
Merging Queries in OLTP Workloads

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von
Robin Rehrmann (M. Sc.)

Gutachter: Prof. Dr.-Ing. Wolfgang Lehner
Technische Universität Dresden
Fakultät Informatik
Institut für Systemarchitektur
Lehrstuhl für Datenbanken
01062 Dresden

Prof. Dr. Bernhard Seeger
Philipps-Universität Marburg
Mathematik und Informatik
Datenbanksysteme
Hans-Meerwein-Straße 6
35032 Marburg

Co-Supervisor & Fachreferent: Prof. Dr. Carsten Binnig
Technische Universität Darmstadt
Fachbereich Informatik
Data Management Lab
64289 Darmstadt

Dresden, 06. März 2023

2

Abstract

OLTP applications are usually executed by a high number of clients in parallel and are
typically faced with high throughput demand as well as a constraint latency requirement
for individual statements. In enterprise scenarios, they often face the challenge to deal
with overload spikes resulting from events such as Cyber Monday or Black Friday. The
traditional solution to prevent running out of resources and thus coping with such spikes
is to use a significant over-provisioning of the underlying infrastructure. In this thesis,
we analyze real enterprise OLTP workloads with respect to statement types, complexity,
and hot-spot statements. Interestingly, our findings reveal that workloads are often read-
heavy and comprise similar query patterns, which provides a potential to share work
of statements belonging to different transactions. In the past, resource sharing has been
extensively studied for OLAP workloads. Naturally, the question arises, why studies
mainly focus on OLAP and not on OLTP workloads?

At first sight, OLTP queries often consist of simple calculations, such as index look-ups
with little sharing potential. In consequence, such queries – due to their short execution
time – may not have enough potential for the additional overhead. In addition, OLTP
workloads do not only execute read operations but also updates. Therefore, sharing work
needs to obey transactional semantics, such as the given isolation level and read-your-own-
writes.

This thesis presents THE LEVIATHAN, a novel batching scheme for OLTP workloads, an
approach for merging read statements within interactively submitted multi-statement
transactions consisting of reads and updates. Our main idea is to merge the execution
of statements by merging their plans, thus being able to merge the execution of not only
complex, but also simple calculations, such as the aforementioned index look-up. We
identify mergeable statements by pattern matching of prepared statement plans, which
comes with low overhead. For obeying the isolation level properties and providing read-
your-own-writes, we first define a formal framework for merging transactions running
under a given isolation level and provide insights into a prototypical implementation of
merging within a commercial database system.

Our experimental evaluation shows that, depending on the isolation level, the load in the
system, and the read-share of the workload, an improvement of the transaction through-
put by up to a factor of 2.5x is possible without compromising the transactional seman-
tics. Another interesting effect we show is that with our strategy, we can increase the
throughput of a real enterprise workload by 20%.

3

4

CONTENTS

1 INTRODUCTION 9

Summary of Contributions . 11

Outline . 12

2 WORKLOAD ANALYSIS 13

2.1 Analyzing OLTP Benchmarks . 13
2.1.1 YCSB . 14
2.1.2 TATP . 14
2.1.3 TPC Benchmark Scenarios . 15
2.1.4 Summary . 16

2.2 Analyzing OLTP Workloads from Open Source Projects 17
2.2.1 Characteristics of Workloads . 18
2.2.2 Summary . 18

2.3 Analyzing Enterprise OLTP Workloads . 18
2.3.1 Overview of Reports about OLTP Workload Characteristics . . . 19
2.3.2 Analysis of SAP Hybris Workload . 20
2.3.3 Summary . 25

2.4 Conclusion . 26

3 RELATED WORK ON QUERY MERGING 27

3.1 Merging the Execution of Operators . 28

3.2 Merging the Execution of Subplans . 29

3.3 Merging the Results of Subplans . 31

3.4 Merging the Execution of Full Plans . 32

3.5 Miscellaneous Works on Merging . 33

3.6 Discussion . 34

4 MERGING STATEMENTS IN MULTI STATEMENT TRANSACTIONS 37

4.1 Overview of Our Approach . 38
4.1.1 Examples . 38
4.1.2 Why Naïve Merging Fails . 40

4.2 THE LEVIATHAN Approach . 41

5

4.3 Formalizing THE LEVIATHAN Approach . 43
4.3.1 Transaction Theory . 43

4.3.2 Merging Under MVCC . 45

4.4 Merging Reads Under Different Isolation Levels 52
4.4.1 Read Uncommitted . 53

4.4.2 Read Committed . 54

4.4.3 Repeatable Read . 55

4.4.4 Snapshot Isolation . 55

4.4.5 Serializable . 57

4.4.6 Discussion . 59

4.5 Merging Writes Under Different Isolation Levels 59
4.5.1 Read Uncommitted . 60

4.5.2 Read Committed . 61

4.5.3 Snapshot Isolation . 62

4.5.4 Serializable . 65

4.5.5 Handling Dependencies . 67

4.5.6 Discussion . 69

5 SYSTEM MODEL 71

5.1 Definition of the Term “Overload” . 71

5.2 Basic Queuing Model . 72
5.2.1 Option (1): Replacement with a Merger Thread 73

5.2.2 Option (2): Adding Merger Thread 74

5.2.3 Using Multiple Merger Threads . 74

5.2.4 Evaluation . 76

5.3 Extended Queue Model . 78
5.3.1 Option (1): Replacement with a Merger Thread 79

5.3.2 Option (2): Adding Merger Thread 79

5.3.3 Evaluation . 79

6 IMPLEMENTATION 83

6.1 Background: SAP HANA . 83

6.2 System Design . 84
6.2.1 Read Committed . 86

6.2.2 Snapshot Isolation . 87

6.3 Merger Component . 88
6.3.1 Overview . 88

6.3.2 Dequeuing . 89

6.3.3 Merging . 91

6.3.4 Sending . 93

6.3.5 Updating MTx State . 94

6.4 Challenges in the Implementation of Merging Writes 95

6 CONTENTS

6.4.1 SQL String Implementation . 95

6.4.2 Update Count . 95

6.4.3 Error Propagation . 96

6.4.4 Abort and Rollback . 97

7 EVALUATION 99

7.1 Benchmark Settings . 99

7.2 System Settings . 100
7.2.1 Experiment I: End-to-end Response Time Within a SAP Hybris

System . 100

7.2.2 Experiment II: Dequeuing Strategy 100

7.2.3 Experiment III: Merging Improvement on Different Statement,
Transaction and Workload Types 110

7.2.4 Experiment IV: End-to-End Latency in YCSB 113

7.2.5 Experiment V: Breakdown of Execution in YCSB 115

7.2.6 Discussion of System Settings . 116

7.3 Merging in Interactive Transactions . 116
7.3.1 Experiment VI: Merging TATP in Read Uncommitted 116

7.3.2 Experiment VII: Merging TATP in Read Committed 117

7.3.3 Experiment VIII: Merging TATP in Snapshot Isolation 118

7.4 Merging Queries in Stored Procedures . 119
Experiment IX: Merging TATP Stored Procedures in Read Committed . 119

7.5 Merging SAP Hybris . 119
7.5.1 Experiment X: CPU-time Breakdown on HANA Components . . 120

7.5.2 Experiment XI: Merging Media Query in SAP Hybris 121

7.5.3 Discussion of our Results in Comparison with Related Work . . . 123

8 CONCLUSION 125

8.1 Summary . 125

8.2 Future Research Directions . 128

REFERENCES 131

A UML CLASS DIAGRAMS 143

CONTENTS 7

8 CONTENTS

1
Introduction

Consumer behavior is not constant, but ever decreasing and increasing, creating spikes
on several days of the year, such as Black Friday [Apf66]. In times of the internet, more
customers tend to buy products online, instead of local stores [Tea16, Ado19]. In conse-
quence, online stores face overload spikes in web-site accesses on these days [HCW+19].

For example, Walmart in Canada had to face 7.5 million page views per minute on Black
Friday, 2012, causing their site to go offline for several minutes [Web16]. In 2013, Aka-
mai counted over 9 million page views per minute (V/PM) on Thanksgiving as well as
Black Friday, and more than 11 million V/PM on Cyber Monday [Aka15a]. In 2014, the
V/PM increased to 13 million [Aka15b] on Cyber Monday and for 2015, Akamai reports
21.3 million V/PM on Black Friday and 23.5 million V/PM on Cyber Monday [Aka16].
Alibaba is fighting what they call the “transaction tsunami” [HCW+19], an increase of
incoming sales transactions per second (TPS) by a factor of 121× on chinese Single’s Day,
as described by the red line in Figure 1.1. Overall, the online traffic increased by 155%
on Cyber Monday and 220% on Black Friday, compared to a normal shopping day in 2016
[Gil16], and analyses have shown that in 2019, 20% of all online sales, world-wide, were
conducted in the days between Thanksgiving and Cyber Monday [AMA20].

Figure 1.1: “Transaction tsunami” in Alibaba on Singles Day [HCW+19], showing the
response time of the system on the y-axis (blue) and the normalized transactions per
second (TPS) on the y2-axis (red) over time.

9

Being able to handle such spike overloads with low latency, is critical. For example,
[An17] reports an increase in the likelihood of bounce by 32%, when page-load times
take 1 to 3 seconds. Additionally, [Inc17] reports that every second saved in page-loading
time, increases revenue for Walmart by 2%. For Amazon, every 100 ms of page-load time
improvement increases revenue by 1% [Inc17]. In turn, Amazon loses 1.6 Billion $ per
year for every additional second of page-load [Eat12].

Naturally, companies prepare for such overload spikes by acquiring and over provision-
ing hardware, as well as developing and optimizing for better performing and scaling
systems: To handle the “transaction tsunami”, Alibaba created its own file system Po-
larFS [CLW+18], and storage X-engine [HCW+19], to provide the constant latency de-
scribed by the blue line in Figure 1.1. On top of their storage and file system, they de-
veloped PolarDB [CLW+18], equipped with Ocean Vista [FG19], a transaction protocol
optimized for the workload run in Alibaba. Amazon is said to have entered the mar-
ket of cloud computing, as they had to provide additional infrastructure to handle the
Christmas workload [Vog11].

For the support of increasing workloads, not only additional hardware needs to be ac-
quired, the applications need to scale on that hardware as well. Such application usually
consists of multiple tiers, including instances of application servers on top of database
management systems (DBMS). Application servers submit their workload through dif-
ferent read and write requests running in transactions. Therefore, these workloads are
called “online transaction processing” (OLTP) [GGP09]. Theoretically, applications may
scale by adding more application servers, which build product web pages with infor-
mation retrieved from the DBMS. When the number of clients increases, the number of
requests to the database also increases. Even with the introduction of load balancers,
proxys, and additional caches, the load on the system may increase to the point that the
use of distributed DBMS is inevitable [TvS02]. However, distributed DBMSs need fine
tuning of parameters, such as fragmentation, allocation, and replication of data for effi-
ciently handling OLTP workloads [EKA19]. Besides resource management, distributed
DBMS need to be able to apply security policies, handle deadlocks and find efficient rout-
ing strategies within the network. But foremost, distributed DBMS face the difficulties of
synchronizing write access by providing distributed concurrency control [RSA18].

As online page views increased in the past for events such as Black Friday, a further
growth of overload spikes is to be expected for the next years. In consequence, DBMS
also need to be able to scale, to handle these overload spikes. This calls for techniques
that make such scaling possible. However, scaling is limited, not only by properties
inherent to DBMS, such as concurrency control [YBP+14], or logging, locking, latching
and buffer management [HAMS08], but also hardware properties, such as NUMA effects
[ZB91, NDB+14] and the dark silicon [EBA+11]. The acquisition and maintenance of
additional hardware is also very expensive. So is the development and optimization of
systems, as well as the extended planning for such overload spikes.

An alternative to the expensive over-provisioning is the batching technique. Commercial
stores already make use of such technique: Instead of buying several items individually,
stores offer baskets or shopping ventures for placing and buying several items at once.
The concept of shopping ventures also found its way into e-commerce, such as Amazon,
Alibaba, or Hybris. In computer science, batching is an already established technique to
scale large systems under high load on the hardware level [PVV09, MG19, FM16, BKY19].
Batching techniques are also applied in DBMS, e.g. Multi-Query Optimization [Sel88].
Most of these techniques, however, were developed for analysis scenarios, the so-called
“online analytical processing” workloads (OLAP) [CCS93].

In this work, we present THE LEVIATHAN, which brings together (1) the strategies de-
veloped for OLAP workloads with (2) the low-latency demand of OLTP workloads in

10 Chapter 1 Introduction

e-commerce stores. On an intuitive level, we introduce shopping ventures inside of the
DBMS. Multiple costumers place one or more items in the same venture. In regular inter-
vals, we empty the venture, performing the execution of all orders at once. Afterwards,
we hand the respective receipt to each customer for all the items bought. More techni-
cally, instead of processing requests in the DBMS immediately, we delay their execution:
When many requests enter the system, one worker executes all requests in one batch,
leaving enough resources to handle further incoming requests. To be more precise, re-
quests enter the system as SQL statements. Since the number of distinct SQL statements
is limited in typical OLTP workloads, we keep a venture for each statement. We batch
the execution of a venture, by transforming all its ingredients into a new SQL statement,
which is then processed by a single thread. To describe the process of transforming mul-
tiple statements into a single statement, we use the term merging.

Naturally, the question arises, how we provide the correct visibility for all statements. For
example two customers cannot buy the last tooth paste in a store; one customer will be
able to see the last tooth paste, the other will see an empty box. Likewise, different SQL
statements have different visibilities of data inside the DBMS. We solve this, by providing
a new venture, each time the visibility of data changes. On a high level explanation this
means, THE LEVIATHAN is a DBMS that provides a venture per SQL statement per data
visibility and batches the execution of each venture by creating a new SQL statement
from its ingredients.

SUMMARY OF CONTRIBUTIONS

In this thesis, we provide new concepts and best practices for merging techniques in
OLTP workloads. In addition, we apply our techniques to a real world workload to
evaluate our assumptions. Our contributions can be summarized as follows

(1) We analyze the ratio and number of statements of a large variety of OLTP workloads.
The ultimate goal is to find patterns that allow for optimization.Our analysis shows
that in general, OTLP workloads are read-heavy with a few simple hotspot queries,
leading us to formalize our idea of merging these statements.

(2) In a proof-of-concept, we merge read-statements of single-statement transactions.

(3) We broaden our approach to multi-statement transactions and different transaction
isolation levels.

(4) We implement our approach into a research prototype, based on a commercial state-
of-the-art database. Our implementation is able to apply merging, with low execution
overhead for different isolation levels, supported the underlying database system.

(5) We evaluate our approach against an enterprise workload as a real world example.
We detail the influence of our system design aspects and its limitations in real world
applications.

11

2 3 4 5

6 7 8

Figure 1.2: Structure of this thesis

OUTLINE

Figure 1.2 visualises the remaining structure of this thesis, which is as follows.

Chapter 2 shows the batching potential by analyzing OLTP workloads and formulates
the requirements for batching strategies in such workloads.

In Chapter 3, we discuss the related work with regard to our formulated requirements.

Chapter 4 discusses how we provide isolation level properties when merging. We formu-
late our framework, how to detect mergeable statements under different isolation levels
and how these isolation levels restrict the mergeabilities of read and write statements.

In Chapter 5, we model the expected throughput improvement of our approach. The
model follows the idea that overloaded systems may be interpreted as stationary queues.

Chapter 6 presents our implementation in a research prototype based on SAP HANA.

Next, Chapter 7 evaluates the parameters of our system, scaling with multiple clients, and
a break down of our execution. We show the throughput improvement of our approach
on interactive transactions and stored procedures.

Chapter 8 concludes this thesis with a summary.

12 Chapter 1 Introduction

2
Workload Analysis

In this chapter, we analyze typical OLTP applications regarding three important ques-
tions:

1. How many distinct query statements are used by a typical OLTP application?

2. Which statement patterns are most frequently used?

3. What is the execution-time of the query statements?

The motivation of the first question is to identify the sharing potential in real OLTP work-
loads: if the number of distinct statements is low then the sharing potential in general
may be considered high. Furthermore, as motivated in the introduction, merging single-
statement read-only transactions bears some high sharing potential without increasing
the complexity of the multi-query framework within the DBMS. Therefore, the aim of the
second question is to see if these types of transactions are dominant in many real-world
OLTP applications or if the workload in reality is far more complex and typically consists
of multi-statement transactions or exhibits a high update ratio.

Our third question aims at a possible solution: If the execution of query statements is
rather low, a light-weight approach is required. The longer the execution takes, the more
time we have for analyzing and optimizing the batching algorithm.

2.1 ANALYZING OLTP BENCHMARKS

This section analyzes common OLTP benchmarks used to evaluate enterprise systems for
similar characteristic patterns. Intuitively, we expect that homogeneous workloads benefit
the most from batching strategies. By homogeneous, we mean that a small number of
different statement types is responsible for a large proportion of the workload’s execution

13

time. We refer to such statements types as hotspot-queries or -statements1. The aim is
to find common patterns, such as the use of hotspot queries, or a high read ratio, which
allow us to apply batching strategies. To exemplify, we chose a few of the more important
OLTP benchmarks, namely YCSB, TATP and the OLTP benchmarks defined by TPC, and
present these in more detail. Some of the analysis and especially the one of TPC-C is
contributed by our earlier analysis in [RBB+18].

In the following, we analyze benchmarks for their merging potential, i.e., their read-ratio,
their use of distinct read statements and the execution time of such statements.

2.1.1 YCSB

The Yahoo! Cloud Service Benchmark (YCSB) [CST+10] is a benchmark designed for the
evaluation of key-value stores, used quite often to also evaluate OLTP systems. The stan-
dard specification defines six different workloads, with a single simple read-statement,
each, and a varying read ratio of 50%, 95%, and 100%.

A look at the number of OLTP systems evaluated by YCSB or a modified YCSB marks
its significance: For example, multi-statement transactions with varying number of state-
ments per transactions implemented in YCSB, are used to evaluate Cicada [LKA17], a sys-
tem using optimistic concurrency control. Wang et al [WK16] also use YCSB with trans-
actions consisting of ten read or read-modify-write operations to evaluate their mostly-
optimistic concurrency control system. Other systems, such as QueCC [QS18] use a broad
mix of YCSB multi-statement transactions, because it submits simple queries to the en-
gine, which helps evaluating their architecture under high load. Moreover, other OLTP
engines, e.g., [AAP+17, YBP+14, DKG18] use YCSB with transactions consisting of 16
read or update statements to evaluate their OLTP execution engine or concurrency con-
trol implementation.

Considering the characteristics, we conclude that YCSB is read-heavy, with a single hotspot
query.

2.1.2 TATP

The Telecommunication Application Transaction Processing (TATP) benchmark [SNR09] sim-
ulates a telco application and consists of seven transactions accessing four tables. As we
draw on TATP in our evaluation, we present its transactions in more detail, here.

Get Subscriber Data consists of a single simple select-statement string that looks up a
tuple by its primary key. Our internal analysis in a commercial DBMS revealed that on
average that statement is executed in 29 µs. This transaction makes 35% of the TATP
workload’s submission.

Get New Destination consists of a single complex select-statement string that joins two
tables on their foreign key relation. The query performs a look-up on two values of the
first table and a range look-up on the second. On a commercial DBMS, the measurement
the average execution time of that statement was 37 µs. This transaction makes 10% of
the TATP workload’s submission.

1Throughout this work, we use the terms statement, query, and request interchangeably

14 Chapter 2 Workload Analysis

Get Access Data consists of a single simple select-statement string that requests a single
tuple from a table, based on two filters. On average, it is executed in 24 µs, as our mea-
surements on a commercial DBMS revealed. This transaction makes 35% of the TATP
workload’s submission.

Update Subscriber Data consists of two different update statements and makes 2% of
the workload’s submission. We measured both statements in isolation2 on a commercial
DBMS. The first update on average is executed in 99 µs, while the second update on
average is performed in 62 µs.

Update Location consists of a single update statement and makes 14% of the workload’s
submission. Since the evaluation of that statement requires a string comparison, this
statement is on average executed within 15 508 µs, as measured on a commercial DBMS.

Insert Call Forwarding consists of three different statements. The first two are simple se-
lect statements that look-up a single value, first by some string-parameter, next by some
foreign key look-up. Because of the string-parameter, the first select statement requires
on average 15 452 µs, while the second on average is executed within 28 µs, as our mea-
surements on a commercial DBMS revealed. The third statement is of type insert and
takes on average 124 µs on a commercial DBMS. This transaction makes 2% of the TATP
workload’s submission.

Delete Call Forwarding consists of two different statements. The first statement is a
simple select statement of the same string as the first statement of the Insert Call Forwarding
transaction. The second statement is of type delete, taking 136 µs for completion on a
commercial DBMS. This transaction also makes 2% of the TATP workload’s submission.

In summary, TATP consists of 5 distinct read statement strings that make more than 80%
of the workload’s submission, where most statements are executed in less than a millisec-
ond. Like YCSB, this benchmark is read-heavy with just a few hotspot read-queries. We
underline this observation with the analysis of benchmarks defined by the Transaction
Processing Performance Council (TPC) for the evaluation of OLTP systems.

2.1.3 TPC Benchmark Scenarios

Figure 2.1: Distribution
of read/writes in TPC-C
[KKG+11]

TPC-C [TH10] is an OLTP benchmark simulating a
wholesale supplier, organized by warehouses, dis-
tricts, and customers.

It specifies five transactions that deal with order-
ing, paying and delivering goods from a warehouse
through the access of nine tables. Two of these trans-
actions – namely the Order-Status and the Stock-
Level transactions – are read-only.

