared to the uncached
version for the uniform and TPC-H datasets. Also, the partial-match queries could be improved

= = static 2 levels ====== naive — —tatic 2 levels +reees naive

== == static 4 levels = +=naive + static 4 — = static 8 levels == =naive + static 8

= = static 6 levels w/o caching

= = static 11 levels === w/o caching

[
=)

/f'/)\ ~~35
e g e ————— e ————
MU' 0-130 - o= T
wl ok ot et
[i — T — —:‘g ——
.\,:/ :/25_ — T e w— / ‘.0
453(% E /:ﬁ-———".-"'—ﬁn—’—
é‘* @20- = 7
%020» = RN R
) o lsp S 7
= 27 T —i
=0 oo -
10° 10* 10° 10 10 10* 10° 10°
run Queries # run Queries
(a) On uniform synthetic data. (b) On TPC-H Lineitem table.

Figure 4.14: Continuous throughput of cached Elf variants for range queries.

85

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

= ==static 2 levels ====*" naive — —gtatic 2 levels ==se=s naive
= == static 4 levels == =naive + static 4 — —gtatic 8 levels =+ = naive + static 8
— = static 6 levels === w/o caching — = static 11 levels w/o caching
@ 60 s 35
o L | o o s s -~ — — —
USO- - %3()_ _————-;::——:2::‘——
- — g — — — — —
— PN s - ~ask o s mm e ———
340- N . T S e T Ty oy Wy Sy S :9"""'“'
% e o s macanh” o b it LA L ap ..%20- y
3 2 s
D 30k et 8 R
= 215k a?
< R
I =
20 1C
10 10° 10 10 10° 10*
run Queries # run Queries
(a) On uniform synthetic data. (b) On TPC-H Lineitem table.

Figure 4.15: Continuous throughput of cached Elf variants for partial-match queries.

by 40% in the uniform and 15% in the correlated case. Two further notable points are that,
on the one hand, for range queries in Figure 4.14a, the number of statically cached levels
beyond four does not cause much performance degradation and, on the other hand, the static
strategy with two levels in Figure 4.14b is slower than the uncached variant by exception. In
retrospect, looking at Figure 4.12, the static approach is even better than the customized hybrid
dual-access version. It further reinforces the notion of selective caching instead of caching all
DimensionLists.

Combining both the static and dynamic approach for range-based queries, we get worse
performance in this case compared to the standalone static variant. That makes this combination
futile. Only with the correlated dataset and range queries (cf. Figure 4.14b), a slight improvement
could be achieved. Therefore, we draw the same conclusion as for the exact-match experiments
that both strategies are only worth the extra invested DRAM in isolation from each other.

Parallel Range Queries

As a final experiment of this section and chapter, we consider the impact of running range
and partial-match queries in parallel. We only included static caching since dynamic caching
would require additional synchronization mechanisms due to the concurrent eviction process.
Since the gain from dynamic caching for range-based queries has been small so far in any
case, additional synchronization can only be expected to worsen the situation. Furthermore,
concurrency control protocols would have to be considered, which would lead to even more
parameters in the analysis and complicate it unnecessarily. Therefore, we stick with the
best-performing static caching setup (four levels) from before and compare the parallel and
sequential performance against the uncached variant. We used the uniform dataset since the
cardinalities of the dimensions and range size of the queries can be easily customized. The
results shown in Figure 4.16 are based on measurements on a single socket using the same
number of threads as available logical cores (= 20).

As can be seen, both non-caching and static caching variants can benefit from a parallel execu-
tion as long as the cardinality and range size are large enough. Looking at the partial-match
results, we see that the parallel variant always performs better. In the case of range queries, the

86

4.4. SUMMARY

I w/0 caching - sequential M w/o caching - paralle] M static - sequential Il static - parallel

cardinality: 20 cardinality: 40 cardinality: 60 cardinality: 80 cardinality: 100
]05 L
—~
72}
(=9
S0t
8
N—
5103 ?
=% =
8,
= (¢}
= 102
=
ﬁ 10!
10°
cardinality: 20 cardinality: 40 cardinality: 60 cardinality: 80 cardinality: 100
—~ 107
72}
o
g‘ o
B =
= 10k =)
a =
= =
50 o
=
8 c
E 100 =
=
107!

5% 10% 100% 3% 10% 100% 2% 10% 100% 2% 10% 100% 2% 10% 100%
Query Window (in queried range size)

Figure 4.16: Sequential vs. parallel range and partial-match queries.

best speedup in this series of experiments was achieved with the maximum tested cardinality of
100 over the entire EIf (see rightmost). The throughput is 12 x larger than the sequential version.
The cardinality and the number of total tuples can naturally be chosen even higher, which
would most likely cause the speedup to increase to some degree as well. Considering the other
end of our benchmark, i.e., a cardinality of 20 and a range size of 5%, the parallel execution is
utterly counterproductive and worsens performance by two orders of magnitude. Smaller query
windows seem to have too much overhead for creating threads and collecting their results.
Therefore, the parallel variant is unsuitable as a complete implementation replacement and
instead should be chosen based on the passed range parameters and dimension cardinalities.
It could be realized, for example, with the help of a cost model, which decides at a certain
threshold in favor of either the sequential or the parallel implementation.

If we compare the throughput of the static and the non-caching approach, the differences
are hard to discern due to the logarithmic scale. Taking a closer look reveals that the static
cache only improves the performance for small range sizes. This insight is consistent with our
findings from the previous experiments and is again justified by the sequential access pattern,
which can be handled more efficiently by PMem.

4.4 SUMMARY

In this chapter, we presented two PMem-based storage layouts targeting analytical workloads.
While the first one uses a clustering approach to keep similar data physically close and an
interchangeable index, the second is a multi-dimensional index structure that uses DRAM as
an additional caching layer.

87

4. PERSISTENT ANALYTICAL STORAGE LAYOUTS

The introduced clustered PMem-aware storage layout potentially covers all three memory/
storage layers (DRAM, PMem, disk) and can thus take advantage of all the properties. The
approach allows to efficiently access tuples on non-key attributes, which is especially reasonable
for our target TSP system. For example, for selection rates below 1%, range scans can be
accelerated by several orders of magnitude. Furthermore, with a volatile index on top, even
key-based queries on our structure perform similar to approaches designed for OLTP workloads,
and sometimes it even outperforms them.

The multi-dimensional index is a kind of orthogonal approach to the clustering layout. It
focuses on the selective caching idea, which statically or dynamically caches tree nodes in
DRAM. In our evaluation, we found that random access patterns, in particular, can benefit
considerably from investing in additional DRAM to buffer frequently traversed nodes. Thus, for
exact-match queries, we reduced the overhead compared to the DRAM implementation from
223% to 150% with just 3% more space. The DRAM implementation would require 100% more
memory accordingly. Analogously, we could reduce the overhead of range and partial-match
queries with a 2% range size from 210% to 110% and 236% to 140%, respectively. However,
it was also evident that a combination of static and dynamic strategies does not always pay
off. Only the dynamic naive and LLA strategies — where the latter is an approach we devised
based on access probabilities — could outperform the uncached PMem version. In addition, we
have shown that parallel range queries combined with static caching can result in additional
performance boosts. Overall, selective caching has proven to be profitable. Also, we think
that it is generic enough to apply to other tree-like data structures. Only the granularity of
the cached objects will vary. Hence, the optima will need to be determined manually or by an
appropriate cost model.

Altogether, the two proposed approaches represent a valuable complement to the previously
presented data and index structures to also support analytical applications. In principle, it
would be conceivable to combine both approaches, i.e., selectively cache the clustered blocks
in DRAM. For our purposes, however, the individual approaches should suffice for the time
being. Therefore, we have now scrutinized both OLTP and OLAP preferential data and index
structures concerning PMem and can use them as building blocks for more complex systems,
such as for the states of our TSP model.

88

STATEFUL STREAM PROCESSING

ata stream processing is one of the newer research areas in data management that

emerged in the 2000s. Modern applications often require transactional guarantees in

addition to fast processing of unbounded data sources, which is driving a convergence
of stream and transactional processing. That can be observed, for example, by market trends
such as real-time data warehousing or new designs following the lambda architecture that
aims to combine batch and online processing using big data platforms. This observation was
also described in [CFKK20], which highlights future application requirements and necessary
developments in the data streaming domain. These include, for example, transaction guarantees,
shared queryable states, cross-state versioning, and modern hardware support. We intend to
address all of these aspects within the scope of this chapter. In particular, the exploitation
of new hardware, such as PMem, offers sublime opportunities to meet the requirements of
modern applications. Since streaming applications often rely on fast response times while
requiring fail-safety, PMem with a near-DRAM latency and direct persistence seems to be a
natural candidate for transactional and stateful stream processing.

Irrespective of the hardware, the convergence of stream and transaction processing means that
the input to such a system is conceived as a continuous stream of data elements. The processing
is then realized as a stream processing pipeline (continuous query) with an arbitrary set of
persistent tables as sinks. At the same time, updates to these tables can trigger further processing
again implemented as a stream processing pipeline. From the traditional point of view, the
tables can also be queried in an ad-hoc way, for instance, to create snapshot reports. Thus, such
a system consists of a mixture of long-term continuous queries plus usually spontaneous batch
(ad-hoc) queries. The data objects, on the other hand, are streams and tables. Probably the most
frequently encountered stateful operators are windows. Combined with the table approaches,
for example, this offers a wide range of implementation opportunities. Conceptually, a window
is nothing more than an ordered table that is filled by a stream and reports the events on the
table to another stream. When using existing persistent table implementations, this would
support crash recovery basically for free.

However, concurrent access and stream-based queries require extended transaction support.
Le., queries that write to or read from tables must be executed in a transactional context
meeting the ACID guarantees. That is not only important for the aforementioned correct
failure recovery but also to provide consistent views on persistent subsets of the data stream, as

89

5. STATEFUL STREAM PROCESSING

with the window example above. In this work, we denote this processing style as Transactional
Stream Processing (TSP) [BFKT12, MTZ " 15]. Summarized the transactional component means
that

a stream query writing to tables represents a sequence of transactions, and

B stream or batch queries on such tables require transaction isolation.

Following [MTZ" 15], a TSP model should address three guarantees: (1) ACID for both OLTP-
typical and streaming transactions, (2) ordered execution for streaming, and (3) exactly-once
processing of streams. From our point of view, the former is of particular interest since a
wide range of implementations is feasible using PMem-based states. Furthermore, this has
the most decisive performance impact and, thus, can benefit the most from new memory and
storage technologies. The other two guarantees are considered somewhat incidental. The
reason is that, for example, for ordered execution (2), nothing needs to be adapted for PMem.
For exactly-once processing (3), we could use persistent queues in front of all sources and sinks.
During recovery, these queues are checked for already seen tuples or other unique identifiers
to determine the last fully processed items in a pipeline. Moreover, external services such as a
replayable messaging system [ABD 12, KNR"11] can assist this process.

For illustration purposes, we consider the use case as shown in Figure 5.1: a modern smart
metering and monitoring example scenario that could benefit from TSP. It is a more detailed
and specialized application of Figure 1.1 introduced in Chapter 1. The data sources are smart
meters of private households and measurements from the global infrastructure such as power
supplies, generators, accumulators, etc. The idea of this use case is to observe the complete
environment and generate alarms if something is not within the specification ranges. This
verification step can also be coupled back to realize a self-adapting system. In total, this example
contains three continuous and one ad-hoc query. The first continuous query - the beginning
is marked as Stream 1 in the figure - collects the measured values of the private smart
meters in 30-minute time windows. That can be both a tumbling as well as a sliding window.
Whenever the window operator triggers, it passes the data on to the aggregation operator,
which for example, prepares and summarizes the data in a necessary way. Subsequently, the

— > Data Flow C) Stream Operator S Ad-hoc Query @ State

Home “ee “es
Smart Meters
Transaction

' Management

FROM
(Analytics

Measure-
ments 2

Measure-
ments 1

Local State
(80 min)

Specifi-
cation

A\
iED—» —»(TO_TABLE§> TO_STREAM)—(Verify)

[< Generate Alarm

Figure 5.1: Smart metering and energy monitoring use case.

90

results are written to a shared state (table). The second query, based on the measurements
of the infrastructure, could be similarly constructed and also writes to a separate state. It
then accesses the household measurements and joins them with the current streamed data
element (summarized as TO_STREAM). That is compared with the respective specifications.
These, in turn, can be updated by another query, e. g., for adapting ranges or adding new
machines. If anything falls out of the acceptable range, an alarm is generated. In addition, there
could be periodical ad-hoc analyses studying the historical course of events. For this task, a
multi-versioning approach which, for instance, also supports time-travel queries, would be
sensible. Conceptually, tables are used in this scenario to maintain persistent states to deal
with voluminous datasets (e. g., windows ranging over hours or days) and to support crash
recovery. However, as the example indicates, such tables are not only appropriate for internal
states but can also be queried on an ad-hoc basis to get the current (or even historic) picture of
the process or individual process states.

From the specified conditions, desired guarantees, and the example, we can derive explicit
requirements. Thus, to support transactional and queryable states, a correctly working system
must fulfill the following points:

State representations (tables) must be queryable as a matter of principle.

Concurrently running stream queries updating the state and ad-hoc queries to these states
must ensure the isolation property.

Consistency between multiple states associated with the same query is necessary, also in
the case of transaction aborts.

For the former, this includes providing a unified interface for operator states and separately
created tables and centralized management of these. To realize the isolation property, a
scheduling protocol like MVCC is necessary for handling both batch and continuous queries.
For consistency preservation across multiple states, there is also the need for a protocol that
coordinates all accesses with ACID guarantees. A simplification, which is also evident in the
illustrated use case, is that only one continuous query has write access to a state, thus creating
a single-writer-multiple-reader scenario.

This chapter aims to explore techniques used to meet the above requirements’. The ultimate
goal is to prototype a stream processing system with transactional capabilities using PMem-
based data structures as state and table representations. Our contributions provided by this
chapter are as follows:

e A Data-centric TSP Model: We propose and explain our TSP model conception in
detail with a distinct focus on transactional state management and queryable states.

e Concurrency & Consistency Protocol: We present our implementation of an MVCC
and consistency approach for the TSP model. We further discuss suitable optimizations in
the presence of PMem. Based on the protocols, we define the necessary steps for failure
recovery and application restart.

e Query Planning: We outline possible parameters and cost models for query planning
in the TSP model.

I'The material in this chapter is based on [PGS17, GS19, GPS19, GGK*20].

91

5. STATEFUL STREAM PROCESSING

e Event Stream Processing: A specialized but well-established form of stateful stream pro-
cessing is the continuous processing of events. Based on an existing event store, we show
how to practically apply our previous findings with PMem to the store’s components.

The remainder of this chapter is organized according to the following structure. In Section 5.1,
we start by introducing our transactional model for stream processing. Then, Section 5.2 surveys
state-of-the-art research regarding stream processing with transactional guarantees and current
deployments of MVCC as a concurrency control protocol compared to our approach. Section 5.3
presents our protocols for realizing the snapshot isolation property to meet the transactional
requirements in this TSP model. Subsequently, we address the aligned implementation for
PMem and how the recovery process has to be adapted in Sections 5.4 and 5.5, respectively.
In Section 5.6, we take a brief detour into query planning opportunities and cost models for
TSP. Furthermore, we apply our experience to a specialized form of stream processing, namely
event stream processing in Section 5.7, before evaluating both processing types in Section 5.8.
Finally, Section 5.9 summarizes the contents and insights of this chapter.

5.1 TRANSACTIONAL STREAM PROCESSING MODEL

Transactions are a well-established concept known from DBMSs that guarantees consistency for
the underlying database even in the event of failures and concurrent user access. Transactional
Stream Processing can be seen as a hybrid model of the traditional relational data processing
and the data stream processing that provides both with transactional guarantees. Through this
combination, we can distinguish between two objects holding data: tables for representing
states and streams. Tables constitute a structured and finite collection of data typically divisible
in rows and columns. Streams, on the other hand, provide a potentially infinite sequence of
tuples that exhibit either an implicit or explicit ordering. Le., either the ordering is based on
arrival time, or the tuples carry an ordering attribute such as the application timestamp. Still,
both objects need to be provided with a concrete schema. A further difference is that streams are
volatile and can often be processed completely in-memory, while tables are typically persistent
and require a physical storage representation.

In order to formulate queries on data streams the data is passed through a flow of operators such
as filter, map, join, group, aggregate, or even user-defined operators. That results in so-called
continuous queries. Unlike the relational case, due to the boundlessness of the data stream,
certain operators that typically require the entire dataset to return a result cannot be executed
in this form. These operators, such as joins and aggregates, are called blocking operators. It is
solved with windows that divide streams into bounded subsets. Windows can concern either a
fixed period or quantity of tuples or be data-driven and allow various eviction policies such as
sliding or tumbling windows. Furthermore, relational queries differ from continuous queries
in the form of processing. While the former follows a pull-based model like in the Volcano
processing model [GM93], the latter is typically rather push-based. It means that tuples are
actively sent from the source(s) to the consumer operator(s). Due to these differences, it must
first be clarified how both paradigms can be linked to each other.

92

5.1. TRANSACTIONAL STREAM PROCESSING MODEL

5.1.1 Linking Operators

Similar to the concepts which were proposed in the query language for STREAM [ABW03], we
need two classes of operators to link tables and streams. One for the stream-to-table direction
and the other class for the opposite way. In this work, we refer to them as TO_TABLE and
TO_STREAM that need to perform the following tasks:

e TO_TABLE ingests tuples from a stream and inserts them into a table or updates or deletes
existing ones, e.g., to modify an operator state.

e TO_STREAM monitors arbitrary changes on a table and generates a stream of tuples from
them.

The handling of stream tuples with TO_TABLE can be different depending on the context or
a potentially connected stateful operator. Usually, though, if a tuple with the same key as
the stream tuple already exists in the table, it will be updated and otherwise newly inserted.
Deletions can be performed either explicitly by delete tuples or implicitly when a tuple is
obsolete, e.g., due to window semantics. For TO_STREAM, we can further subdivide two scenarios.
First, stream tuples are processed incrementally, such as in an aggregation, where only a single
table tuple is modified and subsequently output to a stream. The second scenario comprises
the case where table-wide operations are performed before a new stream tuple can be output,
as with a median calculation of all tuples in a table. Thus, TO_STREAM is very similar to the
concept of a database trigger that generates one or more tuples once the defined condition on
a table is fulfilled. It can also be extended to full trigger semantics, which additionally perform
modifications to the table. For that, the output stream only has to be redirected to the table
and linked with TO_TABLE. Besides the two classes of operators to combine the streams and
tables, it needs another operator class FROM, which allows ad-hoc queries. These also need to
cover two flavors. On the one hand, to hook onto a stream and get all tuples starting from the
time of attachment (motivated by views) and, on the other hand, to issue typical relational
queries to tables. In Figure 5.2, we have visualized the interplay between these three classes
of operators. The central semantics are marked with | A| for atomicity, m for isolation, and
for trigger policy. The handling of transaction boundaries and state access is described in the
following subsections.

FROM (Stream)

T@ Ko_zaEAM

TO_
= tuple
A | = sub-stream | = snapshot per tuple
= stream = snapshot on commit

TI" each tuple
= transaction commit

FROM (Table)

T = tuple
= transaction commit

| = snapshot
= jsolation level

Figure 5.2: Overview of linking operators and transactional semantics for TSP.

93

5. STATEFUL STREAM PROCESSING

5.1.2 Transaction Boundaries

As already indicated by the figure, there are basically three ways to treat atomicity and trans-
action boundaries for data streams. The first and most trivial case is when each tuple in a
stream represents a separate transaction, which we refer to as auto-commit. For a data-centric
approach, however, we need explicit, dedicated stream elements that mark the transaction
boundaries (BOT, COMMIT, ABORT). These pass the stream pipelines alongside the actual data
tuples interpreted as inserts, updates, or deletes. For the realization of these concepts, punc-
tuations [TMSF03] or control tuples are well suited. These can be injected already from the
streaming data source or as part of the stream processing pipeline(s) when a predefined condi-
tion is met. Therefore, a transaction following this approach is always a bounded sequence of
tuples (i.e., a sub-stream). However, Out-of-Order (OOO) events can also occur in data streams,
which means that the ordering by arrival is inadequate. Therefore, in this case, tuples of the
same transaction must be tagged by concepts such as punctuations, equal timestamps, or similar.
Alternatively, transaction boundaries can be specified as part of the query or dataflow program
as in the traditional query-centric approach. It would define a transaction as a sequence of
operations, which seems more reasonable for ad-hoc queries. Figure 5.3 illustrates the data-
and query-centric strategies. In summary, a transaction can span the entire data stream to the
length of a sub-stream, or it may involve only a single tuple (= auto-commit).

5.1.3 Transactional State Management

Data-manipulation operations like inserts, deletes, and updates on tables must be executed in a
transactional context so that atomicity for writes and isolation for reads (via TO_STREAM or
FROM) can be guaranteed. In our TSP model, a table can only be modified using the To_ TABLE
operator. To guarantee atomicity for these writes, the transaction boundaries as described above
are required in the first place. Moreover, since a stream query can operate on multiple persistent
states simultaneously (cf. Figure 5.1), a consistency protocol is necessary that encompasses all
states involved. For the states manipulated in the same transaction, it means that they must be
updated synchronously from an external perspective. Thus, depending on the isolation level,
other queries that simultaneously read the states should only see updates of the same and
possibly the most recent transaction that has already been committed. Since, in our data-centric
model, we view a transaction as a sequence of stream tuples containing update information,
usual OLTP queries are modeled as a sequence of updates by simply concatenating all changes
issued by a transaction. This sequence is then wrapped with transaction punctuations and fed
to the TO_TABLE operator to execute the modifications on the table.

data element t.newStreamFromSocket(...)
.extract(...)
COMMIT _ﬁ BOT .beginTransaction()
.slidingWindow(...)
D I D D Dﬁ D D D ﬁ .aggregate(...)
< .commitTransaction()
time
(a) Data-centric. (b) Query-centric.

Figure 5.3: Strategies for defining transaction boundaries.

94

5.1. TRANSACTIONAL STREAM PROCESSING MODEL

Reads via the FROM operator can be executed using various isolation levels to control the
corresponding visibility of simultaneous updates, as known from DBMSs. Furthermore, this
concept also needs to be applied when FROM is used to attach to a data stream. Thus, for
example, snapshot isolation should only forward committed transactions. As opposed to that,
with a more relaxed isolation level, stream tuples of a transaction that is still running can
already be emitted.

Reading using the TO_STREAM operator requires a trigger policy added to the consideration
of the isolation property for all reads. A trigger policy is a constraint that causes stream
tuples to be output or back-to-the-table streams to be produced that contain the transactional
modifications. For instance, it is possible to react to arbitrary tuple modifications or only to
transaction commits. Furthermore, the trigger policy also affects the isolation property. Hence,
a snapshot includes only a single tuple or all tuples that have been modified up to the commit.

5.1.4 Shared Queryable States

In order to ensure all relevant facets required for the TSP model with queryable states, we
draw on a unified table model as used in DBMSs. Besides user-defined tables, some stream
operators such as windows, aggregates, and joins also require underlying and, at best, optimized
data structures to maintain their state. For these operators, tables (or table-like interfaces)
can be exploited as internal structures to make their state generally queryable or share their
contents with other queries. That allows providing shared queryable states while reusing
existing persistence and recovery mechanisms.

As an example, we first consider the window operator as known from streaming systems. It
can be easily realized with a pair of TO_TABLE-TO_STREAM operators that store and remove
tuples in and from a table. That makes the underlying table available to all other queries, e.g.,
for calculating various statistics or monitoring. In addition, in case of failures, the windows are
persistent and recoverable. Generally, the underlying tables can automatically be created based
on the query definition. Also, the schema is implicitly provided by the operator’s input schema.
As noted earlier, a single implementation of the table concept will not be sufficient because
the requirements and access profiles vary by operator. Thus, operations on the tables may
involve merely append-only, batch appends, and deletes, or need to cover the whole range of
update operations. For further processing of the data stream, the TO_STREAM operator allows
to incrementally evaluate a window feeding only updates into the data stream. On the other
hand, also batch processing with access to the entire window contents is possible. It can be
done in the form of ad-hoc queries using the FROM operator, which provides the full range of
relational queries.

The same applies to grouping, aggregation, join, or other stateful operators. They can all be
implemented similarly to provide external access to their state. For example, in a scenario with
multiple data streams from different sources, the same specification table might be required
for joining. Rather than creating a hash table for each stream, all join operators can now
reuse a single hash table. In this way, redundant work is avoided, and the system’s memory
consumption is decreased.

95

5. STATEFUL STREAM PROCESSING

5.2 RELATED WORK

Several models and systems already exist that use transactions and persistent states for pro-
cessing data streams. In this section, we summarize the existing approaches and highlight their
differences. We divided related work into three categories. The first covers stream processing
systems that support transactions and states. Then, we discuss those systems that focus more on
scalability on multiple cluster nodes. Finally, we will review current multi-version concurrency
control considerations. Related work regarding PMem-based data and index structures as part
of the possible state representations was already discussed in Sections 3.1 and 4.1. Besides the
differences outlined below, we will see that none of the listed systems consider PMem, and only
a few include NUMA effects. It is a contribution that we address in this chapter, among others.

5.2.1 Transactional Stream Processing

STREAM

One of the first approaches that combines data stream and transactional processing is the
STREAM project [MWA ™03, ABWO03]. They transform relations to streams by introducing the
operations RStream, IStream, and DStream. These emit tuples to a stream whenever changes are
observed in a relation. While IStream and DStream generate a stream of tuples based on inserts
and deletes into or from a table, respectively, the RStream operation emits all tuples of a table
enhanced with the same timestamp. For the former two cases, the tuple timestamps correspond
to the respective time of insertion or deletion instead. Similar to our model, STREAM also
exploits punctuations to model constraints such as transaction borders over data streams.
For the opposite transformation direction, windows are used to convert sub-streams into
relations. These can then be queried in a typical SQL fashion. However, their system focuses
on continuous queries and mostly neglects the interplay between stream- and relational-based
transactions.

Transactional Stream Processing

With the work Transactional Stream Processing [BFKT12], from which we adopted the name of
our model, this notion is further advanced, and also concurrency control and failure-atomicity
are incorporated. Here, a uniform transaction model is already being conceived to handle both
stream- and relational-based transactions. In order to achieve that, timestamps are assigned
to each transaction, and continuous queries are converted into a series of one-time (ad-hoc)
queries. States and independent relations are maintained in a separate storage manager and
can be queried through a transaction manager interface. The storage manager is based on a
storage system for data-intensive stream processing [BAFT09]. As a result, the transaction
manager does not distinguish whether continuous or ad-hoc queries are received. Either
way, concurrency control utilizes locks (SS2PL), and recovery is based on logical undo logging.
However, we see a potential for improvement in this protocol implementation of the transaction
manager, particularly when considering modern and upcoming server setups such as multi-
socket systems with PMem.