The former consists of two simple and two medium
read statements, the latter consists of one simple and
one complex read statement. Each makes 4% of the
TPC-C workload. The transaction that contributes the
most to the workloads execution, is New Order. It
makes 45% of the workload and submits several read,
update, and insert statements in a loop. As Krueger

2i.e., no other transactions were running on the system, thus no unnecessary lock-wait time was measured

2.1 Analyzing OLTP Benchmarks 15

et al [KKG+11] report, TPC-C spends about 50% of its run-time in executing reads (cf.
Figure 2.1).

According to its specification, the benchmark consists of 13 distinct simple, five distinct
medium, and one complex read. Additionally, it has nine distinct update, and four distinct
insert statements. Compared to the previously analyzed benchmarks, TPC-C has a more
complex workload.

In contrast, TPC-E simulates a brookerage house organized by customers, accounts, and
securities. It specifies ten transactions that deal with trading stocks on the financial mar-
ket through the access of 33 tables. 6 of these ten transactions are read only. Those 6 make
76.9% of the workload, leading to an overall read ratio of 90.69% [CAA+11].

The TPC-W [Smi00] models an online bookstore, which is an e-commerce scenario that
motivate our work. The benchmark evaluates the performance of multi-tier systems con-
sisting of client layer, application server layer and a database layer. Clients are emulated
browsers which issue “web interactions” [Smi00] (i.e., HTTP requests) to the application
server layer, after a negative exponential distributed thinktime with an average of 7 s.
On the other side of the web interaction, an application server receives the request and
submits queries to the database layer. The database layer receives the query and replies
with the requested data. Depending on the type of client interactions, HTTP requests
may cause even multiple submissions of queries. For example, when a user lands on the
home page, the application server submits a query requesting a set of items for promo-
tion, and another query requesting the user’s profile. Overall, there are 14 of such client
interactions with different execution probabilities. TPC-W defines three workloads with
different probabilities for each client interaction:

1. Browsing, which is a read-heavy workload, consisting mostly of searches and ana-
lytical queries, with just a few updates.

2. Shopping, which consists of some updates as well as some analytical queries.

3. Ordering, which is a write-heavy workload in addition to a few analytical work-
loads.

The workloads of TPC-W consist of about 30 different JDBC query-strings with param-
eters, accessing 9 different tables. The emulation of the clients follows the navigation
of a real user. In consequence, the pages Home, Best Sellers, New Products, as well as
Search pages are requested in 80% of the time, while pages accessing the Shopping Cart,
Order, Buy, or Admin web pages are requested in only 20% of the time. This leaves the
benchmark with a read ratio of 80%− 95%.

2.1.4 Summary

Table 2.1 presents a brief summary of our analysis, regarding the read-ratio and the num-
ber of different read statements submitted by the benchmarks. Based on our analysis,
we found that common benchmarks, used to evaluate enterprise OLTP systems, are in
general read-heavy with a few hotspot read-queries. Most of these can be labelled as sim-
ple. Given the artificial nature of these benchmarks that do not necessarily represent real
world workloads [VHF+18], in the following sections, we shall extend our analysis to
more realistic scenarios for confirmation of our findings. Consequently, the next section
analyses OLTP workloads from real applications for these characteristic patterns.

16 Chapter 2 Workload Analysis

Benchmark read-ratio # diff. read statements

YCSB 50%, 95%, or 100% 1
TATP more than 80% 5
TPC-C 50% 19
TPC-E 90.69% 6
TPC-W 80%− 95% 30

Table 2.1: Overview of patterns in OLTP benchmarks

2.2 ANALYZING OLTP WORKLOADS FROM OPEN SOURCE
PROJECTS

The previous section analyzed common OLTP benchmarks for similar patterns and ob-
served that OLTP workloads used to evaluate enterprise systems are read-heavy with
a few select-statement hotspots. This section investigates the extent to which such pat-
terns can also be observed in realistic OLTP workloads. For this purpose, we analyzed
open source projects, listed in the Carnegie Mellon Database Application Catalog (CMDBAC)
[ZSP18] with regards to the number of different statement types submitted to the DBMS.
Our initial findings are presented in [RBB+18].

The CMDBAC lists a wide range of open-source real-world database applications ex-
tracted from on-line source code repositories. The CMDBAC deploys and executes these
applications and lists some of their most important statistics of those applications on its
website. At the time of our analysis of the CMDBAC, there were 7383 projects, which
could be deployed and executed without any failure.

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
av

g(
25

-5
0)

av
g(

50
-1

00
)

av
g(

>
10

0)

F
re

qu
en

cy
 o

f
A

pp
li

ca
ti

on
s

Distinct Number of Read Statements

Figure 2.2: Number of distinct statement-strings, ordered by rank: About 50% of all
analyzed applications use just one distinct read-statement string (e.g., a query to identify
a user with a name and a password). About 89% of all analyzed applications use up to
ten different read-statement strings. Only a very few applications make use of more than
100 different read-statement strings.

2.2 Analyzing OLTP Workloads from Open Source Projects 17

2.2.1 Characteristics of Workloads

We analyzed the statistics of those 7383 projects which included a log of all executed
transactions. In order to be able to extract all distinct queries from those transaction logs,
we first extracted the query and update statements and replaced all parameter values
within the extracted statements by question marks. Figure 2.2 depicts the resulting dis-
tribution of distinct statements per application.

The x-axis shows the number of distinct statement strings found in the log after replacing
the parameter values by a placeholder. The y-axis shows how many applications have
that number of distinct statement strings. We observe that approximately 3.600 applica-
tions have a workload that consists of only one distinct statement string. A closer look
reveals that this statement string identifies a user by a given name and password.

Overall, by analyzing our results we found out that 89% of all applications in CMDBAC
have 10 distinct statement strings or less and 50% of the applications only use a single
distinct statement string. It is important to note that all these applications only use single-
statement transactions and more than 80% of all statements are simple key-based lookup
queries.

2.2.2 Summary

Based on the analysis of OLTP benchmarks and open source projects, we conclude that
OLTP workloads in general tend to be read-heavy with just a few hotspot queries. How-
ever, one could argue that the analysis of artificial workloads or open source projects
is not close enough to the complexity and intensity of enterprise workloads for draw-
ing conclusions on e-commerce enterprise OLTP workloads. Most projects are just sim-
ple web applications and thus not representative for more complex OLTP workloads
executed in the context of enterprise business applications. This raises the question of
whether our findings are valid for the scenarios that motivated our work or follow com-
pletely different characteristics.

To show that OLTP workloads in general are read-heavy with a few hotspot select-statements,
indeed, we intensify our investigation. Starting with the presentation of artificial bench-
marks, used to evaluate common OLTP systems, to our own analysis of a vast number of
open source projects. The next section therefore verifies our findings for different enter-
prise OLTP workloads.

2.3 ANALYZING ENTERPRISE OLTP WORKLOADS

The investigation of common OLTP benchmarks revealed OLTP workloads to be read-
heavy with a few read statement hotspots. This observation is supported by our analysis
of multiple open source projects. To verify our findings against enterprise OLTP work-
loads, this section investigates the characteristics of such workloads from different pub-
lications as well as a detailed analysis of a typical enterprise workload, as published in
our earlier work [RKL+20].

18 Chapter 2 Workload Analysis

2.3.1 Overview of Reports about OLTP Workload Characteristics

Figure 2.3: Read/write ratio in
OLTP and OLAP workloads of SAP
[KKG+11]

The most detailed reports of OLTP workload
characteristics come from SAP, a company fo-
cusing on building ERP systems and data ware-
houses. Figure 2.4 shows the analysis of OLTP
workloads on SAP systems. Krueger et al
[KKG+11] analyse twelve SAP Business Suite
customer scenarios and report that these work-
loads consist of about 50% index look-ups, and
30% range selects, leading to a read ratio of over
80%, as Figure 2.3 shows. Two different ERP
workloads run on SAP systems are analyzed by
[MBL17]. The authors order the submitted state-
ments by their execution rank as depicted by Fig-
ure 2.4 and find that the twenty most submitted
statement strings make up to 66% of the work-
load’s execution.

Figure 2.4: Execution of top 100 queries in two SAP ERP workloads [MBL17]

We find similar patterns in reports of other OLTP workloads, as well:

• Oracle An analysis by EMC Corporation of multiple Oracle OLTP workloads re-
veals that such workloads tend to spend 70% of their execution time and 90% of
their I/O time processing reads [Sam14].

• Microsoft Microsoft analyzed OLTP workloads executed on SqlServer and conclude
that they consist of 80% reads [EWK10].

• IBM IBM presents a tool to visualize block I/O workloads [ORC13]. Their analysis
of multiple OLTP workloads on DB2 (and Oracle) reveals that memory access in
such workloads is usually dominated by nonsequential reads.

• Alibaba Alibaba states that the “transaction tsunami”, depicted in Figure 1.1 origi-
nates from a read-heavy workload [HCW+19].

• Leonardo Finally, the analysis of their conversion rate on selling airline tickets leads
Leonardo to speak of a 1000 : 1 “look-to-book” ratio [May15], effectively hinting to
the presence of thousand times more readers than writers in the system.

2.3 Analyzing Enterprise OLTP Workloads 19

The observations from these reports suggest that enterprise OLTP workloads tend to be
read-heavy with a few read statements whose repeated submissions make a large portion
of the overall execution time. This confirms our findings from common OLTP bench-
marks, as well as our analysis of open source projects.

To further support our suggestion that OLTP workloads tend to be read-heavy with a
few read statement hotspots, the next section analyzes an OLTP workload, traced from
an enterprise OLTP system.

2.3.2 Analysis of SAP Hybris Workload

SAP Hybris is a platform for retailers with over 160 customers [fc19], making it one of
the leaders of e-commerce platforms. It is thereby a representative for common large en-
terprise OLTP systems, such as the ones used by Alibaba, Amazon, or the like. Stores
run on SAP Hybris also face overload spikes. For example, FitFlop had to handle a
customer rush four to five times larger than in the previous year on Black Friday 2018
[Mey18]. Haabermaaß had to handle 2000 orders per hour respectively 15′000 orders per
day, before Christmas 2016 [SAP16]. And while Douglas were facing technical difficul-
ties in handling the customer spikes on past Black Friday events [Mag19], they were able
to handle the increase of 23.2% more customers at Christmas 2019 than in 2018 [MB20].
To prepare for the Black Friday rush, SAP Hybris is planning month ahead, forming task
forces, establishing an environment similar to the one used in production, and testing
under high load scenarios [VB17].

This section introduces the SAP Hybris landscape and the client’s workflow, to better
understand the observations made subsequently. Those observations verify the reports
of other works that analyze OLTP workloads and support the suggestion that common
enterprise workloads are read heavy, where a lot of execution time is spent performing a
few read statement strings that are repeatedly submitted by different clients. From this
observation, we conclude that elaborating these patterns to our advantage may reduce
the load on the system, without acquiring additional hardware. The description of the
SAP Hybris background as well as the analysis of the workload, not including the pre-
sentation of query-strings is published in [RKL+20].

SAP Hybris – Background

We first explain the setup of a typical Hybris stack before we analyze its workload for
statement types, table access patterns, and CPU consumption.

SAP Hybris provides a basic implementation for Product Content Management, Search,
Merchandising and Order Management with stubs that have to be implemented by the
customer. The SAP Hybris layer architecture was build with Java, J2EE, Spring MVC,
Maven, and Apache Ant and consists of persistence, services, façade, accelerator, Oracle
Commerce Cloud, backoffice and native mobile apps/ JavaScript client layer. All layer
components are adjustable or extendable. SAP Hybris needs to be filled, extended, cus-
tomised, executed on a Java EE Servlet Container and is recommended to be set up in a
cluster using a load balancer. That Servlet Container submits its requests to the database
in an interactive manner using the isolation level Read Committed, which is important as
therefore any approach processing overload spikes needs to be applicable to these set-
tings!

20 Chapter 2 Workload Analysis

In our setup, Apache Tomcat [Apa18] is used as Java EE Servlet Container and Apache
SOLR [AS17], a JSON document store, is added for searching. The setup uses SAP HANA
[FML+12] as its database. Users connect to the created stores via common web semantics.
A common SAP Hybris scenario consists of the following user transactions: Browsing,
Adding items to cart, and Buying. Next, we list the actions of each transaction.

Browsing Browsing workloads call the stores homepage, before accessing the page with
all the stores and searching for a specific one. Finally, they access the page of a specific
product, search for products first by a property and next by categories.

Adding Items to Cart Workloads classified as Adding Items to Cart also land on the
homepage, access a product-page, and search for products by property and categories.
After browsing, they repeatedly choose several product codes and quantities to add these
into their cart. Finally, they view their cart and randomly choose a product to modify the
quantity or entirely remove it from the cart.

Buying The Buying workload starts like the Adding Items to Cart workload. But in ad-
dition, customers check out their cart. In this step, they need to log in or create a new
account. Next, they provide or check the delivery address, payment method, and billing
address. After verifying the data, customers check out and place the order.

SAP Hybris – Analysis of Workload

For this part of the analysis, we traced a SAP Hybris workload simulating customers
by Apache JMeter with a variable number of threads. For the simulation, we chose the
following setting: 80% of all threads execute the Browsing workload, 15% do Adding Items
to Cart and the remaining 5% execute Buying. Though 5% conversation rate seems much
for an online store (e.g., Leonardo mention a “look-to-book” ratio of 1000 : 1 [May15]),
this is the setting for which Hybris developers optimize their product for.

 0

 20

 40

 60

 80

 100

%
 o

f
to

ta
l Single Select

Range Lookup
Update

Insert
Delete

Commit

(a) Statement Analysis: Most of the statements
are read statements that lookup a single value.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 250 500 750 1000 1250 1500

W
or

kl
oa

d
S

ub
m

is
si

on
 (

ra
ti

o)

Statement Rank

acc stmt exec time

(b) Statements ordered by Rank: 90% of the overall
workload consists of processing the same 50 state-
ment strings.

Figure 2.5: Breakdown of Statements from the SAP Hybris Workload

Figure 2.5 presents the overall results. Figure 2.5a shows the query distribution of single-
select statements, range selects, update statements, inserts, deletes, and commits. In total,

2.3 Analyzing Enterprise OLTP Workloads 21

the workload consists of 92% read statements (80% single-selects, 12% range lookups),
5% data modifying language (DML) statements (0.8% insert, 3% updates, 1.2% delete), and
3% commits. Therefore, even though 20% of all threads run a read-write scenario, DML
statements make only 5% of the workload’s statement. Thus, we conclude that even the
read/write scenarios are read-heavy.

Figure 2.5b presents the share of each statement in the workload, ordered descendingly
by their total server execution time. Focusing on the operations performed in each state-
ment and ignoring the number of parameters within the statements in lists and the pa-
rameter values, we identified 1338 unique statement strings.

Figure 2.5b reveals that 50 statements constitute about 90% of the workload’s execution
time (this corresponds to ≈ 3.74% of all statement strings). Moreover, the first 20 state-
ment strings (≈ 1.49% of the workload) already account for 80% of the server execution
time.

Project Col Search Distinct Union Limit Order By Aggr Filter Join Ratio

Rank 1 x x x 0.236
Rank 2 x x x x x 0.220
Rank 3 x 0.128
Rank 4 0.052
Rank 5 x x x x x x 0.023
Rank 6 x x 0.016
Rank 7 x x x 0.016
Rank 8 x x x 0.014
Rank 9 x 0.010
Rank 10 x x x x x x 0.010
Rank 11 x x 0.010
Rank 12 x 0.009
update 0.009
Rank 14 x x 0.009
Rank 15 x x x 0.009
update 0.008
update 0.007
Rank 18 x x 0.007
Rank 19 x 0.006
Rank 20 x 0.006

Table 2.2: Distribution of execution operators among the top 20 queries from the SAP
Hybris workload.

Table 2.2 presents the complexity of the top 20 statement strings that are accountable for
80% of the workload execution. Each row in the table is one of the top 20 statements,
ordered by their execution frequency. Columns present the operators constituting these
queries. A cell marked with x indicates the presence of an operator within the corre-
sponding query. In the last column, we list the ratio of that query string in the overall
workload. For example, about 1.6% of all statements in the workload have the string of
rank 6, which compiles to a plan with a Column Search operator on top of an Index Join
with Order By.

Three out of the top 20 queries are update queries, namely statement of rank 13, rank 16
and rank 17. As SAP HANA does not provide plan details about DML statements, their
rows remain empty. In addition, the statement of rank 4 is a scheduling-query, selecting
from tasks and filtering on milliseconds, used for asynchronously processing tasks, such as
confirmation mails. SAP HANA does also not report plan details for that statement.

22 Chapter 2 Workload Analysis

π

σ

mc=?,
mf=?,
d in (…)

media

Figure 2.6: media query: A
simple lookup of the table
media with filters on two
columns and an in-list filter
on a third.

Among the top 20 statements, we classify 5 as simple
queries solely consisting of projection or column search,
namely the statement of rank 3, 9, 12, 19, and 20. Joins
are apparent in 6 of these statements, namely state-
ments of rank 1, 2, 5, 7, 10, and 15; we classify them
complex. The remaining 5 statements sort data (ranks
6, 14, and 18), or perform either a union (rank 8) or an
aggregation (rank 11). We classify these as medium. In
total, we consider 25% of the top 20 as simple queries,
another 25% as medium and 30% as complex queries
performing join operations. We could not retrieve in-
formation on the remaining 20%, as these are updates
or scheduling-queries.

In the following, we present statements Rank 3, Rank 7,
and Rank 8; one statement per complexity class in a simplified manner. Those will also
be used for our examples and evaluations. For the sake of clarity and comprehensibility,
we chose these statement strings, as they are relevant to the workload, typical examples
for their complexity class and short enough for presentation.

Figure 2.6 presents the media query, a simple statement consisting of three basic filters,
listed as Rank 3 in Table 2.2. It selects items from the media table, according to some
container key and format and a list of descriptions. A closer look at the parameter types
reveals that all of the filters are simple integer look-ups. On average, the media query is
executed in less than 1 ms, more precisely in 104 µs.

π

π

σ

π

σ

price price

∪

pq in(...),
uq in(...), d=?,
p!=null or
c in(null, ...)

pq=?, pid=?, d=?,
p!=null or
c in(null, ...)

Figure 2.7: price query: A union of two lookups on the table price; once with three in-list
filters and once with a filter on the product id and one in-list filter.

The price query is listed as Rank 8 in Table 2.2 is our choice representing the medium com-
plexity class. That query requests two results from the price table, as shown in Figure 2.7:
The first result set is based on some product and user qualifiers with a certain description
with either a listed product, no listed catalog version or a specified catalog version. The
second result set contains information about a specific product, based on some qualifier,
id, description and some user qualifiers. Both result sets are combined by the UNION op-
erator, labeling this statement more complex, than media query. However, similar to the
former, this query’s parameters are integers, as well. In our traces, the average execution
time of the price query is 1012 µs.

To also present a complex statement from the SAP Hybris workload, the final statement,
we present is the cat2prod query from Figure 2.8, listed as Rank 7 in Table 2.2. It joins the

2.3 Analyzing Enterprise OLTP Workloads 23

π

sort

⋈

cat2prod.PK

cat.PK = cat2prod.FK

σ σ
d in(...),
c in(...)

qual=?, FK=?,
lang=null

cat cat2prod

Figure 2.8: cat2prod query: A join on the category and the category to production relation
tables cat and cat2prod. After joining both tables, the result is sorted by the primary key
of the category to product relation table.

categories and the conversion from categories to products based on some primary key /
foreign key relation. The category is filtered by some description and catalog, while the
category to products table is filtered by some qualifier and with existing language. The
result is then ordered by the primary key of cat2prod. As in the previous two statements,
all of the parameters of cat2prod query are integers. This query is executed in 312 µs.

SAP Hybris – CPU-time Breakdown of SAP HANA Components

In contrast to the analysis of the different queries SAP Hybris submits to SAP HANA,
this section investigates the components of SAP HANA. To be more precise, this section
presents CPU time in seconds for its components during the execution of the SAP Hybris
workload. We aim at the CPU time spent in actual processing queries – since that is the
fraction merging has an influence on. Therefore, we run that workload with 800 threads
over 304 s on HANA with 8 database threads running on a SUSE Linux Enterprise Server
12.3 (x86_64). SAP HANA reports a CPU time of 1472.5 s for this workload, meaning that
SAP HANA was utilized up to ≈ 38.75%.

Figure 2.9 presents the relative amount of execution time the workload spent in differ-
ent SAP HANA components. During workload execution, SAP HANA spends approx-
imately 69.9% of its time in statement execution. Statement execution time includes its
compilation, opening the result set, execution of the query plan, as well as encoding the
reply-message that contains the query results. This step may also includes further fetch
operations. Approximately 13.3% is spent in network operations, such as receiving and
decoding messages, as well as sending a message. Scheduling takes 12.5% - almost as
much time, as network handling. This includes the time to get the stack of a task and
some internal NUMA handling, as well as adding and extracting a task to and from the
internal task-queue. The component taking the least amount of time is the one for pro-
cessing commits, which we account as transaction handling. It takes 1.5% of the overall
execution time. We were not able to match the remaining 2.8% to any specific component.

This analysis shows the significance of optimizing the execution path to improve the
database performance, at it has the largest proportion among the CPU costs.

24 Chapter 2 Workload Analysis

Figure 2.9: Time spent in different HANA components: Most of the time is spent in
actually processing the queries.

2.3.3 Summary

Investigation of reports about enterprise OLTP workloads revealed the same patterns
observed from our previous analysis. We validate these observations with an in-depth
analysis of the SAP Hybris workload and report the following findings.

(1) The database’s performance is critical to the end-to-end latency in a SAP Hybris land-
scape.

(2) The SAP Hybris workload consists of 80% single-select statements which are typically
executed in a millisecond, or less.

(3) The 20 most frequently submitted statement strings make 80% of the workload’s ex-
ecution time.

(4) Among these 20 statements, the number of dml, complex, medium, and simple state-
ments is evenly distributed.

(5) The database spends most of its CPU time executing statements.

To put it in a nutshell, the analysis of a common SAP Hybris workload supports our ob-
servation from reported analysis of enterprise OLTP workloads in that it is read-heavy
and consists of just a few hotspot statements. These hotspot statements are evenly dis-
tributed across different complexity classes.

2.3 Analyzing Enterprise OLTP Workloads 25

2.4 CONCLUSION

Faced with overload spikes in OLTP workloads, we analyzed such workloads to find pat-
terns that we may elaborate to decrease such spikes. The investigation of many important
benchmarks, used to evaluate OLTP systems revealed OLTP workloads to be read-heavy
with a few hotspot select-statements. From our findings we formulate the assumption
that such patterns are not only common for artificial workloads, but OLTP workloads in
general. This is also confirmed by our analysis of over 7000 open source projects, listed
in the CMDBAC. To underline the relevance of our findings for real enterprise scenarios
that motivated our work, we investigated reports about different enterprise OLTP work-
loads and verified these by additionally analyzing a typical workload of SAP Hybris, a
leader in e-commerce as a final confirmation of our assumption.

Thus, we conclude that OLTP workloads consist of a few distinct select statements that
are repeatedly submitted by different clients and are mainly responsible for the overload
spikes, discussed earlier.

Furthermore, our analysis revealed that the database system spends most of its CPU time
in executing queries. Merging queries can thus have a meaningful impact on the CPU
time and thereby on the overall latency.

The following requirements are necessary for a merging approach to an arbitrary OLTP
workload.

(1) The analysis of the SAP Hybris workload revealed that many OLTP statements con-
sist of a simple index look-up. Similar observations are reported by [KKG+11]. A
merging approach therefore needs to be applicable to non-complex operations, such
as an index look-up.

(2) Many OLTP statements are often processed in a few hundreds of micro seconds. A
merging approach therefore requires a low execution overhead. Otherwise, simply
executing the query might be faster than merging it.

(3) Although OLTP workloads are read-heavy in general, they do contain write state-
ments, making concurrency control necessary. Some concurrency control protocols
lead to different visibilities for different transactions. A merging approach needs to
consider these as well.

(4) An approach that merges statements within OLTP workloads needs to consider the
effects of writes on read statements, but more importantly needs to be able to handle
writes in some terms.

(5) As this work is motivated by observations in multiple different enterprise systems on
real data, accessed by real users, a merging approach needs to be formulated in such
way that it can be applied to reduce the spikes in such enterprise systems, i.e., in a
state-of-the-art database.

The next chapter discusses to what extent the state-of-the-art merging techniques found
in related work fulfill these requirements.

26 Chapter 2 Workload Analysis

3
Related Work on Query Merging

⋈
⋈

𝝅 𝝈

I.
 O

p
er

at
o
r

II
.
S

u
b
p
la

n

IV
.
F

u
ll

 P
la

n

Figure 3.1: The different levels of granularity, merging can be applied to. This chapter
discusses approaches that (i) merge on the operator level, (ii) merge the execution of a
subplan, (iii) merge retrieval of results, and (iv) merge full execution plans.

This chapter presents work related to our idea of merging. Figure 3.1 shows the structure
of this chapter. We begin with ideas that merge single operators among different plans.
We then continue with approaches that merge multiple cohesive operators - so called
subplans. Such subplans may also be merged among different plans or within a single
plan. A special case of merging subplans is, when the execution of a subplan produces
a result which can be reused by subsequent queries. That is the third kind of approach,
discussed in this chapter - merging of results. Finally, We present the ideas that merge the
execution of full plans. We close this chapter by discussing the state-of-the-art in terms
of our requirements set in Section 2.4.

27

3.1 MERGING THE EXECUTION OF OPERATORS

Many databases offer a SQL interface: The client sends a SQL string describing the result
to the database. That string is compiled into an execution plan, which consists of multiple
operators. The individual execution of all operators leads to the execution of the full plan.
Afterwards, the database sends the result to the client.

When multiple clients operate on the same data, the resulting execution plans may con-
tain operators that perform similar operations on the same data. This fact is leveraged by
the works that propose merging of single operators among different plans.

Merging the execution of operators is a common technique, when proposing a new data-
base design. For example, DORA [PJHA10] presents a data-oriented architecture. Instead
of a task-centric architecture, common in state-of-the-art databases [PJHA10], where a
thread executes a task, DORA proposes to distribute memory accesses over different
tasks. As a result, locking is no longer required, when reading or writing an item. In
such design, queries are handed over from one thread to another, when accessing differ-
ent parts of memory. In this context, DORA proposes to use batching or merging when
queries access the same part of memory. QPipe [HSA05] presents an operator-centric
design. Here, one thread always executes one operator, e.g., a join. The execution of a
query is then streamed through these operators, adding a context-switch to the execu-
tion time of each operator. Within the execution of an operator, QPipe also proposes to
use batching and merging techniques. Both DORA and QPipe trade latency for through-
put, adding context switches for handing over requests from one thread to another. That
trade-off is highly efficient, as DORA increases throughput by a factor of 1.5× for a TPC-
C New Order transaction under high-load [PJHA10], while QPipe increases throughput
by a factor of 2.25× for a TPC-H OLAP workload.

MQJoin [MGAK16] proposes to merge the execution of different join operators in multi-
core OLAP systems. This technique increases throughput to a factor of 2.5× for a join-
heavy OLAP workload, proving to be stable and predictable, regarding response times,
even for an increasing number of clients.

Shared Scans

Many works that propose merging the execution of a single operator focus on the table
scan operation. These ideas are also implemented in state-of-the-art database systems
(e.g., DB2, cf. Figure 3.2). Therefore, this sub-section explains the concept in more detail.

In OLAP systems, tables stored on disk, too large to fit main memory, are scanned by
multiple queries. As the scan of one operator may interfere with another, scanning the
same table for multiple queries in parallel generates unnecessary disk-I/O latency. In
a shared scan approach, described in Figure 3.2, a single thread continuously scans a
table into a pipeline [IBM16]. OLAP plan-operators scanning such a table, simply attach
to the pipeline, taking note of the element first read. Reading the same element again,
indicates that the whole table has been scanned, and thus, the operator detaches from the
pipeline. As only one thread reads the table from disk in a sequential manner, disk-I/O is
drastically reduced, which is beneficial for OLAP workloads, where many queries need
to scan the same table at the same time.

Group Scans [LBM+07] and its successor Cooperative Scans [ZHNB07] present heuris-
tics when to perform a table scan, taking into account data which still resides in some

28 Chapter 3 Related Work on Query Merging

π π

π

π

Σ
⨝ ∪

∩
π

σ

σ
start

Figure 3.2: Shared table scan: A single thread repeatedly scans a table in a loop. Dif-
ferent plans can attach to the table-scan operator using a starting point. Once the loop
iterates over their starting point they know that the whole table has been scanned and
can dispatch from the table-scan operator.

memory buffer to avoid unnecessary disk-I/O. These approaches have been verified in
Crescando [UGA+09], allowing for guarantees of data freshness and latency by applying
different shared scan techniques, among others.

Blink [QRR+08] proposes to use shared scans for in-memory tables by carefully reorder-
ing the memory-access sequence. Here, queries are grouped by their memory access-
patterns and executed in batches. The memory-access of the first executed query natu-
rally creates a cache-miss, while the memory-access of all subsequently executed queries
in that batch creates a cache-hit, effectively merging the memory access.

3.2 MERGING THE EXECUTION OF SUBPLANS

In contrast to proposals that just merge the execution of a single operator, merging the
execution of a subplan can be applied to a varying number of operators; from a single
operator to a full plan – and everything in between.

The most recent publication with a focus on this granularity level is Super-Operators
[LR19] that reduce the execution of similar subplans by a single streaming operator. Such
Super-Operator can then be used in the execution of several plans in parallel.

Another work that proposes merging the execution of subplans is CJoin [CPV11, PAOA14].
The focus of CJoin is star-queries, a query style often found in OLAP workloads, joining
a large fact table with multiple small dimension tables with filters, a group by, and some
aggregation in the projection list. By using CJoin, Candea et al. are able to increase

3.2 Merging the Execution of Subplans 29

throughput by a factor of 7×, by applying techniques from the multi query optimization
(MQO) [Fin82], which we present next.

Multi Query Optimization

(Q1)
SELECT E.*, D.*
FROM Employers E,

Departments D
WHERE E.Age <= 30

AND D.Staff-Number <= 30
AND D.Id = E.Department-Id

(Q2)
SELECT E.*, D.*
FROM Employers E,

Departments D
WHERE E.Age <= 60

AND D.Staff-Number <= 25
AND D.Id = E.Department-Id

(a) MQO queries

σ σ

π

⨝

π

⨝

TmpTable1 TmpTable2

σ σ

(b) MQO approach

Figure 3.3: Multi Query Optimization by example: Q1 and Q2 share common filters on the
attributes age and staff number. By selecting the superset of both filters from the table, an
intermediate result is materialized into a temporary table. Next, Q1 and Q2 perform their
execution on these temporary tables with a much smaller data set then the two original
tables.

The most important work that proposes merging of subplan execution is multi query opti-
mization (MQO) [Sel88]. In MQO, statements are analyzed for common sub-expressions.
For example, the queries presented in Figure 3.3a, both request employees younger than a
certain age, and working in departments with less than a specified number of employees.
Figure 3.3b describes the MQO approach when merging the execution of the two expres-
sions. First, the super-set of the employees is stored in an intermediate result TmpTable1
and the super-set of the departments is stored in an intermediate result TmpTable2. From
TmpTable1, the sub-set of all employees younger than 30 is retrieved for the result-set of
Q1, while the sub-set of all departments with less than 25 employees is retrieved for the
result-set of Q2. Finally, the result-set for Q1 is calculated by joining TmpTable2 and the
previously calculated sub-set of TmpTable1. Likewise, the result of Q2 is calculated. Ob-
viously, retrieving a sub-set from TmpTable1 is much more efficient than scanning again

30 Chapter 3 Related Work on Query Merging

through all data in the table of employees. In this example, only the execution of two sin-
gle operators is merged. However, the approach can be broaden to merge the execution
of multiple operators, as well.

As a result, MQO can help reduce the cost of execution by merging similar subplans.
However, analyzing statements for such similarities tends to become expensive [RSSB00]
and is a topic of ongoing research, e.g., [HH98, LCPZ01, DSRS01, KSRM03, ZLFL07,
JLF10, LBM20]. Also, the aforementioned proposal of Super-Operators is struggling in
detecting similar sub-expressions in queries, as well.

3.3 MERGING THE RESULTS OF SUBPLANS

In contrast to proposals that just merge the execution of subplan, merging the results of
a subplan can be applied to a varying number subplans over time; from queries that are
executed concurrently to queries that are submitted subsequently be the same applica-
tion.

There exists only one approach that falls into the class of merging the result of a subplan:
the Materialized Views.

⨝

π

σ

time

π

σ

π

σ

π

σ

π

σ

π

σ

Figure 3.4: Concept of a Materialized View: Over time, a query performing a join on two
tables and filtering the result is performed. Instead of executing the join with every query
submission, the join is performed once and its result materialized into a temporary table
– the so-called Materialized View. Subsequent submitted query only need to filter the
materialized join, instead of performing the join operation themselves.

Similar to MQO, materialized views [Rou82] analyze queries for common sub-expressions.
But instead of merging the execution of these sub-expressions, [Rou82] proposes to ex-
ecute these in advance and store the result in a materialized view to be read by future
queries. Figure 3.4 presents an example where the join result of two tables A and B is

3.3 Merging the Results of Subplans 31

stored in a materialized view MV . Over time t, several queries containing a join on A
and B are submitted to the system. Instead of performing the expensive operation for
each incoming query, the result is simply read and post-filtered from MV , thus trading
computation resources for memory.

So, while similar to MQO, materialized views open the possibility to apply merging to
statements that are not in the system simultaneously, by simply storing the intermediate
result of one to be reused by another. This technique of calculating intermediate results of
complex calculations is now well understood and offered by any major commercial data-
base system [GM99]. It has been established as state-of-the-art optimization for complex
analytical scenarios [Leh03] in OLAP databases and has proven to drastically increase
performance in data-warehouse systems [TLH11].

3.4 MERGING THE EXECUTION OF FULL PLANS

Following the evolution of merging single operators to merging multiple operators into
merging multiple operators over time, this sub-section finally presents the concept of
merging full plans. Here, the execution of the full plan can be merged – even on the SQL
level, even before the execution plan is compiled.

An approach to merge the execution of full plans based on rewriting statements is first
presented in [Wol17] and further elaborated in [MMMA18]. The basic idea is to merge
statements by inflating parameter lists, using some kind of bitmap (BIGINT in [Wol17],
ARRAY in [MMMA18]) to split and distribute the merged results in some post process.
These ideas aim to reduce monetary costs, when submitting an OLAP workload to sys-
tems rented in the cloud, thus their experiments do not cover the end-to-end latency.
Their evaluation shows that indeed the throughput increases by a factor of 10×, while
the monetary cost1 decreases by a factor of up to 100×, when using queries of the TPC-H
benchmark.

A recent proposal that elaborates merging techniques is CrocodileDB [SLT+20]. The idea
of CrocodileDB is to defer the execution of OLAP queries to make better use of merg-
ing techniques, such as MQO, or reusing intermediate results in materialized views. The
asynchronous execution using approximation techniques [BHR18] is also part of the da-
tabase system’s design proposal.

SharedDB

The most important work that merges the execution of full plans is SharedDB [GAK12], as
it proposes a system implementation that can process the execution of OLAP workloads.
In SharedDB, incoming queries are batched. Each batch is compiled into a large execution
plan, which executes all queries of the batch at the same time. Upon completion, the next
batch is compiled and executed, leaving one execution plan active at a time. Figure 3.5
presents an example, taken from [GAK12]: The execution of Q2 and Q3 shares the join
operator 1, as they join table Users with Orders and the result of join 2, respectively. That
join operator 2 is shared with the execution of Q4, joining the tables Orders and Items.
Q4 also shares the execution of a sort operator with Q5 on different intermediate results.
Only the execution of Q1 is not merged with the execution of any other query.

1regardless if billed by CPU usage or size of the result set

32 Chapter 3 Related Work on Query Merging

⨝

π

Σ

π π π

σ

π

⨝

users orders items

Q2Q1 Q3 Q4 Q5

Figure 3.5: Example of SharedDB execution. The figure shows five queries whose exe-
cution is merged: Q2 shares the execution of joining USERS and ORDERS with Q3 that joins
USERS with the joint result of ORDERS and ITEMS. Latter is again also used by Q4, which
shares a filter operator with Q5, filtering the values of ITEMS. Only Q1 performs operations
which show no overlap with the other four queries.

The big advantage of SharedDB is its applicability to arbitrary workloads, unlike, for
example, CJoin, which is only applicable to star-queries.

BatchDB [MGBA17] is the successor of SharedDB and provides two engines: one for
OLAP, one for OLTP. In BatchDB, merging is applied to batches of OLAP statements, as
in SharedDB. OLTP statements are executed one by one. To keep the OLAP engine data
fresh, changes from the OLTP workload are transferred to the OLAP engine between the
execution of OLAP batches. These OLAP batches then process on the latest data.

3.5 MISCELLANEOUS WORKS ON MERGING

Certainly, merging statements has been discussed in different areas of research, aiming
at different problems.

For example, State-Slice [WRGB06] applies merging of query operators on continuous
streams of data, originating from different sensors, e.g., measuring humidity, tempera-
ture, or movement, to name a few. Such ideas can be attributed to the research area of the
internet of things (IoT) and aim to reduce of memory and energy consumption, instead
of decreasing overload spikes. Therefore, we do not consider State-Slice or proposals
related to it as related to our work.

Another application of merging queries is traversing over graphs by breadth-first or
depth-first search (e.g., [BD19]). Batching is also used in spatial databases for calculat-
ing the shortest path, which is often applied to road networks [TYJ12, MAA+13, TYJ14,
RAH15, ZLHZ19b, ZLHZ19a, CA20]. Presented approaches aim at reducing the load
on the system by merging compute-intensive work. However, as they stem from the
research area of graph databases, these approaches are hardly adaptable to relational
databases and are therefore not considered as related work.

In the past, merging techniques were applied to hardware accelerators, such as imple-
menting MQO on FPGAs [LBM20] and merging the execution of operators on GPUs, such

3.5 Miscellaneous Works on Merging 33

as the execution of operators sort [GGKM05], join [HYF+08], search [KCS+10], aggregation
[HLY+09], and many more [KHL17]. In addition, merging the execution of transactions
on GPUs has been discussed in [HY11] ad [ADP+18]. Those proposals, however, focus
on GPU-databases running in Serializable.

In databases, merging techniques can be used to improve the success-rate and through-
put of DBMS providing optimistic concurrency control [DKG18]. Merging techniques
are also found in deterministic databases, such as Calvin [TDW+12]. Here, the database
elaborates on the fact that the workload is known in advance, simplifying the application
of merging techniques. In memcached [KHS20], a key-value store, requests are batched
to save socket communication overhead on every single operation.

From an OLTP perspective, the most essential work is Group Commit [DKO+84], already
presented in 1984, implemented in most state-of-the-art database systems now. Group
Commit falls into the category of merging the execution of operators, as it merges the
I/O flush in commit operations. The final commit log is written into a memory page.
Once this page is full, it is flushed to disk or Non-Volatile Memory [LI20] at once, making
several commit operations persistent with one flush, thus merging the flush operation
and saving disk-I/O.

3.6 DISCUSSION

This section sums up and discusses earlier presented related works regarding the re-
quirements set in Section 2.4 for applying merging techniques to OLTP workloads. In
summary, the requirements were (i) being applicable to non-complex operations, such as
index look-ups, (ii) providing a low execution overhead, (iii) considering different visi-
bilities for different transactions, (iv) being able to handle write operations, and (v) the
integration into state-of-the-art (STOA) database management systems.

Merging techniques have been proposed to different levels of granularity in an execution
plan. Table 3.1 presents an overview of these techniques with regard to the requirements
set in Section 2.4.

Techniques that merge the execution of single operators often focus on operators per-
forming compute or I/O extensive executions, such as joins, table scans, and flushing
pages to disk, as in Group Commit. Their benefit to the performance of OLAP queries or
commits is obvious and has been verified by their application in multiple state-of-the-art
database systems. An application of these to OLTP workloads seems promising at first
sight. A closer look reveals though that OLTP workloads often consist of index look-ups
with simple filter expressions. Merging complex calculations is thus indeed beneficial
per se, but the large proportion of simple operations in OLTP workloads remains unaf-
fected by this powerful technique. Therefore, we conclude that related work with a focus
on merging the execution of operators does not apply to non-complex operations and in
consequence fails the requirements set in Section 2.4.

Techniques that merge the execution of subplans focus on common sub-expressions in
statement strings. These common sub-expressions are either known in advance, as in
MQJoin, which focuses on star-queries or requires compute-expensive analysis of state-
ment strings, as presented in MQO or Super-Operators. Intuitively, analyzing statement
strings for common sub-expressions makes much sense: web-applications often search
for items by a product key or description. Thus, many statements should contain similar
sub-expressions. The challenge of MQO – as [GAK12] points out – is its complexity: Due
to the short execution time of common OLTP queries, the analysis of statement strings

34 Chapter 3 Related Work on Query Merging

for similar sub-expressions among different statements may take more time than actu-
ally executing the statement without any optimization. Therefore, we conclude that re-
lated work with a focus on merging the execution of subplans does not provide ultra-low
latency and, in consequence, fails the requirements set in Section 2.4 as well.

Materialized views merge the result of subplans. In contrast to MQO, the expensive
analysis of common sub-expressions in statement strings can be done in advance, either
by some algorithm or a database administrator (DBA). This reduces the overhead of find-
ing common sub-expressions at runtime drastically. In addition, many research proposals
investigated the optimizations of MV for write access.

Already in 1986, [BLT86] presented an algorithm on how to detect queries that would al-
ter the results within materialized views and re-evaluate the materialized view based on
some differential algorithm. Maintaining materialized views on redefinition is discussed
in [GMR95]. An algorithm that updates materialized views by considering the update
frequency on the base table is presented in [WOL99] and shows that using materialized
views is always a trade-off between strong consistency and fast refresh time. Combining
multiple merging techniques has been considered as well, e.g., [MRSR01] proposes to
use MQO for a shorter time-window of refreshing materialized views. The optimization

Simple Low Exec. Different Handle Applicable to
Operations Overhead Visibilities Writes STOA DBMS

Ex
ec

ut
io

n
of

O
pe

ra
to

rs

DORA + - + + -
QPipe + - + + -
MQJoin - + + + +
Shared Scans - + + + +
Group Scans - + + + +
Coop. Scans - + + + +
Blink - + + + +
Group Commit - + + + +

Ex
ec

ut
io

n
of

Su
bp

la
ns

Super-Operators + - + + +

CJoin - - + + +

MQO + - - + +

R
es

ul
to

f

Su
bp

la
ns

Mat. Views - + - + +

Ex
ec

ut
io

n
of

Fu
ll

Pl
an

s

Rewriting SQL + - - - +Statements
CrocodileDB + + + + -
SharedDB + + + + -
BatchDB + + + + -
Improving OCC + + - + -through batching

Table 3.1: Overview of sharing techniques: This table is a matrix of the presented work
with the requirements set in Section 2.4. Most works fulfill (+) one or more of the require-
ments. However, all of them lack (-) at least one requirement to be applicable to OLTP
workloads in state-of-the-art (STOA) database management systems.