96

5.2. RELATED WORK

S-Store

In a similar way, S-Store[MTZ"15] builds on an existing OLTP system and extends it with
data stream processing capabilities. In particular, they reuse the ACID implementations of
H-Store [KKN708] by representing data streaming concepts such as windows and streams as
time-varying tables ordered by timestamp. Continuous queries, on the other hand, are realized
as a dataflow graph composed of stored procedures, which can also be nested. The transaction
scope is defined by a batch ID - derived either from a timestamp or from the number of tuples -
and executed atomically per stored procedure. With this way of processing, ordered execution
and exactly-once processing can be realized in addition to the ACID properties. Even though
S-Store fulfills the functional requirements of a TSP system, it is still based on a relational
DBMS and, thus, leaves a lot of room for improvement, especially in the streaming domain
with stringent latency requirements.

Tidalrace

With Tidalrace [JS15], the authors propose a streaming data warehouse, contrary to the previ-
ously introduced streaming OLTP systems. The key idea is a system that acts as a data sink
for streams and facilitates ETL tasks as well as final data warehouse analyses. In order to
convert the incoming streams into tables, they are partitioned based on timestamps and stored
in write-once files. When querying data, Tidalrace focuses on the final warehouse tables, which
means that it is not possible to mix stream and relational queries. Furthermore, when ingesting
the stream data, the consistency property is relaxed to obtain real-time results. It means that
the transactional part, i.e., the preservation of the ACID properties, is mostly omitted.

TStream

A more recent approach is TStream [ZWZH20], which is a transactional stream processing
system especially targeting modern multicore processors. The authors propose two disjoint
scheduling modes to scale the state synchronization. The first is the compute mode in which
the system starts. It processes events and collects state access operations in a list per state.
Every time a defined period is over, the executors switch to the state access mode. Here, the
postponed events now access the state in batches. It can also be done in parallel if these have
no data dependencies. Another contribution is the consideration of NUMA-aware processing
by allowing different sharing options per state access list.

5.2.2 Scalable Stateful Stream Processing

Apache Flink Streaming

Considering scalable distributed data stream processing, Apache Flink Streaming is one of the
most used and advanced platforms that provides consistent and fault-tolerant states [CFE" 15,
CEF"17]. The fault tolerance is enabled by a mechanism based on distributed global snapshots,
as primordially proposed by Chandy and Lamport already in the 80s [CL85]. For that, punctua-
tions — here referred to as stream barriers — are periodically ingested to all source operators and
move alongside the data to the sinks. At each operator in the pipeline, the data flow is blocked
until the barriers with the same ID are received from all other inputs. Once that is the case, the

97

5. STATEFUL STREAM PROCESSING

contents of the state are persisted in an arbitrary state backend. If a failure should occur, the
last consistent snapshot is used to restore all states of the same streaming pipeline collectively.
In addition, it is possible to query states at least in the form of point lookups as long as only
one operator/task has write access to this state. However, to the best of our knowledge, they
do not support transactions across multiple states and do not comply with the ACID properties
in the process.

SnappyData

Based on the Spark platform, SnappyData [MRM*17] extends it with an in-memory trans-
actional store and, thus, aims to unify transactions, streaming, and analytical tasks in one
framework. The task distribution is such that Spark is used for fast distributed computations
and streaming features, while the in-memory store allows for fine-grained concurrent access
control. They take a hybrid approach to the storage model, allowing both row- and column-
oriented tables. The micro-batches introduced by Spark are used to define the scope of a
transaction, which means that transactions must always be of the same size. Another feature is
the capability for approximate query processing to meet real-time requirements, for example.

TSpoon

TSpoon [AMC20] fits into a similar category, where the authors build a transaction model
based on Apache Flink. They introduce the t-graph notion, a subgraph containing all stateful
operators that must jointly satisfy the ACID properties. It is relatively similar to what we call a
topology or state group. Another similarity is that only streams can write to states. However,
a difference to our model is that TSpoon does not use punctuations to mark transaction
boundaries. Instead, a transaction can only comprise one streaming element at a time. In order
to cope with concurrent queries, key-value pairs are versioned and can be managed using
either a lock-based or a timestamp-based protocol.

5.2.3 Multi-Version Concurrency Control

Particular concerning modern multi-core architectures, MVCC can maximize parallelism
while still achieving serializability. Primarily, it is attributable to the principle that read
and write operations do not block each other. That makes the system much more scalable
and, therefore, many commercial DBMSs have adopted it as their Concurrency Control (CC)
scheme. These include, for example, Hekaton [DFI*13], MemSQL/SingleStore [Sin20], and SAP
HANA [LMM™13]. MVCC is also favored in almost every current academic and open-source
DBMS like Postgres [SR86], HYRISE [GKP " 10], HyPer [KN11], Peloton [Car19, WAL"17], and
NoisePage [Car21]. However, it is principally not a protocol but rather a group of protocols,
and there is no exact standard on how to implement it. Several options and customizations are
conceivable, depending heavily on the expected workload. Most of the MVCC implementations
only support the snapshot isolation level since full serializability would be disproportionately
expensive. Hence, some approaches exist guaranteeing serializability with as little overhead
as possible [NMK15, CRF08]. In a single-writer-multiple-readers scenario, snapshot isolation
corresponds to serializability since write-skews cannot occur. That is why we do not need
such enlargement in our approach for the time being. A comprehensive study examining the

98

5.3. SNAPSHOT ISOLATION PROTOCOLS

major design decisions for the implementation of MVCC in an in-memory database system can
be found in [WAL"17]. More precisely, these design points are the underlying CC protocol,
the version storage, the garbage collection, and the index management. The authors discuss
tradeoffs and appropriate scenarios for each approach. We adopted some of the results of this
study to develop our own MVCC approach (see Section 5.3.2). However, several aspects could
not be applied in this way, as our system is not a pure in-memory solution. Even though the
design space for PMem remains roughly the same, the performance implications of some design
adjustments presented will not be identical to those observed for DRAM due to the different
characteristics of the technology, such as the read-write asymmetry.

A few works exist that already use versioning or MVCC for PMem-based data structures. Among
them are, e.g., CDDS [VTRC11], SOFORT [OBL*14], Dash [LHWL20], and Zen [LCC21]. Most
of these proposals, except Zen, and to some extent Dash, omit an exclusive concurrency
comparison with other protocols or have still been evaluated on DRAM-based emulations.
However, the Zen approach already reveals that at high skew, MVCC and optimistic protocols
achieve higher throughput than lock-based protocols. In this chapter, we will explore in greater
detail if and when MVCC on PMem is more appropriate — particularly in the context of stateful
stream processing — than protocols without versioning.

5.3 SNAPSHOT ISOLATION PROTOCOLS

Considering the transactional semantics as detailed in Section 5.1, we can now further specify
and address the requirements described at the beginning of this chapter. Fundamentally, this
is an application of the ACID principle to the TSP model. We start with atomicity, which
must be taken into account in several places. Primarily, it concerns the afore-said marking
of transaction scopes — the unit of work to be executed atomically - via certain transaction
boundaries. Furthermore, every operation of the transactions must be executed atomically
to ensure fault tolerance on the one hand and consistency even for concurrent access on the
other. That brings us directly to the next two requirements, namely persistence (or durability)
and isolation. The isolation property includes both continuous and ad-hoc queries. It has to
make sure that they do not interfere with each other regarding correctness and consistency.
That also holds when they cover multiple states or transaction aborts occur. On the other hand,
the persistence property requires that all effects of a successfully committed transaction still
exist after a system restart, whether intentional or not. It also includes recoverability, which
must ensure that states can either be fully recovered or always remain in a consistent form. In
order to comply with these requirements, we have developed a snapshot isolation approach
that consists of the following three components.

e Multi-versioned data structures for queryable operator states and custom tables

e A transaction protocol supporting reads, writes, commits, and aborts on these states both
by stream operators and ad-hoc queries

e A protocol that maintains consistency across multiple states

99

5. STATEFUL STREAM PROCESSING

We have prototypically implemented and integrated these components into a C++-based data
stream processing framework called PipeFabric®. The reason we chose an MVCC approach is
that it has proven to be the most scalable and widely used CC protocol in the literature for
DBMSs [PA16, WAL'17, CM86], as we have already pointed out in the related work section. For
a TSP environment, we expect similar scalability and resilience of this approach. However, this
assumption still needs to be substantiated. In addition, the suitability of MVCC in combination
with PMem has not been extensively studied yet. We will address both aspects later in the
chapter.

5.3.1 Data Structures

As a data structure supporting snapshot isolation and serving as transactional state representa-
tion, we have designed a table wrapper shown in Figure 5.4 on the right. The areas highlighted
in gray in the figure represent the parts that need to be stored persistently. The underlying
Base Table can be any arbitrary data structure as long as it has a key-value mapping, which
is the case with frameworks like RocksDB or elementary representatives like a hash table
or a BT-Tree. Thus, for each type of state — depending on the access profile — a matching
underlying structure can be used, making this design highly versatile. For example, for an
aggregation or a grouping, a multimap might prove to be the most efficient. Also, more nested
data structures would be conceivable, e.g., for grouped windows, one could map IDs to FIFO
queues (cf. Figure 5.1). Inside the base table, each key is mapped to its corresponding value,
which in this case is an MVCC Object. As it is typical for MVCC [Ree83, WAL'17], a version
entry, in turn, has the following form: < [cts, dts], value >. The Commit Timestamp (CTS)
and Deletion Timestamp (DTS) fields depict the validity range of this version’s value. The
apparent separation into two arrays (headers and values) is expected to provide a better cache
locality when searching for a valid version, particularly when storing many versions or large
values. We use a bit vector (omitted in the figure) to atomically handle the available free slots
in these two arrays. No additional write lock is necessary since changes are initially stored
volatile in the uncommitted write set of the corresponding transaction until commit. Thus,
new versions are not prematurely visible to simultaneous readers, and transactions can also be
aborted straightforwardly and fast. Furthermore, committed and uncommitted versions are
never mixed. The detailed operation of the commit is explained in the following subsection.
Finally, the transactional table wrapper maintains a reference to the global state context, as
shown on the left of Figure 5.4.

The state context holds all necessary runtime information about the states, state groups, and
active transactions registered in the system. In this sense, the state context is also the transaction
manager. For the states, we currently only store concise general information such as a unique
identifier and their physical location. This location is usually a file system path for both
PMem- and disk-based states and a virtual address in the case of volatile states. State groups
record which states must be written together atomically. It can typically be derived from the
continuous queries, which are called Topologies in PipeFabric. Since we currently focus on a
single-writer-multiple-readers scenario, a state can only be written by one such topology. It is
essential to keep track of the corresponding state groups to correctly apply the concurrency
and consistency protocol (see Sections 5.3.2 and 5.3.3). For that, the last committed transaction

2PipeFabriC - https://github.com/dbis-ilm/pipefabric

100

https://github.com/dbis-ilm/pipefabric

5.3. SNAPSHOT ISOLATION PROTOCOLS

persistent volte Transactional Table Uncommitted Write Set
- 00 | " Referenceto) Dirty Array
State Context \& | Referenceto | o
I State Context ! c | | Key|Value
States StateGroups | | "= ====-~ = 5

StateID‘ Location/Pointer GroupID‘List<StateID> LastCTS

Base Table _ MVCC Object
[UsedSlots J

Active Transactions

TxnID |List<StatelD, Status> | List<GroupID, ReadCTS> key, —{ MVCC Object

[UsedSlots] [OldestActiveVersion] keYn %[MVCC ObjeCtJ

\ Headers Values
\ |[cTs,|DTS, | [Value,
\ 8 g

Figure 5.4: Transaction components.

timestamp (LastCTS) is maintained for each group marking a snapshot. This information
must also be stored persistently to prevent individual parts of an incomplete commit from
becoming visible after an unexpected failure. Upon starting a new transaction, it acquires a
unique timestamp (TxnID). These timestamps are generated by a global atomic counter within
the state context. All active transactions are assigned with a list of states they accessed or are
going to access. This list contains the ID of the states and the access status (Active, Abort,
or Commit), which is mainly used in the case of writes. Furthermore, we also keep track of a
global commit timestamp at the time of reading (ReadCTS) for each state group. For the active
transactions, we again use a bit vector” to atomically (de)allocate the available slots in this array
(Usedslots). All common variants, such as background vacuuming, cooperative cleaning, and
so on (cf. [WAL"17]), are possible for garbage collection considering the active transactions.
Currently, the invisible or old versions are marked free only if there is no space for the new
version in the array. For this purpose, the oldest version considered by active transactions is
recorded (OldestActiveVersion). All versions with a lower timestamp can be safely marked
free or archived if time traveling is demanded. Altogether the state context of the transaction
management can be used entirely latch-free exclusively copes with atomic instructions.

5.3.2 Multi-Version Concurrency Control Protocol

Initially, we consider the necessary basic transactional operations on a state. These are read,
write, commit, and abort. More complex procedures such as update, scan, modify-if, etc., can
be composed of these. To better separate the protocols, we first consider the simultaneous
and consistent access to only one state at a time. The start of a transaction can be signaled
either explicitly by punctuation or implicitly by the first read/write operation. In our case, we
assume beginning punctuations that trigger the assignment of a timestamp to the transaction
and the registration in the context. Depending on the physical placement of the state, different
synchronizations of the read and writes of MVCC objects are necessary. For disks, e.g., a
lightweight locking strategy with read-write locks (latches) could be used. Specialized handling
in the case of PMem will be considered in Section 5.4.

When reading, as shown in Algorithm 6, the first step is to see if the corresponding transaction
has already recorded a write for the requested key in its write set and returns this instead
(lines 2-5). If this is not the case, the base table is searched for the specified key, and the

3In fact, it is a 64-bit integer, which is updated by CAS operations.

101

5. STATEFUL STREAM PROCESSING

associated MVCC object is retrieved (line 7). At this point, a synchronization with commit
operations is potentially necessary to maintain atomicity and isolation. If no entry yet exists,
the operation will inform the caller accordingly. To achieve snapshot isolation, the first read
version timestamp of this transaction must be transiently stored and is used for subsequent
reads (lines 11-13). More relaxed isolation levels can merely read the latest (visible) version.
For the desired snapshot isolation, however, the corresponding version is next looked up using
the previously determined readCTs (lines 15-17). No visible version may be available for this
transaction, which is handled as not found. As the last step, the read value is copied and
returned (line 18-19).

Algorithm 6 Read(txnID, key, outValue)

1: /// Read own version if written before
2. status < ownAvailable(tznlID)

3. if status == SUCCESS then

4 outValue < writeSet[key|.value
5 return status

/] Retrieve MVCC object

(status, mvce) < baseTable.get(key)

if status ! = SUCCESS then
return NOT_FOUND

Y ® 2

10: /// Handling Consistency

11: readCTS < StateContext.get ReadCT S (tanlID)
12: if readCTS == 0 then

13: readCTS = lastCommitl D

14: /// Extracting latest visible version

15: pos < mucc.getCurrent(readCTS)
16: if pos == —1 then

17: return NOT_FOUND

18: outValue + mucc[pos|.value

19: return SUCCESS

The writing procedure, as it can be seen in Algorithm 7, is relatively straightforward since
only the new value is added into the write set of the transaction (line 3). No exclusive locks
are necessary because we assume and allow only a single writer (lines 1-2). Therefore, write
operations are not blocking. If multiple writers are to be supported, the write sets would
have to be checked for overlaps. In case of an overlap, the younger transaction could be
prematurely aborted or restarted. Alternatively, this check could be done only at commit time,
similar to optimistic approaches, to avoid slowing down writes. As blind writes are not always
appropriate, an update can be performed as a read-modify-write sequence.

Algorithm 7 Write(txnID, key, value)
. if writeSet.tanlID ! = tanlD then
return NOT _ALLOWED

1
2
3. writeSet.append(key, value)
4: return SUCCESS

102

5.3. SNAPSHOT ISOLATION PROTOCOLS

Next, we look at the transaction terminating operations. Aborting a transaction is straightfor-
ward as all uncommitted writes are only stored in a volatile structure, which can plainly be
discarded or marked free. However, the commit operation requires a little more effort since
the changes that were previously only stored in volatile form have to be persisted. Of course,
atomicity and isolation must be observed again. The procedure is shown in Algorithm 8. In
the first loop, all changes are prepared in memory. Here, each affected MVCC object must be
loaded first (lines 4-5). After that, a free version slot and the slot of the latest visible version are
searched (lines 6-7). If a free position is not directly available, the garbage collection is triggered
at this point. Under certain circumstances, it can lead to waiting situations until older read
transactions have been processed. The slot positions are used to insert the new values and limit
the validity of the current version (lines 8-10). If no entry exists yet, a new one is created, and
the procedure is slightly different, which was omitted here for the sake of clarity. The second
loop is then responsible for populating the changes atomically and isolated into the base table
(lines 12-13). Here, synchronization with the read operations, e.g., via key-based latches, is
required. While our algorithms can handle inter-thread synchronization, the underlying table
must guarantee failure-atomicity for a single update. If that is the case, all transactions can be
executed with ACID guarantees. The final step is to update the global commit timestamp of
the state with the ID of the committing transaction (line 14). Note that this field must also be
stored persistently. Updating this timestamp atomically ensures that the changes are either
fully visible or not at all. It is possible because the same timestamp is used for reading instead
of a transaction’s own ID (cf. Algorithm 6 - line 13). Since incomplete changes are not visible,
no undo is necessary. To support multiple writers, write locks are required, and also the order
of the commits must be respected. For example, it could follow the first-committer-wins rule,
i.e., if the current version is already newer than the timestamp of the transaction at hand, it
must be aborted.

Algorithm 8 Commit(txnID)

1: /// Buffering new MVCC entries

2. newEntries < {}

3. for each (key, value) € writeSet do

4 newEntries.append(key, baseT able.get(key))
5: last < newEntries.tail.mvcc
6
7
8
9

1Pos < getFreePos(last.usedSlots)
dPos «+ last.getCurrent()
last[dPos].dts < tznID
: last[iPos| < (tznID,inf,value)
10: setBitAt(last.usedSlots,iPos)

11: /// Update MVCC objects
12: for each (key, mvcc) € newEntries do
13: baseTable.update(key, mvce)

14: lastCommitID <+ tznlD

The algorithms outlined above are kept generic at first and work like this also on block-based
storage. However, if PMem is available, all accesses can be fine-grained, and update operations
can be atomically performed in-place. That also allows bypassing the OS cache and executing
direct load and store instructions. Thus, the logical time of persistence is known. In addition,
latches during the commit can be replaced by latch-free methods, e.g., compare-and-swap
instructions. Therefore, we present a more optimized variant for PMem in Section 5.4.

103

5. STATEFUL STREAM PROCESSING

Fundamentally, the design of the operations (without PMem optimizations) already allows
the elimination of logs for the most part. Furthermore, versioning generally prevents read
operations from being blocked by write operations and the other way around. As we have
shown, only during the commit, brief synchronizations with reading transactions can occur.
There can be no conflict-induced aborts, which should keep the performance stable even for
long transactions and high contention situations. Moreover, versioning enables time-traveling
queries if demanded. However, compared to, e.g., a simple lock protocol, disadvantages could
be increased program complexity and a higher memory and storage consumption.

5.3.3 Lightweight Two-Phase Commit Protocol

The previously described procedures were based on only a single state. However, if multiple
states are updated in a continuous query, the changes must become visible simultaneously to
maintain consistency. In order to demonstrate it more clearly with an example, we will assume
a simple scenario, as shown in Figure 5.5. Ignoring the state context, for now, it consists of a
continuous query that writes to two states and an ad-hoc query that reads from the same two
states. If a commit is received by the first TO_ TABLE operator, the visibility of the modifications
must be delayed until the commit has reached the second operator. Only if both are able to
commit, the changes can be applied in compliance with the ACID guarantees.

To achieve this cross-state consistency, we coordinate the operators using the state context
shown in Figure 5.4. Hence, when a commit reaches a state, first, the status field of the trans-
action for that state is set to Commit. As soon as the last stateful operator of the transaction
receives and sets the commit, it triggers the actual persisting of changes. The last stateful oper-
ator automatically becomes the coordinator and is thus responsible for the global completion
of this transaction’s commit. If an Abort status is set for one or more states, the transaction
will be aborted globally. Such an abort can be caused either by punctuations or local conflicts,

— Data Flow C) Stream Operator S Ad-hoc Query @ State

|
keyB TO_TABLE TO_TABLE
~] Cy | wy | wy [BOT,[- [Mev{&é's] ([,TWS,GS] H [or) W W] >_’©

State Context

States State Groups
S0 | Accounts | (GO [{S0, 51} | LastCTS(1}]

|
|
|
|
|
Accounts Replica I
|
|
|
|

[OldestActiveVersion {1}]

Active Transactions
2 | {<S0,Active>,<S1,Active>} | <GO,ReadCTS{1}>

3 | {<S0,Commit>,<S1,Active>} | <G0O,ReadCTS{0}>

i
|

I

|

I

I

I

I

: S1 ‘ Replica
|

l

|

|

I

I

I

I

BOT,, rA), 1Ry Cy

Figure 5.5: An example scenario for handling concurrency and consistency: One continuous writing
query (BOT, Write, Write, Commit)and an ad-hoc reading query (BOT, Read, Read, Commit).
The first ToTable operator has already seen a commit, the second not yet. Therefore, LastCTS still
holds the previous version timestamp, and also ReadCTS of the ad-hoc query keeps its first seen version.

104

5.3. SNAPSHOT ISOLATION PROTOCOLS

although the latter is precluded in our approach. As such, it is a modified, lightweight version
of the Two-Phase Commit (2PC) protocol [LS79], which thus relies on proven concepts without
adding overhead in our case. The setting of the status flag corresponds to the collection of
votes, and the coordinator’s calling of the commit or abort functions is then the distribution
of the decision. Eventually, when all local commits are done, the LastCTS field for each state
group is atomically updated to the transaction’s ID. It replaces the state-local setting of the
lastCommitID as listed in Algorithm 8 at line 14.

The consistency for reading operations is ensured by using the LastCTSs field to determine the
visibility of versions (Algorithm 6 at line 13). Thus, reading transactions initially look at the
state groups to see which states are written atomically. For these states, the version must be
identical. If it is not, a newer commit has been performed meanwhile. Therefore, the version
timestamp used for the first read per state group is noted in the context (ReadCTs). Every
subsequent read operation of this transaction thus sees the same snapshot, and simultaneous
commits are not a problem. If a transaction reads states from multiple state groups resulting in
different commit versions (LastCTSs), the older version must be read to ensure consistency.

Let us revisit the example in Figure 5.5 to make this process a bit more illustrative. Assuming
that a transaction with timestamp 1 was the last successfully committed transaction, the
LastCTS of the state group must also be 1. Furthermore, the first TO_ TABLE operator has
already seen a commit from transaction 3, but the second one has only seen the last write
operation so far. Correspondingly the status fields for this active transaction are Commit for
S0 and Active for S1. Up to this point, all changes are still volatile and not visible. Therefore,
the ad-hoc query would still read version 1 at this or a previous time since LastCTS has not
been updated yet. It would still be the case even if the second TO_TABLE operator has seen the
commit, but the persistent changes and the final LastCTS update have not been incorporated
yet. Transaction 2 thus starts with the first read logically before transaction 3 or after it and
sets the ReadCTS accordingly. In Section 5.8, we discuss more specific concurrency and failure
scenarios in detail and how our protocols deal with them.

To sum up, the algorithms outlined above would have to be extended as follows to support
cross-state consistency.

Read: Compare and set the ReadCTS based on the accessed state group instead of the
accessed state (line 13).

Write: Nothing changes here.

Commit: (1) Delay commits and set the status flag instead to Commi t.

(2) Once the flag is set for all accessed states of the transaction, execute the local
commits and eventually update the global LastCTS for the corresponding state
group (line 14).

Abort: Change the status flag to Abort to inform other table operators that this transaction
may not be committed.

105

5. STATEFUL STREAM PROCESSING

5.4 PERSISTENT MEMORY ADAPTIONS

The before-considered protocols are rather generic and also work when using block devices.
In the following, we discuss specific optimizations that are applicable when using PMem. In
summary, we see three possible improvements:

The use of in-place updates instead of out-of-place updates
The avoidance of latches/locks by employing atomics

The manual placement of flush instructions and barriers instead of logs or shadowing

In the base variant, a commit including updates leads to the loading and overwriting of complete
MVCC Objects. Now, we only retrieve a reference to the PMem location and — due to the
byte-addressability — only update the necessary data in-place. The bitmaps and timestamp
fields are 8-byte aligned and accessed atomically. The simultaneous observance of the order
eliminates the need for latches. Depending on the number of cache lines an MVCC Object
occupies, we achieve a reduction of the number of written bytes and increase the cache-hit
ratio. That is especially beneficial for a higher number of version slots. However, for this
optimization to be feasible, the underlying Base Table must either return the tuples as a
reference or provide a corresponding in-place update method. In addition to performance and
concurrency, we must also guarantee failure safety. Therefore, we manually flush all changed
data in the MVCC Objects using the clwb instruction. As mentioned before, we also have to
ensure the order of the atomic stores and flushes. For that, the bitmap is updated at the end
for each object using an sfence instruction. This approach eliminates the requirement for the
underlying table to perform individual updates failure-atomically since we now take care of
this ourselves. Algorithm 9 shows the complete procedure for adding a new entry within an
object.

Algorithm 9 newEntry(txnlID, iPos, dPos, newValue)

/// Limit validity interval of current version (dPos) and set it for new entry (iPos)
headers[dPos].dts.store(tznlD);

headers[iPos].cts.store(tanID);

headers|iPos|.dts.store(INF);

L S A

5: /// Copy/move new value
6: values[iPos] < newV alue

7: /// Flush all changes and set barrier to ensure everything is flushed
8: clwb(&headers);

9: clwb(&values[iPos));

10: sfence();

11: /// Activate slot at new position and flush it
12: usedSlots.store(usedSlots|(1 << iPos))
13: clwb(&usedSlots);

As with the universal variant, the global visibility of the entire transaction is controlled by the
final write of the LastCTS field. In the PMem case, we again use atomic writing followed by a
clwb instruction and enclosing barriers. Algorithm 10 outlines this step.

106

5.5. QUERY AND STATE RECOVERY

Algorithm 10 setLastCTS(grouplD, txnID)

1: /// Barrier to ensure all previous changes are flushed
2: sfence();

3: /// Update and flush LastCTS field and set barrier to ensure persistence of whole transaction
4 stateGroups[groupl D].lastCTS.store(tanID);

5. clwb(&stateGroups|groupl D].lastCTS);
6: sfence();

5.5 QUERY AND STATE RECOVERY

The introduction of PMem also changes the recovery process in the case of failure. Here, we
consider two aspects. These are, on the one hand, the recovery of the states and, on the other
hand, the resumption of the query pipelines. In order to be ACID compliant, the effects of the
committed transactions must still be present in their entirety, and all uncommitted transactions
must not be partially visible. The necessary recovery steps can be summarized as follows.

Recovery of the shared state context
Recovery of each state
Updating the volatile pointers (dereferencing persistent pointers)

B Recreation of the query pipelines

Since the state context and states are each stored in a separate file, they must first be reopened.
We use the PMDK pool feature for handling these files. In addition to the actual opening of the
files, other auxiliary structures are initialized here by PMDK, and its logs are traversed. These
logs are written when transactions are used, but we only need them for the initial allocation.
Therefore, no undo steps are necessary for our protocol during recovery. Furthermore, the
volatile parts of the states and context (cf. Figure 5.4) must be recreated, such as the array of
active transactions. As already described in earlier chapters, dereferencing persistent pointers
is quite expensive. That is why we dereference them only once during start or recovery and
subsequently use the current virtual addresses. It is currently done for the linking from the
state context to the states and vice versa. As a final step, the continuous query pipelines are
rebuilt and linked to the current state addresses. Important to note is that this does not yet
guarantee exactly-once processing. For that, the states would further need to be synchronized
with the sources to avoid duplicates or loss of transactions. Although it is out of the scope of
our work, it could be solved by replaceable messaging systems [ABD 12, KNR"11] or with
persistent queues in front of all sources and sinks.

We use an atomic counter to allot unique transaction numbers. Given that this variable is
accessed very frequently, we decided to keep it in DRAM. In order to assign strictly ascending
numbers, the variable is set to the current timestamp (in nanoseconds) at each restart and then
incremented during operation using only fetch-add. Since a single action on a state typically
takes several hundred nanoseconds, this accuracy is adequate. As a result, we can maintain
logic and consistency also across restarts. We achieve atomicity with the LastCTS field per
state group as was described above. The last ACID property, namely durability, is also given

107

5. STATEFUL STREAM PROCESSING

because all data is flushed before this field is updated. After that, the commit punctuation is
forwarded and could be fed back to the client. So it can be said that once a commit arrives in
the sink, all changes of the corresponding transaction are stored permanently and consistently.

Finally, we consider the very worst time of a system failure, which is during the commit. Here,
only a part of the data may have been persisted. Once a transaction updates LastCTS the next
time after the restart but excluding one or more of the changed tuples of the failed commit,
these would become visible to the following transactions as well. In order to prevent that, all
versions younger than the current LastCTS field must be discarded or made invisible after a
restart. Since discarding requires that almost all data would have to be scanned, we propose a
simpler way. Namely, when restarting, the system can declare the period from the LastCTS
to the current timestamp as an invalid range. However, readers must then additionally check
during version determination whether the CTS is within an invalid range. Assuming that
failures are rare, the number of these stored invalid ranges should remain manageable at all
times.

5.6 QUERY PLANNING FOR TRANSACTIONAL STREAM
PROCESSING

Instead of manually selecting appropriate algorithms or query executions, DBMSs typically
use query optimizers or planners to accomplish it automatically. Therefore, in this section, we
will look at possible parameters and strategies that can assist in the decision-making process
for our TSP model. Since a full-featured query planner would be beyond the scope and is also
not part of our objectives, we instead consider the first steps in this direction and highlight the
opportunities but also limitations of different approaches. In contrast to typical query planners
in a DBMS, our model additionally needs to consider the physical representation of states
besides the query execution plan. This automatic selection is obviously only possible if the
states are introduced by the continuous query being optimized. Therefore, from our point of
view, the decisions must be made along the following three dimensions.

State representation: choosing the underlying data structures
Placement: using the appropriate device(s) for the data (and algorithms)
Algorithms: finding a suitable implementation of the operators how?

All three dimensions interrelate closely and can hardly be considered separately. First, we want
to identify the parameters that are necessary for a suitable selection, on the one hand, and
which of them are accessible at all, on the other hand. We then examine possible cost model
designs and how they can assess the parameters to make decisions. Eventually, we present an
initial practical proposal including cost formulas to realize query planning for (transactional)
stateful stream processing.

108

5.6. QUERY PLANNING FOR TRANSACTIONAL STREAM PROCESSING

5.6.1 Hardware Considerations

Before we can choose suitable parameters, we will first review the characteristics of the
anticipated hardware for our model. The focus is primarily on modern multi-socket/multi-core
CPUs with PMem attachments. Particularly PMem implies for an optimizer that storage accesses
no longer dominate the cost. That is, data access cardinalities alone may not be sufficient. Due
to the asymmetries and lower endurance, also algorithms should be preferred that trade writes
for more reads. In addition, the byte addressability influences the data structure and algorithm
selection, as we have shown already in detail in the previous chapters. Since there is a physical
upper limit regarding the clock rate of a single CPU, the trend is to integrate more and more
cores to increase parallelism. The number and clock rate of these are vital for query planning,
especially for the parallelization and partitioning of states and their inner processing steps.

However, our model should not be limited to PMem and general-purpose CPUs but can also
be extended to other hardware. Especially since there is a shift towards heterogeneous archi-
tectures and specialized hardware for dedicated tasks or operators, query planning should
recognize and exploit these. For example, GPUs can process vast amounts of independent data
in parallel but have comparatively high transfer costs to and from the device. It is thus ques-
tionable whether they are suitable for continuous queries at all or whether Single Instruction,
Multiple Data (SIMD) registers are sufficient for such purposes. For larger analytical tasks,
however, it can be thoroughly profitable. For example, ad-hoc range queries on very large states
or linear algebra operators using tensors could be accelerated by GPUs. FPGAs, on the other
hand, can already be soldered onto CPU sockets and would thus not incur too high transfer
costs. These could be programmed, for example, for special operators or operator pipelines
that are very computationally intensive [MTA09]. Furthermore, modern high-speed networks
and technologies such as Infiniband, RoCE, and RDMA, respectively, can be beneficial for
distributed data management systems [Bin18]. As a central unit, many-core architectures can
also be used, which offer even more parallelization options than multi-core CPUs. However, the
high number of densely packed cores can lead to heavy heating, which has to be compensated
by reduced logic and a lower clock rate. That, in turn, leads to poorer single-thread performance
and has to be considered during query planning. In order to match the high core count in
the memory area as well, the DRAM in many-core CPUs is often stacked to so-called High
Bandwidth Memory (HBM), which brings another memory class into play.

After the short excursion into the modern heterogeneous hardware landscape, it becomes clear
that a query optimizer can or even must take a colossal number of factors into account already
at the hardware level. Therefore, this will only be considered superficially here for the time
being and is limited to non-distributed stateful operators.

5.6.2 Cost Factors

As mentioned above, continuous query optimization should consider the physical representation
of states and placement of operators in addition to the execution plan. The optimization goal can
vary depending on the use case and can, for example, target a low latency, a high throughput, or
energy efficiency. To avoid being overwhelmed by a plethora of parameters influencing these
optimization goals, our objective is to identify the most important of them. Therefore, we start
by looking at what we consider essential parameters for query planning for stateful operators.

109

5. STATEFUL STREAM PROCESSING

We initially see the following three access scenarios to states where the ACID properties must
be maintained.

Persisting changes to a state
B Querying a shared state

Recovering a state after a failure

The ratio and frequency of these scenarios as well as the access pattern they entail are decisive
for the choice of state representation. For example, for a state that is mainly written but
rarely queried, a log-like structure is more sensible than a tree structure. For few changes and
frequent queries, on the other hand, a tree is probably more appropriate. Based on the size
and requirements of the state and the available resources, adequate data placements can be
realized. Finally, likewise depending on the available hardware, an appropriately optimized
algorithm must be chosen for each operator or operator pipeline. Overall, this process spans
a huge decision space, sketched as an example in Figure 5.6. Altogether, it is the task of the
optimizer to find a combination of state representations, data placements, and algorithms that is
as optimal as possible for the given query. As input for this, it needs the requirement profile and
the available resources and matches them with the data structures and algorithms implemented
in the system. Therefore, we now discuss available input parameters in more detail.

Data-driven Parameters

As described above, a crucial factor is the access profile to states. Therefore, it can be mainly
distinguished between the types of access (persisting, querying, recovery) being predominant
and how often they will occur. Some of this information can be derived, for example, from the
operators belonging to the states or their neighbors. From that, we can further find out whether
more short ranges, long ranges, or only individual tuples are queried. In a transactional system
with shared states, it is also instrumental to have an idea about the number of concurrent
accesses, along with the approximate level of contention. A suitable concurrency control
protocol can then be used on this basis. This parameter cannot be derived with a sole view on
the continuous query being optimized since no data and, depending on the point in time, no

data structure placement

O

algorithms
use FPGA + Q
concurrency |
@ control
partitioning + Q

log +
tree T

hash +

0.°

t access v t t t available t t other
> O : © o o)
$§ c§ Aq)é scenario §\ See Q§\a\° é\e memoryty.p.es @ 0)@ Y X hardware
-o}”)) $ I S {19 S and capacities S & @ & él parameters
§ & & Sy &Y N 5 &F &g
° TSI & S$ELES
S S 9
@$§ s § T T8 og

Figure 5.6: Sketched space of decision-making for a stateful operator.

110

5.6. QUERY PLANNING FOR TRANSACTIONAL STREAM PROCESSING

competing queries are observable yet. Instead, it could, for example, be based on statistics or
heuristics collected from previous queries. Alternatively, a modified form of sampling could be
employed. It gets even more complicated when states are introduced as general-purpose tables
rather than via continuous queries. Here, user input such as annotations could potentially
help, but this only shifts the responsibility. Therefore, a dynamic adaptation relative to the
workload progression might be a better choice. However, this also poses new challenges.
For example, a change in the suitability of certain data structures, placements, or algorithms
requires a potentially expensive state conversion or migration. Doing so could slow down the
performance for some time, eminently while there is high demand for the state of concern.
That is why robust query plans that can withstand a variety of scenarios can be used as an
alternative.

Hardware-based Parameters

There are also several factors at the hardware level that are essential to decision making along
our identified three dimensions. First of all, an initial calibration can already check which pro-
cessing units (e.g., FPGA, GPU, many-core CPU), as well as memory and storage technologies
(e.g., HBM, PMem, SSD, HDD), are available in the system. At the same time, available perfor-
mance indicators such as capacity, latency, and bandwidth can also be determined regarding
memory and storage. These indicators can then be used, e.g., to efficiently tune multi-layer
data structures such as those presented in the previous chapters. The resource allocation can be
justified by limited space, energy savings, performance reasons, or others. The configuration of
buffers and their eviction policies also depends on these factors. Likewise, the access granularity
is different, depending on the device (blocks, pages, cache lines, etc.), and should be adjusted
accordingly. On the other hand, for processing units, the degree of parallelism and the clock
rate are significant parameters. Accordingly, different partitioning approaches of the states or
the parallelization of whole query pipelines can be implemented to exploit the potentials of the
heterogeneous units. However, the transfer times to the co-processors and the merging times
of the pipelines should always be included in the cost calculation (cf. [PGS17]). In addition
to these basic metrics, modern processors, for example, use sophisticated techniques such as
caching, prefetching, branch prediction, and reordering, which should also be incorporated
into the calculation (cf. [Zeu18]).

5.6.3 Prototypical Cost Model

In the following, we will briefly consider how the parameters intruduced above are acquired
and used by typical optimizer classes. We then outline our own strategy adapted to the TSP
model.

Existing Models

The three classes of optimizers we discuss are the hardware-oblivious, the hardware-conscious,
and the learning model. In early database systems, cost models without hardware-based
parameters (i.e., hardware-oblivious) were quite widespread. Usually, these models were
even application-based [LN96]. More precisely, it means that a DBMS is manually tuned
according to the available hardware by profiling the most critical performance bottlenecks and

111

5. STATEFUL STREAM PROCESSING

reimplementing them [WK90]. Of course, this shrinks the number of parameters and, thus,
the decision space of the model. However, with each change of the hardware or software, the
model must also be adjusted manually.

A model that automatically includes hardware parameters such as access latencies or cache
sizes (i.e., hardware-conscious) seems more flexible and robust. Typically these parameters
can be retrieved by (re)running calibration tools [Man02] whenever the hardware changes.
The main difficulty of such an approach is to properly link these parameters because they
often have an influence on one another. This interaction already commences at the hardware
level, where, for example, a higher clock frequency yields a lower latency for memory accesses
as well. Moreover, the hardware characteristics must be weighted appropriately with logical
access patterns of the queries and operators.

More recently, cost models are frequently supported by machine learning too. Instead of
manually creating cost formulas, the parameters are injected into already trained machine
learning models. It eliminates the need for separate tuning or cost model adjustments. A
representative of this class is the tool OtterTune [APGZ17], which automatically optimizes
the configuration of a DBMS. In [OBGK18], the authors used deep reinforcement learning to
incrementally determine the optimal query execution plan based on the properties of identified
sub-queries. Although this type of optimizer sounds convenient at first, its correct configuration
is crucial for success. Another problem is that machine learning approaches usually create a
black box from which decisions cannot be decently explained.

Strategy for Transactional Stream Processing

Overall, we think it is reasonable for a transactional stream processing model to mainly decide
the state representation by the data-driven parameters and the placement and algorithms
by the hardware parameters. For the former, it can be mainly derived from the expected
access patterns using the operator characteristics. The factors that are ultimately used can
be determined either by a learning or a concrete cost model. Which of these is more suitable
remains to be examined. As we have shown above, there is a multitude of parameters, and only
the most influential among them should be considered so that the model does not become too
complex. Furthermore, it should be taken into account that not all information is available at all
times. That could make static decision-making questionable. Hence, an adaptive or progressive
optimization seems to be more appropriate from our point of view.

As a practical proposal for the TSP model, we have designed cost formulas that can be used
for stateful operators and seen as a supplement to the hardware-conscious model presented
in [PGS17]. These rely on prior calibration of the hardware parameters. Among them, PMem
has an elevated focus. Due to its asymmetry properties, we have separated accesses and costs
into read- and write-based factors. These we further break down into state (f.s-) and operator
(f<op>) dependent cost factors. The hardware parameters should be included in the former
factor, which generally represents implementation-specific costs per state access. At the same
time, depending on the state representation, there are different additional costs for meeting the
ACID properties, such as synchronization. The hardware parameters could also be considered
separately, but since they are strongly coupled with the state representations, they can be
grouped together right away. In general, the hardware factors can either be included directly
or through another cost formula based on, for instance, device latency or special performance
counters (cf. [Zeu18]). The operator cost factors, on the other hand, are logically determined

112

5.6. QUERY PLANNING FOR TRANSACTIONAL STREAM PROCESSING

based on typical or expected access patterns of the operator enclosing the state. For example,
assume a count-based window with a specified size of 100 and a trigger interval of 10. A new
arriving tuple would typically result in one persistent write for inserting the current data
from a logical point of view. Every ten tuples, the whole window has to be processed, which
means 100 tuples are read. Depending on the state realization, these logical operations mean
more or less costs on the physical side. For instance, a ring buffer insertion in a steady-state
system overwrites the oldest value and shifts the start and end offsets by one so that a logical
write physically requires at least two or three writes. Combined with an expected input rate,
we can then derive the most suitable settings having the lowest costs. In summary, the cost
of streaming data through a stateful operator thus consists of the read and write costs for
the operator-typical access that must be weighted with the state- and hardware-dependent
factors. Using these factors, we obtain a cost formula for updating/persisting the state as given
in Equation (5.1).

Ccop> = f<0p>r : f<s>r + f<0p>w : f<s>w (5.1)

For the state access types querying and recovery, there are no operator-specific costs. Instead,
they are more dependent on the state representation (<s>). Since the querying of states is
similar to typical queries in a DBMS, also the cost formula can be designed analogously by
using the cardinality of the state (<s>;..) and selection (¢) information. Hence, we provide
the formula in Equation (5.2) for calculating the costs for querying a state.

Ccs> q =0 <8$>size - f<s>r (52)

For the recovery costs, on the other hand, it gets a little more complex. We can distinguish
three cases depending on the recovery measures taken during the persistence of the state. If,
for example, the state can be updated entirely atomically, no recovery actions may be necessary,
and the cost is thus zero. Of course, the corresponding state must still be loaded into the user
address space. However, since it is necessary and constant in any case, this part can also be
omitted from the calculation. The second case is when the state is made failure-atomic using
checkpoints, logs, or similar concepts. Accordingly, for example, only the changes from the
last checkpoint need to be undone or redone. The worst-case could be when the entire state
has to be read, and inconsistencies have to be overwritten or removed. To cover all three cases,
we introduced a delta (A) and set it off against the state size (<$>;..). It would be 0 and 1
for the first and last cases, respectively. For the second case, it can range from 0 to 1 and,
thus, represents the percentage of the total size that has to be un-/redone. That yields the cost
formula for recovery given in Equation (5.3).

Css> rec = A - <8>size - (f<s>r + f<s>w) (5-3)

The given formulas are for now only theoretical considerations. Their precision still needs to
be empirically investigated as part of future work. Nevertheless, we hope that they will already
assist in the conceptual design for query planning in a TSP system.

113

5. STATEFUL STREAM PROCESSING

5.7 USE CASE: EVENT STREAM PROCESSING

Complementary to our TSP model, we now consider a special but widely used form of stateful
stream processing known as the continuous processing of events. For this purpose, there are
dedicated event stores, which have the challenging task of continuously handling massive
temporal data streams. This data must be persisted while meeting severe query and recovery
guarantees. To meet those, many of these systems make tradeoffs for a variety of optimization
directions. For example, performance-oriented systems keep the majority of data in the main
memory, but this entails higher monetary costs and can sometimes result in data loss in the
event of a failure. On the other hand, the primary data can be placed on cheaper storage
media like SSDs or HDDs, while queries can be accelerated by DRAM caches. PMem can be
an opportunity to make fewer compromises and provide an optimal solution in terms of costs
(economic as well as ecological), performance, and recovery guarantees. To our knowledge,
there is no event store yet that leverages PMem for that. Therefore, we will consider several
potential ways to use PMem in an event store in the following. Rather than considering PMem
as a universal memory, we will examine it for opportunities to design a three-layer memory
hierarchy consisting of DRAM, PMem, and disk. We base the discussion as a case study on
the DBMS for event streams called ChronicleDB [SS17, SGKS19]. In particular, we will review
three main components of ChronicleDB and examine how to achieve better insertion and query
times as well as recovery guarantees. The concepts developed and lessons learned here serve as
an important foundation for a comprehensive system that exploits a modern memory hierarchy.
In this regard, the focus on ChronicleDB is not limiting but still allows us to apply the insights
to both more general (e.g., ingestion and recovery) and more specialized considerations (e.g.,
temporal indexing and storage designs).*

5.7.1 ChronicleDB

ChronicleDB is a DBMS with a storage layout that supports high write and query performance
for numerous event stream data [SGKS19]. It also offers fault tolerance and recovery guarantees
but is not as strict as our TSP model. It can be either used as a standalone database server
or integrated into an application using its library. Since ChronicleDB is targeting application
scenarios that feature a large amount of continuous data within rapid time frames, it is designed
around three main requirements:

Fast ingestion of high and fluctuating event rates
The possibility of stream replays and efficient time-travel operations

Fast access to events via secondary non-temporal attributes, e.g., point, range, and aggre-
gation queries

The first requirement demands that in the case of high data rates, load shedding should be
avoided. R2 and R3, on the other hand, address efficient query performance for a plethora
of analytical workloads. Examples include post-mortem analysis of event stream queries,
continuous processing for dashboards, or traditional OLAP demands. ChronicleDB consists out

4The material in this section is based on [GGK ™ 20].

114

5.7. USE CASE: EVENT STREAM PROCESSING

J, child pointer <> sibling pointers |:| node on disk E_:: node in DRAM
ettt
SMAs (Secondary Index) ' |
keys Smins $Smax E E ———E""E

Lo v Tha %%
attribute, —>[min(a,), max(@y), ...] 5 R i i Qf)‘_
: : [T] | | RN
attribute,, —»[min(a,), max(a,), ...] / l/ / l \ L_\TK\A

Figure 5.7: ChronicleDB’s TAB*-Tree (primary index) layout including SMAs (secondary index).

of four core components which we will summarize in the following paragraphs. After that, we
will examine these components in combination with PMem and which alternative approaches
arise in this context.

Primary Index

As the primary index, ChronicleDB uses the Temporal Aggregated BT-Tree (TAB"-Tree), an
extension to the BT-Tree with event timestamps as its key domain. In more detail, let T be the
temporal domain and A; be the attribute domains for the attribute at the position ¢ for a stream
of events . An event e in F is then a tuple of the following form:

e = (ay,...,a,,ts) wherea; € A;andts € T (5.4)

The event stream is directly ingested into the TAB'-Tree. Important to note is that the schema
here is fixed per store, and timestamps in £ do not have to be unique. An overview of the
layout is given on the right in Figure 5.7. Unlike a typical B*-Tree, the sibling nodes here
are doubly linked at all levels to improve query and recovery performance (R2). Since the
keys are (mostly) monotonically increasing timestamps, the index builds up from left to right.
This append-like approach is also found in the storage layout (see below), where the data log
represents the database. Together this supports fast ingestions (R1). By default, inserts behave
effectively like a continuous bulk load into a traditional B*-Tree index as new events can be
simply appended to the most-right leaf node. However, this default behavior takes only effect
if the temporal order in the event stream £ is maintained. The most recent nodes on each level
are referred to as the right flank of the TAB™-Tree. These nodes are kept in DRAM at all times
to increase the ingestion performance (R1). However, this also means that in the event of a
failure, this data can be lost. In order to entirely avoid data loss, an additional log would be
necessary [SS17].

Secondary Index

As can be seen in Figure 5.7, there is the option of a secondary index in addition to the primary
index. It comes in two flavors: a heavyweight and a lightweight index. The variant shown
in the figure is the lightweight index which is an adaptation of SMAs [Moe98] and supports

115

5. STATEFUL STREAM PROCESSING

arbitrary aggregate functions on the event’s attribute domains. For example, this can be the key
range, the total event count, or the attribute’s minimum and maximum values. Unlike [Moe98],
ChronicleDB stores the aggregates directly in the nodes of the TABT-Tree. The aggregates are
associated with a child pointer to a subtree or single leaf node. That can speed up aggregate
queries, range queries (by pruning), or even more complex queries like pattern matching (R3).
For example, instead of reading all leaf nodes, temporal aggregation queries can directly use
matching aggregates from the inner nodes to obtain answers in logarithmic time. Another
benefit is that a range query on secondary attributes can directly exclude entire subtrees
using the minimum and maximum aggregates. Furthermore, the interleaving of the secondary
index with the primary index removes the need to persist them externally, thus avoiding
random I/O while querying a temporal region. Apart from the lightweight index, heavyweight
indexes, which are traditional secondary index structures such as LSM-Tree [OCGO96] or
COLA [BFF*07], are also possible. Notably, leaf pages of heavyweight indexes refer to the
TAB™-Tree pages with a record offset.

Storage Layout

Since event application scenarios often deal with massive amounts of data, ChronicleDB
compresses the nodes of the TAB*-Tree. It can reduce the storage cost significantly as, for
instance, sensor data often feature similar values which can be efficiently compressed. The
actually used algorithm for compression is configurable. However, this compression leads to
variable-sized nodes, which, in turn, prevents a direct mapping to fixed-size block addresses as
the physical position cannot be computed. Hence, an address translation layer is necessary
that maps logical node IDs to physical addresses. This layer should be stored persistently so
that a full scan is avoided during recovery. Separately maintaining this information would be a
naiive solution because this would lead to random I/O when switching between the primary
and metadata locations. Instead, the address translation is interleaved with the actual data
pages to achieve a more sequential access pattern’ For both the address translation and data
nodes, blocks of the same fixed size — a multiple of the uncompressed index node size — are
used. In previous work [SGKS19], it corresponded to 32 KiB blocks based on 8 KiB index nodes.
A block can contain either compressed TAB™-Tree nodes or the address translation information
for such nodes. If a block contains the data nodes, it is referred to as MacroBlock. This block
stores the number of TAB™-Tree nodes it contains and their respective compressed size besides
the actual data. Therefore, accessing a node of the index requires the physical address of the
MacroBlock plus its offset within this block. This composition fits into a single 8-byte unsigned
integer number where 6 bytes are used for the physical address and 2 bytes for the offset.
On the other hand, if a block contains the address translation information, it is referred to as
Address Translation Block. The entries in these blocks are organized as a global tree structure
called Address Translation Tree (ATT). Since the IDs of TAB"-Tree nodes are consecutive
numbers starting at zero, the ATT only has to store the 8-byte translation information while
the ID is used as index position. Therefore, each leaf of the ATT contains the same number of
addresses comprising a contiguous range of index node IDs. Also, the inner nodes cover a fixed
number of node IDs pointing to the corresponding block of the next level. Similar to the right
flank of the TAB™-Tree, the most recent translations are kept in DRAM and are written to disk
once a block gets full to retain the ingestion performance high. Consequently, these volatile

5This aspect is less critical for SSDs than for HDDs, but there is still a remarkable difference compared to random
access patterns [SAJA09]. Also for PMem, as seen in Section 2.5, this performance mismatch is still present.

116

5.7. USE CASE: EVENT STREAM PROCESSING

1. Insert incoming event RN 2. Bulk Merge Full OO0 Queue

Y S

spare
TAB*-Tree AN TAB*-Tree

RN leafs
| D) | O

Figure 5.8: Handling of OOO events in ChronicleDB.

translations must be recovered in the event of a restart. Within the ATT nodes, back-references
to the predecessor on the same level and the predecessor of the parent are introduced to speed
up the recovery process. Thus, it can be performed from the end of the database to its start.
Expressed that in numbers, recovery only needs the number of translations stored per block
(i.e., fan-out) times the height of the ATT (h) read operations (fan-out * h).

Out-Of-Order Data

Above, it was assumed that new events typically arrive in a temporal order resulting mainly
in an append-only process. However, if this order is not maintained, the performance of the
TAB™-Tree will degenerate to that typical of a B -Tree. Events that violate this temporal order
are referred to as OOO data. Naturally, this issue can only occur if the temporal domain is
based on application time and is irrelevant using system time. To tackle this issue, ChronicleDB
adapts a delta-like strategy, as shown in Figure 5.8. If the timestamp of a new event is lower
than the maximum seen in the system, then it is classified as OOO data and put into a dedicated
OOO queue. That prevents the append-only character from being disrupted. Once the OOO
queue is full, it gets bulk merged into the TAB™-Tree. The queue size and, thus, the frequency
of merges is tuneable and helps stabilize performance depending on the underlying hardware.
Furthermore, to avoid splits or even split cascades during merging, the leaf nodes can leave
spare space for possible OOO events. Especially for spinning disks, that is very beneficial since
a sequential physical node layout is preserved.

In the following subsections, we discuss how ChronicleDB can be adapted to exploit PMem.
This discussion is broken down into the three components TAB™-Tree, the physical storage
layout, and OOO handling.

5.7.2 TAB*-Tree Adaption for PMem

ChronicleDB strives to efficiently handle massive event streams fulfilling both durability and
performance requirements. In order to achieve the balance between these requirements, the
architecture of the primary index makes use of a mixture of DRAM and secondary storage
as explained above and shown in Figure 5.9 A.a. Now, with PMem, whose properties settle
between memory and storage, there are new opportunities to rethink the design of the primary
index. We present three approaches for adapting the TAB'-Tree that take advantage of PMem’s
byte-addressability and direct persistence. The first option is to put the right flank on PMem
instead of DRAM (Figure 5.9 A.b). It results in much better recovery guarantees and nearly
eliminates the recovery efforts of the right flank in case of failure. The second approach keeps

117

5. STATEFUL STREAM PROCESSING

(A)_TAB*-Tree
(A.a) Original

Ny
K3
N Y
& &
ST A A DA]
&
k\
A I I Leaf Nodes £C|_sxa| I I RN
IAJATAJAJAIA] Secondary Index
(B)_Address Translation (AT)_+ Data Blocks Legend
(B.a) Original (B.b) AT to PMem Array | | | | | |
%%% %%% AIAAIAIA AAIA ZAS-I(—SIIBAEZ?(\E/h updates A Index
AIAA NN
Pure Data Block:
Data Blocks with interleaved ATT e eta Blocis A Secondary Index (SMAs)
/A AT Index
(C) 000 Queue |:| Data/Index Node
(C.a) Original (C.b) PMem Queue (C.c) Indexed Persistent Queue [T Append Array (Log)
—— ——{ [O s
D 'page — Data Flow
—> Pointer/Offset
Mirror Log

Figure 5.9: Overview of PMem-based approaches applied to ChronicleDB.

the flank in DRAM but moves all lightweight index information of all inner nodes to PMem
(Figure 5.9 A.c). While keeping the node size the same, it allows a higher fan-out of the nodes,
which, in turn, reduces the tree height and potentially access times. The final idea is to move all
inner nodes located on disks to PMem (Figure 5.9 A.d). Thus, index navigations and aggregate
queries never have to touch secondary storage. Below, we take a closer look at these three
approaches and what changes are needed.