3.6 Discussion 35

technique, presented by [FGW+05] tries to generate efficient refresh expressions based
on the recognition of dependencies between base tables and materialized views, while
[ZLE07] propose to refresh materialized views in a lazily, instead of performing updates
eager. A case of maintaining materialized views specialized for XML data is presented in
[LC12], and [KWF+15] proposes a data cleaning algorithm to remove outdated data from
a materialized view.

This relatively small excerpt of proposals reveals that keeping materialized views up-to-
date is too expensive for their application in enterprise OLTP workloads that motivate
our work. Therefore, we conclude that materialized views do not consider different visi-
bilities of different transactions nor an efficient way to deal with writes or simple opera-
tions and, in consequence, also fails the requirements set in Section 2.4.

Finally, techniques that merge the execution of full plans propose a database design
different from those used in common OLTP enterprise scenarios, such as CrocodileDB,
SharedDB, BatchDB, or OCC optimization by batching the execution of full transactions.
Other proposals, similar to materialized views, analyze and merge statement strings in
advance but are not applicable in a workload processed by the database. Therefore, we
conclude that related work with focus on merging the execution of full plans does not
provide applicability in state-of-the-art database systems and, in consequence, fails the
requirements set in Section 2.4, too.

36 Chapter 3 Related Work on Query Merging

4
Merging Statements in Multi Statement

Transactions

The occurrence of overload spikes in OLTP workloads led us to an analysis of such work-
loads. This analysis in Chapter 2 revealed that OLTP workloads in general consist of a
few distinct select statements that are repeatedly submitted by different clients. These
statements are the main cause for the observed spikes.

Our aim is to reduce the spikes by merging the hotspot queries. Chapter 2 formulates
five requirements for such approach. Briefly, those were

(1) Applicability to simple operations

(2) Low execution overhead

(3) Multi-statement transaction support

(4) Unimpeded by writes

(5) Implemented in state-of-the-art databases

The discussion of related work in Chapter 3 showed that many work focus on OLAP
workloads, rendering their use for OLTP workloads inapplicable, while other works re-
quire a complete system rewrite for integration.

This chapter develops our idea of merging statements. It is applicable to OLTP workloads
and fulfills the five requirements, listed above: Section 4.1.1 shows that our approach is
applicable to simple operations1. We then argue, why our approach has a low execution
overhead (Section 4.2), formalized by Section 4.3. Section 4.4 describes in detail, how we
support multi-statement transactions, and why our approach is unimpeded by writes.
Furthermore, Section 4.5 presents ideas how our approach can be extended to merging
writes. Our implementation in a state-of-the-art database is presented in Chapter 6 and
evaluated in Chapter 7. This whole chapter is mainly contributed by our earlier publica-
tion [RBB+20].

1complex scenarios can be handled with the same ease, though

37

4.1 OVERVIEW OF OUR APPROACH

Similar to [Wol17] and [MMMA18], we propose to merge statements, effectively merg-
ing the execution of full plans. Unlike the former, our approach requires no analysis of
statement types at runtime, as our analysis in Chapter 2 revealed that just a few different
select statement types are repeatedly submitted by different clients. Usually, such state-
ments are submitted in advance as prepared statements, similar to the ones presented in
Section 2.3.2. At this point, the query plan is known to the database system. As the query
is submitted by the application with bound parameter values, we can defer the result-
ing merged statement by some rule-pattern matching of the statement’s hash-value2 and
the number of queries with this hash-value present at the moment. After execution, the
result-set of this merged statement is distributed to the requesting clients based on the
submitted parameters. The next section explains our algorithm exemplary on the SAP
Hybris queries introduced in Section 2.3.2.

4.1.1 Examples

π

σ

media

mc=?, mf=?,

d in (…)

π

σ

media

mc=?, mf=?,

d in (…)

π

media

mc in (?, ?), mf in (?, ?),

d in (…, …)

σ

Figure 4.1: Merged media query

Merging a simple query, such as the media query (cf. Figure 2.6), results in a query string,
similar to the original, with an inflated parameter list. Figure 4.1 presents the merged
query plan of 2 media querys.

As this example shows, the parameter list of mc and mf is extended from looking up a
single parameter to looking up N parameters of N different media query submissions.
The parameter list of d is also inflated by a factor of N . Similar to MQO, the execution of
the merged media query will provide a minimal super-set of the result-sets of all N media
querys, with an ultra low overhead in splitting and distributing these results.

The example of the media query already shows that our approach fulfills two of the re-
quirements, listed in Section 2.4: First, it can handle queries with non-complex opera-
tions, such as index look-ups. Second, it has an ultra-low execution overhead, due to
the simple pattern matching algorithm that based on a number N can create a merged
media query, as presented in Figure 4.1, and the short time required to split the minimal
super-set of results and distribute it to the respective clients. As Figure 4.2 shows, our
approach can also be applied to medium statements, such as the price query, introduced
in Section 2.3.2.

Similar to merging the media query, merging price querys simply inflates the parameter
lists of all filter expressions, based on the number N of queries to merge. The execution

2We get the hash value by hashing the SQL string

38 Chapter 4 Merging Statements in Multi Statement Transactions

σ

price

pq in (…),

uq in (…), d=?,

p!=null

or c in (null, …)

π π

σ

price

pq=?, pid=?, d=?,

p!=null

or c in (null, …)

∪

π

σ

price

pq in (…),

uq in (…), d=?,

p!=null

or c in (null, …)

π

σ

price

pq=?, pid=?, d=?,

p!=null

or c in (null, …)

∪

π

price

pq in (…, …),

uq in (…, …),

d in (?, ?),

p!=null

or c in (null, …, …)

π π π

price

pq in (?, ?),

pid in (?, ?),

d in (?, ?),

p!=null

or c in (null, …, …)

∪

π

σ σ

Figure 4.2: Merged price query

of the union presented in Figure 4.2, will return a minimal super-set of the results of all
N price querys. As the union-operator does not specify any order of the returned result,
post-evaluation of such order can also be omitted, when splitting the result.

Finally, we show that our approach is applicable to complex statements as the cat2prod
query, introduced in Section 2.3.2.

σ

cat

d in (…), c in (…)

σ

cat2prod

qual=?, FK=?,

lang=null

⋈

sort

π

cat.PK =

cat2prod.FK

cat2prod.PK

σ

cat

d in (…), c in (…)

σ

cat2prod

qual=?, FK=?,

lang=null

⋈

sort

π

cat.PK =

cat2prod.FK

cat2prod.PK

σ σ

cat

d in (…, …),

c in (…, …)

cat2prod

qual in (?, ?),

FK in (?, ?),

lang=null

⋈

sort

π

cat.PK =

cat2prod.FK

cat2prod.PK

Figure 4.3: Merged cat2prod query

As already discussed for the media query and the price query, our approach extends the
parameter list by the number of merged statements, even for complex queries, as pre-
sented in Figure 4.3. Similar to MQJoin, this statement merges the execution of a join
operation, while index look-ups that share a common sub-path in the index-tree ben-
efit from previous cache-misses, similar to the idea discussed earlier, when presenting
Blink. Finally, the sort-operation is also shared among all N queries, following a simi-
lar approach given in the example of Figure 3.5, when discussing SharedDB. This labels
our approach as efficient and ultra-low in terms of execution overhead, regardless of the
statement’s complexity.

With regards to the requirements set in Section 2.4 for applied merging in OLTP work-
loads, we find that our approach can fulfill the first two, right away. First, it is able

4.1 Overview of Our Approach 39

to handle statements with non-complex operations, such as index look-ups, by simply
extending the parameter list of such look-ups. Second, it comes with an ultra-low exe-
cution overhead for statements of all complexity types by applying some simple string
pattern matching rules that defers a merged statement string from a given hash-value
and a numberN of statements to be merged, as exemplary show in Figure 4.1, Figure 4.2,
and Figure 4.3.

The next section explains why fulfilling the third requirement – providing the correct
visibility for different transactions – is not a trivial problem and serves as motivation to
Chapter 4, detailling our approach to fulfill that requirement.

4.1.2 Why Naïve Merging Fails

To show the obstacles of providing the correct visibilities when merging read statements,
we present a small example, where naïve merging fails to return the correct result in
Snapshot Isolation. This example was published in our earlier work [RBB+20].

Snapshot Isolation protects reads from other users’ writes. For example, consider Alice
and Bob with separated bank accounts who agreed on always having more than 3000AC
together on both bank accounts. Currently, both bank accounts are filled with 4000AC,
each. In our example, schematically given in Figure 4.4, Alice and Bob at the same time
decide to withdraw 1000AC and 2000AC, respectively, from their own bank account, without
telling each other.

DB

A: 4’000

B: 4’000

π

Σ

π

Σ

A: 4’000

B: 4’000

A: 3’000

B: 2’000

Alice Bob Alice Bob Alice Bob

read(A+B) read(A+B) write(A=3’000) write(B=2’000)

time

π

Σ

π

Σ

A: 4’000

B: 4’000 B: 2’000

read(A+B) read(A+B)

A: 3’000

Figure 4.4: Example without merging.

As illustrated in Figure 4.4, both first check the sum of their bank account, which is 8000AC,
withdraw the amount of money and check again, verifying their withdrawal did not
violate their agreement. Since their read is protected from the other writes, Alice sees a
sum of 7000AC, and Bob 6000AC. As both receive the expected result, they commit. The final
sum of their bank accounts is now 5000AC, which is correct with regard to (1) the chosen
isolation level Snapshot Isolation as well as (2) their agreement to always have more than
a sum of 3000AC on their accounts.

Figure 4.5 shows how naïve merging applies to the example. We note that the calculation
of the first sum may certainly be merged, since both read the same data and receive
the same result. In this case it is also obvious, why it is intuitive to merge, since it is
unnecessary to calculate the same result twice. After both updated their bank account
within the database, they calculate the sum again. If we merge those read operations
as well, i.e., calculate the sum of money on both bank accounts once, and distribute the

40 Chapter 4 Merging Statements in Multi Statement Transactions

DB

A: 4’000

B: 4’000

π

Σ

π

Σ

π

Σ

A: 4’000

B: 4’000

A: 3’000

B: 2’000

Alice Bob Alice Bob Alice Bob

read(A+B) read(A+B) write(A=3’000) write(B=2’000)

time

π

Σ

π

Σ

π

Σ

A: 4’000

B: 4’000

A: 3’000

B: 2’000

read(A+B) read(A+B)

Figure 4.5: Example Merged (naïve approach).

results to both, we have three possible outcomes: (1) we return 5000AC, meaning that both
see the write of each another, thus violating the isolation properties of the database (2)
we return 6000AC or 7000AC, thus making either Alice or Bob believe, her or his write failed
(and maybe trigger another withdrawal) or (3) we return 8000AC, so that none of the two
can read their own write. Certainly, none of the above outcomes of merging are in line
with the users’ expectations.

Therefore, this chapter presents our approach to provide both (1) preserving the notion
of the isolation level and (2) provide read-your-own-writes guarantees. Thus, clarifying
how our approach fulfills the requirement of dealing with different visibilities of different
transactions. As we propose to execute writes simply as they come, our approach also
fulfills the requirement to handle writes.

4.2 THE LEVIATHAN APPROACH

This section presents, how we handle visibilities under different isolation levels, when
merging reads. We first introduce our idea on a high level on the given example, the
next section provides some theoretical background on transactions and MVCC, required
for the formal framework to analyze the correctness of shared execution strategies under
different isolation levels implemented in MVCC.

As several read statements enter the system, we merge them into a new read statement,
which we refer to as a Merged Read. For merging transactions in this work, we assume
that the underlying DBMS supports MVCC, which allows us on a per-transaction level to
read a certain snapshot. This is true for most commercial databases today such as Oracle
but also SAP HANA where we built our prototype on.

For merging, we execute a Merged Read in the context of another transaction, which is
transparent to the user and has a snapshot that is compatible with the individual reads.
The main problem we address is handling the isolation properties between all operations
of a transaction (also those executed as a Merged Read) by the underlying DBMS. Since the
DBMS handles these properties between different transactions, we only need to provide

4.2 the Leviathan Approach 41

1. a correct snapshot for all reads merged into a Merged Read, and

2. a snapshot consistent to other non-merged operations the client’s transaction sub-
mits to the DBMS.

To guarantee the isolation properties among all statements merged within the same Merged
Read, we only merge those read statements that have the same view on the data (i.e., those
which see the same snapshot). To additionally provide read-your-own-writes, we track the
write set of a transaction and bypass merging for reads accessing those not yet visible
writes within the transaction’s context, i.e., we do not merge them into a Merged Read.

We show the effect of our approach in the example in Figure 4.6. Referring to our example
from Section 4.1.2, Alice and Bob open a transaction and submit their read statement,
calculating the sum over their bank accounts to the system. Since both have the same
view on the data (i.e., there are no uncommitted changes in the system), we merge their
statement into a Merged Read, which calculates the sum over both bank accounts. We
execute that Merged Read in the context of an internal transaction, receive the result and
return it to both transactions. Next, we track the writes to different accounts in the write-
set of their transactions. As both now again submit their sum-calculation to the system,
we note that these operations access data that has been altered by their own transactions.
To provide read-your-own-writes, we execute these reads as originally submitted, without
merging. Hence, Alice and Bob can see their own withdrawal without seeing the other
withdrawals and are able to commit.

In an equivalent lock-based implementation, the Merged Read needs to read-lock both ac-
counts and transfer these locks to Alice and Bob, once they submit their write requests.
Next, these locks are promoted to withdraw money from the respective bank account.
As our example applies to Snapshot Isolation, which is not supported in lock-based sys-
tems, the subsequent read-accesses by both parties will deadlock and fail. Nevertheless,
our approach can also be implemented in lock-based systems if transferring locks from
one transaction to another is supported by the underlying DBMS. As SAP HANA, the
foundation of our prototype is not a lock based system, we focus on the MVCC imple-
mentation in the rest of our work.

DB

A: 4’000

B: 4’000

π

Σ

π

Σ

π

Σ

A: 4’000

B: 4’000

A: 3’000

B: 2’000

Alice Bob Alice Bob Alice Bob

read(A+B) read(A+B) write(A=3’000) write(B=2’000)

time

π

Σ

π

Σ

A: 4’000

B: 4’000 B: 2’000

read(A+B) read(A+B)

A: 3’000

Figure 4.6: Example Merged (our approach).

In this work, the main focus is on a setting where clients (i.e., Alice and Bob) submit
operations interactively one-by-one since this setting is used in many real-world appli-
cations, as presented in Chapter 2. However, in general our approach works, regardless

42 Chapter 4 Merging Statements in Multi Statement Transactions

whether Alice and Bob submit their requests in an interactive manner (i.e., operations
are submitted one by one) or as stored procedure (i.e., the whole sequence of operations
is submitted at once). In our evaluation, we will evaluate the benefits of merging under
both settings.

4.3 FORMALIZING THE LEVIATHAN APPROACH

To show our understanding of merging and how we decide which statements to merge,
we formally introduce our definition of a Merged Read as well as our merge-decision algo-
rithm in this section. For a better understanding of our definition and algorithm, we first
provide a brief recapitulation of transactional execution under Multi Version Concurrency
Control (MVCC).

4.3.1 Transaction Theory

Transaction management has a long history in the database area. In this work, we build
mainly on the transaction definition, provided by Bernstein et al. already published in
1983 [BG83].

In databases, clients submit two types of operations on data items: read and write oper-
ations. We denote a read on data item x submitted by transaction Ti as ri(x) and a write
to data item y as wi(y). For simplicity but without loosing generality, we assume that a
read operation always refers to an existing item. A write operation may (1) insert a non-
existing data item into the database, (2) update an already existing data item, or (3) delete
a data item from the database.

A transaction is an ordered sequence of those operations that are executed providing
guarantees of atomicity, consistency, isolation, and durability (ACID) and are terminated
by either a commit or an abort [BG83].

For performance reasons, these guarantees, especially the isolation is often weakened
by providing different isolation levels that allow for different read-write anomalies. The
strongest isolation level is Serializable, which allows for no anomaly [BBG+95]. A weaker
consistency level is Snapshot Isolation, which allows for write skew, predicate-based write
skew, as well as the read-only serialization anomaly [FLO+05] and is typically provided in
the context of MVCC databases. Some of these databases, such as PostgreSQL [Cam20]
or SAP HANA [Bra19] also provide Snapshot Isolation as equivalence to Serializable. In the
context of distributed databases, Generalized Snapshot Isolation [EPZ05] is the next weaker
isolation level, allowing no further anomalies, but also not necessarily allowing for read-
ing committed writes of previously submitted transactions. In databases supporting
lock-based concurrency control, the next isolation level weaker than Serializable is Repeat-
able Read [BBG+95], allowing for the anomaly of phantom reads. MVCC databases, such
as PostgreSQL [Cam20], Oracle [Liu12], or SAP HANA [Bra19] usually provide Snapshot
Isolation on the selection of Repeatable Read. The next weaker isolation level, as specified
by ANSI-SQL, is Read Committed [BBG+95], which in addition to phantom reads allows for
the non-repeatable read anomaly. In the context of MVCC implementation, this isolation
level is often referred to as Statement Level Snapshot Isolation3. Finally, the lowest isolation

3as opposed to Transaction Level Snapshot Isolation, which is the technical name of what we refer to simply
as Snapshot Isolation

4.3 Formalizing the Leviathan Approach 43

level is Read Uncommitted [BBG+95], furthermore allowing for the anomalies dirty read
and lost update.

We denote a commit of Ti as ci and its abort as ai. For the order of the sequence, we use the
happens-before notation by [BG83], denoted as <: If Ti submits a (read or write) operation
oi before it submits another (read or write) operation pi, then oi < pi. A data item, which
is written by Ti, is in a state that [BG83] refer to as "uncertified". A ci command certifies
all uncertified data items created by Ti. An ai resets all uncertified data items to their
previous state.

Finally, a history H determines the order in which the DBMS executes the operations
of multiple concurrent transactions. More precisely, according to [BG83], a history is
defined as partially ordered set H = (∑, <) with the following properties.

1.
∑ = ∪ni=0

∑
i, i.e., all operations of H’s transactions are executed and no further

operations are added.

2. <⊇ ∪ni=0 <i, i.e., the ordering of each transaction’s operations remains stable in the
global history.

3. Operation pairs that are executed on the same data item, with at least one operation
being a write, are not executed in parallel, i.e., they are < related.

MVCC Background

The Implement multi version concurrency control (MVCC) [Ree78] is supported in most
of modern relational database engines [WAL+17]. In MVCC, every data item is enhanced
with a from-to-timestamp that defines the visibility of its version. Timestamps are typi-
cally implemented by incrementing a global atomic counter (global-TID) [LBD+11]. A
submitted operation determines the version it accesses by its own transaction ID (TID).
The TID is typically assigned to a transaction, when it enters the system by incrementing
global-TID and uses that as its own TID.

An operation with an attached TID is allowed to read a version of a data item, if the from-
timestamp of the data item is smaller than the TID of the operation and the to-timestamp
is larger. The to-timestamp may be larger, if (1) a newer version was written but not yet
certified to the operation or (2) this is the newest version and the to-timestamp is∞.

On commit, a transaction again increments the global-TID and uses this counter as com-
mit ID (CID) to create a new version for all data items it updated / inserted: Thus, a
write-operation overwrites the to-timestamp (currently∞) of the most recent version of
the data item with its CID and creates a new version of the data item with the from-
timestamp set to the CID and the to-timestamp set to ∞, i.e., the transaction installs a
new snapshot. During commit, additionally read- and write-conflicts must be checked,
depending on the chosen isolation level.

To reason about multi-versioned histories, [BG83] introduced an h-function, which maps
every read or write operation of a transaction Ti to the version being read or installed as
follows:

1. Every submitted operation of a transaction Ti is transformed into a multi-versioned
operation; i.e., h(ri(x)) = vr and h(wi(x)) = vw where vr and vw can be seen as the
from-timestamp of the version read or being installed.

44 Chapter 4 Merging Statements in Multi Statement Transactions

2. If a write is executed before a read in Ti, i.e. wi(x) < ri(x), then the read returns the
version of the write, i.e., h(ri(x)) = h(wi(x)).

3. Otherwise, h(ri(x)) = h(wj(x)), i.e. Ti returns the version of a transaction Tj that
committed before Ti started4.

4.3.2 Merging Under MVCC

The example presented in Figure 4.5 raises the question how to merge the execution of
statements in multi-statement transactions. In the most simple case, clients submit a full
transaction to a lock-based database system, resulting in a history of transactions, fully
know to the database. As the whole history is under the supervision of the database, it
may reorder the execution of commutative operations. In her PhD-thesis, Narula [Nar15]
presents some formalism how to detect commutative operations. Naturally, we can only
merge commutative statements that are of the same type5.

In many cases, such as SAP Hybris, however, clients submit their operations interactively,
one by one; i.e., they submit the next operation, once they retrieved the result of the pre-
vious operation. In that case, the database is unaware of the full transaction in advance.
It just knows about the operations of multiple clients, present at the moment. Such moment
may be defined as a period of time and adjusted by the database administrator (DBA).
The period effects the merge options and latency of the system, i.e., an infinite long period
can gather one operation of infinite clients, resulting in infinite merge options, but caus-
ing an infinite latency on each operation, while a period of zero can gather one operation
of zero clients, resulting in zero merge options but also causing zero latency. Operations
arriving within the same period may be merged according to the commutative character-
istics, as described above. The challenge of this approach lies in handling locks among
a sequence of operations to avoid deadlocking through merging. Besides, when clients
submit operations interactively, operations belonging to the same transaction cannot be
merged.

As stated above, many industry database systems provide multiple versions of data iden-
tified by the same keys, instead of a lock-based approach [WAL+17]. In consequence, the
mergeability of two operations may no longer be decided simply on the basis of com-
mutative characteristics alone, as Figure 4.5 shows. Instead, the challenge is shifted from
lock handling to version handling.

Finding an approach that returns or writes the version of a data, consistent with the
client’s expectation, expressed in its isolation level, is the aim of this section. We first
argue, why enhancing database execution plan operators with multiple different data
versions makes no sense. Next, we show the limitations of implementing an additional
component for keeping track of the client’s data view inside of the merger. Finally, we
briefly present THE LEVIATHAN, our approach that leverages the databases functional-
ity to provide both, read-your-own-writes and isolation level guarantees, when merging.
Section 4.4 in detail presents our approach for merging read statements, follows by Sec-
tion 4.5 presenting challenges and ideas of merging write statements.

4In Serializable, other isolation levels may broaden the point of time when Tj committed
5read or write, i.e., we do not merge a read and a write operation into a readwrite, as such operation is not

supported by the database specification

4.3 Formalizing the Leviathan Approach 45

Why Merging Should not be Integrated into the Database Core

Applying merging to a scenario where clients submit operations interactively with dif-
ferent views of the underlying data, handling the access to different versions of the same
data needs to be considered. Intuitively, such approach would be implemented into the
database core, providing multi-version access to plan operators. More precisely, the data
access operator (index look-up / table scan) is enhanced to look-up data for different
TIDs. Other plan operators are enhanced to process their functionality (filter / join / ag-
gregation) for different TIDs as well. Such approach is implemented for example in CJoin
[PAOA14]. Finally, the projection operator needs to split data for each client, according
the data item timestamps and the given TIDs. Such an approach is made possible by
making the visibility of a data item obtainable throughout the whole execution plan.

In consequence, as two clients request different versions a data item with the same pri-
mary key, two different data items identified by the same primary key need to be re-
trieved from the table. This violates the assumption that a primary key needs to be
unique. For this reason, the execution of a merged plan needs to be implemented from
scratch, when introduced into an already existing database system, calling for unforeseen
side-effects, due to breaking fundamental assumptions. Not only the access and process-
ing of data needs to be re-implemented; the projection operator also needs to be enhanced
to be able to serve multiple clients, at once. Even if one would undertake the immense
effort to rebuild large parts of a database’s execution engine, the approach would still
need to provide read-your-own-writes. Therefore, data access operators also need access to
a transaction’s write-set. Such approach is complex and error-prone.

Therefore, an approach must be implementable by leveraging the functionality of the
DBMS, as much as possible. As relational databases provide functionality of retrieving
the correct version of a data item and read-your-own-writes within the context of trans-
actions, our approach is to implement a merger component that decouples user transac-
tions into system transactions and communicates with the execution engine of a database
through the interface of these system transactions.

As the execution engine will now guarantee the correct version of data items and read-
your-own-writes to these system transactions, the merging component needs to ensure to
transfer these to the decoupled user transactions.

Merger
𝑜1

𝑜2

𝑜𝑛

𝑜𝑀1
, 𝑜𝑀2

,…, 𝑜𝑀𝑧

:: 𝑅𝑆𝑀1
, 𝑅𝑆𝑀2

, … , 𝑅𝑆𝑀𝑧

𝑅𝑆1

𝑅𝑆2

𝑅𝑆𝑛

𝑅𝑆𝑖: result set of operation 𝑜𝑖

Locks

𝑀1 𝑀2𝑀𝑖𝑀𝑧

y x 𝑇2

z x 𝑇3, 𝑇4

x x x 𝑇1, 𝑇2

Key S X TransactionsLock

No locks in DB

(merged transactions run in

either Read Uncommitted or

autocommit)

History

𝑇2 𝑟 𝑥 , 𝑢: 3 ↦ 5, 𝑟 𝑦 , 𝑦: 7 ↦ 14

T History

Figure 4.7: Book-keeping approach system layout.

46 Chapter 4 Merging Statements in Multi Statement Transactions

Proposal I: Book-Keeping

The most naïve approach is to handle version correctness and read-your-own-writes in
the merger component by book-keeping. This means, the merger component receives
operations of user transactions and translates them into merged operations running in
system transactions with autocommit mode on. The database system is thus used as
a more intelligent file system providing the property of durability, while the remaining
properties6 are ensured by the merger component.

Figure 4.7 presents the system layout of that approach. It consists of a Merger that re-
ceives operations o1, o2, . . . , on and returns the corresponding result setsRS1, RS2, . . . , RSn.
The Merger has a thread pool of threads M1,M2, . . . ,Mz that merge or bypass incoming
operations and send them to the execution engine, which executes these operations in
the context of system transactions running in autocommit mode.

For providing atomicity, consistency, and isolation, the Merger tracks the operations sub-
mitted by different user transactions in a so-called History file. In addition, the Merger
has a lock-table, where it can set for each key which transaction holds what kind of lock.
The program flow of locking an item is presented in Figure 4.8.

The Merger first receives the operation sent by the application and assigns it to one of
its threads. This thread retrieves the operation’s key and locks the corresponding row in
the lock-table. Upon getting the lock, it checks the lock status. In case of conflict with a
previous operation, the current operation needs to be postponed or aborted. Otherwise,
if the lock is not yet set or not yet set for the operation’s transaction, the transaction is
entered in the table and the lock is set. In case the lock was already acquired by the
transaction, the thread proceeds without action. In the next step, the thread updates
the history file of the Merger by appending the operation to the list of the transaction’s
submitted operations. In this step, no locking is required, as every transaction is allowed
to only submit one operation at a time. Finally, the thread merges the operation with
other operations, sends it to the execution engine for processing, retrieves the result set
and splits it up to return to each application its corresponding result.

In consequence, with this system design, the Merger takes on tasks actually provided and
implemented in the execution engine. Not only does this introduce execution overhead;
locking rows in the lock-table and updating the history file may become a bottleneck of
the system keeping the Merger from scaling.

The next proposal thus, distributes the responsibility for different keys among the Merger’s
threads, similar to the data oriented transaction architecture (DORA), proposed in [PJHA10].

Proposal II: Data Oriented Approach

In the last proposal, ACI properties were guaranteed, by managing data access and trans-
action history via a lock-table and a history file in the Merger. The big disadvantage of
this approach is that these files become a bottleneck keeping the Merger from scaling.
The natural conclusion of such observation is to distribute data access among threads,
similar to DORA [PJHA10]. Figure 4.9 presents such system layout.

The system now consists of a Gatekeeper, responsible for forwarding requests to respon-
sible clients, and threads M1,M2, . . . ,Mz of the Merger, each holding its own lock-table

6atomicity, constistency, and isolation

4.3 Formalizing the Leviathan Approach 47

Book-Keeping

get operation

lock key-row

check lock

conflict

postpone

unset

set

set

ok

unlock key-row

update transaction history

merge

execute

Figure 4.8: Book-keeping approach activity diagram.

and history file. The key-ranges of the individual files do not overlap, as each thread
is responsible for an exclusive range of items. In case an operation inserts a new item
into the database, a thread being responsible for this new item needs to be found. There-

Merger 𝑀1

𝑜1

𝑜2

𝑜𝑛
::

Merger 𝑀2

Merger 𝑀𝑧

G
at

ek
ee

p
er

𝑜𝑖+1, … , 𝑜𝑗 𝑜1𝑀2
, 𝑜2𝑀2

, … , 𝑜𝑍𝑀2

L cH

No locks in DB

(merged transactions run in

autocommit)

Deadlock

-

Detector
L H c

cHL

Figure 4.9: Data oriented approach system layout.

48 Chapter 4 Merging Statements in Multi Statement Transactions

fore, each thread also carries a counter c. For each processed execution, that counter is
incremented so that threads responsible for hot pages have a higher c-value than threads
responsible for warm or cold pages. To reflect changing workloads, all threads set their
c to zero every five minutes, which is a reasonable amount of time, as discussed in
[GP87, GG97, Gra08, AGBGA19]. The thread with the lowest value in c becomes re-
sponsible for an item, inserted by an operation.

The big advantage of this system design is that the necessity of interaction between
threads of the merger pool is drastically reduced. On the other hand, as a thread only
knows about operations in its own data range, mergeability is also drastically reduced.
Furthermore, finding deadlocks among transactions is only possible through an addi-
tional thread, the Deadlock Detector, which scans the threads lock tables in a regular inter-
val.

Thus, overhead is introduced by deadlock detection and mergeability is reduced by key-
range distribution. Naturally, the question arises, whether a system that merges opera-
tions can do so optimistically, without locking.

Proposal III: Optimistic Approach

Locking introduces scalability problems, as discussed ealier when presenting our first
approach. The previous section discussed that getting rid of locks through distribution
of key-ranges among threads does not provide benefits, as it also reduces our ability to
detect mergeable operations. Hence, this section presents an approach that omits locking
by following an optimistic merge-and-execute strategy. Figure 4.10 presents the system
layout.

Merger
𝑜1

𝑜2

𝑜𝑛

𝑜𝑀1
, 𝑜𝑀2

,…, 𝑜𝑀𝑧

:: 𝑅𝑆𝑀1
, 𝑅𝑆𝑀2

, … , 𝑅𝑆𝑀𝑧

𝑅𝑆1

𝑅𝑆2

𝑅𝑆𝑛

𝑅𝑆𝑖: result set of operation 𝑜𝑖

𝑀1 𝑀𝑍𝑀𝑖𝑀2

No locks in DB

(merged transactions run in either Read

Uncommitted or autocommit)

r w

Figure 4.10: Optimistic approach system layout.

Similar to the system described in Figure 4.7, the system presented in Figure 4.10 consists
of a single Merger component with its own thread pool. Instead of a lock-table and a
history file, however, these threads just keep the read- and write-sets of running trans-
actions as well as which operations were merged and executed together. Upon commit,
the read- and write-set of the committing transaction is checked for conflicts with other
transactions and the results of merged operations are checked for consistency. In case of
conflict or inconsistency, the commit fails and the transaction aborts.

However, an optimist concurrency approach wastes resources in case of frequent con-
flicts [ACL87]. Furthermore, in all of the presented system designs, the Merger effec-
tively becomes a new database on top of a database, providing atomicity, consistency,
and isolation of transactions; a functionality already implemented in the DBMS’s execu-
tion engine.

4.3 Formalizing the Leviathan Approach 49

The next section thus presents THE LEVIATHAN, a system design that provides ACID
properties when merging of operations, while fully leveraging the power of the execution
engine.

Proposal IV: THE LEVIATHAN

To leverage the full functionality of the execution engine when providing ACID guaran-
tees, we propose to couple user transactions with system transactions. This means that
operations submitted by a transaction Ti are always executed in the context of the same
system transaction TM or bypassed and executed in the context of Ti. In consequence,
the Merger just needs to provide ACID properties between all transactions coupled to
the same system transaction and to the system transaction itself.

On a high level explanation, we achieve this by coupling only transactions operating on
the same snapshot into a single system transaction, which is executing its request on that
snapshot. This calls for the system transaction to not alter data, i.e., we only merge read
operations for the following two reasons: Firstly, merging just reads allows us to use
the existing mechanisms of a DBMS to handle not only write-write conflicts but also the
functionality for rollback and recovery without complicated extensions of the affected
core database components. Secondly, as mentioned before, many OLTP applications of
our customers are read-heavy at the beginning to retrieve information from the database
before writes are executed, which supports our sharing strategy.

For example, in a webshop scenario, customers may first look at the details of a product,
place an order for that product and then show the order status. In such a pattern, the
read retrieving the product info could be executed in a shared manner, while the write
placing the order and the read showing the order status would be executed in isolation.
Such a “look-to-book” ratio is usually 1000 : 1 [May15]. In consequence, it makes sense
to concentrate on merging reads rather than writes.

In consequence, read operations that access a transaction local write-set, need to be ex-
ecuted in the context of its submitting transaction to be able to see that data. So, we
provide read-your-own-writes by not merging read operations that do access previously
uncommitted reads – an exception is isolation level Read Uncommitted, as discussed later.

To sum up the high level description of our approach, user transactions project their will
on the system transaction, which processes the requests on behalf of the submitting user
transactions.7

Next, we provide our formal framework to analyze the correctness of shared execution
strategies under different isolation levels: We first notate our definition of a Merged Read
in the context of MVCC databases. Next, we present our algorithm that decides whether
two read statements can be merged.

A Merged Read is a composition of several read statements. It is executed in the context of
a system transaction and runs with respect to a fixed and valid snapshot. That snapshot
must contain the data-version requested by the individual read statements.

Definition 4.1 Merged Read
A Merged Read rM (x, y, . . . , z) is a composition of read operations ri(x), rj(y), . . . , rn(z) of
transactions Ti, Tj , . . . , Tn, such that h(rM (x)) = h(ri(x)), h(rM (y)) = h(rj(y)), . . . ,
h(rM (z)) = h(rn(z)), running under a single arbitrary but fixed, existing and explicitly known
TID.

50 Chapter 4 Merging Statements in Multi Statement Transactions

σ

π

σ

π

σ

π

π

σ

…

App 1 App 2 App n

…

M
er

g
e

E
x

ec
u

te
S

p
li

t

Intermediate Result

Figure 4.11: Execution of a Merged Read.

Figure 4.11 conceptually shows the merging procedure: The DBMS compiles the appli-
cation’s read statement into a plan with operators for table-access, filters (σ), projections
(π), etc. We merge the filters and projection lists of statements against the same table
access and write the intermediate result into an internal temporary table. The original
plans may then fetch directly from that much smaller temporary table and send the re-
sults back to the client. Therefore, we do not only share the table access, such as ranged
index look-up or a table scan, but also occupy only a single thread with the execution of n
plans at once, leaving other threads for the execution of further incoming requests. Thus,
the system may answer more requests, which is especially relevant in overload spikes,
where free threads become rare.

Merging reads requires the same view on the data for different statements. In Algo-
rithm 1, we show how we decide if two read statements are mergeable. The function
receives two read statements, submitted by two transactions. The read statements may
or may not access the same data item.

According to Definition 4.1, a Merged Read is executed under a single TID. Hence, we
need to check if there exists a single TID that returns the correct version of x and y to Ti
and Tj , respectively. Line 2 checks if an access to x with the TID of Tj returns the same
version that Ti expects. If this is the case, we merge ri(x) and rj(y) into rM (x, y) which
will then be executed within a system transaction having the snapshot of Tj . Otherwise,
we use the afore-defined function h to check if an access to y with the TID of Ti returns

7This is similar to the citizens projecting their will on the common wealth – "the leviathan" – which then
acts on behalf of the citizens, as described by Hobbes [Hob51]. For that reason, we chose to name our
approach THE LEVIATHAN.

4.3 Formalizing the Leviathan Approach 51

Algorithm 1 Check if read ri of Ti to x and read rj of Tj to y can be merged. x = y maybe
possible.

1: function ISMERGEABLE(ri(x), rj(y))
2: if h(ri(x)) = h(rj(x)) then . Do Ti and Tj read identical version of x?
3: return true
4: else if h(ri(y)) = h(rj(y)) then . Do Ti and Tj read identical version of y?
5: return true
6: end if
7: return false
8: end function

the same version that Tj expects (Line 4) and if so, we can execute the resulting Merged
Read with the snapshot of Ti. If neither is the case, ri(x) and rj(y) are not mergeable. In
consequence, we return false in Line 7.

Algorithm 2 Check if read ri of Ti to x can be merged into rM .

1: function ISMERGEABLE(rM (. . .), ri(x))
2: return (h(rM (x)) = h(ri(x)))
3: end function

Once we composed two reads into a Merged Read, we use Algorithm 2 to check for all
other reads in the system whether they can be compiled into this Merged Read, as well.
All we have to do, is to check if the Merged Read with its given TID would return the same
version of a data item as the original read. If this is the case, we compose that read into
the Merged Read. For the remaining reads, we continue with Algorithm 1 followed by Al-
gorithm 2, once we found a match, until no further match is found or all read statements
were merged. Finally, the resulting Merged Reads are executed.

In the next section, we show when the expression of Line 2 and Line 4 in Algorithm 1
is evaluated to true for different isolation levels and how this affects the mergeability of
workloads running under these isolation levels.

4.4 MERGING READS UNDER DIFFERENT ISOLATION LEVELS

As we stated previously, two read statements ri(x) and rj(y) can be merged, if h(ri(x)) =
h(rj(x)) or h(ri(y)) = h(rj(y)). Because the outcome of these expressions for the same
i, j, x and y depends on the isolation level, this section discusses the conditions under
which these expressions evaluate to true.

Running Example

In order to discuss merging in the presence of different isolation levels, we use the run-
ning example in Figure 4.12 to intuitively explain the consequences of isolation levels on
the merging potential. For space reasons, Figure 4.13 presents the same transactions as
Figure 4.12, but in smaller. We will refer to that kind of graphic in this chapter. In the ex-
ample there are five transactions, where each transaction operates in an interactive mode,
i.e., each transaction submits only one read or write operation at a time and waits for the

52 Chapter 4 Merging Statements in Multi Statement Transactions

T1
w1(x=1) c1

T2
w2(y=1) c2

T3
r3(z) r3(x) w3(y=2) r3(y) c3

T4
r4(x) r4(y) w4(z=1) c4

T5
w5(x=2) r5(y) c5

Figure 4.12: Example of five interactively submitted transactions (transaction-view,
only).

time

T1 T2 T3 T4 T5

w1(x=1) w2(y=1) r3(z) c1 c2 r3(x) r4(x) w5(x=2) w3(y=2) r4(y) r5(y) r3(y) w4(z=1) c5 c3 c4

x: 0

y: 0

z: 0

Figure 4.13: Example of five interactively submitted transactions.

result, before submitting the next. Without loss of generality, we assume all transactions
run in the same MVCC isolation level and a database with enough threads to execute all
requests immediately. We mark the start of the transaction with a dot. T1, T2 and T3 start
first and submit a write to x and y and a read to z, respectively. Next, T2 and T1 commit
their writes, installing a new snapshot. Afterwards, T4 and T5 start. T3 and T4 submit a
read to x at the same time, while T5 overwrites that value. The subsequent statement is
submitted by T3 and overwrites y, followed by a read to y of all three remaining trans-
actions. Finally, T3 and T5 commit, while T4 submits a last write to z and commits as
well.

As all transactions run in interactive mode, i.e., are blocking on every operation until they
receive a result from the database, the DBMS is not able to reorder or antedate statements.
For example, the DBMS cannot execute r3(x) before r3(z), since r3(x) is only submitted by
T3 once the result of r3(z) returns. Furthermore, the DBMS cannot simply execute r4(x)
before T2 commits, as T4 starts after T2 commits. In consequence, not knowing the overall
history and having limited control over when an operation is going to be executed (we
may always postpone the execution of a statement, though) further reduces our ability to
merge.

In the following, we describe how different isolation levels affect merging in this exam-
ple.

4.4.1 Read Uncommitted

In Read Uncommitted, every transaction is allowed to read the newest version of every
data item, even if it is not yet committed. Simply speaking, because

h(ri(x)) = h(rj(x)), ∀Ti, Tj ∈ H, (4.1)

4.4 Merging Reads Under Different Isolation Levels 53

Algorithm 1 always evaluates to true, thus we can merge all read statements in Read
Uncommitted.

time

T1 T2 T3 T4 T5

w1(x=1) w2(y=1) r3(z) c1 c2 r3(x) r4(x) w5(x=2) w3(y=2) r4(y) r5(y) r3(y) w4(z=1) c5 c3 c4

x: 0

y: 0

z: 0

x: 1

y: 1

z: 0

π

σ

x: 1

y: 1

z: 0

π

σ

π

σ

π

σ x: 2

y: 2

z: 0

x: 2

y: 2

z: 0

π

σ

π

σ

π

σ

π

σ x: 2

y: 2

z: 1

Figure 4.14: Running example in Read Uncommitted: All read statements on the same data
are mergeable.

In Figure 4.14, we circle the statements that we could merge from our example, above.
Obviously, we can merge all read statements that arrive at the same time. However,
we cannot merge r3(z) with any other read statement, because there is no other read
statement in the system at that time.

Conclusion We conclude that Read Uncommmitted does not restrict our mergeabilites at
all, since we can merge all reads that are in the system at the same time.

4.4.2 Read Committed

As our approach relies on the MVCC method, we assume the standard industry imple-
mentation of Read Committed [LAM18], instead of the ANSI-Read Committed [BBG+95],
which relies on locking. In Read Committed, all transactions have the same view on com-
mitted data items. Hence, we can merge all reads that do not refer to data currently
residing locally within a transaction’s write-set. More formally:

∀ Ti, Tj ∈ H, i 6= j

h(ri(x)) = h(rj(x))
⇐⇒

h(ri(x)) 6= h(wi(x)) ∧ h(rj(x)) 6= h(wj(x))

(4.2)

We circle the read statements of our example that can be merged when running under
Read Committed in Figure 4.15. In comparison to Read Uncommitted, we merge one read
less in this example, namely r3(y), which refers to a previous w3(y).

Conclusion In consequence, when incoming transactions are requesting Read Commit-
ted isolation, we can only merge reads that access committed data. For Read Committed,
we do not observe further restrictions.

54 Chapter 4 Merging Statements in Multi Statement Transactions

time

T1 T2 T3 T4 T5

w1(x=1) w2(y=1) r3(z) c1 c2 r3(x) r4(x) w5(x=2) w3(y=2) r4(y) r5(y) r3(y) w4(z=1) c5 c3 c4

x: 0

y: 0

z: 0

x: 0

y: 0

z: 0

π

σ

z: 0

π

σ

π

σ

π

σ x: 1

y: 1

z: 0

x: 1

y: 1

z: 0

π

σ

π

σ

π

σ

π

σ
x: 1

y: 1

z: 0

x: 1

y: 1

x: 1

y: 1

x: 2 x: 2

y: 2 y: 2

x: 2

y: 2

z: 1

x: 2

y: 2

z: 1

Figure 4.15: Running example in Read Committed: All read statements on the same com-
mitted data are mergeable.