Right Flank

As a measure to balance performance and durability guarantees the right flank of TAB*-Tree
is kept in DRAM. Consequently, all entries of the most recent leaf node are not backed in case
of a crash. Only the inner nodes can be rebuilt, which, in turn, consumes recovery time. Thus,
moving the right flank from DRAM to PMem (Figure 5.9 A.b), we get both better recovery
guarantees and speed since the most recent inserts are always stored persistently. The evident
drawback will become apparent during insertion performance, which we will quantify in
the evaluation section (Section 5.8.2). First, though, we look at how this approach can be
implemented in practice.

The pages are already organized as byte arrays and can be moved between memory and storage
devices without serialization effort. Therefore, also each incoming event needs to be converted

118

5.7. USE CASE: EVENT STREAM PROCESSING

into its binary representation before appending it to the most recent leaf. Once a leaf or inner
node is full, it is written to disk, and a new empty page is allocated. By eventually adapting
the parent pointers, this process is managed atomically. However, if the right flank is always
persistent in PMem, it must be ensured that the nodes that are not yet full are always in a
consistent state — especially after a crash. Therefore, we enforce periodic flushing of altered
memory regions as described in the following.

Besides the actual data, each page also has a header region. Within, sibling and parent informa-
tion as well as the number of events — to determine the valid data region — are maintained. In
order to reuse an allocated in-memory or PMem page after it has been written to disk, only
this header information needs to be reset and flushed. Hence, to maintain consistent states,
first the new event data and then the counter in the header are flushed to PMem. However,
single events are generally relatively small, and calling flush instructions for every append
operation could lead to drastic performance degradations. To counter this, we propose to flush
events in configurable batches, where a sequential access pattern can be applied to the written
data, and the counter only has to be flushed once. In Section 5.8.2, we examine this batch size
and its tradeoffs.

Aggregates

As described above, each inner node of the TAB™ -Tree maintains a configurable set of aggregates
for each child reference. They summarize the data that lies ahead in the corresponding subtree
or leaf node and can be used to speed up filter and aggregation queries. However, the aggregates
reduce the possible fan-out of the inner nodes, e.g., assuming a page size of 8 KiB as above, a
node can reference 459 and 43 children without and including lightweight indexing (storing
sum, min, and max for 6 x 64-bit floating-point attributes), respectively. To mitigate this
disadvantage, we moved the aggregates to PMem, as shown in Figure 5.9 A.c.

The aggregates are calculated from the bottom to the top of the tree once a node is full and
needs to be written to disk. Then the aggregates are computed from the data of this node (either
pure events or also aggregates) and propagated upwards, where the parent node attaches this
information to the corresponding child reference. However, this propagation step only works
if the aggregate functions are decomposable (cf. [THSW15]). By offloading the aggregates
to PMem, the original locality advantages of the lightweight index are more or less nullified.
Nevertheless, in order to receive benefits besides point and filter queries, the aggregates must
be stored and accessible as efficiently as possible. Hence, we implemented them as a flat array
on PMem, where each slot contains the aggregated values of a single node in the TAB"-Tree.
Since the aggregates have a fixed size and node IDs are consecutive numbers starting at 0, we
can use those IDs to directly retrieve the offset of a slot in the array. We set the capacity of
a slot to be a multiple of 64 bytes to improve cache efficiency. Therefore, the offset can be
calculated as follows. Let S be the size of the aggregated attributes in bytes. Then, the byte
offset o; of the aggregates of node ¢ within the array results in: 0; =i - {G—iw - 64.

Overall, we thus get the benefit of a reduced tree height and, thus, faster queries based on the
time domain. However, aggregation queries and inserts (during migration) must now always
access two mediums (DRAM or disk and PMem) at a time. The extent to which these two
aspects affect performance is discussed in Section 5.8.2.

119

5. STATEFUL STREAM PROCESSING

Index Nodes

Our next approach that uses all three storage layers stores only the leaf level on disk and
manages the inner nodes on PMem, as illustrated in Figure 5.9 A.d. The lightweight index
information is stored here again interleaved with the primary index nodes. With that, both
index navigation and aggregation queries can be handled without touching the disk. The
PMem part is again managed as a flat array, where one slot matches the configured page size
(8 KiB in our case) and, thus, one inner node. The flat array structure allows for a sequential
write pattern improving write throughput, and it only requires minimal modifications of the
insert mechanism. This time, we cannot reuse the node IDs to calculate the offset as we have
to manage two independent storage locations (disk and PMem). Thus, we require two ID
sequences, one for the leaf and one for the inner nodes. For this purpose, one bit is reserved to
determine which kind of node an ID references.

A page in PMem requires 20 bytes for the header and 16 bytes (key and child reference) plus
the aggregate size per entry. Thus, this approach requires additional space on PMem but is still
more space-efficient than storing aggregates only. That is due to the 64-byte alignment of the
aggregate-only variant. In contrast, this approach avoids the padding of a single aggregate set
and only pads the node size (8 KiB). With that, it is losing at most the size of a single index
entry (i.e., aggregate size + 16 bytes). Furthermore, traversing inner nodes prevents access to
secondary storage entirely now, which should result in better query performance compared to
the previous approach.

5.7.3 Storage Layout Simplifications through PMem

Next, we consider the storage layout and the corresponding address translation of ChronicleDB.
The interleaving of data and tree-based translation pages serves the purpose of achieving a
good balance between insert, query, and recovery performance. Performance degradation
occurs when the nodes of the TAB'-Tree and also their translation are not part of the right
flank (i.e., not in DRAM). Let us assume, for instance, an ATT of height three and a block size
of 32 KiB. Even though the root is in DRAM, two random reads with a granularity of 32 KiB
are still necessary to determine the node’s address.

Hence, it seems reasonable to move the address translation to PMem. That dissolves the
interleaving with the data, which could potentially degrade insert performance as a tradeoff for
lookup and recovery performance. Once again, we decided to organize the data on PMem in the
form of a flat byte array. It replaces the tree-based approach (ATT) with a simple lookup table
that is updated as pages are written. The slot at position ¢ in this table comprises the translation
information for the corresponding node ID :. This approach is visualized in comparison to the
original in Figure 5.9 B.

Due to the omission of the right edge of the ATT, i.e., the DRAM component, combined
with direct flushing of the translation data after each update, the recovery effort is virtually
eliminated. However, a single entry in this array is only 8 bytes, and individually flushing each
of those would drastically impact event ingestion. Therefore, we take a similar approach as with
the TAB™-Tree and batch multiple updates together. We follow the block size of the DCPMMs
and flush in 256-byte granularity. It corresponds to 32 translations that would potentially have
to be restored at most, which is much less than the right flank of the original ATT approach.

120

5.7. USE CASE: EVENT STREAM PROCESSING

Even though the average insert performance is likely to deteriorate, the worst-case performance
improves significantly. That is the case when the nodes of the entire right flank are full in
the ATT and, thus, another insert triggers the persisting of everything to secondary storage.
Depending on the height of the tree A, h * 32 KiB must be written. With the flat structure in
PMem, however, the performance is constant (i.e., best case = average case = worst case).

5.7.4 Out-of-Order Handling with PMem

The last component of ChronicleDB that we consider is the OOO queue and strategy. As with
the TAB"-Tree and ATT, originally, a portion is held in fast DRAM, and a second portion is
stored on a persistent disk. That retained the balance between query performance, recovery
guarantees, and insertion performance. The queue itself is kept in DRAM, and each full page is
backed by a mirror append-only log on disk (see Figure 5.9 C.a). Depending on the frequency
of OOO events and the size of the queue, this dual management can quickly drain DRAM
reserves. Furthermore, events within the current incomplete page can be lost. Alternatively,
mirroring each event directly during insert would cause the original problem that the queue
was supposed to solve (write amplification). Therefore, there is an inevitable tradeoff in query,
recovery, and insert performance. Below, we will explore how PMem can be used for OOO
handling to obtain better compromises. While the first approach is a pure PMem solution, the
second approach represents a hybrid layout.

Persistent Memory Queues

Among the factors responsible for the necessary tradeoffs are the inherent lack of persistence
in DRAM and insufficient access granularity to disk. With PMem, both issues can be satisfied
simultaneously. Therefore, our first proposal is to move the queue completely to PMem without
the need for a mirror log (see Figure 5.9 C.b). To avoid additional write operations and to utilize
sequential writes, events are only appended in an unsorted manner. New events are directly
flushed after insertion in the queue to eliminate data loss in case of a system failure. In addition
to the strong recovery guarantees, this approach saves half of the original space needed for

OO0 handling.

Indexing

The placement of the queue in DRAM in the original implementation allowed the direct access
of individual events avoiding expensive fetching of entire pages from disk. In addition, the
DRAM copy is sorted by application time and, thus, enables efficient query processing alongside
the time domain and fast merging into the TAB*-Tree. With PMem’s byte addressability, the
first-mentioned feature can also be fulfilled. However, to also enable fast querying and merging,
the queue must be ordered. Since a direct ordering would cause additional random writes,
we propose a lightweight in-memory index using application time as the key domain (see
Figure 5.9 C.c). The values of the index then constitute the offsets in the PMem queue. It
uses significantly less DRAM than the baseline implementation. A disadvantage could be the
random access to the events in PMem, although this is much better than with SSDs or HDDs.
There is also further potential for more sophisticated merging strategies, such as only merging
ranges of a designated size at a time.

121

5. STATEFUL STREAM PROCESSING

5.8 EVALUATION

Within this section, we want to put the stateful processing of data streams using PMem to
a practical test. We start with our TSP model and corresponding protocols, which we have
prototypically realized within the stream processing engine PipeFabric. Subsequently, we will
further have a detailed look at PMem’s performance impact in the specific case of event stream
processing.

5.8.1 Transactional Stream Processing

In this subsection, we present the results of our experiments as well as a discussion about the
suitability of our TSP approaches. With the evaluation of our protocols - which we presented
in Section 5.3 - we strive to show that they are the most scalable and resilient choice for TSP.
The following hypotheses should be proved in detail:

The isolation requirements of an application will be correctly fulfilled in a multi-threaded
environment. It means that, on the one hand, our concurrency and consistency protocols
always keep the states in a correct condition, and, on the other hand, ad-hoc queries
always obtain consistent results.

The overhead of the transaction management is negligible.

Our MVCC approach is the most scalable and resilient protocol compared to single-version
concurrency control strategies in a single-writer scenario.

The optimization of atomic in-place updates with fine granular flushing to PMem performs
better than the disk-based implementation that overwrites complete entries and uses
latches as well as undo logging.

Recovery and application start with PMem happen near-instantaneous.

We compare our MVCC approach against a simple Strict Two-Phase Locking (S2PL) [EGLT76]
and a Backward-oriented Optimistic Concurrency Control (BOCC) [Har84] protocol. Both are
representatives of typically used classes of concurrency control protocols, namely lock-based
and optimistic approaches. In particular, lock-based protocols have been used frequently in
related work (see Section 5.2), for which we want to show that they are not suitable for TSP and
even less for PMem. We opted for BOCC since the Forward-oriented Optimistic Concurrency
Control (FOCC) would completely block writer streams in case of high contention. Thus, it
is not applicable for our target system and application purpose. Along these lines, we have
chosen a representative for both classes that favors the writing stream. Below, we describe the
realization of the competitor protocols in more detail, for which we have made every effort to
implement optimized versions, e.g., by profiling.

Competitor 1: Strict Two-Phase Locking

With the S2PL protocol, all requested resources (key-value pairs) are locked at the time of request
and only released after a transaction is complete. We use a modified approach of wait/die [RSI78]

122

5.8. EVALUATION

for deadlock avoidance, with the difference that wait and abort/restart decisions are not based
on the age of the transactions but the type. Particularly, read-only transactions are restarted,
while transactions containing write operations are waiting if a conflict is detected. This way,
we do not need to keep before-images and in general read-only transactions are faster to restart.
Furthermore, we have already stated that we intend to prioritize the writer of a state for the
transactional processing of data streams. Because of a missing log, the protocol does not yet
guarantee failure-atomicity. However, for the sake of simplicity, we have omitted that here.
Although in practice it would require additional logging, our initial results have shown that
this protocol in its current lightweight form is already inadequate.

Competitor 2: Backward-oriented Optimistic Concurrency Control

Just as with the S2PL protocol, if there is a conflict using the BOCC protocol, we only restart
reading transactions, as they generally are cleaned up or executed more quickly. As usual for
optimistic techniques, we require the read and write set of each transaction. The backward
validation proceeds in such a way that a transaction under validation checks its own read set
against all write sets that have been committed for conflicts. For performance reasons, only
individual writes are isolated during the commit phase. Therefore, even currently active write
transactions must be included in the validation check. We have ensured failure-atomicity by
wrapping the persisting of the changes during the commit phase with a PMDK transaction.
However, a deficiency still exists since the atomicity is only applicable to one state. That is
because each state is stored in a separate pool, and a PMDK transaction can only refer to a
single one. For conflicts to occur at all, there must be an overlap between the transaction stages.
For the purpose of verifying this overlap, we introduce three logical timestamps: the beginning
time of a new transaction (TSB), the moment of starting the validation (TSV), and when a
transaction is completed (TSC). These timestamps can be used to determine an overlap, which
is true if:

the beginning timestamp of the transaction in validation is older than the completion
timestamp of the transaction being compared to, and

D the start of its own validation followed the validation start of the other transaction.

In formal terms, a reading (t,) and a writing transaction (t,,) overlap if and only if:

TSB, <TSC,NTSV, >TSV, (5.5)

If the necessary condition of temporal overlap holds, the sufficient condition is checked next,
i.e., the intersection of the read and write sets. Provided that one of the conditions is false
regarding all committed transactions, the transaction under validation may be committed. The
collection of committed write sets is implemented as a deque synchronized with lightweight
shared locks. In order not to let this collection grow infinitely, it is periodically purged based
on the oldest begin timestamp present among the active transactions.

Analogous to the MVCC protocol, we have also implemented the S2PL and BOCC protocol
in a PMem-optimized manner to perform updates in-place. Likewise, essentially the same
consistency protocol, as described in Section 5.3.3, is used for handling multiple states. More
precisely, it means that transactions are not committed until all stateful operators have received

123

5. STATEFUL STREAM PROCESSING

and registered the corresponding commit punctuation. A difference to the MVCC variant is,
however, that conflict-induced aborts can occur. In this case, the transaction is restarted after a
penalty time based on the average transaction length. We examined several sleep times in the
range of several hundred nanoseconds per operation since it matches the typical access times
to PMem. The throughput was, on average, the same up to a specific threshold. Only the rate
for repeated aborts was higher if the penalty time was chosen too short. In the end, a delay
of 500 nanoseconds per operation times the average transaction length proved to be the best
compromise.

Workloads

As a base table, we used a simple and completely persistent Bt-Tree. Naturally, any other
state representation, which we described in Chapters 3 and 4, would be possible but would
ultimately only move the baseline performance in our comparison. The B™-Tree implementation,
however, is the most mature structure available for us without structural changes during updates.
Since the values are only modified in-place, we can be sure to measure only the read/write
performance plus concurrency control overhead. We set the node size to 1024 bytes since we
have seen in Section 3.4 that it is the most efficient size. Only for our MVCC approach with
two versions, we doubled the node size to 2048 bytes to have around the same entries per
node as the competitors. In a first experiment, we could confirm that this is optimal for all
protocols. As a benchmark, we used an extended variant of the scenario in Figure 5.5, having
one stream continuously writing to two states and multiple readers querying these states. Both
are initialized with a table size of one million key-value pairs, each with an integer key as
well as a tuple with three integers and one double attribute (8-byte keys, 32-byte values). In
the benchmark, we vary the number of parallel readers (threads), the length of a transaction,
and the contention rate. The contention rate is controlled by the parameter ¢ according to a
Zipfian distribution [GSE"94]. A value of zero corresponds to an equal distribution. Increasing
the 0 also increases the probability of conflict. Our highest setting is 2.9, which causes the
same key to be accessed 82% of the time. The length of a transaction is varied from 2 (short)
to 10 (medium) and up to 100 (long) operations. The number of parallel readers was capped
by the number of available cores. We measure the total throughput in terms of transactions
per second (tps) and the error rate as the ratio of the number of restarts to the total number of
completed transactions.

Correct Handling of Concurrency and Failure Scenarios

The correctness of the protocols has already been proven extensively in the literature, e.g.,
in [WV02, BHG87], so we will not give formal proof here. Our implementation and modifica-
tions do not change anything about the reasoning. For example, for the S2PL, only the deadlock
avoidance mechanism has been changed. In the case of the BOCC protocol, our variant is even
less sensitive since there is only one writer and no write-write conflicts can occur. Our MVCC
approach is most similar to the read-only multi-version protocol in [WV02], whose proof is
based on an acyclic serialization graph. The atomicity property of the lightweight 2PC protocol,
on the other hand, can be demonstrated using state charts.

Accordingly, we look at some critical concurrency and failure scenarios instead and how our
approach deals with them. A first typical scenario would be one or several write operations
between two read operations of another transaction (e.g., r1(x), wa(x), wa(y), r1(y)). A correct

124

5.8. EVALUATION

execution regarding snapshot isolation requires that the second read operation does not see the
write operation(s). Since, in our case, writes are initially stored in a separate area (Uncommitted
Write Set), thatis always given. More dramatically, a commit of changes could occur instead
of individual update operations (e.g., r1(x), ca(x,y), r1(y)). If that is visible to the enclosing
transaction, it violates the consistency condition in the case of snapshot isolation. Precisely
for this situation, the reading transaction remembers the timestamp of the version initially
read (ReadCTS) and uses it to access the following objects. It means that all commits in the
meantime are not visible. To push the whole thing to its extremes, it could happen that when
accessing multiple states, a commit was already completed in the course of the 2PC protocol
for one state, and the other is still at it. Again, this poses no problem because the results are
only visible once the commit was successful for all states, which is done by the final atomic
writing of LastCTs.

Next, we consider how our approach responds to aborts and failures. In normal operation,
there can logically be user-triggered aborts. As soon as such punctuation arrives in a table
operator, it becomes apparent to all other operators of this query and causes the write sets
to be deleted. Even a crash-caused abort — prior to the commit punctuation being visible to
all table operators — leaves no trace in the persistent part. The most critical case would be a
system failure during a commit. The specific handling here, as already discussed in Section 5.5,
is to introduce invalidity periods.

Apart from the theoretical consideration, we also verified the correctness of concurrent trans-
actions by checking the validity of the results. For that, we used the workload as mentioned
above. More precisely, we checked that each key looked up always provides the same version
and value per transaction. This check was performed both locally per state (= repeatable read
isolation) and across states (= snapshot isolation). In order to ensure that all performance
measures are based on correct systems behavior, we varied the number of concurrent ad-hoc
queries and the contention rate in the same way as for the subsequent performance evaluation.
Finally, we also randomly crashed the application to confirm that no inconsistencies can be
provoked. All in all, this provides more than enough indications of the correctness of our
protocols and recovery process. Therefore, hypothesis H1 can be confirmed.

Version Impact

Initially, we will examine the impact of the number of versions in the MVCC approach. Fig-
ure 5.10 shows the results for medium-sized transactions (i. e., ten operations per transaction)
and 20 ad-hoc reader queries issued from the same socket. As can be seen, with our in-place
variant, the number of possible versions hardly influences the performance. However, the slight
differences are caused by two opposing factors. On the one hand, there is the increasing cache-
hit probability with higher contention. On the other hand, with increasing contention, versions
must also be cleaned up more often by the garbage collection, which happens more frequently
with fewer version slots. Therefore, the throughput with more versions is marginally higher at
the end. A disadvantage for a higher version count is that more version headers may need to
be checked during reading. For the traditional out-of-place implementation, the performance
also increases initially due to the better cache-hit rate. However, this decreases again due to
the used latches at a certain contention level. Furthermore, it can be seen that it is best to keep
the number of versions to a minimum since the entire MVCC object is always overwritten.
Compared to disks, however, the impact here is not too high because the used instructions

125

5. STATEFUL STREAM PROCESSING

o—2 Versions =#--4 \ersions ---=:- 8 Versions =+=:16 Versions

400 MVCC (in-place) MVCC (out-of-place)
&M'%
0o o0 g @Y I A EE:
eSS i Ll %o o
| ,ﬁﬂ h*:.;:

Throughtput (K tps)

0
00 05 10 15 20 25 3000 05 10 15 20 25 30
Contention level (6) Contention level (6)

Figure 5.10: Effect of the number of versions with 20 readers and medium-sized transactions.

o—Base =—#-MVCC --=-=MVCC+2PC

600 concurrent ad-hoc queries = 4 concurrent ad-hoc queries = 20 concurrent ad-hoc queries = 40
a o
8500 " L oooooooooooo
=@
e

< 400} H o-0—0—0—0—0—0—0-0 | trggestte e i g tpitipp=-te
—
=] o o

L | o—@—0—0—® 8- L
% %0 -l
%’200— 0-0—0—0—0-0=0=0=0| r

o - =0 =R

ful L o O - L [
= 100/ g0 @ g g -w—e—t"

00 05 10 15 20 25 3000 05 10 15 20 25 3000 05 10 15 20 25 30
Contention level (6) Contention level (0) Contention level (0)

Figure 5.11: Transaction management overhead with medium-sized transactions.

only flush cache lines that have been changed at all. Concluding from this measurement, we
will continue with two versions in the following experiments, as they give better results on
average and have the lowest PMem footprint.

Protocol Overhead

Next, we examine the overhead of our MVCC approach and the consistency protocol. The results
are presented in Figure 5.11 relative to the performance of the underlying base table (persistent
BT -Tree) without versioning and consistency assurance. It means for the baseline that there is
no transaction management per se, i.e., transaction begin/commit do nothing and read/write
are executed directly. As can be seen, the consistency protocol has no noticeable overhead.
Principally, as described in Section 5.3.3, only the commit timestamp is written/read globally
and commits are executed together once all stateful operators have seen the punctuation, which
effectively only changes the order of operations. However, compared with the base table, there
is a striking difference, which we had estimated to be smaller. If we take a closer look and
compare the read and write throughput separately, we see that the reading performance hardly
decreases (about 5%). The write performance, though, worsens by up to 50% because flushing
is forced here and more data is written. Since there is only one writer per state, this is less
pronounced in the total throughput with a high number of readers. Overall, we observe an
overhead of 10-40% for the entire transaction management, depending on the reader count.
So we can conclude that especially the explicit cache-line flushing needs a lot of extra time.
Nevertheless, it is necessary for any form of transaction management — during commit at the
latest — to guarantee the durability property. Thus, we can state that at least our consistency
protocol and the CC protocol for readers have a negligible overhead (H2).

126

5.8. EVALUATION

Concurrency Control with Medium-sized Transactions

As a first experiment regarding concurrency control, we compare the performance of all
protocols using transactions of medium length. The throughput is shown in Figure 5.12 as a
function of the contention level. We also varied the number of parallel read-only transactions.
While the first two columns are the results for running and allocating on the same NUMA
node, the third column utilizes both sockets. Only the PMem pools are always bound to the
same socket since cross-socket variants are currently not possible.

Similar to our previous measurements on SSD [GS19], the MVCC protocol also excels from the
others in the PMem case. Most of the performance impact for MVCC results from the manual
flushing of versions, which is mandatory to ensure failure-atomicity. Based on profiling, we
observed that for BOCC and S2PL, most of the time is spent on locking, followed closely by
logging (caused by PMDK transactions). S2PL acquires locks for the entire transaction time
and, thus, transactions block each other more frequently and for longer as the contention
increases. BOCC, on the other hand, only needs to lock the committed write sets shortly
during validation. Therefore, compared to S2PL, BOCC is more resilient to higher skewness.
At low contention, however, S2PL seems to scale better than BOCC. It is due to the fact that an
exclusive lock with BOCC blocks throughout all reading transactions, while with S2PL, it only
holds if equal keys are affected. Still, it is relevant to remind that the S2PL implementation is
only failure-atomic per operation and not the entire transaction. Hence, a more extensive undo
log per transaction would be required in practice. We can further observe that the out-of-place
(i.e., non-optimized) variant of the MVCC protocol is more robust against higher skewness than
the already optimized BOCC and S2PL protocols. However, beyond a certain level of contention,
it also starts to deteriorate. With the highest setting, it is up to 3 x slower than the in-place

—v—MVCC (in-place) —a-MVCC (out-of-place) —e—S2PL —4—BOCC

600 concurrent ad-hoc queries = 4 concurrent ad-hoc queries = 20 concurrent ad-hoc queries = 40

m

2500 F

5400 F =

—

3 3001 I

<= AA A

DA
g’200 F F

00 05 10 15 20 25 3000 05 10 15 20 25 3000 05 10 15 20 25 30
Contention level (6) Contention level (6) Contention level (6)

Figure 5.12: Resilience and scalability of CC protocols on PMem with medium-sized transactions.
N S2PL B BOCC

concurrent ad-hoc queries = 4 concurrent ad-hoc queries = 20 concurrent ad-hoc queries = 40

w

10

N
OA

Error rate (in %)

01 05 09 13 1.7 21 25 29 01 05 09 13 17 21 25 29 0.1 05 09 13 17 21 25 29
Contention level (0) Contention level (0) Contention level (6)

Figure 5.13: Abort Rate of CC protocols on PMem with medium-sized transactions.

127

5. STATEFUL STREAM PROCESSING

variant. Our optimizations allow us to avoid locks and logs (for lookup and updates) as used
before, which are also the main bottlenecks in the other two protocols. As also recognizable, a
higher contention simultaneously leads to a higher cache-hit ratio, which is more exploitable
by our optimizations. An alternative for the atomic fields would be to employ a shared mutex
per object (i.e., certifier locks). We could only notice a minimal performance loss with this
type of synchronization, at least when working on the same socket. As soon as the accesses
crossed NUMA boundaries and there was a high contention, the performance dropped by a
factor of two — which corresponds to 200-250K transactions per second with 40 concurrent
queries. The reason for this behavior is that both readers and writers update the mutex variable.
That causes cache invalidations, at a minimum on the other socket. It shows and confirms us
that especially for NUMA environments, atomics in combination with the clwb instruction
(i.e., no invalidation of cache lines) should be prioritized. For very low contention, on the other
hand, we find that the single-version protocols provide comparable performance, and in some
cases, are slightly more efficient than MVCC. However, it is also notable that for small states,
which can occur frequently, the behavior is comparable to the results for high contention.

To examine the performance drop of the two single-version protocols in more detail, we
consider in Figure 5.13 (note the logarithmic scaling) their abort rates in relation to contention.
Apparently, as the contention level increases, so does the abort rate. It is also evident that S2PL
consistently causes by far the most transaction restarts. At its peak (40 readers and 6 = 2.9), the
abort rate is 2200%. In other words, on average, each transaction has to be restarted 22 times
before it is successful. Accordingly, the throughput also drops sharply. As opposed to this, the
error rate for BOCC is comparatively low, with a maximum of 15%. That is partly because the
aborts only occur for actual conflicts, while with S2PL, already a potential deadlock causes an
abort. BOCC also has a lower overlap probability since only the persistence phase of the writer
is crucial. In contrast, our MVCC implementation does not lead to restarts or conflict-induced
aborts by its very concept. As stated above, no consistency or isolation constraints are violated
by atomically updating the timestamps and bitmaps.

Concurrency Control with Short Transactions

As a next step, we look at the throughput achieved with very short transactions (one operation
per table). The results are illustrated in Figure 5.14. As evident, the S2PL protocol performs
better than before because the individual locking periods are correspondingly shorter. For the
most part, it is faster than the optimistic approach this time, which is because the latter has
more frequent validation phases that are responsible for most of the performance degradation.
Furthermore, we observe that the performance drops caused by a higher contention are less
severe than with medium-sized transactions. However, the number of parallel readers also
changes the ranking among the protocols. For example, for BOCC, many readers with frequent
validations mean that transactions almost consistently lock the collection of committed write
sets. That, in turn, blocks write transactions in particular and makes them wait for a longer
time, but readers also need to validate a higher number of write sets. The MVCC protocol is the
clear winner for up to 20 readers. Only with a low contention level and a very high number of
parallel readers (40) the pessimistic protocol is slightly better. The reason is that with practically
no conflicts, S2PL can read the tuples directly, whereas MVCC requires the appropriate version
to be selected based on the headers first. This small additional step becomes naturally more
noticeable with an increasing number of readers. If we divide the throughput into read and write

128

5.8. EVALUATION

—v¥—MVCC (in-place) -4a-~MVCC (out-of-place) —e—S2PL —4—BOCC

concurrent ad-hoc queries = 4 concurrent ad-hoc queries = 20 concurrent ad-hoc queries = 40

Throughtput (K tps)
B

A A
200\ g-ggwBL o o b
0 o
AAAAALL RS
0
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Contention level (6) Contention level (6) Contention level (6)

Figure 5.14: Resilience and scalability of CC protocols on PMem with short transactions.

portions, the write performance for a low contention is 82K tps for MVCC while S2PL reaches
75K tps. For comparison, BOCC only achieves a write throughput of 9K tps in this case. Since,
from our perspective, the write transaction of a state is more crucial in a data stream processing
system, we would prefer MVCC across the entire parameter spectrum. In the end, we again
compare the values with the out-of-place variant at the highest contention and concurrency
setting. The optimized variant achieves a performance gain of 2x and 16 in terms of read
and write throughput, respectively. When added together, the throughput improves by a factor
of 2.25x. With low competition, S2PL and BOCC - both already optimized - are usually faster
than the unoptimized MVCC protocol. It again highlights the need for in-place updates and
lock/latch elimination.

Concurrency Control with Long Transactions

As a final CC experiment, we examine the throughput for the same scenario but with long
transactions, as visualized in Figure 5.15. In the absence of contention, our MVCC approach
performs worst for once. It is mainly because long reading transactions keep older versions
alive longer. Hence, the write transactions have to wait until they can discard those to commit
new versions. One way to counteract it would be to increase the number of slots, but this,
in turn, increases the storage footprint. BOCC, on the other hand, performs best with low
contention, which is since the costly validations occur much less frequently, and hardly any
work is lost if there are no overlaps. However, the long transactions provoke overlaps to occur
more often when the conflict probability increases, which is why the performance drop appears
earlier in the graph. So in the worst-case, BOCC loses 70% compared to its peak performance.
The S2PL protocol is even more extreme, and performance drops by 99%. That is because
the long transactions usually include all frequently queried keys. Therefore, once a writing
transaction starts locking, all readers are blocked for the whole duration of the transaction. A
similar but slightly delayed drop is also notable for the MVCC variant featuring out-of-place
updates. Here, it is due to synchronizing the simultaneous read and write accesses to the
same MVCC objects. With high contention and concurrency, the performance is up to 10X
worse compared to its optimized implementation. When updating in-place, readers and writers
can continue to work on their versions in parallel, even during long transactions, without
interfering with each other to any great extent. From this, we can conclude that our proposed
optimization steps are particularly beneficial for long transactions and correspondingly long
commit phases.

129

5. STATEFUL STREAM PROCESSING

—v¥—MVCC (in-place) -4a-~MVCC (out-of-place) —e—S2PL —4—BOCC

250 concurrent ad-hoc queries = 4 concurrent ad-hoc queries = 20 concurrent ad-hoc queries = 40
g
+="200
-
5 150
[oN
i
< 100
()]
>
9 50
o
= 0
0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.00.0 0.5 1.0 1.5 2.0 25 3.0
Contention level (6) Contention level (6) Contention level (6)

Figure 5.15: Resilience and scalability of CC protocols on PMem with long transactions.

Discussion of Concurrency Control Experiments

Allin all, we have seen that versioning combined with our atomic in-place optimizations usually
performs better and is much more resilient than the single-version approaches. Therefore, it
is the most suitable CC solution for the TSP model when dealing with PMem-based states.
In Table 5.1, we provided an overview of the rankings of the protocols depending on the
transaction length and contention level. By using in-place instead of out-of-place updates,
locks and logs become superfluous. That increased the performance of our MVCC protocol
in the scenario above by a factor of up to 2x to 10x. Such optimization made a particularly
big difference with long transactions and high contention. It again shows the profitability of
optimizing existing persistent data structures and access algorithms for PMem and the entire
abolishment of locks and logs. Especially also considering NUMA effects, cross-socket locks
turn out to be unsuitable. However, we should also point out the disadvantages of our approach.
First of all, there is a higher storage requirement arising from our fixed array structure of
the MVCC objects. Instead, a linked list could be used and only link versions where they are
needed. Another alternative would be an indirection, in which a pointer to externally stored
versions is held instead of the value(s). However, that would preclude the important in-place
optimization and make the requirements for the underlying base table more stringent. As often
the case, it results in a compromise between memory consumption and performance. Our fixed
array variant sonner targets high performance and heavily queried states. Another drawback
of our MVCC approach is the slightly increased overhead when virtually no conflicts occur.
Furthermore, long transactions can lead to garbage collection loops in the writing thread when
only a few version slots are available. Apart from these moderate drawbacks, we can conclude
that our results from the CC experiments strongly support the hypotheses H3 and H4.

Table 5.1: Decision based on contention and transaction length.

transaction
length SHORT MEDIUM LoNG
contention
how 1. MVCC/S2PL 1. MVCC ; ?;EC
2. BOCC 2. S2PL/BOCC 3 MVCC
Hicu 1. MVCC 1. MVCC
2, SePLBOCC 2.BOCC 2. BOCC
' 3. S2PL 3. S2PL

130

5.8. EVALUATION

Query Recovery

Finally, we examine the recovery performance for the scenario set up above. Since the BOCC
and S2PL protocol use PMDK transactions for atomic write operations, undo operations may
be required in the event of failure. Theoretically, the duration depends on the length of the
transaction. Simulating a real crash is not that easy since it would require clearing the entire
cache immediately, among other things. In addition, we do not want to risk unnecessary damage
to our system by suddenly cutting off electricity. Therefore, we only report the recovery time
for restarts of the application. Initially, we expected the pool to take longer to open when using
MVCC due to versioning and the associated higher PMem footprint. In fact, it made no visible
difference, so all CC protocols resulted in about equal recovery times. Hence, we report the
average of all protocols and several hundred restarts. Figure 5.16 illustrates the time taken for
each of the steps outlined in Section 5.5.

As can be seen, most of the time is requisite for recovering the states and the context. It is
mainly attributable to opening the pool files and potentially also includes undo operations.
When we took a closer look at the results using profiling, it became apparent that a lot of
time is needed to initialize the internal data structures of the PMDK pools. That includes, for
example, the log and a recycler for allocations. Moreover, PMDK performs further expensive
allocations and (persistent) memory initializations. By comparison, dereferencing and setting
the pointers as well as restoring the query pipelines takes significantly less time. Therefore,
we have included an additional zoom-in feature in the figure. Four ad-hoc reader queries had
to be recovered for the shown results. Though, even with 40 readers, the recovery time of
this step just doubled. Overall, we can thus conclude that the number of states constitutes the
dominating influence on the recovery time. The number of queries or parameters such as the
average transaction length only has a minor impact. In order to reduce the recovery time even
further, it would be conceivable to store all states and the context in only one pool file. The
problem that arises is the initial estimation of the required pool size. For example, if new stateful
query pipelines are added, not enough PMem might have been allocated. A reallocation to a
new pool could also be prohibitive and possibly block the entire system. Another variant would
be to manage the memory regions manually instead of using PMDK and allow non-contiguous
regions/files. That could also eliminate (for us) superfluous checks and initializations since we
already take care of failure atomicity, at least in our MVCC and 2PC protocols. Apart from the
additional effort due to the state recovery — which is still only in the millisecond range — we
can confirm that our initial hypothesis of a near-instantaneous recovery process (H5) holds.

74.25

174.20

174.15

N
o

- State 1 Recovery

Recreate Reader Queries

Jpdate Pointers 174.10

Time in ms

74.05

Recovery Steps

Figure 5.16: Temporal proportions of the query recovery steps.

131

5. STATEFUL STREAM PROCESSING

5.8.2 Event Processing

In this part of the evaluation, we present micro-benchmarks based on the approaches described
in Section 5.7. They are all prototypically implemented in ChronicleDB. The goal of the
experiments is not to indicate that it resulted in the best event store but instead to highlight
the possibilities and tradeoffs in such a three-layer storage system. Hence, the findings are
also usable for similar application purposes. In this process, we show which of our proposed
approaches prove judicious in practice and where improvements are still necessary.

Experimental Setup

Since ChronicleDB is written in Java, we cannot rely on PMDK being written in C/C++°. Instead,
we made use of the JDK 14 extensions’ to access PMem via the ByteBuffer interface. For the
index, we set a node size of 8 KiB and applied the LZ4 compression algorithm to the nodes. In
order to accommodate OOO events, we adjusted the spare space in each node to 10%. On the
storage layer, we configured a block size of 32 KiB.

Events were held in DRAM and passed to ChronicleDB using the same Java process to achieve
a high input rate. We used two synthetically generated event streams as test data. The first is
the Stock event stream taken from [ZDI14]. The stream simulates a stock ticker where each
item comprises the application timestamp, a sequence number, the symbol, the price, and the
volume. Together the events result in a fixed size of 28 bytes each. This stream was used
by default in the experiments, if not stated otherwise. The other data stream is called Sine.
Besides the timestamp, each event has six 64-bit floating-point attributes resulting in a total
size of 56 bytes. As the name suggests, the attributes are based on the sine function as follows:
sin(% - 27) where i is the sequence number of the event during generation. Practically,
it means that for every million events, each attribute describes a complete sine wave. With this
dataset, especially the selection rate of filter queries can be easily adjusted. It is used when
evaluating filter and aggregation queries on the TAB*-Tree nodes on PMem. For both data
streams, the application time is consecutive, maintaining the order. The generation of OOO
events is discussed in the corresponding paragraph. Generally, we keep the streams running
for 100M events.

TAB*-Tree

Right flank: At first, we consider the approach where the right flank of the TAB™-Tree is
moved from DRAM to PMem. We measured the total time taken for the insertion of the
complete data stream into the primary index. The same we did for the original DRAM-based
implementation and used it as a baseline for the visualization in Figure 5.17. Here, we varied
the number of simultaneously flushed events (batch size) in the case of PMem. As expected,
direct flushing at each insert (batch size = 1) degrades the performance too much, to about 50%.
In return, maximum recovery guarantees would be obtained. Depending on the application,
this performance might already be sufficient, as it still corresponds to 2.1M inserts per second.
If this is not the case, 95% of the original performance can be achieved with a batch size of 25.

®Similar bindings are available such as PCJ (nttps://github.com/pmem/pcj). However, these generated too
much overhead in our initial attempts.
7https ://openjdk. java.net/jeps/352

132

https://github.com/pmem/pcj
https://openjdk.java.net/jeps/352

5.8. EVALUATION

100%f I Aggregates on PMem (unaligned)
[Aggregates on PMem (aligned)

90% 150% " =] Index nodes on PMem

80%[
70%[

e 1IN

60%" DRAM
\,\\\x\

Original as Baseline
«a
o
°\°

Insert Performance
DRAM as Baseline
Processing Time

] A @\
1 2 3 4 5 10 15 20 25 30 Never " (\0‘@ & ?@“g ’é“g \?&“g
Flush Batch Size (# events) 0" ale%&

Figure 5.17: Insert performance when keep- Figure 5.18: Insert and query performance for TAB™-
ing TABT-Tree’s right flank on PMem vs. Tree aggregates and inner index nodes when main-
DRAM depending on the flush batch size. tained on PMem.

In terms of recovery guarantees, the number of possible losses is still far lower. Since a leaf
node can hold up to 291 events (having a node size of 8 KiB) that could get lost in the DRAM
case, it results in a 91% reduction in maximum data loss. In addition, for a tree height of three,
the recovery time after a failure is reduced from 40 ms to less than 1 ms when using PMem.

Aggregates and inner nodes: Next, we will look at the tradeoffs of the other two proposed
approaches to the TAB"-Tree, namely moving either the lightweight index or the inner nodes
of the primary index to PMem (cf. Figure 5.9 A.c & A.d). To investigate the influence of the
alignment, we implemented two variants for the aggregate arrays. One of them stores the
aggregates densely (i.e., unaligned), and the other aligns them on 64-byte/cache-line granularity.
Since we also want to vary filter expressions predictably in this series of experiments, we use
the Sine data stream here. Besides the initial insertion time, we looked at the processing time
of point queries on the time domain, temporal aggregation queries on varying fractions, and
finally at a filter query based on secondary attributes and selectivity of 0.1%. The aggregation
and filter queries were chosen such that the information from the lightweight index was usable.
In Figure 5.18, the results are illustrated using the original implementation as a baseline. When
proceeding from left to right, we first see that the PMem adaptions have little effect on insert
performance — unlike the first experiment. It stems from the fact that the writing of the leaves
is still done on flash and the right flank is always in DRAM. Interestingly, in this and the
following queries, the alignment of the aggregates did not yield any noticeable difference. We
think it is because our setup is not able to utilize the entire PMem bandwidth. Therefore, a
further distinction between aligned and unaligned array slots does not provide additional value
and will be omitted accordingly. Continuing with the point queries, we see that storing the
SMAs on PMem reduces the average lookup time by about 15%. This speedup results from
the higher fan-out of the inner nodes, which, in turn, leads to a lower tree height. On the
other hand, temporal aggregation queries do not benefit from the physical separation of the
primary and secondary index. The reason for this is precisely this double access to both the
index nodes and aggregates during traversal. The performance drop increases with the size
of the set time range and reaches about 10% to 25%. However, filter queries can again benefit
from the higher fan-out and are about 15% faster than the original implementation despite
the additional access to the aggregates in PMem. In the case where we move all inner nodes,
including their aggregates, to PMem, we exclusively observe improvements for each type of

133

5. STATEFUL STREAM PROCESSING

query. Overall, a performance boost of 35% to 40% can be achieved, mainly because both index
navigation and aggregate lookups no longer need to access flash. Therefore, this approach
can be seen as a general improvement over the original implementation. However, in both
approaches, the right flank is still in DRAM. That can result in higher data loss and recovery
overhead when compared to the variant where it is placed in PMem.

Address Translation

In the following, we will benchmark the address translation layer of the storage layout. The ATT
maintains its right flank in DRAM - similar to the TAB"-Tree — and uses an additional buffer to
keep the 100 most recently accessed translation pages in memory. Besides the traditional and
the PMem variant, we also built a DRAM-only version to highlight the read-write asymmetry
for PMem access. In Figure 5.19, we illustrate the average time per sequential update, random
lookup, and the total recovery time of the three implementations. The average timings are
based on 10M operations each. The DRAM and flash-based implementations perform similarly
regarding updates since the flash variant maintains the right flank and the buffer also in DRAM.
Updates to PMem, on the other hand, are 5-6 x slower, which stems from PMem’s higher write
latency in contrast to DRAM. On the contrary, since the read latency is closer to DRAM, lookups
do not exhibit such a clear difference (1.8 x). Although, the DRAM implementation features the
best lookup and update performance, it is not an option for production use cases as it requires
a complete rebuild on system restart, i.e., full file scan. Even for the relatively manageable
dataset used here, it takes more than two minutes. Comparing the PMem and original flash-
based implementation, random lookups are, on average, three orders of magnitude faster on
PMem. That is since, in the case of flash, the ATT must be completely traversed if a translation
page is not buffered. In the worst case, this corresponds to (tree-height-1) x 32 KiB reads
from secondary storage for a single lookup. In terms of recovery, we see similar performance
differences. While the PMem solution needs less than a millisecond (mapping its region into the
address space), the flash-based solution takes 662 ms (rebuilding the right flank of the ATT). As
a whole, however, it should be noted that the lookup and update times for address translation
only take up a small portion of the system’s overall performance. Nevertheless, PMem offers a
sound balance between significant recovery times using flash and DRAM access times while
also simplifying code complexity, given its flat array structure.

Out-of-Order Handling

Finally, we examine the various OOO handling approaches. We start by comparing the insert,
recovery, and query performance of the queue implementations isolated from the rest of the
system. After that, we study the insertion performance in the context of the whole system for
different OOO rates. Both parts are configured with a queue size of 100 MiB (x3.5M events). In
total, we compare five implementations. The first is a DRAM-based red-black tree ordered by
application time that is utterly suited for fast query and merge latencies. Naturally, the OOO
events in this queue are entirely lost in the case of failure. The next two implementations are
based on PMem, where one is standalone and the other uses an additional DRAM index (cf.
Section 5.7.4). Unlike the DRAM solution, the entries are not sorted during insertion but only
appended. Analogously, these two variants are also implemented for flash using 8 KiB pages.

In Figure 5.20, the results of the isolated benchmarks are shown. When writing to the queues, the
PMem solutions need more than twice the time than the DRAM-based tree. It is mainly due to

134

5.8. EVALUATION

127s

[Update
I Lookup
[Recovery

-
o
o
T

=y
o
w
T

T

Avg. Time/Access (us)
S

W s i
DRAM

-
o

PMem

Flash

Figure 5.19: Update, lookup,
and recovery tradeoffs for ad-

dress translation maintained on
DRAM, PMem, and flash.

[CTIDRAM I PMem [EEPMem Indexed

A

Processing Time (ms)

e I~ ot \,\\'(\5%
W ?\eo o “eﬂ 0\;6“! W

Figure 5.20: Insert, recovery,
and query performance of pro-
posed OOO queue variants.

I Flash [Flash Indexed

4001

N

o

o
T

Processing Time (s)

1.00 %
Out-of-Order Rate

5.00 % 10.00 %

Figure 5.21: Insertion time for
100M events with varying OOO
rates with merges into the index.

the direct flushing of events, which could be compensated by batching, as shown in Figure 5.17.
Batching, in turn, is regulated correspondingly with recovery guarantees. Compared with
the flash variants, on the other hand, PMem yields a performance boost of 3 x (pure) and 2 X
(indexed), respectively. Regarding recovery, only the indexed variants need to take further
steps aside from opening the log. In the case of PMem, the regions must be additionally mapped
to the user’s address space. Here, the rebuilding of the volatile index dominates the recovery
time. Flash only needs about 65% more time than PMem since the data is read sequentially.
As a query, we performed lookups on application time, distinguishing HIT (event exists) and
MISS (event does not exist). For queries with no corresponding event, the two index variants
perform equally since only the DRAM portion is accessed. However, when queries hit, flash
with index performs significantly worse (two orders of magnitude) because an entire page must
be read from the log for each query. Due to the byte addressability of PMem, this variant can
directly access the event instead and achieves similar performance as the pure DRAM solution.
Without an index, recovery times are better, but the costs for the queries are clearly too high.

Now we look at the insert and merge performance of the queue implementations in the
overall ChronicleDB system. We generated different rates of OOO events for the Stock data
stream. Specifically, a OOO rate of x% means that (100-x)% of the events are inserted in order
of application time. The OOO events are further subdivided into 10% distributed randomly
uniformly over the application timespan and 90% distributed uniformly over 10,000 equidistant
temporally close batches. That leads to a data stream including occasional OOO events with
short bursts. In Figure 5.21, the results for a OOO rate of 1%, 5%, and 10% are shown. Whenever
the queue is full (every 3.5M events), it must be merged into the TAB™-Tree, which impacts
write performance. Since the indexed variants are indirectly sorted, they can efficiently bulk
merge. It is not the case for the non-indexed variants, resulting in a more random access pattern
during writing. The path via the index, on the other hand, only produces random access when
reading. In the hardware comparison, the indexed PMem approach achieves almost the same
performance as the pure DRAM solution but offers persistence at the same time. Interestingly,
the indexed flash-based implementation paints a different picture. At 5% and 10%, performance
deteriorates drastically as random reads of flash pages during merging are much more costly.
Thus, the indexed queue in PMem offers the best compromise overall.

135

5. STATEFUL STREAM PROCESSING

Lessons Learned

Using ChronicleDB as an example, we have seen that a three-layer approach, including PMem,
offers many opportunities to improve the tradeoffs between different requirements of a data
management system. To conclude, we summarize our general insights and lessons learned
from the experiments, which are also applicable to other systems, as follows.

As a replacement for DRAM components, PMem can be used to increase the amount of
recoverable data in the event of a failure. However, depending on the necessary recovery
guarantees, frequent updates of data/events should be flushed in contiguous batches in
order not to degrade the write performance too much. We have shown this on the basis
of the right flanks of the TABT-Tree. For LSM-Tree, for example, it is similarly realizable
for the in-memory parts. On the other hand, if updates occur less frequently, as is the
case with our OOO queue, batching is not imperative, and it is possible to, e.g., switch to
simplified solutions to flatten performance fluctuations instead. Practically, this addresses
the main challenge of managing OOO data. In general, these findings can be applied to
other buffering or index maintenance techniques as well.

18%) From our experiments — where we moved the aggregates from the index to a separate
structure in PMem - it is clear that a faster medium does not automatically mean better
performance. By separating primary and secondary indexes, we have eliminated spatial
locality and, thus, sequential access for queries that need both indexes. Therefore, we
have learned that access patterns still have an immense influence. Similar results were
also evident from the latter OOO experiment. In conclusion, physical locality as achieved
with correlated index structures should be considered even for byte-addressable PMem.

18%) For non-performance-critical components in particular, such as the address translation
layer demonstrated, PMem offers promising opportunities to reduce code complexity
through simplified designs and improve recovery guarantees and performance.

5.9 SUMMARY

In this chapter, we applied the data structures and lessons learned from the previous chapters.
We integrated them into a stream processing and an event processing engine to extend these
with PMem support. In doing so, we initially devised a novel processing model that can process
both stream and table data with transactional guarantees. Furthermore, due to our designated
MVCC and consistency protocols, our model can provide features such as time-travel queries,
shared states, and cross-state consistency. Apart from the functional enhancements over
traditional DBMSs or streaming systems, the use of PMem yields quick, durable updates of
states and tables and near-instantaneous recovery in such a model. By considering different
CC procedures, we could also address the last remaining data management challenge from
Section 2.3. Looking ahead, we also considered possibilities for query planning in the TSP
model, identifying crucial parameters and potential cost formulas to decide for optimal data
structures, data placement, and algorithms.

Our experiments have shown that fundamentally MVCC is the most suitable CC approach
for the TSP model using PMem. Particularly with high contention, it was significantly more

136

5.9. SUMMARY

scalable and resilient than lock-based or optimistic protocols. That is mainly due to the complete
avoidance of locks, which become very expensive, especially when crossing NUMA boundaries.
Instead, we created a PMem-optimized adaption to do updates in-place using atomic primitives.
In addition, the omission of logs and the manual placement of flush and fence instructions keep
the write throughput high. It also enables swift state and query recovery, whose bottleneck is
now only the unavoidable opening of the file pool(s). Furthermore, we found that the realization
of cross-state consistency does not imply any visible overhead in our tested scenario.

Concerning event processing, we also found a general tradeoff between recovery guarantees
and write performance. Here, flushing in batches has proven to be a possible solution, with the
batch size serving as a tuning knob. Another interesting finding was that the access pattern
combined with the physical proximity of the data sometimes has a higher impact than the
used storage medium. Finally, we found that PMem can massively reduce code complexity
compared to using disks.

137

5. STATEFUL STREAM PROCESSING

138

CONCLUSION

ersistent memory is a pioneering storage technology that we believe could become

a standard feature of data centers in the coming years. However, how it is accessed

and how to program with it differs from what was common in the past. Therefore,
along with new opportunities, it also holds some pitfalls. In this dissertation, we have studied
the impact of PMem across various data management layers to provide sensible techniques
and insights for the design of modern transactional and analytical systems. In this chapter,
we summarize the findings and contributions of this work and close with a consideration of
possible directions for future work.

6.1 CONTRIBUTIONS

We organize the summary of contributions similarly to Chapter 1, following the building blocks
for data management with PMem. However, the focus is now on our achieved results and
insights.

Persistent Memory Access & Data Management

We started by giving an overview of the fundamentals of the PMem technologies. We extracted
the common properties and also highlighted special features of the DCPMMs we used. These
were particularly important for elaborating on the design goals and guidelines introduced
at a later stage. Furthermore, we have shown several integration possibilities of PMem into
the hardware landscape. For our purposes, the strategy PMem side-by-side with DRAM has
proven to be the best option, as it offers the highest utilization potential of the properties of
all technologies. In this case, the most efficient way to access PMem is by mapping files to
the application’s virtual address space. That allows direct access to the device using load and
store instructions. We have also identified evolving data management challenges using PMem,
namely failure atomicity, property utilization, data placement, and concurrency. During the
development and analysis of transactional and analytical data structures, we addressed the
former three challenges in detail. The concurrency aspect, on the other hand, was handled one
layer above when processing stream and table data simultaneously.

139

6. CONCLUSION

Persistent Index Structures

Encouraged by the finding that most existing works proposing PMem data structures followed
a black-box approach in their evaluation, we opted to take a white-box approach instead, which
can be more precise about the impact of certain design decisions. Therefore, we identified
and evaluated several design primitives for data structures at a more fine-grained level. These
primitives typically target and thus have been classified into PMem-critical design goals, namely
write reduction, fine-grained access, and failure atomicity. In addition, we identified typical
low-level access patterns — which we call micro-operations — that can be executed on or by
using the primitives. With the results of our extensive experiments, we were able to obtain
explicit performance profiles for selected primitives, as well as more general conclusions for
designing PMem-based data structures. In particular, the latter point highlights the further
advantage of our approach in that insights are more generally applicable and thus valid to
different data structures such as B*-Trees, LSM-Trees, Skip-Lists, and Tries. In general, we
can state that data structures should perform as few PMem writes or cache line flushes as
possible. It can be done, for example, with hybrid data placements such as with the FPTree,
where DRAM holds the secondary recoverable data. Also, the omission of sorting records after
each modification saves a lot of write operations. For failure atomicity, we have seen that
copy-on-write approaches should generally be avoided and replaced by in-place updates using
lightweight atomic writes. The access to PMem should follow a sequential pattern if possible
so that prefetching and other hardware features can take effect. Furthermore, a node size of
256 bytes to 1 KiB is the most efficient. Finally, allocations on PMem are significantly more
expensive than on DRAM, which can be counteracted with group allocations or dedicated free
Space management.