4.4.3 Repeatable Read

As already discussed in Section 4.3.1, MVCC systems provide Snapshot Isolation on the
request of Repeatable Read. We therefore assume the mergeabilities observed for Snapshot
Isolation in the next section to also hold true for Repeatable Read in the context of MVCC.

4.4.4 Snapshot Isolation

Snapshot Isolation forbids the anomalies non-repeatable read and phantom read in addition
to Lost Update by providing each transaction a fixed snapshot, valid at transaction start
[BBG+95]. That snapshot does not change, except for the transaction’s own writes.

This implies the opportunity of merging two read operations if there exists a snapshot
that holds both accessed data items in the requested version. More formally, w.l.o.g.:

∀ Ti, Tj , Tk, Tl ∈ H, i 6= j 6= k 6= l

h(ri(x)) 6= h(rj(x))
⇐⇒

h(ri(x)) = h(wk(x)) < ck < h(rj(x)) = h(wl(x)) < cl

(4.3)

Figure 4.16 circles the sharing potential in our example under Snapshot Isolation.

As r3(x) and r4(x) now refer to different versions of x (namely h(r3(x)) = h(w0(x)) and
h(r4(x)) = h(w1(x)), respectively), we cannot merge these two read operations, contrary
to Read Committed. However, as r4(y) and r5(y) refer to the same version of y, created by
T2, we can still merge those. In consequence, as Snapshot Isolation increases the number
of snapshots alive in the system at the same time in comparison to Read Committed, the
merging abilities of reads operating on these snapshots further decreases.

Note, if the transactions were submitted as stored procedures and r3(z) and r3(x) were
independent, we could reorder the execution of r3(z) and r3(x), thus merge r3(z) and
r4(x) into rM (x, z), which we could execute with TID 4 (because h(r4(z)) = h(r3(z)) =
h(w0(z))).

4.4 Merging Reads Under Different Isolation Levels 55

time

T1 T2 T3 T4 T5

w1(x=1) w2(y=1) r3(z) c1 c2 r3(x) r4(x) w5(x=2) w3(y=2) r4(y) r5(y) r3(y) w5(z=1) c5 c3 c5

x: 0

y: 0

z: 0

x: 0

y: 0

z: 0

π

σ

z: 0

π

σ

π

σ

π

σ

π

σ

π

σ

π

σ

z: 1

x: 1 x: 0

y: 1

x: 1

y: 1 y: 0

z: 0

x: 0x: 1

y: 1 y: 0

x: 2

z: 0

x: 0x: 1

y: 1 y: 0

x: 2

y: 2 y: 2

x: 0

y: 0

x: 2

y: 2 y: 1

x: 1

z: 0

z: 1

Figure 4.16: Running example in Snapshot Isolation: All read statements on the same data
snapshot are mergeable.

Generalized Snapshot Isolation

As the number of different snapshots limits our merging abilities for Snapshot Isolation,
we may reduce the number of snapshots by using Generalized Snapshot Isolation (GSI).
With GSI, the database provides a view to the client that is consistent but may be slightly
outdated as discussed in [EPZ05].

Assuming our example running under GSI, we give a possible outcome of the merging
potential in Figure 4.17. Alternatively, the one given for Snapshot Isolation also applies to
GSI.

time

T1 T2 T3 T4 T5

w1(x=1) w2(y=1) r3(z) c1 c2 w5(x=2) w3(y=2) r4(y) r5(y) r3(y) w5(z=1) c5 c3 c5

x: 0

y: 0

z: 0

x: 0

y: 0

z: 0

π

σ

z: 0

π

σ

π

σ

π

σ

π

σ

z: 1

x: 1 x: 0

y: 1

x: 1

y: 1 y: 0

z: 0

x: 0x: 1

y: 1 y: 0

x: 2

z: 0

x: 0x: 1

y: 1 y: 0

x: 2

y: 2 y: 2

x: 0

y: 0

x: 2

y: 2 y: 1

x: 1

z: 0

z: 1

T4

r3(x) r4(x)

π

σ

π

σ

π

σ

Figure 4.17: Running example in GSI: Increasing number of read statements that access
the same data snapshot and are therefore mergeable.

As T4 starts its transaction and submits r4(x), we find a possible merging potential with
r3(x), submitted at the same time. However, as discussed earlier, both reads access two
different snapshots. Since we run under GSI, we may choose our snapshot at transaction
start, though. To share both read operations, we reset the snapshot of T4 to the one of T3
logically moving the start of T4 backwards. In consequence, we can now merge r3(x) and
r4(x) into rM (x), which is executed with the snapshot of T3.

Later on, as r3(y), r4(y) and r5(y) are submitted, we cannot merge any of the opera-
tions, because w1(x) < c2 < c1 < w5(x) < r5(y), hence T5 depends on the write of
T1 and at commit time of T1 the snapshot of T2 is already installed. Logically moving

56 Chapter 4 Merging Statements in Multi Statement Transactions

the transaction start of T5 prior to the commit of T2 to fulfill h(r4(y)) = h(r5(y)) would
therefore result in an abort of T5. However, if we delayed the execution of c2 so that
r3(x) < c2 < w3(y), neither T4 nor T5 see the result of w2(y) and in return get the same
merging potential as with Read Committed.

Conclusion We conclude that Snapshot Isolation limits our merging abilities further, as
the number of snapshots, reads operate on, increases. An optimization regarding the
merge options is to fall back to a slightly weaker isolation level, namely Generalized Snap-
shot Isolation, which lets the DBMS choose on which fixed snapshot an incoming transac-
tion operates on. This has the potential to decrease the number of snapshots alive in the
system and thus to increase our merging potential.

4.4.5 Serializable

ACID properties guarantee that a transaction runs isolated, i.e., as if it was alone in the
system. This forbids any kind of anomaly, such as lost writes or write skews. Serializable
is the only isolation level free of anomalies, providing true isolation. To prevent such
anomalies, the DBMS needs to track all dependencies between transactions, such as write-
write, read-write, write-read, and read-read and build a dependency graph, where a cyclic
dependency between transactions marks a non-serialized execution.

Isolation levels considered so far, only require the write set of a transaction to check for
a valid history, if the read was executed against the correct snapshot. Thus, we only
used the h function to decide, whether a transaction’s read operation can be merged (cf.
Algorithm 1). However, if we merge two submitted reads into a new read operation, we
basically hide the original reads from the read sets of their transactions. Thus, the DBMS
is not able to decide whether the resulting history was serialized or not, introducing
anomalies listed by Fekete et al. in [FLO+05]. As our running example from Figure 4.13
is a serialized history, we make our point with a different, smaller example, given below.

time

T1 T2

r1(x) r2(y) c1 c2

x: 0

y: 0

w1(y=1) w2(x=1)

π

σ

π

σ

x: 1

y: 1

x: 1

y: 1

x: 1

y: 1

The dependency graph of these two transactions is as follows:

4.4 Merging Reads Under Different Isolation Levels 57

T1 T2

rw

rw

The execution of T1 and T2 is not serialized, as we note from the circle within the depen-
dency graph. According to Algorithm 1 however, we can merge the two read statements
into a new read operation and execute this within the context of an internal transaction
TM operating on the snapshot of any of the two transactions. Thus, we create a new
transaction within the following dependency graph.

T1 T2

TM

rw rw

As T1 and T2 now commit, the DBMS is not able to detect the original circular dependency
among these transactions, since it is hidden within the Merged Read. Consequently, we
need to alter Algorithm 1 for isolation level Serializable:

Algorithm 3 Check if read ri of Ti to x and read rj of Tj to y can be merged. x = y is
possible. Transfer read-dependency to DBMS is isolation level is Serializable.

1: function ISMERGEABLE_SERIALIZABLE(ri(x), rj(y))
2: if h(ri(x)) 6= h(rj(x)) & h(ri(y)) 6= h(rj(y)) then
3: return false
4: end if
5: DBMS ← add x to read-set of Ti
6: DBMS ← add y to read-set of Tj
7: return true
8: end function

Algorithm 3 transfers the reads of Ti and Tj to the database (Line 5 and Line 6). Thus, the
database can internally build a correct dependency-graph and detect occurring anoma-
lies. As T1 or T2 finish in the example above, the database can abort the transaction due
to the detected write-skew.

Conclusion To fully support isolation level Serializable, we merge read statements the
same way as under Snapshot Isolation, but have to propagate reads of statements merged
to the collision detector of the DBMS.

58 Chapter 4 Merging Statements in Multi Statement Transactions

4.4.6 Discussion

In summary, with increasing isolation level the mergeability of an arbitrary workload
decreases. While we can merge all read operations in Read Uncommitted, Read Committed
limits the read operations it can merge to already committed data accesses. As Snapshot
Isolation introduces more snapshots alive in the system, the mergeability is even more
decreased, even though we have the option to reduce the number of snapshots using
Generalized Snapshot Isolation. In Serializable, we merge as in Snapshot Isolation, but in
addition we propagate the reads that were merged to the DBMS, not further limiting
mergeability.

Thus, our approach can handle different visibilities of different transactions, fulfilling the
third requirement, set in Section 2.4 for applied merging in OLTP workloads. The next
requirement is handling writes. Our approach merges read statements into Merged Reads
and executes writes as they come, tracking the write within the transaction-local write-
set. Naturally, the question arises, whether these writes could not be merged as well.
The next section provides a detailed discussion on all the reasons, why a write statement
should not be merged but be executed, as is.

4.5 MERGING WRITES UNDER DIFFERENT ISOLATION LEVELS

In this section, we present a possible extension to our formal framework, provided in
Section 4.3.2 for merging writes. Again, we first notate our definition of a Merged Write in
the context of MVCC databases. Next, we present our idea for an algorithm that decides
whether two write statements can be merged.

A Merged Write is a composition of several write statements. It is executed in the context
of an internal transaction and operates on a fixed and valid snapshot, containing the
individual data-version to be updated by the contained write statements. A Merged Write
installs a new version of the requested tuple; on commit it will be certified with the CID
of the submitting transaction. A Merged Write applies write operations in arbitrary order.

Definition 4.2 Merged Write
A Merged Write wM (x, y, . . . , z) is a composition of write operations wi(x), wj(y), . . . , wn(z)
of transactions Ti, Tj , . . . , Tn, such that h(rM (x)) = h(ri(x)), h(rM (y)) = h(rj(y)), . . . ,
h(rM (z)) = h(rn(z)) and h(wM (x)) = h(wi(x)), h(wM (y)) = h(wj(y)), . . . , h(wM (z)) =
h(wn(z)), running under a single arbitrary but fixed, existing and explicitly known TID.

Algorithm 4 presents our decision-algorithm for merging writes. First, we retrieve the
anomalies caused by merging w1(x) and w2(y) (Line 2). These may occur, because we
allow x = y. In that case, wi(x) and wj(x) may be merged into wM (x, x) (i.e., we write
two different values into x). Such write operation may cause the anomaly of a Lost Update,
which some isolation levels do not allow. Next, Line 4 respectively Line 6 check whether
both operations can be executed on the same snapshot. This is the same check performed
in Line 2 respectively Line 4 of Algorithm 1. If one of these checks succeeds, we know that
there exists a snapshot in which we could execute a wM (x, y). However, as mentioned
above, wM (x, y) might cause an anomaly or even multiple anomalies; therefore, Line 5
and Line 7 check whether all of the anomalies caused by merging were allowed by the
requested isolation level.

4.5 Merging Writes Under Different Isolation Levels 59

Algorithm 4 Check if write wi of Ti to x and write wj of Tj to y can be merged. x = y
maybe possible.

1: function ISMERGEABLE_WRITES(wi(x), wj(y))
2: anomalies← GETANOMALIES(wi(x), wj(y))
3: A← GETPROHIBITEDANOMALIES(isolationLevel)
4: if h(ri(x)) = h(rj(x)) then
5: return anomalies ∩A = ∅
6: else if h(ri(y)) = h(rj(y)) then
7: return anomalies ∩A = ∅
8: end if
9: return false

10: end function

Once we composed two writes into a Merged Write, we use Algorithm 5 to check for
all other writes in the system whether they can be compiled into this Merged Write, as
well. First, Line 2 retrieves the anomalies that merging of wi(x) into wM can cause. Next,
Line 4 evaluates whether Ti operates on the same snapshot as TM . If this is the case, Line 5
performs the check, if the retrieved anomalies are allowed in the requested isolation level
and returns the evaluated result.

Naturally, the question arises, whether writes are merged in the same way that Section 4.4
presents for reads. Therefore, we compare Algorithm 1 and Algorithm 4, respectively
Algorithm 2 and Algorithm 5 for differences. These differences call for adjustment of the
approach discussed in Section 4.4, when discussing merging of writes. As we compare
Algorithm 1 and Algorithm 4, respectively Algorithm 2 and Algorithm 5, we note that
both require to check whether the operations to be merged share a common snapshot.
The difference on merging writes is the additional check for anomalies and whether those
are allowed in the requested isolation level. Hence, when we discuss merging writes
under different isolation levels, we focus on the anomalies forbidden by these isolation
levels and merging of what statement types could cause such anomalies.

Algorithm 5 Check if write wi of Ti to x can be merged into wM .

1: function ISMERGEABLE(wM (. . .), wi(x))
2: anomalies← GETANOMALIES(wM , wi(x))
3: A← GETPROHIBITEDANOMALIES(isolationLevel)
4: if then(h(rM (x)) = h(ri(x)))
5: return anomalies ∩A = ∅
6: end if
7: return false
8: end function

Subsequent sections therefore present for each isolation level examples of write state-
ments that may cause an anomaly forbidden by the respective isolation level.

4.5.1 Read Uncommitted

This subsection shows why the isolation level Read Uncommitted does not limit the merge-
ability of write statements. Because of Equation (4.1), the comparison of Line 4 and Line 6

60 Chapter 4 Merging Statements in Multi Statement Transactions

in Algorithm 4 always evaluates to true8, as discussed in Section 4.4.1. Furthermore,
as Read Uncommitted does not prohibit any anomalies, GetProhibitedAnomalies(Read
Uncommitted) returns an empty set. In consequence, Line 5 and Line 7 of Algorithm 4
can be substituted by

anomalies ∩∅ = ∅,

which always evaluates to true.

Conclusion We conclude that Read Uncommitted does neither restrict the mergeabilities
of read statements, nor of write statements. Hence, in this isolation level, all statements
are mergeable.

4.5.2 Read Committed

Considering merging of writes under Read Committed, the following presents the anomaly
forbidden in this isolation level and continues with presenting example statements that
– once being merged – may cause such anomaly. In addition to Equation (4.2), Read Com-
mitted prohibits the anomaly Read Uncommitted. Such anomaly can occur when merging
the following two write statements

-- w1:
UPDATE T SET counter = counter + 1;
-- w2:
UPDATE T SET counter = counter + 1;

into the Merged Write

-- wM :
UPDATE T SET counter = counter + 2;

That Merged Write merges the increment performed by the two queries w1 and w2 into a
single operation. Thus, the uncommitted write of both queries is read and accumulated
within the Merged Write. In other words, if the sequential execution of w1 and w2 incre-
ments counter by 2, w2 reads the uncommitted write of w1; an anomaly prohibited in
Read Committed.

Conclusion We provided an example of two write-statements that – when merged –
produce the anomaly of an uncommitted read. As this anomaly is prohibited in Read
Committed, we conclude that in addition to Equation (4.2), merging writes at least require
a check for updates based on the current value. Since we do not provide a complete
formalism on merging writes, further statement-types that cause the anomaly of an un-
committed read may be found in future work.

8the same goes for Line 4 in Algorithm 5 – from now on, we make our observations for Algorithm 4,
presuming them to be true for Algorithm 5, as well

4.5 Merging Writes Under Different Isolation Levels 61

4.5.3 Snapshot Isolation

Merging writes under Snapshot Isolation needs to consider multiple anomalies. This sec-
tion presents these anomalies and gives an example for each, how merging of write state-
ments may causes such anomaly. In addition to uncommitted reads, Snapshot Isolation
also prohibits the anomalies Lost Update, Non-Repeatable Read, and Phantom Read. In the
following, we exemplary show, where merging of two write statements into a Merged
Write can cause these anomalies.

Lost Update

A Lost Update may be caused, when merging the following two write statements:

-- w1:
UPDATE T SET x = 1 WHERE y = 0;
-- w2:
UPDATE T SET x = 2 WHERE y = 0;

into the Merged Write

-- wM :
UPDATE T SET x = CASE

WHEN y = 0 THEN 1
WHEN y = 0 THEN 2

END;

Clearly, such Merged Write sets x to either 1 or 2, depending on the order of the CASE-
WHEN evaluation, losing the other update. From this example we defer that statements
updating the same predicate based on the same filter value, require a deeper analysis
check for a Lost Update.

Another example of a Lost Update is presented below by the two write operations w1
submitted by T1 and w2 submitted by T2:

-- w1:
DELETE FROM T WHERE PK = 1 AND VAL = 2;
-- w2:
INSERT INTO T (PK , VAL) VALUES (1, 2);

In this example, the tuple identified by the primary key PK = 1 is deleted from the table
T by w1. At the same time, w2 inserts a new tuple into T with the same values as deleted
by w1. We assume the tuple, deleted by w1 exists in T. To perform the merge, the Merger
has these options:

1. Perform both operations, sequentially

2. Omit the execution of one of the two statements

62 Chapter 4 Merging Statements in Multi Statement Transactions

In the first case, either the insert-operation or the delete-operation is executed, first. Start-
ing the execution with the insert-operation will raise a unique key constraint violation,
before executing the delete. In consequence, w1 succeeds, w2 fails, and no Lost Update
is performed. Starting with the delete-operation, however, deletes the object referenced
by 1 from T and creates a new object in T, which is also referenced by 1. From a formal
point of view, no update was lost in this case, as we just replaced one object by another,
both incidentally being referenced by the same key. In praxis, a subsequent r1(1), a read
submitted by T1 to table T, asking for the object referenced by the key 1, would return a
value, thus signalling T1, its delete-operation was lost.

In the second case, a merging approach could omit the execution of both write opera-
tions, causing a Lost Update of the deletion. Another opportunity is to not perform the
insert-operation of T2 and just delete the tuple from T. So, the second case performs less
write operations in both scenarios, thus decreasing the latency for at least one of the two
transactions, but causes a Lost Update of either w1 or w2!

Non-Repeatable Read

A Non-Repeatable Read may occurs, when a transaction obtains a row twice. In that case,
the value of such row might have changed in between, due to an update operation of a
different transaction. A Non-Repeatable Read may be caused, when merging the following
two write statements w1 and w2, submitted by T1, respectively T2:

-- w1:
UPDATE T SET x = 1 WHERE y = 0;
-- w2:
UPDATE T SET z = 2 WHERE y = 0;

into the Merged Write

-- wM :
UPDATE T SET x = 1, z = 2

WHERE y = 0;

In the above Merged Write, two attributes of the same row are updated, based on the up-
dates of w1 and w2. In a naïve approach, a subsequent read r1(x, z) to that row, submitted
by T1, either does not apply read-your-own-writes or reads the updated values of x and z,
causing a Non-Repeatable Read anomaly.

To prevent such anomaly, the Merger either does not mergew1 andw2 intowM , or splits a
subsequent r1(x, z) into a rM (x) and a r1(z); accessing the same row twice in the context
of two different transactions.

As we do not aim at presenting a complete formalism on merging writes, other examples
of updates that cause the Non-Repeatable Read anomaly, and other strategies that prevent
such anomaly may be found in future work.

4.5 Merging Writes Under Different Isolation Levels 63

Phantom Read

A Phantom Read is similar to a Repeatable Read: As a transaction submits a read statement
twice, not only the value of the obtained rows may change, but also the size of the result
set, i.e., the number of obtained rows. Such anomaly is called Phantom Read. A Phantom
Read may be caused, when merging the following two write statements

-- w1:
UPDATE T SET x = 1 WHERE y = 0;
-- w2:
UPDATE T SET y = 0 WHERE y = 1;

into the Merged Write

-- wM :
UPDATE T SET x = CASE WHEN y = 0 THEN 1 END ,

SET y = CASE WHEN y = 1 THEN 0 END
WHERE y IN (0, 1);

time

T1T2

w1(ڂ𝑦=0 𝑥 = 1) w2(ڂ𝑦=1𝑦 = 0)r1(ڂ𝑦 = 0 ∧ 𝑥 ≠ 1) c1 c2

x y z

0 0 0

0 1 1

2 1 2

1 0 3

1 1 4

π

ڂ x y z

1 0 0

0 0 1

2 0 2

1 0 3

1 0 4

wM(ڂ𝑦 𝑦 = 0 → 𝑥 = 1, 𝑦 = 1 → 𝑦 = 0)

r1(ڂ𝑦 = 0 ∧ 𝑥 ≠ 1)

π

ڂ

Figure 4.18: After merging w1 and w2 into wM , the subsequent r1 reads a Phantom Read
anomaly.

That Merged Write updates column x according to some filter in the first clause, while
adding tuples to the update-set in the second. A subsequent read by T1 to all x, where
y = 0 needs to consider the write-set of T1 and T2 to provide read-your-own-writes on the
one hand and avoid a Phantom Read on the other. Figure 4.18 illustrates this.

First, T1 retrieves a result set of all tuples, where y is 0 and x is not 1. Next, it modifies
all entries with y = 0, using the statement w1, listed above. In the meantime, T2 submits
a write on all entries, where y is 1 and sets it to 0, as described by w2. These two write-
statements are merged into wM ,as described above. Finally, as T1 requests to read again
all tuples with y = 0 and x not equal to 1, it expects an empty result set, due to its
previous submitted modification. However, due to the merged execution of wM , that
result set might not be empty: The anomaly of a Phantom Read occured.