Persistent Analytical Structures

We have elaborated on two approaches to exploit PMem for analytical data management tasks.
Our first approach uses a clustering mechanism (based on BDCC) to achieve physical proximity
for similar data. We distribute the data over a linked list of nodes sorted by the clustering
key. The nodes themselves are unsorted to reduce PMem writes and to follow a sequential
insertion pattern. Another significant advantage of clustering is the efficient querying of non-
key attributes, which is especially useful for stateful stream processing where the key is usually
the timestamp. Thus, range queries with low selection rates were several orders of magnitude
faster than typical index structures. That was achieved with the support of SMAs in the data
nodes and appropriate pruning steps. In addition, we can add any index on top to perform
point queries in logarithmic or constant complexity. The design can also include additional
storage layers such as disks to distinguish between cold and hot data nodes. Combined with a
volatile index, this allows us to leverage the properties of all memory and storage technologies.
As an alternative analytical approach, we ported an existing multi-dimensional index called
Elf to PMem. In contrast to the clustered structure, it has a much lower memory footprint but
potentially needs a complete rebuild in case of updates. This approach is particularly profitable
if the index should be persistent or not enough DRAM is available. To still reach a similar
performance as its DRAM counterpart, we considered several caching strategies. Since these
do not consider all index nodes and are comparable to the FPTree design (selective persistence),
we summarized our dynamic and static variants under the umbrella term selective caching.
Mostly, a static approach — with predetermined cached levels in DRAM - has turned out to

140

6.1. CONTRIBUTIONS

be faster than a dynamic approach. Only the naive and LLA dynamic eviction policies have
proven competitive, where the latter is our own devised policy based on probabilities. With
97% less DRAM consumption, we could reduce the throughput for point queries by just about
half (two-thirds to three-quarters without DRAM cache). Due to the sequential access, very
wide range queries to the PMem index were already half as fast as the DRAM variant, even
without caching. The caching was then only able to achieve a slight performance improvement.
Finally, we have demonstrated that static caching works very well with parallel range scans as
well.

Transactional Stream Processing

With the above data structures and insights, we implemented a prototype of a TSP system
based on PMem. The data structures serve as state and table representations applied according
to the expected access pattern. Besides the states, parts of the global state context — comparable
to a transaction manager — are also stored in PMem to ensure the ACID guarantees. In addition,
we have proposed two protocols for this purpose. On the one hand, we created an MVCC
approach adapted to PMem to achieve a scalable and resilient performance for concurrent
queries on a state. In particular, compared with traditional pessimistic and optimistic protocols,
this approach can cope with very high concurrency and contention. On the other hand, we
delay the commit until all involved states of a transaction have received and recorded it and
lastly atomically overwrite the commit timestamp. Hence, this procedure is comparable to a
2PC protocol. Both protocols have in common that they perform in-place updates and do not
require any logs or locks improving the throughput. It also means that the recovery process
does not have to handle logs. Only the pool files in PMem have to be mapped into the virtual
address space, and the query pipelines have to be restored. Both take no longer than a few
milliseconds. Choosing a suitable data structure, its placement, and the applied algorithms to a
state strongly depends on the available hardware and the expected access pattern. Therefore,
the establishment of a cost model seems reasonable. To address this need, we have already
investigated possible parameters and compiled initial cost formulas for a hardware-conscious
model for stateful stream processing. The task of the optimizer is then to decide upon a suitable
combination of state representation, data placement, and access algorithms.

Event Stream Processing

We have developed various approaches to enhance the existing event store ChronicleDB
with PMem support. These show the impact of data placements within a modern three-layer
architecture comprising DRAM, PMem, and disk. In general, there is a trade-off between the
recoverability of events and their writing speed, which can be controlled by the number of
events flushed together. We also saw that the recovery process with PMem is always the
most efficient. With DRAM, all secondary structures have to be rebuilt, and with disks, the
loading of the logs and the like takes significantly longer. Since we can often avoid such logs
with PMem, we can also reduce the code complexity. Furthermore, as with our clustering
approach, it has been shown that a physical closeness of correlated data is sometimes more
critical than the underlying storage technology. Explicitly, for ChronicleDB, this means that
primary and secondary indexes should be stored interleaved in order not to disrupt sequential
access patterns.

141

6. CONCLUSION

6.2 FUTURE WORK

Since the first widely commercially available PMem technology did not hit the market until
2019, we can say that data management research in this area is still in its infancy. Our detailed
examination of PMem-based transactional and analytical data structures as well as their usage
for stateful stream processing already covers a multitude of application scenarios leveraging
this novel hardware. However, we believe there is still a lot of potential for future work that can
build on our contributions. Therefore, we will outline promising research directions regarding
data management on PMem that expand on our findings below.

Extending the Consideration of PMem Primitives and Micro-Operations

Table 3.1 and our extensive evaluation still have room for extensions. That includes more
primitives, more micro-operations, other performance counters, and probably even more base
data structures. For example, a possible further micro-operation would be to iterate through
a list of nodes (see experiment E3) additionally in sorted form (= range scan), which would
require on-demand sorting for the unsorted approaches. Likewise, other primitives could be
included, such as balancing a node (see experiment E9) using quickselect for unsorted nodes,
which is currently implemented by searching for the next maximum/minimum for each record
to be moved. Regarding node layouts or general data structures, there is probably still plenty
of designs to be explored yet. For instance, we have considered hashtables relatively sparsely
so far, though such extensions could result in entirely new types of data structures that enable
new use cases. Also, in addition to the runtime and the number of written bytes, we could
include more performance counters. These could be the number of read bytes, cache misses,
or even energy usage. That could allow us to understand the behavior of the primitives even
better. As a final result, we could correspondingly generate more comprehensive performance
profiles.

Query Optimization and Cost Models

In this dissertation, we have already covered the first layers of data management with PMem.
We have proposed various data structures and alternative variations thereof and several ap-
proaches for stateful stream processing. However, future work could examine query planning
and automated implementation selections in more detail to relieve or ease the workload of
administrators.

Following on from the extension of our data structure primitive consideration discussed above,
we envision a system similar to the Data Calculator [[ZH " 18] that automatically assembles data
structures of these primitives according to the hardware profile and workload expectations. Also,
our analytical concepts could benefit from an automatic selection of appropriate parameters
or implementations. For example, for the clustering approach, we have to choose between a
sequential block iterator with pruning or an index-based iterator, which highly depends on
the expected selection size. In addition, the block and table size are decisive here. With our
multi-dimensional index and the corresponding caching strategies, it would also be helpful
to automatically decide, e.g., between sequential or parallel access and about the number of
cached dimension levels.

142

6.2. FUTURE WORK

Another beneficial enhancement would be the automatic selection of a state representation
per operator for stateful stream processing. Specifically for our TSP model, we have already
described the first theoretical steps in this regard in Section 5.6. However, a prototypical or fully
functional implementation is beyond the scope of this work and considered as future work. It
would initially require calibrating the available stateful operators (state access characteristics)
and the hardware latencies. Subsequently, it is necessary to weight these values with the
costs per access specific to the state representation. Depending on the dominating access type
(updating, querying, or recovery) or other requirements, the most cost-effective structure and
corresponding algorithms should be selected.

Inclusion of Further Hardware Features

Besides the research on the software side, there is also continual research on the hardware
level, and manufacturers introduce new features, from which some also directly address PMem.
Observing these developments is always beneficial if data processing should run as efficiently
as possible on the target architecture. Therefore, we will briefly look at some of such existing
and possibly upcoming features and their implications.

Throughout working with our server, we found out that it does provide the clwb instruction,
but it is just a wrapper on clflushopt. It means that any flush to PMem will also invalidate the
affected cache line. For us, this implies that our results may differ if the same line has to be read
once more after a flush, which will likely be the case with high contention. However, future
work using newer generations of servers (i.e., starting from Intel Ice Lake-SP) would have to
verify this yet.

Another innovation introduced by the follow-up server generation is eADR. With the help
of capacitors and corresponding logic, the CPU caches are also persistent in this sense. The
utmost advantage is that explicit flushes are no longer necessary to guarantee failure atomicity.
Only the barriers (fences) are still required. Overall, however, this should result in a massive
increase in performance, making PMem even more appealing.

In [OLN16], the authors already considered Hardware Transactional Memory (HTM) in the
context with PMem. However, this feature is only supported for DRAM-resident data and is
incompatible with persistent primitives like mandatory cache line flushes. Though, coupled
with the eADR feature, the forced flushing is eliminated, which would basically allow HTM
on PMem. That would simplify it for developers to make multiple regions simultaneously
persistent and visible to other threads. Whether the performance is better than individual
solutions with fine-granular latches or atomics remains to be seen. A setback is that Intel
disabled their HTM implementations by default on most platforms for security reasons and
because of potential bugs regarding the memory order [Int21c, Int21d].

Finally, the use of SIMD instructions on PMem would be conceivable, especially for analytical
workloads. Thus, the range scans in our clustering and multi-dimensional approach could get
an additional performance boost. As already shown, for instance, in [ZDK " 21], the employment
of SIMD can significantly increase the performance for both DRAM and PMem. However, from
a certain degree of parallelism, the clock frequency is reduced, e.g., for thermal reasons, and
thus a scalar execution or mixture might be more efficient.

143

6. CONCLUSION

Scalability and Availability

In this work, we have considered and evaluated our approaches only on a single server machine.
Especially in the growing cloud environment, however, several server nodes are often combined
into a cluster to perform a common task. Moreover, to handle hardware failures, multiple nodes
can be interconnected to replicate selected data or their entire state.

As a first step, our NUMA consideration could be raised from two sockets to a higher number
and examine different data distributions. Thus, each socket could either manage only its own
allocated area or operate across NUMA boundaries. Generally, it would be reasonable to
partition the states (or other data structures), whereby the ACID properties must always remain
fulfilled. For this purpose, our 2PC-like protocol, among others, could be refined to maintain
consistency not only of all accessed states per transaction but all state partitions.

The next stage would be to distribute states and metadata over the network to scale the system
even further. Apart from the partitions, replications might now be added, which could be
handled similarly by our consistency protocol. In this case, we could also utilize features like
Remote Direct Memory Access (RDMA), which allows comparable latencies to those of remote
socket accesses. Particularly in conjunction with PMem, this could be a promising research
direction.

144

BIBLIOGRAPHY

[ABD"12]

[ABWO03]

[Agil4]

[AJ89]

[AKMT16]

[ALML18]

XIII

Aditya Auradkar, Chavdar Botev, Shirshanka Das, Dave De Maagd, Alex Feinberg, Phanin-
dra Ganti, Lei Gao, Bhaskar Ghosh, Kishore Gopalakrishna, Brendan Harris, Joel Koshy,
Kevin Krawez, Jay Kreps, Shi Lu, Sunil Nagaraj, Neha Narkhede, Sasha Pachev, Igor Perisic,
Lin Qiao, Tom Quiggle, Jun Rao, Bob Schulman, Abraham Sebastian, Oliver Seeliger, Adam
Silberstein, Boris Shkolnik, Chinmay Soman, Roshan Sumbaly, Kapil Surlaker, Sajid Topi-
wala, Cuong Tran, Balaji Varadarajan, Jemiah Westerman, Zach White, David Zhang, and
Jason Zhang. Data Infrastructure at LinkedIn. In Anastasios Kementsietsidis and Marcos
Antonio Vaz Salles, editors, IEEE 28th International Conference on Data Engineering (ICDE
2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pages 1370-1381. IEEE
Computer Society, https://doi.org/10.1109/ICDE.2012.147,2012.

Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A Language for Continuous
Queries over Streams and Relations. In Georg Lausen and Dan Suciu, editors, Database Pro-
gramming Languages, 9th International Workshop, DBPL 2003, Potsdam, Germany, September
6-8, 2003, Revised Papers, volume 2921 of Lecture Notes in Computer Science, pages 1-19.
Spﬂngen https://doi.org/10.1007/978-3-540-24607-7_1, 2003.

AgigA Tech, Inc. AGIGARAM DDR4 Non-Volatile DIMM. Retrieved April
12, 2021 from http://agigatech.com/wp-content/uploads/2014/08/
AGIGARAM-DDR4-Product-Brief.pdf, 2014.

Rakesh Agrawal and H. V. Jagadish. Recovery Algorithms for Database Machines with
Nonvolatile Main Memory. In Haran Boral and Pascal Faudemay, editors, Database Machines,
Sixth International Workshop, IWDM ’89, Deauville, France, June 19-21, 1989, Proceedings,
volume 368 of Lecture Notes in Computer Science, pages 269-285. Springer, https://doi.
org/10.1007/3-540-51324-8_41, 1989.

Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Stoica, Stratos Idreos,
Anastasia Ailamaki, and Mark Callaghan. Designing Access Methods: The RUM Con-
jecture. In Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amélie Marian, Letizia
Tanca, Ioana Manolescu, and Kostas Stefanidis, editors, Proceedings of the 19th Interna-
tional Conference on Extending Database Technology, EDBT 2016, Bordeaux, France, March
15-16, 2016, Bordeaux, France, March 15-16, 2016, pages 461-466. OpenProceedings.org,
https://doi.org/10.5441/002/edbt.2016.42, 2016.

Joy Arulraj, Justin J. Levandoski, Umar Farooq Minhas, and Per-Ake Larson. BzTree: A
High-Performance Latch-free Range Index for Non-Volatile Memory. PVLDB, 11(5):553-565,
http://www.vldb.org/pvldb/voll11/p553-arulraj.pdf, 2018.

https://doi.org/10.1109/ICDE.2012.147
https://doi.org/10.1007/978-3-540-24607-7_1
http://agigatech.com/wp-content/uploads/2014/08/AGIGARAM-DDR4-Product-Brief.pdf
http://agigatech.com/wp-content/uploads/2014/08/AGIGARAM-DDR4-Product-Brief.pdf
https://doi.org/10.1007/3-540-51324-8_41
https://doi.org/10.1007/3-540-51324-8_41
https://doi.org/10.5441/002/edbt.2016.42
http://www.vldb.org/pvldb/vol11/p553-arulraj.pdf

[AMC20]

[APD15]

[APGZ17]

[APM19]

[Axb20]

[BAFT09]

[BBS16]

[BANSS10]

[BFF107]

[BFKT12]

Lorenzo Affetti, Alessandro Margara, and Gianpaolo Cugola. TSpoon: Transactions on
a stream processor. j. Parallel Distributed Comput., 140:65-79, https://doi.org/10.
1016/j.jpdc.2020.03.003, 2020.

Joy Arulraj, Andrew Pavlo, and Subramanya Dulloor. Let’s Talk About Storage & Recovery
Methods for Non-Volatile Memory Database Systems. In Timos K. Sellis, Susan B. Davidson,
and Zachary G. Ives, editors, Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 707-722.
ACM, https://doi.org/10.1145/2723372.2749441, 2015.

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic Database
Management System Tuning Through Large-scale Machine Learning. In Semih Salihoglu,
Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 1009-1024. ACM, https://doi.org/10.1145/3035918.
3064029, 2017.

Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. Multi-Tier Buffer Management and
Storage System Design for Non-Volatile Memory. CoRR, abs/1901.10938, http://arxiv.
org/abs/1901.10938, 2019.

Jens Axboe. Flexible I/O Tester. 2020. Retrieved April 12, 2021 from https://github.
com/axboe/fio, version 3.7.

Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, and Nesime Tatbul.
Flexible and scalable storage management for data-intensive stream processing. In Martin L.
Kersten, Boris Novikov, Jens Teubner, Vladimir Polutin, and Stefan Manegold, editors, EDBT
2009, 12th International Conference on Extending Database Technology, Saint Petersburg, Rus-
sia, March 24-26, 2009, Proceedings, volume 360 of ACM International Conference Proceeding
Series, pages 934-945. ACM, https://doi.org/10.1145/1516360.1516467, 2009.

Stephan Baumann, Peter A. Boncz, and Kai-Uwe Sattler. Bitwise dimensional co-clustering
for analytical workloads. VLDB 7§, 25(3):291-316, https://doi.org/10.1007/
s00778-015-0417-vy, 2016.

Stephan Baumann, Giel de Nijs, Michael Strobel, and Kai-Uwe Sattler. Flashing Databases:
Expectations and Limitations. In Anastasia Ailamaki and Peter A. Boncz, editors, Proceedings
of the Sixth International Workshop on Data Management on New Hardware, DaMoN 2010,
Indianapolis, IN, USA, June 7, 2010, pages 9-18. ACM, https://doi.org/10.1145/
1869389.1869391, 2010.

Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel, Bradley C.
Kuszmaul, and Jelani Nelson. Cache-Oblivious Streaming B-trees. In SPAA 2007: Proceedings
of the 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Diego,
California, USA, Fune 9-11, 2007, pages 81-92, https://doi.org/10.1145/1248377.
1248393, 2007.

Irina Botan, Peter M. Fischer, Donald Kossmann, and Nesime Tatbul. Transactional Stream
Processing. In Elke A. Rundensteiner, Volker Markl, Ioana Manolescu, Sihem Amer-Yahia,
Felix Naumann, and Ismail Ari, editors, 15th International Conference on Extending Database
Technology, EDBT ’12, Berlin, Germany, March 27-30, 2012, Proceedings, pages 204-215. ACM,
https://doi.org/10.1145/2247596.2247622, 2012.

XIV

https://doi.org/10.1016/j.jpdc.2020.03.003
https://doi.org/10.1016/j.jpdc.2020.03.003
https://doi.org/10.1145/2723372.2749441
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/3035918.3064029
http://arxiv.org/abs/1901.10938
http://arxiv.org/abs/1901.10938
https://github.com/axboe/fio
https://github.com/axboe/fio
https://doi.org/10.1145/1516360.1516467
https://doi.org/10.1007/s00778-015-0417-y
https://doi.org/10.1007/s00778-015-0417-y
https://doi.org/10.1145/1869389.1869391
https://doi.org/10.1145/1869389.1869391
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/2247596.2247622

[BHG87]

[Bin13]

[BKSS17]

[BKSS19]

[Blo19]

[Car19]

[Car21]

[CEF'17]

[CFET15]

[CFKK20]

[Chu71]

[CJ15]

[CL85]

[CM86]

XV

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

Carsten Binnig. Scalable Data Management on Modern Networks. Datenbank-Spektrum,
18(3):203-209, https://doi.org/10.1007/s13222-018-0297-6, 2018.

David Broneske, Veit Képpen, Gunter Saake, and Martin Schiler. Accelerating Multi-
Column Selection Predicates in Main-Memory - The EIf Approach. In 33rd IEEE International
Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages
647-658. IEEE Computer Society, https://doi.org/10.1109/ICDE.2017.118, 2017.

David Broneske, Veit Képpen, Gunter Saake, and Martin Schéler. Efficient Evaluation
of Multi-Column Selection Predicates in Main-Memory. IEEE Trans. Knowl. Data Eng.,
31(7):1296-1311, https://doi.org/10.1109/TKDE.2018.2825349, 2019.

Paul Blockhaus. Parallelizing the Elf - A Task Parallel Approach. Bachelor thesis, University
of Magdeburg, December 2019.

Carnegie Mellon University Database Group. Peloton: The Self-Driving Database Manage-
ment System. Retrieved April 12, 2021 from https://pelotondb.io/, 2019.

Carnegie Mellon University Database Group. NoisePage — Self-Driving Database Manage-
ment System. Retrieved April 12, 2021 from https://noise.page/, 2021.

Paris Carbone, Stephan Ewen, Gyula Féra, Seif Haridi, Stefan Richter, and Kostas Tzoumas.
State Management in Apache Flink®: Consistent Stateful Distributed Stream Process-
ing. Proc. VLDB Endow., 10(12):1718-1729, https://doi.org/10.14778/3137765.
3137777, 2017.

Paris Carbone, Gyula Fora, Stephan Ewen, Seif Haridi, and Kostas Tzoumas. Lightweight
Asynchronous Snapshots for Distributed Dataflows. CoRR, abs/1506.08603, http://
arxiv.org/abs/1506.08603, 2015.

Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos. Beyond
Analytics: The Evolution of Stream Processing Systems. In David Maier, Rachel Pottinger,
AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, pages 2651-2658. ACM, https:
//doi.org/10.1145/3318464.3383131, 2020.

Leon Chua. Memristor — The Missing Circuit Element. IEEE Transactions on Circuit Theory,
18(5):507-519, 1971.

Shimin Chen and Qin Jin. Persistent B+-Trees in Non-Volatile Main Memory. PVLDB,
8(7):786-797, https://doi.org/10.14778/2752939.2752947, 2015.

K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global States
of Distributed Systems. ACM Trans. Comput. Syst., 3(1):63-75, https://doi.org/10.
1145/214451.214456, 1985.

Michael J. Carey and Waleed A. Muhanna. The Performance of Multiversion Concurrency
Control Algorithms. ACM Trans. Comput. Syst., 4(4):338-378, https://doi.org/10.
1145/6513.6517, 1986.

https://doi.org/10.1007/s13222-018-0297-6
https://doi.org/10.1109/ICDE.2017.118
https://doi.org/10.1109/TKDE.2018.2825349
https://pelotondb.io/
https://noise.page/
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.14778/3137765.3137777
http://arxiv.org/abs/1506.08603
http://arxiv.org/abs/1506.08603
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.1145/3318464.3383131
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/6513.6517
https://doi.org/10.1145/6513.6517

[CNFT09]

[CRF08]

[DAPT14]

[DBL15]

[DFI*13]

[DHK"15]

[DI18]

[DJB18]

[DKB*19]

[DMK*20]

[DPT*13]

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin C. Lee,
Doug Burger, and Derrick Coetzee. Better I/O Through Byte-Addressable, Persistent
Memory. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, pages 133-146, https:
//doi.org/10.1145/1629575.1629589, 2009.

Michael]J. Cahill, Uwe R6hm, and Alan D. Fekete. Serializable Isolation for Snapshot
Databases. In Jason Tsong-Li Wang, editor, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
pages729—738“AChL https://doi.org/10.1145/1376616.1376690, 2008.

Justin DeBrabant, Joy Arulraj, Andrew Pavlo, Michael Stonebraker, Stanley B. Zdonik,
and Subramanya Dulloor. A Prolegomenon on OLTP Database Systems for Non-Volatile
Memory. In Rajesh Bordawekar, Tirthankar Lahiri, Bugra Gedik, and Christian A. Lang,
editors, International Workshop on Accelerating Data Management Systems Using Modern
Processor and Storage Architectures - ADMS 2014, Hangzhou, China, September 1, 2014, pages
57-63, http://www.adms-conf.org/2014/adms14_debrabant.pdf, 2014.

CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan
Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL Server’s Memory-Optimized
OLTP Engine. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias, editors,
Proceedings of the ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2013, New York, NY, USA, June 22-27, 2013, pages 1243-1254. ACM, https:
//doi.org/10.1145/2463676.2463710, 2013.

Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, and Cristian
Ungureanu. Revisiting Hash Table Design for Phase Change Memory. In Peter Desnoyers
and Gokul Kandiraju, editors, Proceedings of the 3rd Workshop on Interactions of NVM/FLASH
with Operating Systems and Workloads, INFLOW 2015, Monterey, California, USA, October 4,
2015, pages 1:1-1:9. ACM, https://doi.org/10.1145/2819001.2819002, 2015.

Niv Dayan and Stratos Idreos. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree
Based Key-Value Stores via Adaptive Removal of Superfluous Merging. In Das et al. [DJB18],
https://doi.org/10.1145/3183713.3196927, pages 505-520.

Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors. Proceedings of the
2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018. ACM, 2018.

Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck, Matthias Uflacker, and
Hasso Plattner. Hyrise Re-engineered: An Extensible Database System for Research in
Relational In-Memory Data Management. In Herschel et al. [HGR"19], https://doi.
org/10.5441/002/edbt .2019.28, pages 313-324.

Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch, Phillip B.
Gibbons, and Julian Shun. Sage: Parallel Semi-Asymmetric Graph Algorithms for NVRAMs.
Proc. VLDB Endow., 13(9):1598-1613, https://doi.org/10.14778/3397230.3397251,
2020.

Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stanley B. Zdonik.
Anti-Caching: A New Approach to Database Management System Architecture. Proc. VLDB
Endow., 6(14):1942-1953, https://doi.org/10.14778/2556549.2556575, 2013.

XVI

https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1376616.1376690
http://www.adms-conf.org/2014/adms14_debrabant.pdf
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2819001.2819002
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.5441/002/edbt.2019.28
https://doi.org/10.5441/002/edbt.2019.28
https://doi.org/10.14778/3397230.3397251
https://doi.org/10.14778/2556549.2556575

[EGAT18]

[EGLT76]

[Fac20]

[FCPT11]

[FUJ20]

[GBS18]

[GDH™20]

[GGK™20]

[GKC™11]

[GKPT10]

[GM93]

[GPS19]

XVII

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong, Kim M.
Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing DRAM Footprint with
NVM in Facebook. In Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors, Proceedings of
the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018, pages
42:1-42:13. ACM, https://doi.org/10.1145/3190508.3190524, 2018.

Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger. The Notions of
Consistency and Predicate Locks in a Database System. Commun. ACM, 19(11):624-633,
https://doi.org/10.1145/360363.360369, 1976.

Facebook Open Source. RocksDB: A Persistent Key-Value Store for Flash and RAM Storage
(v6.13.3). Retrieved April 12, 2021 from https://github.com/facebook/rocksdb,
2020.

Franz Farber, Sang Kyun Cha, Jiirgen Primsch, Christof Bornhévd, Stefan Sigg, and Wolfgang
Lehner. SAP HANA Database - Data Management for Modern Business Applications.
SIGMOD Rec., 40(4):45-51, https://doi.org/10.1145/2094114.2094126, 2011.

FUJITSU Technology Solutions GmbH. libart. Retrieved June 18, 2021 from https://
github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/libart, 2020.

Philipp Gétze, Stephan Baumann, and Kai-Uwe Sattler. An NVM-Aware Storage Layout for
Analytical Workloads. In 34th IEEE International Conference on Data Engineering Workshops,
ICDE Workshops 2018, Paris, France, April 16-20, 2018, pages 110-115. IEEE Computer Society,
https://doi.org/10.1109/ICDEW.2018.00025, 2018.

Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali. Single
Machine Graph Analytics on Massive Datasets Using Intel Optane DC Persistent Memory.
Proc. VLDB Endow., 13(8):1304-1318, https://doi.org/10.14778/3389133.3389145,
2020.

Nikolaus Glombiewski, Philipp Gotze, Michael Korber, Andreas Morgen, and Bernhard
Seeger. Designing an Event Store for a Modern Three-layer Storage Hierarchy. Datenbank-
Spektrum, 20:211-222, https://doi.org/10.1007/s13222-020-00356-6, 2020.

B Govoreanu, GS Kar, YY Chen, V Paraschiv, S Kubicek, A Fantini, IP Radu, L Goux, S Clima,
R Degraeve, et al. 10% 10nm? Hf/HfO,, Crossbar Resistive RAM with Excellent Performance,
Reliability and Low-Energy Operation. In Electron Devices Meeting (IEDM), 2011 IEEE
International, IEDM, pages 31.36.31—-31.36.34. IEEE, 2011.

Martin Grund, Jens Kriiger, Hasso Plattner, Alexander Zeier, Philippe Cudré-Mauroux, and
Samuel Madden. HYRISE - A Main Memory Hybrid Storage Engine. PVLDB, 4(2):105-116,
https://doi.org/10.14778/1921071.1921077, 2010.

Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator: Extensibility and
Efficient Search. In Proceedings of the Ninth International Conference on Data Engineering,
April 19-23, 1993, Vienna, Austria, pages 209-218. IEEE Computer Society, https://doi.
org/10.1109/ICDE. 1993.344061, 1993.

Philipp Gotze, Constantin Pohl, and Kai-Uwe Sattler. Query Planning for Transactional
Stream Processing on Heterogeneous Hardware. In Holger Meyer, Norbert Ritter, Andreas
Thor, Daniela Nicklas, Andreas Heuer, and Meike Klettke, editors, Datenbanksysteme fiir
Business, Technologie und Web (BTW 2019), 18. Fachtagung des GI-Fachbereichs ,Datenbanken
und Informationssysteme" (DBIS), 4.-8. Mdrz 2019, Rostock, Germany, Workshopband, volume

https://doi.org/10.1145/3190508.3190524
https://doi.org/10.1145/360363.360369
https://github.com/facebook/rocksdb
https://doi.org/10.1145/2094114.2094126
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/libart
https://github.com/pmem/pmdk/tree/master/src/examples/libpmemobj/libart
https://doi.org/10.1109/ICDEW.2018.00025
https://doi.org/10.14778/3389133.3389145
https://doi.org/10.1007/s13222-020-00356-6
https://doi.org/10.14778/1921071.1921077
https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.1109/ICDE.1993.344061

[GS19]

[GS21]

[GSET94]

[GTS20a]

[GTS20b]

[GVRL*18]

[Har84]

[HGR*19]

[HHL20]

[HKWN18]

[HLN*14]

P-290 of LNI, pages 71-80. Gesellschaft fiir Informatik, Bonn, https://doi.org/10.
18420/btw2019-ws-05, 2019.

Philipp Gé6tze and Kai-Uwe Sattler. Snapshot Isolation for Transactional Stream Processing.
In Herschel et al. [HGR"19], https://doi.org/10.5441/002/edbt.2019.78, pages
650-653.

Philipp Gétze and Kai-Uwe Sattler. Transactional Stream Processing on Persistent Memory.
Inf. Syst. J., 2021. submitted in April 2021.

Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and Peter J. Weinberger.
Quickly Generating Billion-Record Synthetic Databases. In Richard T. Snodgrass and
Marianne Winslett, editors, Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data, Minneapolis, Minnesota, USA, May 24-27, 1994, pages 243-252.
ACM Press, https://doi.org/10.1145/191839.191886, 1994.

Philipp Go6tze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. Data Structure Primitives
on Persistent Memory: An Evaluation. CoRR, abs/2001.02172, http://arxiv.org/abs/
2001.02172, 2020.

Philipp Goétze, Arun Kumar Tharanatha, and Kai-Uwe Sattler. Data Structure Primitives on
Persistent Memory: An Evaluation. In Danica Porobic and Thomas Neumann, editors, 16th
International Workshop on Data Management on New Hardware, DaMoN 2020, Portland, Ore-
gon, USA, June 15, 2020, pages 15:1-15:3. ACM, https://doi.org/10.1145/3399666.
3399900, 2020.

Philipp Gétze, Alexander van Renen, Lucas Lersch, Viktor Leis, and Ismail Oukid. Data
Management on Non-Volatile Memory: A Perspective. Datenbank-Spektrum, 18(3):171-182,
https://doi.org/10.1007/s13222-018-0301-1, 2018.

Theo Hérder. Observations on Optimistic Concurrency Control Schemes. Inf. Syst., 9(2):111-
120, https://doi.org/10.1016/0306-4379(84)90020-6, 1984.

Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini Fundulaki, Carsten Binnig,
and Zoi Kaoudi, editors. Advances in Database Technology - 22nd International Confer-
ence on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019.
OpenProceedings.org, 2019.

Gabriel Haas, Michael Haubenschild, and Viktor Leis. Exploiting Directly-Attached NVMe
Arrays in DBMS. In CIDR 2020, 10th Conference on Innovative Data Systems Research,
Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org,
http://cidrdb.org/cidr2020/papers/pl6-haas-cidr20.pdf, 2020.

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. Endurable Tran-
sient Inconsistency in Byte-Addressable Persistent B+-Tree. In Nitin Agrawal and Raju
Rangaswami, editors, 16th USENIX Conference on File and Storage Technologies, FAST
2018, Oakland, CA, USA, February 12-15, 2018, pages 187-200. USENIX Association,
https://www.usenix.org/conference/fast18/presentation/hwang, 2018.

Weiwei Hu, Guoliang Li, Jiacai Ni, Dalie Sun, and Kian-Lee Tan. BP-Tree : A Predictive
B -Tree for Reducing Writes on Phase Change Memory. IEEE Trans. Knowl. Data Eng.,
26(10):2368-2381, https://doi.org/10.1109/TKDE.2014.5, 2014.

XVII

https://doi.org/10.18420/btw2019-ws-05
https://doi.org/10.18420/btw2019-ws-05
https://doi.org/10.5441/002/edbt.2019.78
https://doi.org/10.1145/191839.191886
http://arxiv.org/abs/2001.02172
http://arxiv.org/abs/2001.02172
https://doi.org/10.1145/3399666.3399900
https://doi.org/10.1145/3399666.3399900
https://doi.org/10.1007/s13222-018-0301-1
https://doi.org/10.1016/0306-4379(84)90020-6
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://www.usenix.org/conference/fast18/presentation/hwang
https://doi.org/10.1109/TKDE.2014.5

[HSHO7]

[HYY"05]

[Int16]

[Int17]

[Int19]

[Int20a]

[Int20b]

[Int20c]

[Int20d]

[Int21a]

[Int21b]

[Int21c]

[Int21d]

XIX

Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamilton. Architecture of a
Database System. Found. Trends Databases, 1(2):141-259, https://doi.org/10.1561/
1900000002, 2007.

M Hosomi, H Yamagishi, T Yamamoto, K Bessho, Y Higo, K Yamane, H Yamada, M Shoji,
H Hachino, C Fukumoto, et al. A Novel Nonvolatile Memory with Spin Torque Transfer
Magnetization Switching: Spin-RAM. IEDM Tech. Dig, 459, 2005.

Intel Corporation. The C++ bindings to libpmemobj. Retrieved June 04, 2021 from
https://pmem.io/libpmemobj-cpp/, 2016.

Intel Corporation. Intel® SSD DC P4501 Series . Retrieved June 09,
2021 from https://ark.intel.com/content/www/us/en/ark/products/96927/
intel-ssd-dc-p4501-series-1-0tb-2-5in-pcie-3-1-x4-3d1-tlc.html, 2017.

Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Reference Manual.
2019. Retrieved April 12, 2021 from https://software. intel.com/sites/default/
files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf,
Chapter 11 - Intel® Optane™ DC Persistent Memory.

Intel Corporation. Achieve Greater Insight from Your Data with Intel® Op-
tane™ Persistent Memory. Retrieved April 20, 2021 from https://www.
intel.com/content/dam/www/public/us/en/documents/product-briefs/
optane-persistent-memory-200-series-brief.pdf, 2020.

Intel Corporation. Intel® Memory Latency Checker v3.9. Retrieved
April 12, 2021 from https://software.intel.com/en-us/articles/
intelr-memory-latency-checker, 2020.

Intel Corporation. Intel® Optane™ Persistent Memory - Start Up Guide, Revision 2.0.
Retrieved April 22, 2021 from https://www.intel.com/content/dam/support/us/
en/documents/memory-and-storage/data-center-persistent-mem/Intel_
Optane_Persistent_Memory_Start_Up_Guide.pdf, 2020.

Intel Corporation. Persistent Memory Development Kit. Retrieved April 12, 2021 from
http://pmem.io/pmdk, 2020.

Intel Corporation. eADR: New Opportunities for Persistent Mem-
ory Applications. Retrieved June 03, 2021 from https://
software.intel.com/content/www/us/en/develop/articles/
eadr-new-opportunities-for-persistent-memory-applications.html, 2021.

Intel Corporation. Intel® Optane™ Persistent Memory 200 Series Brief. Retrieved
June 03, 2021 from https://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/optane-persistent-memory-200-series-brief.
pdf, 2021.

Intel Corporation. Intel® Transactional Synchronization Extensions (Intel® TSX) Mem-
ory and Performance Monitoring Update for Intel® Processors. Retrieved September
7, 2021 from https://www.intel.com/content/www/us/en/support/articles/
000059422 /processors.html, 2021.

Intel Corporation. Performance Monitoring Impact of Intel® Transactional Synchro-
nization Extension Memory Ordering Issue. Retrieved September 7, 2021 from https:

https://doi.org/10.1561/1900000002
https://doi.org/10.1561/1900000002
https://pmem.io/libpmemobj-cpp/
https://ark.intel.com/content/www/us/en/ark/products/96927/intel-ssd-dc-p4501-series-1-0tb-2-5in-pcie-3-1-x4-3d1-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/96927/intel-ssd-dc-p4501-series-1-0tb-2-5in-pcie-3-1-x4-3d1-tlc.html
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel_Optane_Persistent_Memory_Start_Up_Guide.pdf
http://pmem.io/pmdk
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/optane-persistent-memory-200-series-brief.pdf
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf

[1IZAT18]

[IZH'18]

[JBGS21]

[JGBS20]

[JGBS21]

[JS15]

[KBG'18]

[KKNT08]

[KN11]

//www.intel.com/content/dam/support/us/en/documents/processors/
Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.
pdf, 2021.

Stratos Idreos, Kostas Zoumpatianos, Manos Athanassoulis, Niv Dayan, Brian Hentschel,
Michael S. Kester, Demi Guo, Lukas M. Maas, Wilson Qin, Abdul Wasay, and Yiyou Sun.
The Periodic Table of Data Structures. IEEE Data Eng. Bull., 41(3):64-75, http://sites.
computer.org/debull/A18sept/p64.pdf, 2018.

Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and Demi Guo. The
Data Calculator: Data Structure Design and Cost Synthesis from First Principles and Learned
Cost Models. In Das et al. [DJB18], https://doi.org/10.1145/3183713.3199671,
pages 535-550.

Muhammad Attahir Jibril, Alexander Baumstark, Philipp Gétze, and Kai-Uwe Sattler. JIT
happens: Transactional Graph Processing in Persistent Memory meets Just-In-Time Com-
pilation. In Yannis Velegrakis, Demetris Zeinalipour-Yazti, Panos K. Chrysanthis, and
Francesco Guerra, editors, Proceedings of the 24th International Conference on Extending
Database Technology, EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021, pages 37-48. Open-
Proceedings.org, https://doi.org/10.5441/002/edbt.2021.05, 2021.

Muhammad Attahir Jibril, Philipp Gotze, David Broneske, and Kai-Uwe Sattler. Selective
Caching: A Persistent Memory Approach for Multi-Dimensional Index Structures. In
36th IEEE International Conference on Data Engineering Workshops, ICDE Workshops 2020,
Dallas, TX, USA, April 20-24, 2020, pages 115-120. IEEE, https://doi.org/10.1109/
ICDEW49219.2020.00010, 2020.

Muhammad Attahir Jibril, Philipp Gotze, David Broneske, and Kai-Uwe Sattler. Selective
Caching: A Persistent Memory Approach for Multi-Dimensional Index Structures. Distrib
Parallel Databases, https://doi.org/10.1007/s10619-021-07327-0, 2021.

Theodore Johnson and Vladislav Shkapenyuk. Data Stream Warehousing In Tidalrace.
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper4.pdf, In CIDR 2015, Seventh
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7,
2015, Online Proceedings [DBL15].

Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Redesigning LSMs for Nonvolatile Memory with NoveLSM. In Haryadi S.
Gunawi and Benjamin Reed, editors, 2018 USENIX Annual Technical Conference, USENIX
ATC 2018, Boston, MA, USA, July 11-13, 2018, pages 993-1005. USENIX Association, https:
//www.usenix.org/conference/atc18/presentation/kannan, 2018.

Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B.
Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg,
and Daniel J. Abadi. H-Store: A High-Performance, Distributed Main Memory Transaction
Processing System. Proc. VLDB Endow., 1(2):1496-1499, https://doi.org/10.14778/
1454159.1454211, 2008.

Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP&OLAP Main Memory
Database System Based on Virtual Memory Snapshots. In Serge Abiteboul, Klemens B6hm,
Christoph Koch, and Kian-Lee Tan, editors, Proceedings of the 27th International Conference
on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 195-206. IEEE
Computer Society, https://doi.org/10.1109/ICDE.2011.5767867, 2011.

https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/Performance-Monitoring-Impact-of-TSX-Memory-Ordering-Issue-604224.pdf
http://sites.computer.org/debull/A18sept/p64.pdf
http://sites.computer.org/debull/A18sept/p64.pdf
https://doi.org/10.1145/3183713.3199671
https://doi.org/10.5441/002/edbt.2021.05
https://doi.org/10.1109/ICDEW49219.2020.00010
https://doi.org/10.1109/ICDEW49219.2020.00010
https://doi.org/10.1007/s10619-021-07327-0
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper4.pdf
https://www.usenix.org/conference/atc18/presentation/kannan
https://www.usenix.org/conference/atc18/presentation/kannan
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1109/ICDE.2011.5767867

[KNRT11]

[KRMT10]

[KS04]

[KSKN18]

[LCC21]

[LCW20]

[LHO"19]

[LHWL20]

[Lie20]

[Lin138]

[Lin19]

[Lin21]

[LKN13]

[LLO19]

XXI

Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: a Distributed Messaging System for Log
Processing. In Proceedings of the NetDB, Athens, Greece, Jun. 12, 2011, volume 6, pages 1-
7, https://www.microsoft.com/en-us/research/wp-content/uploads/2017/
09/Kafka.pdf, 2011.

Sohrab Kianian, Glen Rosendale, Monte Manning, Darlene Hamilton, XM Henry Huang,
Karl Robinson, Young Weon Kim, and Thomas Rueckes. A 3d stackable carbon nanotube-
based nonvolatile memory (nram). In 2010 Proceedings of the European Solid State Device
Research Conference, pages 404-407. IEEE, 2010.

Andi Kleen and SuSE Labs. numactl(8) - Linux man page. Retrieved June 08, 2021 from
https://linux.die.net/man/8/numactl, 2002,2004.

Wook-Hee Kim, Jihye Seo, Jinwoong Kim, and Beomseok Nam. clfB-tree: Cacheline
Friendly Persistent B-tree for NVRAM. TOS, 14(1):5:1-5:17, https://doi.org/10.
1145/3129263, 2018.

Gang Liu, Leying Chen, and Shimin Chen. Zen: a High-Throughput Log-Free OLTP Engine
for Non-Volatile Main Memory. Proc. VLDB Endow., 14(5):835-848, http://www.v1ldb.
org/pvldb/vol14/p835-1iu.pdf, 2021.

Jihang Liu, Shimin Chen, and Lujun Wang. LB+-Trees: Optimizing Persistent Index
Performance on 3DXPoint Memory. Proc. VLDB Endow., 13(7):1078-1090, https:
//doi.org/10.14778/3384345.3384355, 2020.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm.
Evaluating persistent memory range indexes. Proc. VLDB Endow., 13(4):574-587, http:
//www.vl1ldb.org/pvldb/vol13/p574-1lersch.pdf, 2019.

Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash: Scalable Hashing on
Persistent Memory. Proc. VLDB Endow., 13(8):1147-1161, https://doi.org/10.14778/
3389133.3389134, 2020.

Leret Liebermann. Eignung von Trie-Datenstrukturen fiir nicht-fliichtigen RAM. Bachelor
thesis, Technische Universitit Ilmenau, January 2020.

Linux Kernel Organization, Inc. Ext4 Filesystem. Retrieved April 22, 2021 from https:
//www.kernel.org/doc/Documentation/filesystems/ext4. txt, 2018.

Linux Kernel Organization, Inc. The SGI XFS Filesystem. Retrieved April 22, 2021 from
https://www.kernel.org/doc/Documentation/filesystems/xfs.txt, 2019.

Linux Kernel Organization, Inc. Direct Access for files. Retrieved April 22, 2021 from
https://www.kernel.org/doc/Documentation/filesystems/dax. txt, 2021.

Viktor Leis, Alfons Kemper, and Thomas Neumann. The Adaptive Radix Tree: ARTful
Indexing for Main-Memory Databases. In 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 38-49, https://doi.
org/10.1109/ICDE.2013.6544812, 2013.

Lucas Lersch, Wolfgang Lehner, and Ismail Oukid. Persistent Buffer Management with
Optimistic Consistency. In Neumann and Salem [NS19], https://doi.org/10.1145/
3329785.3329931, pages 14:1-14:3.

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/Kafka.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/09/Kafka.pdf
https://linux.die.net/man/8/numactl
https://doi.org/10.1145/3129263
https://doi.org/10.1145/3129263
http://www.vldb.org/pvldb/vol14/p835-liu.pdf
http://www.vldb.org/pvldb/vol14/p835-liu.pdf
https://doi.org/10.14778/3384345.3384355
https://doi.org/10.14778/3384345.3384355
http://www.vldb.org/pvldb/vol13/p574-lersch.pdf
http://www.vldb.org/pvldb/vol13/p574-lersch.pdf
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.14778/3389133.3389134
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
https://www.kernel.org/doc/Documentation/filesystems/xfs.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/3329785.3329931
https://doi.org/10.1145/3329785.3329931

[LLSt15]

[LLST17]

[LMF+16]

[LMM*13]

[LN96]

[LOLS17]

[LPD17]

[LS79]

[LZY110]

[Man02]

[MG11]

[Moe98]

Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang. High
Performance Transactions in Deuteronomy. http://cidrdb.org/cidr2015/Papers/
CIDR15_Paperl5.pdf, In Seventh Biennial Conference on Innovative Data Systems Research,
CIDR 2015, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings [DBL15].

Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H. Noh. WORT:
Write Optimal Radix Tree for Persistent Memory Storage Systems. In Geoff Kuenning
and Carl A. Waldspurger, editors, 15th USENIX Conference on File and Storage Technologies,
FAST 2017, Santa Clara, CA, USA, February 27 - March 2, 2017, pages 257-270. USENIX As-
sociation, https://www.usenix.org/conference/fast17/technical-sessions/
presentation/lee-se-kwon, 2017.

Harald Lang, Tobias Miihlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann, and
Alfons Kemper. Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both
Vectorization and Compilation. In Ozcan et al. [OKM16], https://doi.org/10.1145/
2882903.2882925,page5311—326

Juchang Lee, Michael Muehle, Norman May, Franz Faerber, Vishal Sikka, Hasso Plattner,
Jens Kriiger, and Martin Grund. High-Performance Transaction Processing in SAP HANA.
IEEE Data Eng. Bull, 36(2):28—-33, http://sites.computer.org/debull/A13june/
hanal.pdf, 2013.

Sherry Listgarten and Marie-Anne Neimat. Modelling Costs for a MM-DBMS. In
Online-Proceedings of the First International Workshop on Real-Time Databases: Issues
and Applications, March 7-8, 1996, Newport Beach, California, USA, pages 72-78, http:
//www.eng.uci.edu/faculty/klin/rtdb/LM. ps, 1996.

Lucas Lersch, Ismail Oukid, Wolfgang Lehner, and Ivan Schreter. An analysis of LSM
caching in NVRAM. In Proceedings of the 13th International Workshop on Data Management
on New Hardware, DaMoN 2017, Chicago, IL, USA, May 15, 2017, pages 9:1-9:5. ACM,
https://doi.org/10.1145/3076113.3076123, 2017.

Jianhong Li, Andy Pavlo, and Siying Dong. NVMRocks: RocksDB on
Non-Volatile Memory Systems. Retrieved April 12, 2021 from https:
//web.archive.org/web/20200217045318/istc-bigdata.org/index.php/
nvmrocks-rocksdb-on-non-volatile-memory-systems/, 2017.

Butler Lampson and Howard E. Sturgis. Crash recovery in a distributed data storage system.
This unpublished paper was widely circulated in samizdat., June 1979.

Benjamin C Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu,
and Doug Burger. Phase-Change Technology and the Future of Main Memory. IEEE Micro,
30(1), 2010.

Stefan Manegold. Understanding, Modeling, and Improving Main-Memory Database Perfor-
mance. PhD thesis, Universiteit van Amsterdam, 2002.

Zoltan Majo and Thomas R. Gross. Memory System Performance in a NUMA Multicore
Multiprocessor. In Paula Ta-Shma, José Moreira, and Liuba Shrira, editors, Proceedings of of
SYSTOR 2011: The 4th Annual Haifa Experimental Systems Conference, Haifa, Israel, May 30 -
June 1, 2011, page 12. ACM, https://doi.org/10.1145/1987816.1987832,2011.

Guido Moerkotte. Small Materialized Aggregates: A Light Weight Index Structure for Data
Warehousing. In Ashish Gupta, Oded Shmueli, and Jennifer Widom, editors, VLDB’98,

XXII

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper15.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper15.pdf
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/2882903.2882925
http://sites.computer.org/debull/A13june/hana1.pdf
http://sites.computer.org/debull/A13june/hana1.pdf
http://www.eng.uci.edu/faculty/klin/rtdb/LM.ps
http://www.eng.uci.edu/faculty/klin/rtdb/LM.ps
https://doi.org/10.1145/3076113.3076123
https://web.archive.org/web/20200217045318/istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://web.archive.org/web/20200217045318/istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://web.archive.org/web/20200217045318/istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems/
https://doi.org/10.1145/1987816.1987832

[MRM*17]

[MT20]

[MTA09]

[MTZ*15]

[MWA 03]

[NCCT19]

[NH12]

[NMK15]

[NS19]

[OBGK18]

XXIII

Proceedings of 24rd International Conference on Very Large Data Bases, August 24-27, 1998,
New York City, New York, USA, pages 476—487. Morgan Kaufmann, http://www.v1ldb.
org/conf/1998/p476.pdf, 1998.

Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik Chakraborty,
Hemant Bhanawat, and Kishor Bachhav. SnappyData: A Unified Cluster for Streaming,
Transactions and Interactice Analytics. In 8th Biennial Conference on Innovative Data
Systems Research, CIDR 2017, Chaminade, CA, USA, January 8-11, 2017, Online Proceedings.
www.cidrdb.org, http://cidrdb.org/cidr2017/papers/p28-mozafari-cidrl?7.
pdf, 2017.

Inc. Micron Technology. 3D XPoint Technology. Retrieved April 12, 2021 from https://

www.micron.com/products/advanced-solutions/3d-xpoint-technology, 2020.

René Milller, Jens Teubner, and Gustavo Alonso. Data Processing on FPGAs. Proc. VLDB
Endow, 2(1):910-921, https://doi.org/10.14778/1687627.1687730, 20009.

John Meehan, Nesime Tatbul, Stan Zdonik, Cansu Aslantas, Ugur Cetintemel, Jiang Du, Tim
Kraska, Samuel Madden, David Maier, Andrew Pavlo, Michael Stonebraker, Kristin Tufte,
and Hao Wang. S-Store: Streaming Meets Transaction Processing. Proc. VLDB Endow.,
8(13):2134-2145, https://doi.org/10.14778/2831360.2831367, 2015.

Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query
Processing, Approximation, and Resource Management in a Data Stream Management
System. In CIDR 2003, First Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 5-8, 2003, Online Proceedings. www.cidrdb.org, http://
www-db.cs.wisc.edu/cidr/cidr2003/program/p22.pdf, 2003.

Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam. Write-
Optimized Dynamic Hashing for Persistent Memory. In Arif Merchant and Hakim
Weatherspoon, editors, 17th USENIX Conference on File and Storage Technologies, FAST
2019, Boston, MA, February 25-28, 2019, pages 31-44. USENIX Association, https:
//www.usenix.org/conference/fast19/presentation/nam, 2019.

Dushyanth Narayanan and Orion Hodson. Whole-System Persistence. In Tim Harris and
Michael L. Scott, editors, Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2012, London, UK, March
3-7, 2012, pages 401-410. ACM, https://doi.org/10.1145/2150976.2151018, 2012.

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. Fast Serializable Multi-Version
Concurrency Control for Main-Memory Database Systems. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 677-689, https://doi.org/10.1145/2723372.2749436,
2015.

Thomas Neumann and Ken Salem, editors. Proceedings of the 15th International Workshop
on Data Management on New Hardware, DaMoN 2019, Amsterdam, The Netherlands, 1 July
2019. ACM, 2019.

Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi. Learning
State Representations for Query Optimization with Deep Reinforcement Learning. In
Sebastian Schelter, Stephan Seufert, and Arun Kumar, editors, Proceedings of the Second
Workshop on Data Management for End-To-End Machine Learning, DEEM@SIGMOD 2018,

http://www.vldb.org/conf/1998/p476.pdf
http://www.vldb.org/conf/1998/p476.pdf
http://cidrdb.org/cidr2017/papers/p28-mozafari-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p28-mozafari-cidr17.pdf
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://doi.org/10.14778/1687627.1687730
https://doi.org/10.14778/2831360.2831367
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p22.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p22.pdf
https://www.usenix.org/conference/fast19/presentation/nam
https://www.usenix.org/conference/fast19/presentation/nam
https://doi.org/10.1145/2150976.2151018
https://doi.org/10.1145/2723372.2749436

[OBL*14]

[OBL*17]

[0CGO96]

[OKM16]

[OKW17]

[OLNT16]

[OSL16]

[PA16]

[PGS17]

[Pro12]

[QGR11]

[Reed3]

Houston, TX, USA, June 15, 2018, pages 4:1-4:4. ACM, https://doi.org/10.1145/
3209889.3209890, 2018.

Ismail Oukid, Daniel Booss, Wolfgang Lehner, Peter Bumbulis, and Thomas Willhalm.
SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery. In Alfons Kemper
and Ippokratis Pandis, editors, Tenth International Workshop on Data Management on New
Hardware, DaMoN 2014, Snowbird, UT, USA, June 23, 2014, pages 8:1-8:7. ACM, https:
//doi.org/10.1145/2619228.2619236, 2014.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Willhalm, and
Grégoire Gomes. Memory management techniques for large-scale persistent-main-memory
systems. Proc. VLDB Endow., 10(11):1166-1177, https://doi.org/10.14778/3137628.
3137629, 2017.

Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The Log-
Structured Merge-Tree (LSM-Tree). Acta Inf., 33(4):351-385, https://doi.org/10.
1007/s002360050048, 1996.

Fatma Ozcan, Georgia Koutrika, and Sam Madden, editors. Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, Fune 26 - July 01, 2016. ACM, 2016.