Conclusion In addition to Equation (4.3), merging writes under Snapshot Isolation needs
to check whether such statements cause a Lost Update, Non-Repeatable Read, or Phantom
Read anomaly. This restricts mergeabilities of write-statements even further.

64 Chapter 4 Merging Statements in Multi Statement Transactions

4.5.4 Serializable

Finally, this section presents examples for not-yet discussed anomalies caused by merg-
ing writes. Besides the aforementioned and discussed ANSI SQL anomalies [BBG+95],
Serializable also forbids anomalies introduced by Snapshot Isolation. According to [FLO+05],
these are SI Read-Only Serialization Anomaly, Write Skew, and Predicate-Based Write Skew.

SI Read-Only Serialization Anomaly

An SI Read-Only Serialization Anomaly occurs, when a third transactions obtains an in-
consistent state among two other writing transactions. We believe that it is not possible
to introduce such anomaly solely by merging two writes: a read would have to inter-
rupt a running Merged Write operation and obtain a then inconsistent state, forthis to
happen.However, finding a complete formalism that proves whether a SI Read-Only Se-
rialization Anomaly can occur when merging writes with our approach is left for future
work.

Write Skew

A Write Skew breaks the assumption of the application, due to cycling read-write depen-
dencies. The following short scenario briefly presents an example, where merging of
write statements may cause such a Write Skew.

Consider the following table T and the application’s assumption x > y.

x y

5 0

In the following, two transactions T1 and T2 submit these two writes on T:

-- w1:
UPDATE T SET x = 1 WHERE y = 0;
-- w2:
UPDATE T SET y = 4 WHERE x = 5;

When merging w1 and w2 into the Merged Write

-- wM :
UPDATE T SET x = CASE WHEN y = 0 THEN 1 END ,

SET y = CASE WHEN x = 5 THEN 4 END
WHERE x = 5

OR y = 0;

not only the anomaly of a Non-Repeatable Read occurs, but also a Write Skew, due to the
resulting table breaking the application’s assumption that x > y.

Moreover, even in Snapshot Isolation, processing w1 and w2 would not cause a Write Skew,
as in the Oracle implementation of Snapshot Isolation [LAM18], w1 locks the tuple in T,
until it commits. T2 waits, until T1 releases its lock. As T1 commits, T2 needs to abort. In
consequence, merging writes additionally introduces anomalies to a database schedule,
resulting in side-effects a non-merged execution of statements would not have caused.

4.5 Merging Writes Under Different Isolation Levels 65

x y

1 4

Predicate-Based Write Skew

The Predicate-Based Write Skew anomaly similar to the aforementioned Write Skew breaks
the application’s assumption. In the following, we present an example, how merging of
write statements causes a Predicate-Based Write Skew. In that example, two transactions
insert a value into table T, which prior to the transactions’ process is empty. Under the as-
sumption that sum(x) < 8, similar to the example presented in [FLO+05], T1 respectively
T2 submit the following two insert statements:

-- w1:
INSERT INTO T (x, y) VALUES (5, 1) IF SUM(x) < 3;
-- w2:
INSERT INTO T (x, y) VALUES (5, 2) IF SUM(x) < 3;

A Merged Write composed of w1 and w2 could look like the following:

-- wM :
INSERT INTO T (x, y)
VALUES (5, 1),

(5, 2)
IF SUM(x) < 3;

The execution of that Merged Write leaves T as described below, breaking the application’s
assumption that sum(x) < 8. Many more examples for anomalies caused by Snapshot
Isolation and forbidden in Serializable as listed in [FLO+05] may be found. All of these
need to be prevented when using Serializable.

x y

5 1
5 2

Conclusion For merging reads, Algorithm 3 describes the same merge-rules for Serial-
izable as for Snapshot Isolation plus tracking the read-set. In addition, merging writes also
has to prevent anomalies caused by Snapshot Isolation. A common technique to prevent
these anomalies is locking. Such locking will also protect applications when merging is
applied to writes. However, in that case, the analysis for the merge decision becomes
even more complex, as the tuple accessed by the write to be merged has to be checked
against the transaction’s lock-set to prevent the Merged Write from deadlocking. We thus
conclude that the strongest isolation level limits our mergeabilities the most for both,
reads and writes.

66 Chapter 4 Merging Statements in Multi Statement Transactions

4.5.5 Handling Dependencies

Write statements submitted subsequently may also suffer from problems through merg-
ing, such as dependencies among write statements of different transactions causing anoma-
lies between different Merged Writes, starvation of innocent queries due to locking mecha-
nisms, and cascading commits. While the last section presented examples where merging
of two writes into a Merged Write causes different kinds of anomalies, this section presents
obstacles that arise among statements submitted subsequently, when merging writes. In
the following example, T1 submits a write w1(x) to x, while T2 writes y and z (w2(y)
respectively w2(z)). Meanwhile, T3 submits a write w3(x) to x.

time

T1T2T3

w1(x=1) w2(y=1) w3(x=2) c1 c2 c3

x: 0

y: 0

z: 0

x: 1

y: 1

z: 0

w2(z=1)

x: 2

y: 1

z: 1

wM(x=1, y=1) wM(x=2, z=1)

x: 2

y: 1

z: 1

Obviously, if w1(x) and w2(y) are merged into wM (x, y) and w2(z) is merged with w3(x)
into wM (x, z), the value updated by wM (x, y) is overwritten by wM (x, z), causing the
anomaly of a Lost Update. Similar examples can be found that may cause Non-Repeatable
Reads, Phantom Reads or Snapshot Isolation anomalies discussed in the previous section.

However, fig. 4.19 shows an example, where the second write to x is not submitted by T3,
but by T1. In addition, T2 does not submit its w2(z).

time

T1T2

w1(x=1) w2(y=1) c1 c2

x: 0

y: 0

z: 0

x: 1

y: 1

z: 0

w1(x=2)

x: 2

y: 1

z: 0

wM(x=1, y=1) wM(x=2)

x: 2

y: 1

z: 0

cM

Figure 4.19: After merging w1 and w2 into wM , a subsequent w1 needs to be merged as
well, to get access to the locked data.

We note that if the first w1(x) is merged with w2(y) into wM (x, y), the second w1(x) also
needs to be executed as wM (x), even though there are no other writes at that moment in
the system, it could be merged with. The reason is that in a lock-based MVCC implemen-
tation, wM (x, y) exclusively locks x and y. In consequence, if the second operation of T1

4.5 Merging Writes Under Different Isolation Levels 67

is executed as w1(x), it waits at the lock held by TM . So, either the database provides a
mechanism to hand over the lock on x from TM to T1, or T1’s second operation needs to
be executed in the context of TM to receive the lock on x.

These two brief examples show the obstacles introduced by merging writes, among sub-
sequent submitted operations. To avoid the discussed problems, Algorithm 4 and Algo-
rithm 5 need to consider the write-sets of submitting transactions Ti and Tj as well as
TM .

Starvation of the Innocent

Next, we present an example, where merging does not cause an anomaly but a false lock
lingering. In the example, T3 first submits a write w3(x) to x. Subsequently, T1 and T2
submit their writes w1(x) and w2(y) to x and y, respectively. In this example, we assume
all transactions running under Snapshot Isolation or higher isolation levels.

time

T1T2

w3(x=1) w2(y=1) c1 c2

x: 0

y: 0

z: 0

x: 1

y: 0

z: 0

w1(x=2)

x: 1

y: 0

z: 0

wM(x=2, y=1)

x: 2

y: 1

z: 0

T3

c3

x: 2

y: 1

z: 0

cM

If w1(x) and w2(y) are merged into wM (x, y), the execution of that Merged Write needs to
wait for the lock on x, held by T3. This effectively causes T2 to wait for a lock it never
requested. We call such phenomenon starvation of the innocent. It might be avoided by
updating Algorithm 4 and Algorithm 5 to consider such write-dependencies. However,
as this thesis’ focus is on the merging of reads, since Chapter 2 revealed that reads make
80% of common OLTP workloads, we leave the complete formalism on how to detect
anomalies among write statements submitted at the same time or subsequently, and how
to prevent the starvation of the innocent phenomenon to future work.

Cascading Commits

Consequently, an approach that merges writes needs to consider when to perform sub-
mitted commit operations. Definition 4.2 defines a Merged Write as a composition of
writes that performs its updates so that h(wM (x)) = h(wi(x)), h(wM (y)) = h(wj(y)), . . . ,
h(wM (z)) = h(wn(z)). In the following example, T1, T2, and T3 simultaneously submit
write operations w1(x), w2(y), and w3(z) to x, y, and z, respectively. Next, T3 submits a
commit operation c3 to certify its write.

If w1(x), w2(y), and w3(z) are merged into wM (x, y, z), the installed version of z cannot
be certified by c3. More precisely, because z was updated within the context of TM , its

68 Chapter 4 Merging Statements in Multi Statement Transactions

time

T1T2

w3(z=1)w2(y=1) c1 c2

x: 0

y: 0

z: 0

x: 1

y: 1

z: 1

w1(x=1)

wM(x=1, y=1, z=1)

T3

c3

cM

u: 0

v: 0

u: 0

v: 0

w2(v=1)w1(u=1)

wM(u=1, v=1)

x: 1

y: 1

z: 1

u: 0

v: 0

x: 1

y: 1

z: 1

u: 0

v: 0

change needs to be certified by cM . Three approaches, when to certify w3(z) are possible.
First, TM could commit as T3 submits c3, immediately certifying the update to x, y, and
z. In consequence, subsequent transactions may read the certified versions of x and y,
effectively causing a Read Uncommitted anomaly. Second, the system could perform c3,
certifying the update to z later, when T1 and T2 also commit. This prevents the Read
Uncommitted anomaly, but as the write to z is not visible to transactions starting between
c3 and cM , these transactions may overwrite z, causing a Lost Update anomaly. As this
anomaly is allowed in Read Committed, such commit strategy may be applicable under
such isolation level. Third, under Snapshot Isolation, the execution of c3 has to wait until
T1 and T2 also commit, causing the phenomenon of cascading commits, where transactions
whose writes were composed into a Merged Write executed in TM , have to wait until all
other transactions, whose writes were also composed into a Merged Write running under
the same TM , have committed or aborted as well.

4.5.6 Discussion

In response to the question raised in Section 4.4.6, whether writes could be merged as
well as reads, this section first presented a few examples, where merging writes leads to
different kinds of anomalies. As more restrictive isolation levels prohibit more anoma-
lies, increasing isolation levels decrease our mergeabilities also for write statements in
arbitrary workloads. Furthermore, such anomalies are introduced by certain statement-
types, i.e., a complex analysis of the submitted statement type becomes necessary to de-
cide whether such statement can be merged.

Next, we showed two phenomenons occurring, when merging writes, namely the star-
vation of the innocent phenomenon and the cascading commits phenomenon. These two
phenomenons not necessarily cause anomalies in the database but may increase the exe-
cution latency of a submitted operation significantly.

In conclusion, this thesis does not provide a complete formalism of how to merge writes,
due to the following three reasons:

(1) Coming from our motivation that enterprise OLTP workloads run into overload spikes
on reoccurring events, as described in Chapter 1, Chapter 2 analyzed such scenarios,
revealing that 80% of a common OLTP workload consists of read statements. There-
fore, we expect the most throughput improvement from merging reads and in conse-
quence do not focus on merging writes.

4.5 Merging Writes Under Different Isolation Levels 69

(2) This section provided a few examples revealing that the merge-decision is more com-
plex as when merging reads, due to the anomalies to be investigated.

(3) The two phenomenons found in this section show that merging writes may even lead
to an increased latency in transaction execution, which is contrary to our motivation
set in Chapter 1.

70 Chapter 4 Merging Statements in Multi Statement Transactions

5
System Model

This chapter defines and evaluates a model to show the potential of merging in an over-
loaded system. As a starting point, we define the term overload. Having set on such
term, we deduce a model of our merger using queuing theory. That model will simulate
an open world scenario. In contrast to closed world scenarios, in open world scenarios
the arrival rate of jobs is independent of the service rate. Finally, we develop a model
to match our system, so that we are able to calculate how parameter settings affect the
performance of our system.

5.1 DEFINITION OF THE TERM “OVERLOAD”

This section first defines the term overload. From this, we show that exploiting queuing
theory helps us to model a system, where merging is beneficial to reduce load in an
overloaded scenario without acquiring additional hardware. We build upon that model
in the forthcoming section.

Once, a system cannot handle further incoming work, it is overloaded. This is the case,
when the system has no more resources left to handle additional requests. For our model,
we assume our main resource to be the CPU1. As long as the CPU idles within a specified
interval, further incoming requests could be handled in that idle-time. Consequently, a
system is overloaded if its idle time is zero. For this, without loss of generality, we assume
a fixed number of CPUs. These are exclusively dedicated to our system, which is running
with a variable number of threads. If all CPUs spend all cycles in a given interval with
processing incoming requests, the system is overloaded in that interval.

We now argue, why we can model closed-world scenarios with open-world queues. As
explained in Section 4.3, a database’s history is a set of transactions. These transactions
may be submitted in interactive manner. This means, the client blocks on each request,
until it receives the response from the database. Therefore, modeling such system needs

1i.e., without loss of generality, we assume infinite memory

71

to reflect a closed system with a fixed number of clients, where the next request is sub-
mitted, once its predecessor was processed by the system. Such system assumes that the
number of clients remains fixed over the execution of a workload. In real systems, how-
ever, clients can open a transaction to the database at any time. As we showed in Chap-
ter 1, systems have to handle multiple millions of clients per minute in overload spikes.
That vast number of clients, connecting to the database at any point of time within this
minute, leads to a system that can be modelled as open system, where requests enter
independently.

Queuing theory is a common approach to model such open systems. It is a mathematical
theory to predict queue length and waiting times in systems, using queues or waiting
lines [Sun09]. These queues may grow or shrink over time. If a queue grows to infinite
size, it is said to be in a state that is not stationary. In conclusion, an overloaded system
is modelled by bringing the model in a state, where it is not stationary, anymore.

5.2 BASIC QUEUING MODEL

For our model, we use Kendall’s notation of queues, in the form of A/S/c. A is the distri-
bution of the arrival process, S is the distribution of the service process and c describes
the number of clients [Ken53]. Figure 5.1 presents a simple model of our system.

:

:

1

2

:

:

n

Figure 5.1: Simple Model.

Our model assumes a database with m threads running on n cores, with n,m ∈ N. For
now, we assume m = n, thus, each thread has its dedicated queue. This reflects a practi-
cal scenario in large database system deployments. As requests are arriving and served
independently, we use a Poisson distribution for the arrival and service process. Such
Poisson distribution is commonly written as M in Kendall’s notation. In consequence,
our model consists of n M/M/1 queues. Typically, the arrival process is described as λ
requests entering the system per time interval in the given distribution. The service pro-
cess is typically written as µ, meaning, the system can handle µ requests per time interval
(also with the given distribution). As long as λ < µ, the queue is stationary. Since we are
analyzing our system in scenarios where we face overload spikes, we assume λ = µ.

In an open world model, clients send one request before terminating. In consequence,
our n ×M/M/1 model with a service rate of µ can serve at maximum n · µ clients2. For

2keep in mind that µ is a rate, e.g., µ = x clients/s

72 Chapter 5 System Model

simplicity, we refer to the servers of suchM/M/1 queues as general threads, since they can
handle requests of different kinds.

Next, we investigate how merging can help to reduce load in such a system, when n ·
µ clients are sending their requests. To model this, we introduce another server type
with its own queue, which we model as A/Mm/1 queue, leaving the description of the
arrival process for later and denoting the service rate with Mm to distinguish it from the
service rate of the general threads. That server station we refer to as merger thread, as it
merges incoming requests. We assume that a merger request can only handle requests of
mergeable types, it is therefore not a general thread. We further assume that mergeable
types have a probability of p among all submitted requests, i.e., each queue receives p · µ
mergeable requests and (1−p)·µ non-mergeable, so-called general requests. We have two
options adding a merger thread to the system, without acquiring additional hardware.
One is to replace a general thread with a merger thread, the other is to add a merger
thread that shares a CPU with a general thread.

5.2.1 Option (1): Replacement with a Merger Thread

The first option is to substitute a general thread with a merger thread. This leaves the
system with n− 1 general threads and 1 merger thread, running on n CPUs, as depicted
in Figure 5.2. In this scenario, mergeable requests enter the queue of the merger, while

:

:

1

2

general

:

:

n merger

general

Figure 5.2: Simple Model.

general requests enter queues handled by general threads. In consequence, the merger
thread has to handle n · p · µ requests, while each general thread has to handle n·(1−p)·µ

n−1
requests. From this, we deduce that this option only reduces load if d1

pe ≤ n. In con-
sequence, we should only replace a general thread with a merger thread if the expected
non-mergeable workload is lower than the capacity provided by the remaining general
threads. Alternatively, assuming a fixed probability for non-mergeable threads, the num-
ber of general threads must be large enough to compensate the overhead introduced from
the replacement which depends on the probability. For example, if p = 0.5, substitution
of a general thread to a merger thread reduces the load in our system if there are at least
2 general threads, while 10 general threads are required at least, if p = 0.1.

5.2 Basic Queuing Model 73

:

:

1

2

general

:

:

n+1 merger

general

Figure 5.3: Simple Model.

5.2.2 Option (2): Adding Merger Thread

Another option is to add a merger thread to the m general threads, leaving the system
with m = n + 1 threads running on n CPUs. Figure 5.3 depicts such system layout. In
contrast to Option (1), every general thread now has to handle (1− p) · µ requests. Since

(1− p) · µ < µ,

a general thread will be idle with a certain probability in correlation with p. That prob-
ability can be predicted using standard queuing theory algorithms for M/M/1 queues
[Sun09] and results in an idle time tf per queue. E.g., if the probability of a general thread
to idle is 0.1, that means, it idles for 100 ms per second, so tf =100 ms. The idle time of
the whole system is then n · tf , which results to n·100 ms per second in our example.
Consequently, for merging to be beneficial, we require Mm < n · tf .

Both options show that using a general thread instead of a merger thread does not help
in an overload scenario: In Option (1), substituting a general thread with another general
thread, will not change the overall situation. In Option (2), adding another general thread
handling n · p · µ requests, will at best provide the same performance; probably even
worse, as in this case the (n+ 1)st thread always requires a context switch for processing
a request. In general, we can therefore conclude that merging is only beneficially to an
overloaded scenario, if Mm < M , i.e., the merger thread can process more requests per
time than a general thread.

5.2.3 Using Multiple Merger Threads

Next, we augment our system so that it can contain multiple merger threads. Figure 5.4
describes our system, using n CPUs. In contrast to the previously described system, the
CPU may now execute a general thread or a merger thread. As we want to model how
adding merger threads to our system helps decreasing the throughput, we enhance a
merger thread so that it can be enabled or disabled. If it is disabled, it does not process
any service time on the CPU. Otherwise, the general thread and the merger thread have
to share the available service time. Therefore, our system now consists of n CPUs, m
general threads, and at maximum m merger threads. For simplicity but without loss of
generality, we still assume m = n.

74 Chapter 5 System Model

Figure 5.4: Simple Model with multiple merger threads

Next, we evaluate to what extend the throughput is increased in such a system. There-
fore, we first calculate the service time of a Merged Read, from which we deduce the
number of relieved CPUs through the execution of Merged Read when a merger thread
is enabled. Second, we add more clients to the system until all CPUs are utilized with
either processing merged requests or general requests. In a third step, we enable the
next merger thread and continue with the second step, until all m merger threads are
enabled. The number of clients added after enabling a merger thread is equivalent to the
throughput improvement of merging over a system as depicted in Figure 5.1.

To calculate the service rate of a Merged Read, we need to take its execution time as well
as context switches into consideration. The number of statements to be merged by one
merger thread per time interval equals the arrival rate of mergeable statements, i.e., µM .
As the size nb of a Merged Read is a free variable, the number of Merged Reads to be ex-
ecuted by one merger thread per time interval is dµM

nb
e. We describe the execution time

of a Merged Read is a function of its size, namely E(nb). This function can be measured.
Thus, the execution time for all Merged Reads executed by one merger thread within a
time interval can be written as

dµM
nb
e · E(nb). (5.1)

To model the system more accurately, we need to consider context switches, when two
threads run on one CPU. For our model, we assume that, on average, every second ex-
ecution of a Merged Read will cause a context switch. On our machines3, we measured a
context switch to take 110 µs. Intuitively, a context switch is more likely, when the work-
load consists of just a few mergeable requests. If a workload consists of only mergeable
request types, a context switch is more unlikely. Thus, we indicate the probability of a
context switch with (1 − p). As a result, the time each merger thread spends in context
switches per time interval is the number of executed Merged Reads. We multiply this with
the probability and the time of a context switch. More formally:

dµM
nb
e · 110 µs · (1− p). (5.2)

Next, we determine to what extent a merger thread reduces the load in the system. We
calculate the number of merger threads whose work per time interval can be executed in
the idle time of a single general thread: General threads are busy with general requests,
only. Hence, each CPU is idle for tf per time interval. That time may be used to schedule

3SUSE Linux Enterprise Server 12 SP1 (kernel: 4.1.36-44-default) running on four Intel(R) Xeon(R) CPU
E7-4870 sockets with 10 cores, all running at a speed of 2.4 GHz

5.2 Basic Queuing Model 75

a merger thread. The process time of a merger thread per time interval is the time it takes
to execute Merged Reads (cf. Equation (5.1)) plus the time it takes for context switches (cf.
Equation (5.2)). A merger thread may be able to execute more mergeable requests than
arriving at its queue. This is the case, when tf is larger than the sum of Equation (5.1) and
Equation (5.2). Thus, a merger thread can do the work of other merger threads, effectively
letting the other merger thread idle up to tf . More formal:

tf −min(dµM
nb
e · E(nb) + dµM

nb
e · 110 · (1− p), tf)

dµM
nb
e · E(nb) + dµM

nb
e · 110 · (1− p) (5.3)

Equation (5.3) returns the number of merger threads whose work can be composed into
a single merger thread. In other words, how many CPUs have an idle time of tf for a
single merger enabled. Next, we evaluate our model.