Ismail Oukid, Robert Kettler, and Thomas Willhalm. Storage class memory and databases:
Opportunities and challenges. it Inf. Technol., 59(3):109, https://doi.org/10.1515/
itit-2016-0052, 2017.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner.
FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory.
In Ozcan et al. [OKM16], https://doi.org/10.1145/2882903.2915251, pages 371-
386.

Jiaxin Ou, Jiwu Shu, and Youyou Lu. A High Performance File System for Non-Volatile
Main Memory. In Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys 2016, London, United Kingdom, April 18-21, 2016, pages 12:1-12:16, https://doi.
org/10.1145/2901318.2901324, 2016.

Andrew Pavlo and Matthew Aslett. What’s Really New with NewSQL? SIGMOD Rec.,
45(2):45-55, https://doi.org/10.1145/3003665.3003674, 2016.

Constantin Pohl, Philipp G6tze, and Kai-Uwe Sattler. A cost model for data stream process-
ing on modern hardware. In Rajesh Bordawekar and Tirthankar Lahiri, editors, International
Workshop on Accelerating Analytics and Data Management Systems Using Modern Proces-
sor and Storage Architectures, ADMS@VLDB 2017, Munich, Germany, September 1, 2017,
http://www.adms-conf.org/2017/camera-ready/adms2017_final.pdf, 2017.

Adrian Proctor. NV-DIMMs - The Fastest Tier in Your Storage Strat-
egy. Retrieved April 12, 2021 from https://docplayer.net/
13101700-Nv-dimm-fastest-tier-in-your-storage-strategy.html, 2012.

Moinuddin K Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase Change Memory:
From Devices to Systems. Synthesis Lectures on Computer Architecture, 6(4):1-134, https:
//doi.org/10.2200/s00381ed1v01y201109cac018, 2011.

David P. Reed. Implementing Atomic Actions on Decentralized Data. ACM Trans. Comput.
Syst., 1(1):3-23, https://doi.org/10.1145/357353.357355, 1983.

XXIV

https://doi.org/10.1145/3209889.3209890
https://doi.org/10.1145/3209889.3209890
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.1145/2619228.2619236
https://doi.org/10.14778/3137628.3137629
https://doi.org/10.14778/3137628.3137629
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1515/itit-2016-0052
https://doi.org/10.1515/itit-2016-0052
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/2901318.2901324
https://doi.org/10.1145/2901318.2901324
https://doi.org/10.1145/3003665.3003674
http://www.adms-conf.org/2017/camera-ready/adms2017_final.pdf
https://docplayer.net/13101700-Nv-dimm-fastest-tier-in-your-storage-strategy.html
https://docplayer.net/13101700-Nv-dimm-fastest-tier-in-your-storage-strategy.html
https://doi.org/10.2200/s00381ed1v01y201109cac018
https://doi.org/10.2200/s00381ed1v01y201109cac018
https://doi.org/10.1145/357353.357355

[RKJT00]

[RKK'14]

[RROO]

[RSI78]

[SAJA09]

[Sca20]

[SDUP15]

[SGKS19]

[Sin20]

[SNI17]

[SR86]

[SS06]

XXV

Thomas Rueckes, Kyoungha Kim, Ernesto Joselevich, Greg Y. Tseng, Chin-Li Cheung,
and Charles M. Lieber. Carbon nanotube-based nonvolatile random access memory for
molecular computing. Science, 289(5476):94-97, https://doi.org/10.1126/science.
289.5476.94, 2000.

Dulloor Subramanya Rao, Sanjay Kumar, Anil S. Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. System Software for Persistent Memory. In
Ninth Eurosys Conference 2014, EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014,
pages 15:1-15:15, https://doi.org/10.1145/2592798.2592814, 2014

Jun Rao and Kenneth A. Ross. Making B*-Trees Cache Conscious in Main Memory. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May
16-18, 2000, Dallas, Texas, USA, pages 475-486, https://doi.org/10.1145/342009.
335449, 2000.

Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis II. System Level
Concurrency Control for Distributed Database Systems. ACM Trans. Database Syst., 3(2):178—
198, https://doi.org/10.1145/320251.320260, 1978.

Radu Stoica, Manos Athanassoulis, Ryan Johnson, and Anastasia Ailamaki. Evaluating
and Repairing Write Performance on Flash Devices. In Peter A. Boncz and Kenneth A.
Ross, editors, Proceedings of the Fifth International Workshop on Data Management on New
Hardware, DaMoN 2009, Providence, Rhode Island, USA, June 28, 2009, pages 9-14. ACM,
https://doi.org/10.1145/1565694.1565697, 2009.

Steve Scargall. Programming Persistent Memory. Apress, 2020.

David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. NVC-Hashmap:
A Persistent and Concurrent Hashmap For Non-Volatile Memories. In Proceedings of the
3rd VLDB Workshop on In-Memory Data Mangement and Analytics, IMDM@VLDB 2015,
Kohala Coast, HI, USA, August 31, 2015, pages 4:1-4:8. ACM, https://doi.org/10.
1145/2803140.2803144, 2015.

Marc Seidemann, Nikolaus Glombiewski, Michael Korber, and Bernhard Seeger. Chron-
icleDB: A High-Performance Event Store. ACM Trans. Database Syst., 44(4):13:1-13:45,
https://doi.org/10.1145/3342357, 2019.

SingleStore Inc. SingleStore is The Database of Now™ Powering Modern Applications and
Analytical Systems. 2020. Retrieved April 12, 2021 from https://www.singlestore.
com/, previously MemSQL.

SNIA. NVM Programming Model (NPM) - Version 1.2. Retrieved April
21, 2021 from https://www.snia.org/sites/default/files/technical_work/
final/NVMProgrammingModel v1.2.pdf, 2017.

Michael Stonebraker and Lawrence A. Rowe. The Design of Postgres. In Carlo Zaniolo,
editor, Proceedings of the 1986 ACM SIGMOD International Conference on Management
of Data, Washington, DC, USA, May 28-30, 1986, pages 340-355. ACM Press, https:
//doi.org/10.1145/16894.16888, 1986.

Ori Shalev and Nir Shavit. Split-Ordered Lists: Lock-Free Extensible Hash Tables. 7. ACM,
53(3):379-405, https://doi.org/10.1145/1147954.1147958, 2006.

https://doi.org/10.1126/science.289.5476.94
https://doi.org/10.1126/science.289.5476.94
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/320251.320260
https://doi.org/10.1145/1565694.1565697
https://doi.org/10.1145/2803140.2803144
https://doi.org/10.1145/2803140.2803144
https://doi.org/10.1145/3342357
https://www.singlestore.com/
https://www.singlestore.com/
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/16894.16888
https://doi.org/10.1145/1147954.1147958

[SS17]

[SSSW08]

[Tha19]

[The16]

[THSW15]

[TMSF03]

[Vik20]

[VRLK18]

[VRVLT19]

[VTRC11]

[WALT17]

[WJ14]

[WK90]

Marc Seidemann and Bernhard Seeger. ChronicleDB: A High-Performance Event Store. In
Proceedings of the 20th International Conference on Extending Database Technology, EDBT
2017, Venice, Italy, March 21-24, 2017, pages 144-155, https://doi.org/10.5441/002/
edbt.2017.14, 2017.

Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley Williams. The
missing memristor found. Nature, 453(7191):80-83, http://dx.doi.org/10.1038/
nature06932, 2008.

Arun Kumar Tharanatha. Designing an LSM-Tree Optimized for Persistent Memory. Master
thesis, Technische Universitat llmenau, July 2019.

The Apache Software Foundation. Apache Cassandra. 2016.

Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. General In-
cremental Sliding-Window Aggregation. Proc. VLDB Endow., 8(7):702-713, https:
//doi.org/10.14778/2752939.2752940, 2015.

Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting Punctuation
Semantics in Continuous Data Streams. IEEE Trans. Knowl. Data Eng., 15(3):555-568,
https://doi.org/10.1109/TKDE.2003.1198390, 2003.

Viking Technology. DDR4 NVDIMM-N. Retrieved April 12, 2021 from https:
//www.vikingtechnology.com/wp-content/uploads/vVikingTechnology_

NVDIMM_ProductBrief.pdf, 2020.

Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi Hashida,
Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. Managing Non-Volatile
Memory in Database Systems. In Das et al. [DJB18], https://doi.org/10.1145/
3183713.3196897, pages 1541-1555.

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons Kemper.
Persistent Memory I/O Primitives. In Neumann and Salem [NS19], https://doi.org/
10.1145/3329785.3329930,pages12&—127.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell.
Consistent and Durable Data Structures for Non-Volatile Byte-Addressable Memory. In
Gregory R. Ganger and John Wilkes, editors, 9th USENLX Conference on File and Storage
Technologies, San Jose, CA, USA, February 15-17, 2011, pages 61-75. USENIX, http://www.
usenix.org/events/fastl1/tech/techAbstracts.html#Venkataraman, 2011.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An Empirical Evaluation
of In-Memory Multi-Version Concurrency Control. Proc. VLDB Endow., 10(7):781-792,
https://doi.org/10.14778/3067421.3067427,2017.

Tianzheng Wang and Ryan Johnson. Scalable Logging through Emerging Non-Volatile
Memory. Proc. VLDB Endow., 7(10):865-876, https://doi.org/10.14778/2732951.
2732960, 2014.

Kyu-Young Whang and Ravi Krishnamurthy. Query Optimization in a Memory-Resident

Domain Relational Calculus Database System. ACM Trans. Database Syst., 15(1):67-95,
https://doi.org/10.1145/77643.77646, 1990.

XXVI

https://doi.org/10.5441/002/edbt.2017.14
https://doi.org/10.5441/002/edbt.2017.14
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1038/nature06932
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.14778/2752939.2752940
https://doi.org/10.1109/TKDE.2003.1198390
https://www.vikingtechnology.com/wp-content/uploads/VikingTechnology_NVDIMM_ProductBrief.pdf
https://www.vikingtechnology.com/wp-content/uploads/VikingTechnology_NVDIMM_ProductBrief.pdf
https://www.vikingtechnology.com/wp-content/uploads/VikingTechnology_NVDIMM_ProductBrief.pdf
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3329785.3329930
https://doi.org/10.1145/3329785.3329930
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.1145/77643.77646

[WLL18]

[WOR13]

[WR11]

[WV02]

[XJXS17]

[XS16a]

[XS16b]

[YKHT20]

[YWCT15]

[ZDI14]

[ZDK*t21]

XXVII

Tianzheng Wang, Justin J. Levandoski, and Per-Ake Larson. Easy Lock-Free Indexing in
Non-Volatile Memory. In 34th IEEE International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-19, 2018, pages 461-472. IEEE Computer Society, https:
//doi.org/10.1109/ICDE.2018.00049, 2018.

XiaoJian Wu, Sheng Qiu, and A. L. Narasimha Reddy. SCMFS: A File System for Storage
Class Memory and its Extensions. ACM Trans. Storage, 9(3):7:1-7:23, https://doi.org/
10.1145/2501620.2501621, 2013.

XiaoJian Wu and A. L. Narasimha Reddy. SCMFS: A File System for Storage Class Memory.
In Conference on High Performance Computing Networking, Storage and Analysis, SC 2011,
Seattle, WA, USA, November 12-18, 2011, pages 39:1-39:11, https://doi.org/10.1145/
2063384.2063436, 2011.

Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algo-
rithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann, 2002.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A Hybrid Index Key-Value Store
for DRAM-NVM Memory Systems. In Dilma Da Silva and Bryan Ford, editors, 2017 USENIX
Annual Technical Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017,
pages 349-362. USENIX Association, https://www.usenix.org/conference/atcl17/
technical-sessions/presentation/xia, 2017.

Jian Xu and Steven Swanson. NOVA: A Log-structured File System for Hybrid Volatile/Non-
volatile Main Memories. In 14th USENIX Conference on File and Storage Technologies, FAST
2016, Santa Clara, CA, USA, February 22-25, 2016, pages 323-338, https://www.usenix.
org/conference/fast16/technical-sessions/presentation/xu, 2016.

Jian Xu and Steven Swanson. NOVA: A Log-Structured File System for Hybrid Volatile/Non-
Volatile Main Memories. login Usenix Mag., 41(3), https://www.usenix.org/
publications/login/fall2016/xu, 2016.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swanson. An
Empirical Guide to the Behavior and Use of Scalable Persistent Memory. In Sam H. Noh
and Brent Welch, editors, 18th USENIX Conference on File and Storage Technologies, FAST
2020, Santa Clara, CA, USA, February 24-27, 2020, pages 169-182. USENIX Association,

https://www.usenix.org/conference/fast20/presentation/yang, 2020.

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bing-
sheng He. NV-Tree: Reducing Consistency Cost for NVM-based Single Level Systems. In
Jiri Schindler and Erez Zadok, editors, Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015, pages
167-181. USENIX Association, https://www.usenix.org/conference/fast15/
technical-sessions/presentation/yang, 2015.

Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimization of
expensive queries in complex event processing. In Curtis E. Dyreson, Feifei Li, and M. Tamer
Ozsu, editors, International Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, pages 217-228. ACM, https://doi.org/10.1145/2588555.
2593671, 2014.

Mikhail Zarubin, Patrick Damme, Alexander Krause, Dirk Habich, and Wolfgang Lehner.
SIMD-MIMD Cocktail in a Hybrid Memory Glass: Shaken, not Stirred. In Bruno Wasser-
mann, Michal Malka, Vijay Chidambaram, and Danny Raz, editors, SYSTOR ’21: The 14th

https://doi.org/10.1109/ICDE.2018.00049
https://doi.org/10.1109/ICDE.2018.00049
https://doi.org/10.1145/2501620.2501621
https://doi.org/10.1145/2501620.2501621
https://doi.org/10.1145/2063384.2063436
https://doi.org/10.1145/2063384.2063436
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/publications/login/fall2016/xu
https://www.usenix.org/publications/login/fall2016/xu
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast15/technical-sessions/presentation/yang
https://www.usenix.org/conference/fast15/technical-sessions/presentation/yang
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1145/2588555.2593671

[Zeu13]

[ZHW18]

[ZSC+19]

[ZWZH20]

ACM International Systems and Storage Conference, Haifa, Israel, June 14-16, 2021, pages
17:1-17:12. ACM, https://doi.org/10.1145/3456727.3463782, 2021.

Steffen Zeuch. Query Execution on Modern CPUs. PhD thesis, Humboldt University of
Berlin, Germany, 2018.

Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-Performance Hashing Index
Scheme for Persistent Memory. In Andrea C. Arpaci-Dusseau and Geoff Voelker, editors,
13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,
Carlsbad, CA, USA, October 8-10, 2018, pages 461-476. USENIX Association, https:
//www.usenix.org/conference/osdil8/presentation/zuo, 2018.

Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. DPTree: Differential Indexing
for Persistent Memory. Proc. VLDB Endow., 13(4):421-434, https://doi.org/10.14778/
3372716.3372717, 2019.

Shuhao Zhang, Yingjun Wu, Feng Zhang, and Bingsheng He. Towards Concurrent Stateful
Stream Processing on Multicore Processors. In 36th IEEE International Conference on
Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1537-1548. IEEE,
https://doi.org/10.1109/ICDE48307.2020.00136, 2020.

XXVIII

https://doi.org/10.1145/3456727.3463782
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/osdi18/presentation/zuo
https://doi.org/10.14778/3372716.3372717
https://doi.org/10.14778/3372716.3372717
https://doi.org/10.1109/ICDE48307.2020.00136

ACRONYMS

2PC Two-Phase Commit. 105, 124, 125, 131, 141, 144

ACID Atomicity, Consistency, Isolation, Durability. 2, 6, 16, 89-91, 97-99, 103, 104, 107,
110, 112, 141, 144

ART Adaptive Radix Tree. 29, 36

ATT Address Translation Tree. 116, 117, 120, 121, 134

BDCC Bitwise Dimensional Co-Clustering. 67-73, 140

BOCC Backward-oriented Optimistic Concurrency Control. 122-124, 127-129, 131

CAS Compare-and-Swap. 16, 43, 101

CC Concurrency Control. 98-100, 126, 129-131, 136

clwb cache line write back. 19, 106, 128, 143

CTS Commit Timestamp. 100, 108

DAX Direct Access. 12

DBMS Database Management System. 1, 31, 64, 92, 95, 97, 98, 100, 108, 111-114, 136

DCPMM Data Center Persistent Memory Module. 11, 12, 14, 15, 22, 26, 50, 52, 61-63, 66, 81,
120, 139

DTS Deletion Timestamp. 100

eADR extended Asynchronous DRAM Refresh. 15, 143

FIFO First In, First Out. 79

FOCC Forward-oriented Optimistic Concurrency Control. 122

HBM High Bandwidth Memory. 109, 111

HTAP Hybrid Transactional/Analytical Processing. 1, 66

HTM Hardware Transactional Memory. 143

IoT Internet of Things. 1

LFU Least Frequently Used. 79, 82

LLA Least Likely to be Accessed. 79, 82-84, 88, 141

LRU Least Recently Used. 79, 82

XXIX

LSM-Tree Log-Structured Merge-Tree. 26, 28, 29, 31, 34, 37, 41, 42, 53, 54, 64, 79, 116, 136, 140

MVCC Multi-Version Concurrency Control. 66, 91, 92, 98—103, 122-131, 136, 141

NRAM Nanotube RAM. 11

NUMA Non-Uniform Memory Access. 22, 96, 97, 127, 128, 130, 137, 144

OLAP Online Analytical Processing. 65, 66, 68, 88, 114

OLTP Online Transaction Processing. 5, 14, 65, 66, 88, 90, 94, 97

000 Out-of-Order. 94, 117, 121, 132, 134-136

PCM Phase-Change Memory. 10, 11, 29

PMDK Persistent Memory Development Kit. 19-21, 23, 32, 40, 43-46, 49, 53-55, 63, 77, 107,

123, 127, 131, 132

PMem Persistent Memory. III, V, 2-20, 22-36, 38-55, 57, 59-73, 75-85, 87-92, 96, 99-101,

103, 104, 106, 107, 109, 111, 112, 114-124, 126, 127, 130-137, 139-144
PMwCAS persistent multi-word compare-and-swap. 28, 40, 43, 44, 46

RDMA Remote Direct Memory Access. 144

RRAM Resistive RAM. 10

S2PL Strict Two-Phase Locking. 122-124, 127-129, 131
SIMD Single Instruction, Multiple Data. 109, 143

SMAs Small Materialized Aggregates. 69, 71, 115, 133, 140
SNIA Storage Networking Industry Association. 12

STT-MRAM Spin Transfer Torque Magnetic RAM. 11

TAB'-Tree Temporal Aggregated BT -Tree. 115-121, 132-136

TSP Transactional Stream Processing. 111, V, 3, 4, 6-8, 65, 67, 72, 88, 90-92, 94, 95, 97, 99,

100, 108, 111-114, 122, 130, 136, 141, 143

XXX

LisT OF FIGURES

1.1
1.2
1.3

2.1

2.2
2.3

24

3.1
3.2
3.3
34
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

XXXI

Simplified scenario mixing streams, tables, and queries. Adapted from [BFKT12].. . . . 2
Memory and Storage Hierarchy. 3
Overview of contributions allocated to the chapters of this dissertation. 7
Typical access latency of memory and storage technologies in terms of processor cycles.

Adapted from [QGRI1]. o 9
Application’s basic file access options to PMem devices. 12

Placement strategies for PMem in the hardware landscape. Dotted lines denote optional

CompPONeNt.l e e e e 14
Various costs depending on the data placement (cf. [GGK'20]). 18
Overview of typical data and index structuresin DBMSs. 31
Different data node layouts, where: M - number of entriesand J € Nyg. 35
PMem-based LSM-Tree Layout. 35
Move DRAM datatoaPMemmnode. 42
Design primitives for merging multiple nodes to the nextlevel. 43
Individually realizing failure atomicity with an LSM-Tree as an example. 44
Searching for a key withinanode (E1). 47
Traversing a tree w/o search (E2). o 48
Iterating through nodes (E3). 50
Inserting akey intoanode (E4). L 51
Splitting anode (E5). e 52
Move data from DRAM to aPMemnode (E6). 53
Merging sorted data in persistent nodes to a new persistent node (E7).. 55
Erasing an entry fromanode (E8). L 56
Balancing twonodes (E9).. 58

3.16
3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
5.2
53
5.4
55

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Merging twonodes (E10). 59

Performance profile of primary design primitives. 60
Single clustered block structure. Lo o 69
Three-layer storage layout of a table for analytical workloads. 70
Point queries on clustering approach. Lo o o oL 73
Range scan varying block sizes using non-key attributes. 73
Key-based range scan on a table of one million tuples. 74
Range scan using non-key attributes on a table of one million tuples. 74
Example table. 76
Conceptual Elf based on example table. 76
OLAP and DRAM optimized array layout based on example table. 76
Organization of persistent ElIf in PMempool. 77
Build and query performance of EIf. o L Lo oL 81
Throughput of dynamic caching variants on the uniform dataset. 82
Continuous throughput of cached Elf variants for exact-match queries. 84
Continuous throughput of cached Elf variants for range queries. 85
Continuous throughput of cached Elf variants for partial-match queries. 86
Sequential vs. parallel range and partial-match queries. 87
Smart metering and energy monitoring use case. 90
Overview of linking operators and transactional semantics for TSP. 93
Strategies for defining transaction boundaries. 0oL 94
Transaction components. Lo Lo e e e e e e e e 101

An example scenario for handling concurrency and consistency: One continuous writing
query (BOT, write, Write, Commit) and an ad-hoc reading query (BoT, Read, Read,
commit). The first ToTable operator has already seen a commit, the second not yet.
Therefore, LastcTs still holds the previous version timestamp, and also ReadcTs of the
ad-hoc query keeps its first seen version.o Lo L 104

Sketched space of decision-making for a stateful operator. 110

ChronicleDB’s TAB'-Tree (primary index) layout including SMAs (secondary index). . 115

Handling of OOO events in ChronicleDB. 117
Overview of PMem-based approaches applied to ChronicleDB. 118
Effect of the number of versions with 20 readers and medium-sized transactions. 126
Transaction management overhead with medium-sized transactions. 126
Resilience and scalability of CC protocols on PMem with medium-sized transactions. . 127
Abort Rate of CC protocols on PMem with medium-sized transactions. 127

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

Resilience and scalability of CC protocols on PMem with short transactions.
Resilience and scalability of CC protocols on PMem with long transactions.
Temporal proportions of the query recovery steps.

Insert performance when keeping TAB™-Tree’s right flank on PMem vs. DRAM depend-
ing on the flush batch size. L

Insert and query performance for TABT-Tree aggregates and inner index nodes when
maintainedonPMem. L L L Lo

Update, lookup, and recovery tradeoffs for address translation maintained on DRAM,
PMem, and flash.

Insert, recovery, and query performance of proposed OOO queue variants.

Insertion time for 100M events with varying OOO rates with merges into the index. . .

LisT OF TABLES

2.1

2.2

3.1

3.2

3.3

4.1

5.1

XXXIII

Server setup used throughout our experiments.

Measured performance and other characteristics of memory/storage technologies within
OUL SEIVEL. .+ . v v v vt v et et e e et e e e e e e e

Design primitives and micro-operations for PMem-aware trees (8§ — applicable). . . .

Calculated number of records per node and memory consumption of a node chain (50M
records) fora givennode size.

Workload assignment for our main design primitives.

Example BDCC key calculation from two dimensional columns.

Decision based on contention and transaction length.

133

135

135

40

130

LisT OF ALGORITHMS

O 0 N1 O U1 R WD

—_
o

FPTree:lookupPositionInLeaf(leaf, key) 32
FPTree:insertInLeaf(leaf, key, value) 33
wBPlusTree:lookupPositionInLeaf(leaf, key) 34
wBPlusTree:insertInLeaf(leaf, key, value) 34
PatriciaTrie::lookup(key, length, value) 37
Read(txnID, key, outValue) 102
Write(txnID, key, value) 102
Commit(txnID) o o e e e e e e e e e e e e e 103
newEntry(txnlD, iPos, dPos, newValue) 106
setLastCTS(groupID, txnID) e 107

XXXIV

ERKLARUNG

Ich versichere, dass ich die vorliegende Arbeit ohne unzulissige Hilfe Dritter und ohne Benutzung
anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt
iibernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

An der inhaltlich-materiellen Erstellung der vorliegenden Arbeit waren keine weiteren als die an den
entsprechenden Stellen genannten oder zitierten Personen beteiligt. Insbesondere habe ich hierfiir nicht
die entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Per-
sonen) in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen
fir Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder dhnlicher Form einer Priifungs-
behorde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklarung als Tauschungsver-
such bewertet wird und gemaf3 §7 Abs. 10 der Promotionsordnung den Abbruch des Promotionsver-
fahrens zur Folge hat.

Ilmenau, April 25, 2022 Philipp Gotze

	Introduction
	Problem Statement and Objectives
	Contributions and Outline

	Persistent Memory - A New Paradigm
	Persistent Memory
	Technologies
	Properties
	Access Model

	Integration into the Hardware Landscape
	PMem below DRAM
	PMem side-by-side with DRAM
	PMem-only

	Data Management Challenges
	Failure Atomicity
	Concurrency
	Property Utilization
	Data Placement

	Persistent Memory Programming
	Initial Measures
	Conclusion

	Persistent Index and Data Structures
	Related Work
	Index and Data Structures for PMem
	Evaluating Data Structure Design Primitives

	Data Structure PMem Adaptions
	Glimpse into the Design Space
	B+-Trees
	LSM-Trees
	Skip-Lists & Tries

	Design Primitives
	Design Goals
	Overview and Definitions
	Micro-Operations
	Primitives
	Extendability
	Metrics

	Evaluation
	Read Operations
	Insert-based Operations
	Erase-based Operations
	Performance Profiles

	General Insights & Design Guidelines
	Challenges & Characteristics
	Insights

	Summary

	Persistent Analytical Storage Layouts
	Related Work
	PMem-based Engines targeting Analytical Workloads
	Selective Persistence

	Clustering Approach
	Bitwise Dimensional Co-Clustering
	Analytical Table Structure
	Operations and Optimizations
	Evaluation

	Multi-dimensional Index Approach
	The Elf Data Structure
	Persistent Memory Adaptions
	Selective Caching
	Evaluation

	Summary

	Stateful Stream Processing
	Transactional Stream Processing Model
	Linking Operators
	Transaction Boundaries
	Transactional State Management
	Shared Queryable States

	Related Work
	Transactional Stream Processing
	Scalable Stateful Stream Processing
	Multi-Version Concurrency Control

	Snapshot Isolation Protocols
	Data Structures
	Multi-Version Concurrency Control Protocol
	Lightweight Two-Phase Commit Protocol

	Persistent Memory Adaptions
	Query and State Recovery
	Query Planning for Transactional Stream Processing
	Hardware Considerations
	Cost Factors
	Prototypical Cost Model

	Use Case: Event Stream Processing
	ChronicleDB
	TAB+-Tree Adaption for PMem
	Storage Layout Simplifications through PMem
	Out-of-Order Handling with PMem

	Evaluation
	Transactional Stream Processing
	Event Processing

	Summary

	Conclusion
	Contributions
	Future Work

	Bibliography
	Acronyms
	List of Figures
	List of Tables
	List of Algorithms