5.2.4 Evaluation

We evaluate our model using 16 general threads (running on 16 CPUs) and a service rate
µ = 10 000, i.e., in average, each request is performed within 100 µs, which is a common
execution time for OLTP requests, according to our analysis in Chapter 2. In consequence,
our system is overloaded, when 160 000 clients send a request per second. Table 5.1 lists
the values we calculated for different probabilities p that a request is mergeable.

p
general mergeable Option (1) Option (2)
req./s req./s d1

pe n · tf
0.05 152 000 8000 20 0.8 s
0.1 144 000 16 000 10 1.6 s
0.25 120 000 40 000 4 4 s
0.5 80 000 80 000 2 8 s
0.75 40 000 120 000 2 12 s
0.9 16 000 144 000 2 14.4 s
1 0 160 000 1 16 s

Table 5.1: Values calculated for different p.

The rows of Table 5.1 list calculated values for a specific probability p. Column 2 shows
the calculated arrival rate of general requests per second. Column 3 the arrival rate of
mergeable requests per second. Column 4 contains the minimum number of general
threads present in the system for the substitution strategy (Option (1)) to be beneficially,
and Column 5 holds the calculated maximum time available for Mm, when adding a
merger thread (Option (2)).

We note that the correlation between p and the other columns is linear. Because SAP
HANA does not support reducing the number of threads below the number of available
cores, we only evaluate our model for Option (2) by adding an additional merger thread
to the system. Furthermore, our system only provides a limited number of CPUs. It is
therefore also restricted to a number of clients attached to the database, naturally result-
ing in a closed world system, instead of an open world, as designed by our model.

For our evaluation, we use the media query, as presented in Figure 2.6. First, we evaluate
the execution time of media query increasing its parameter list, as described in Figure 4.1.
Figure 5.5 presents the results.

76 Chapter 5 System Model

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000 1200 1400

E
xe

cu
ti

on
 T

im
e

(m
s)

Number of Statements

Figure 5.5: Execution time of merged media queries: the x-axis shows the number of media
queries merged into a single Merged Read. The y-axis shows the execution time of such
Merged Read in ms.

When inflating the parameter list of media query, as described in Figure 4.1, the execution
time is flatter than y = f(x) = x, as Figure 5.5 reveals. Using the measured execution
times, we can calculate the benefit of merging, when adding a merger thread. On a high
level, the idea is to check for each p the idle time of the system available for executing
the number of mergeable requests per second. For example, for p = 0.05, 8000 requests
have to be executed within 800 ms per second. The incoming requests may be executed
in batches of different size, e.g., 8000 requests can be executed using 8 batches of size
1000 or 40 batches of size 200. As the execution time of a merged media query is linear4

with increasing number of merged statements, we assume larger batch sizes are more
beneficial to the overall performance.

However, as discussed above, running an open world benchmark with limited resources
is difficult. We thus run our benchmark using 2000 clients that connect via ODBC to
an SAP HANA instance running on 16 cores, that submit media query in a loop. We
implemented merging as described in Figure 4.1 in a research prototype based on SAP
HANA. Our analysis reveals, that in average, five queries are batched and merged in the
execution. Therefore, in our evaluation, we pick a batch size of five for our model and
compare it to the values measured.

Figure 5.6 presents our results. On the x-axis we vary the ratio of mergeable statements
from 5% to 100%. The y-axis shows the throughput increase of merging in thousand
queries per second. The bars in blue show values as measured from our benchmark, the
bars in red plot values as predicted by our model. There are two x-values, where the
model’s prediction differs considerably from the measurements from our benchmark,
namely for x = 50% and x = 100%.

First of all, for a mergeable ratio of 50%, our model predicts a value of 1.3, while our
benchmark evaluation results in a value of 1.13, only, which is similar to the value mea-
sured for a mergeable ratio of 25%. Second, for a mergeable ratio of 100%, our model
predicts a value of 1.87, while in the benchmark, we measured a value of 1.75, which is
the same value, we measured for a mergeable ratio of 90%. Our intuition is that a work-
load consisting of 100% mergeable statements should perform better when merged, than

4it increases slower than y = x, though

5.2 Basic Queuing Model 77

a workload consisting of only 90% mergeable statements. We make a similar observation
for the 50% case: Our intuition is that a workload consisting of 50% mergeable statements
performs better than a workload consisting of 25% mergeable statements but worse than
a workload consisting of 75% mergeable statements – as our model predicts.

The next chapter broadens our model for cases where mergeable and non-mergeable
statements have a different service time.

5.3 EXTENDED QUEUE MODEL

In common scenarios, different request types have different service times. Thus, a merge-
able request usually has a different service time than a general request. While general
requests may also differ in service time, their service time can be accumulated to an av-
erage service time. Service times of mergeable request types still require to be handled
distinctly to calculate the performance benefit through merging. Thus, when extending
our model to handle requests of different service times, we need to consider two differ-
ent types of request: (1) mergeable request types, denoted as µM and (2) general request
types, denoted as µB . Likewise, the arrival rate of mergeable request types is λM and the
arrival rate of the general request types is λB . Since we discuss our model in the context
of overloaded systems, λM = µM and λB = µB .

As we now have two different service rates in our model, the overall service rate of our
system with n CPUs running a workload consisting of p mergeable requests is

µ = p · µM + (1− p) · µB.

Naturally the question arises, how merging can help to reduce load in such a setting, as
well, when n ·µ clients are sending their requests. We, again, have two options for adding
a merger thread to the system, without acquiring additional hardware.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

5 10 25 50 75 90 100

T
hr

ou
gh

pu
t I

nc
re

as
e

(K
q/

s)

Mergeable Statement Ratio (%)

measured modelled

Figure 5.6: Evaluation of media query.

78 Chapter 5 System Model

5.3.1 Option (1): Replacement with a Merger Thread

When we substitute a general thread with a merger thread, the system consists of n −
1 general threads and one merger thread, running on n CPUs, as already depicted in
Figure 5.2. In contrast to Figure 5.2, the merger thread has to handle n · p · µM requests,
while each merger has to handle n·(1−p)·µB

n−1 requests. From this, we deduce that this option
makes sense, only if

d µB
p · µM

− µB
µM

+ 1e ≤ n

⇐⇒ d1− p
p
· µB
µM

+ 1e ≤ n.

5.3.2 Option (2): Adding Merger Thread

When adding a merger thread to the n general threads, the system consists of n + 1
threads running on n CPUs, as already depicted in Figure 5.3. In contrast to Option (1),
every general thread now has to handle (1− p) ·µB requests. As for the simple queue the
probability of an idling general thread can be predicted using standard queueing theory
algorithms. We know that a general thread will idle in correlation with p, because

(1− p) · µB < µ.

Similar to the simple model, presented above, using a general thread instead of a merger
thread does not help in an overload scenario, for the same reason as stated above. In gen-
eral, we can therefore conclude that merging is only beneficial to an overloaded scenario,
if Mm < M , i.e., the merger thread can process more requests per time than a general
thread. Next, we evaluate our model.

5.3.3 Evaluation

Similar to our previous evaluation, we use a system with 16 general threads (running
on 16 CPUs). As mergeable request, we choose the cat2prod query with a service rate
µM = 4000, the media query with a service rate µB = 10 000 is our general request. In
consequence, the number of maximum requests per second that put our system in an
overload state varies with each p. Table 5.2 lists the values of our experiment for different
p.

Each row of Table 5.2 lists for a specific probability p that a request is mergeable

1. the maximum number of requests per second that our system can handle,

2. the arrival rate of general requests per second,

3. the arrival rate of mergeable requests per second,

4. the minimum number of general threads present in the system for the substitution
strategy (Option (1)) to be beneficial, and

5. the maximum time available for Mm, when adding a merger thread (Option (2)).

5.3 Extended Queue Model 79

p
max general mergeable Option (1) Option (2)

req./s req./s req./s d1
pe n · tf

0.05 155 200 152 000 200 49 0.329 92 s
0.1 150 400 144 000 6400 42 0.680 80 s
0.25 136 000 120 000 16 000 9 1.882 40 s
0.5 112 000 80 000 32 000 4 4.571 36 s
0.75 88 000 40 000 48 000 2 8.727 20 s
0.9 73 600 16 000 57 600 2 12.521 76 s
1 64 000 0 64 000 1 16.000 00 s

Table 5.2: Values of our experiment

As previously observed in Table 5.1, there is a correlation between p and the other columns.
Since µM < µB , the system can handle less incoming requests for larger p.

For our evaluation, we use cat2prod query, as presented in Figure 2.8. First, we eval-
uate the execution time of cat2prod query increasing its parameter list, as described in
Figure 4.3. Figure 5.7 presents the results.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500 3000

E
xe

cu
ti

on
 T

im
e

(m
s)

Number of Statements

Figure 5.7: Benefit of merging cat2prod query.

When inflating the parameter list of cat2prod query, as described in Figure 4.3, the execu-
tion time increases linear but increases slower than y = x, as Figure 5.7 reveals. In com-
parison to Figure 5.5, more statements can be merged into cat2prod query than into media
query. The reason is that media query contains more parameters than cat2prod query. As
the number of parameters in SAP HANA is limited to 216, in general more cat2prod query
can be merged than media query5. Using the measured execution times, we can calcu-
late the benefit of merging, when adding a merger thread. Therefore, we again calculate
the system’s idle time for each p. That is the time available for executing the number of
mergeable requests per second. I.e., for p = 0.05, 200 requests have to be executed within
329.92 ms per second. Like in our previous evaluation, the incoming requests may be
executed in batches of different size, e.g., 8′000 requests can be executed using 8 batches
of size 1′000 or 40 batches of size 200. As the execution time of a merged cat2prod query

5keep in mind that cat2prod query and media query contain more than one parameter

80 Chapter 5 System Model

is sub-linear with an increasing number of merged statements, we assume larger batch
sizes more beneficial to the overall performance.

As discussed in Section 5.2.4, we run our benchmark using 2000 clients that connect via
ODBC to a SAP HANA instance running on 16 cores. A fraction of p clients submit
cat2prod query in a loop, while the remaining clients submit media query in a loop. In
SAP HANA, we prototypically implemented merging, as described in Figure 4.3. In
contrast to the earlier evaluation, mergeable and general requests have a different ser-
vice rate, therefore the baseline also changes with p, as the second column of Table 5.2
describes. Figure 5.8a thus presents the throughput increase in thousand queries per sec-
ond for a different ratio of mergeable statements for both, baseline and using our merged
prototype.

 40

 60

 80

 100

 120

 140

 160

5 10 25 50 75 90 100

T
hr

ou
gh

pu
t I

nc
re

as
e

(K
q/

s)

Mergeable Statement Ratio (%)
baseline merged

(a) Measured

 40

 60

 80

 100

 120

 140

 160

5 10 25 50 75 90 100

T
hr

ou
gh

pu
t I

nc
re

as
e

(K
q/

s)

Mergeable Statement Ratio (%)
baseline merged

(b) Modelled

Figure 5.8: Analysis of cat2prod query

Figure 5.8b presents the results of our model. On the x-axis we vary the ratio of mergeable
statements from 5% to 100%. The y-axis shows the throughput increase in thousand
queries per second. For calculating the baseline, we choose the following formula:

µB · (1− p) + µM · p
µM

· x,

where x is derived from our measurements in Figure 5.8a to scale our results to make the
values in Figure 5.8a and Figure 5.8b comparable.

We note that the values produced by our model differ in two points from the values
measured from our experiments: For a ratio of 90% mergeable statements, our model
returns a value of 149.55. That value is larger than the value calculated for a ratio of
75% mergeable statements. But we measured a value of 130.83, which is smaller than the
value measured for a ratio of 75% mergeable statements. Likewise, our model calculates
150.97 for a ratio of 100%, which is larger than the value calculated for a ratio of 90%
mergeable statements, while our experiment measures a value of 106.11, which is much
smaller than the value measured for a ratio of 90% mergeable statements.

Again, our intuition is that a workload consisting of 90% mergeable statements should
perform better when merged, than a workload consisting of only 75% mergeable state-
ments but worse than a workload consisting of 100% mergeable statements – as our
model predicts. In a similar way, we argue for the 100% case: Our intuition is that
a workload consisting of 100% mergeable statements performs better than a workload
consisting of 90% mergeable statements.

Next, we discuss how to implement our approach efficiently in a common modern state-
of-the-art in-memory database management system.

5.3 Extended Queue Model 81

82 Chapter 5 System Model

6
Implementation

This section presents our implementation in a research prototype based on SAP HANA.
We first introduce the research prototype. For simplicity we refer to this prototype as SAP
HANA. Next, we give a high-level introduction of our implementation, before we detail
the execution flow and extentions, we added to the prototype for supporting our merging
approach. Finally, we discuss the challenges when implementing merging writes.

6.1 BACKGROUND: SAP HANA

This section presents the architecture of the research prototype based on SAP HANA. For
simplicity, throughout this work, we refer to this prototype as SAP HANA.

SAP HANA is a modern state-of-the-art in memory multi-server database management
system (DBMS) [FML+12]. The main server is the indexserver. It consists of multiple
components, as described in Figure 6.1.

Applications communicate via the SAP HANA SQL Command Network Protocol [SE18]
with the indexserver. There, a request is processed by a single thread, a so-called SQL
Executor Thread. That thread decodes the message in the session layer of the indexserver.
In case the message contains a prepared statement string, that string is also prepared and
its parameters attached, in this stage. So, already in the Session Management component,
inside of the session layer, the execution plan, its parameters and its transaction environ-
ment are known. After decoding, the SQL Executor Thread enters the SQL Processor,
where it either executes the statement itself, or hands the statement over to one of the
other more specialized execution engines, such as the Stored Procedure Processor, which
is responsible for the execution of statement strings that represent a stored procedure.
At this point, a context-switch is performed, as these components usually schedule their
own thread pool. In any case, the execution thread builds a result set by filtering data,
retrieved from tables, which are stored in either row- or column-layout. With the result
set at hand, the SQL Executor Thread goes back to the session layer, encodes, and sends
the results over the network to the respective client.

83

For more complex requests, execution engines may need to exchange intermediate results
among one another. For this case, SAP HANA provides an internal table format, called
itab. Such itab is an array of table columns without metadata or index, which allows
easy passing of intermediate result sets in between different components. In fact, our
implementation heavily relies on such itabs.

6.2 SYSTEM DESIGN

Figure 6.1: Hana Layout [Wik20] with Merger.

This section describes our system design. Many parts of this section, especially Figure 6.2
and its description were published in [RBB+20].

Figure 6.1 depicts, where we place our “Merger Component” within SAP HANA. It is
placed among the other execution engines So, on the one hand, it receives a compiled
execution plan and all information about its parameters and transactional environment
from the SQL Processor. On the other hand, it is also able to take control over the exe-
cution. Thus, we meet our goal, to leverage the database’s functionality, where possible.
This decreases implementation overhead in both, Merger and database.

84 Chapter 6 Implementation

Figure 6.2 presents how our Merger Component interacts with the DBMS. As a new state-
ment enters the system, we first check, whether the statement can be merged. This de-
cision is supported by the transaction-local write set, we track. If we cannot merge the
incoming statement, we forward it to the database execution engine. For write state-
ments, we update the transaction’s write set. Otherwise, we push the statement into an
internal queue, which we refer to as Merge Queue. The Merge Queue contains several buck-
ets, one bucket for each mergeable statement type. Inside the Merger, we keep a pool of
threads, so-called Merger Threads, that check the buckets of the Merge Queue in regular
intervals. If it finds statements inside of a bucket, it pops and merges these statements
into a new Merged Read and forwards it to the database’s execution engine. The execu-
tion engine compiles the Merged Read into a plan similar to Figure 4.11 and executes that
plan, retrieving an intermediate result. Within a post-process, the Merger Thread splits the
intermediate result produced by the Merged Read to return the appropriate result to each
client. We find that the implementation overhead of this architecture is rather low: All
the ACID properties, data management and execution of all queries are still handled by
the database’s execution engine. We solely need to implement the functionality of our
Merger Threads, the Merge Queue, the write set-management as well as the merge decision.

Interactive vs. Stored-Procedures: As mentioned before, the design presented, enables
that clients submit their operations of multi-statement transactions one-by-one and the
merger threads analyze the which of the submitted operations can be merged. In ad-
dition to the interactive mode, multi-statement transactions can also be implemented as
stored procedures to avoid the high overhead of the network protocol between the clients
and the DBMS. For supporting an execution of transactions as stored, we use the same
architecture as shown in Figure 6.2. The only difference is that clients call a stored proce-
dure inside the DBMS; i.e., all operations of a transaction can be submitted to the merger
without expensive network roundtrips.

Merge?

Execution Engine

Write?

push

Y

N

N

Write set

Update

write set

Y

Merger Threads

Merge Queue

DBMS

Merger

Figure 6.2: Our system layout.

As already explained in Section 4.3.2, Merged Reads are executed in the context of an inter-
nal transaction. We refer to such an internal transaction as Merged Transaction (MTx). On

6.2 System Design 85

a high-level description, we have an MTx for every snapshot available in the system. The
following sections describe this in more detail. As SAP HANA provides Read Committed
and Snapshot Isolation, we implement our approach for these two isolation levels.

6.2.1 Read Committed

As discussed in Section 4.4.2, in Read Committed all read operations that refer to already
committed data can be merged. In other words, in Read Committed only one snapshot
exists. Hence, we provide only a single MTx, when running under Read Committed.

Equation (4.2) shows that comparing a read statement’s key to the write keys of its sub-
mitting transaction is sufficient for this isolation level, therefore, we adopted Algorithm 1
for merge-decision in case of Read Committed:

Algorithm 6 Read Committed implementation: check if read ri of Ti to x and read rj of Tj
to y can be merged. x = y maybe possible.

1: function ISMERGEABLE_RC(ri(x), rj(y))
2: if h(ri(x)) = h(wi(x)) then
3: return false
4: else if h(rj(y)) = h(wj(y)) then
5: return false
6: end if
7: return true
8: end function

In line 2 and 4 we implement a lightweight check, if one of the submitting transactions
tries to read their own writes.

We therefore track the write set by retrieving from each write (1) the accessed table id
and (2) the given parameter and put these into a hash table, which we maintain for each
transaction. For each incoming read request, we lookup the accessed table id and the
parameter in the hash table of the specific transaction, which is more efficient than com-
paring to all writes that happened in the system. As we state in Chapter 2, transactions
write far less than they read. So, in practice, that hash table often is empty.

All Merged Reads produced by the Merger Threads can thus be executed within the context
of the same MTx, which is also executed in Read Committed. Hence, that MTx may start
with TID 0 and never needs to commit, as it always provides the correct view for all reads
not reading their own writes.

Because of the required properties outlined in Equation (4.1) in Section 4.4.1, we might
use the same approach to also support Read Uncommitted. We would just have to omit
the write set lookup, since all read statements can be merged under Read Uncommitted.
However, as we implement our prototype inside SAP HANA, which does not support
this isolation level, we do not discuss this implementation detail any further.

86 Chapter 6 Implementation

6.2.2 Snapshot Isolation

From Equation 4.3 in Section 4.4.4 we know that we can merge two read statements ri(x)
and rj(y) running under Snapshot Isolation, iff either x or y lies in the intersection of Ti’s
and Tj ’s snapshot. As this means that the Merger has to have full access to the full snap-
shot of all transactions, leading to the Merger being a database itself, we restrict merging
of read operations in Snapshot Isolation further.

We only merge two read statements ri(x) and rj(y) if Ti and Tj have the same snapshot
on all data. Thus, Algorithm 7 shows our merge decision for Snapshot Isolation. To be able
to check the commit time of a transaction, we extend the definition of h, introduced in
Section 4.3.1, for commits: h(cf) = vc, where vc can be seen as the commit timestamp of
Tf . We define, if Tj started after Tf committed, then h(cf) < j.

Algorithm 7 Snapshot Isolation implementation: check if read ri of Ti to x and read rj of
Tj to y can be merged. x = y maybe possible.

1: function ISMERGEABLE_SI(ri(x), rj(y))
2: C ← GETALLCOMMITS(DBMS)
3: for all c ∈ C do
4: if min(i, j) < h(c) < max(i, j) then
5: return false
6: end if
7: end for
8: return ISMERGEABLE_RC(ri(x), rj(y))
9: end function

In line 4, we check if any commit has been submitted between the start of transactions Ti
and Tj . If so, we do not merge. Otherwise, Ti and Tj operate on an identical snapshot
and can thus be merged according to the rules of Read Committed (line 8).

Because comparison with all commits in the system is expensive, we propose a more
efficient implementation than Algorithm 7. We extend our MTxs with three states: open,
depart, and committed. A client’s transaction is always attached to exactly a single MTx,
when it requests Snapshot Isolation. If there is no MTx in the system, a new MTx is created
with state open and the transaction is attached to it, meaning the transaction keeps the TID
of the MTx, internally. Further incoming transactions will also attach to that MTx, which
runs in isolation level Snapshot Isolation as well. Read statements of transactions that
are attached to the same MTx are pushed into the same bucket within our Merge Queue.
Thus, all read statements within the same bucket remain mergeable by the Merge Threads
with low effort. However, as any client transaction decides to commit, a new snapshot
is installed in the system. In consequence, all MTxs in state open switch to another state,
depart. From now on, starting transactions cannot attach to these MTxs anymore and will
need to open a new one. In depart, MTxs still allow merging of statements submitted
by transactions already attached to this MTx, but no attachement of new transactions.
Finally, when all transactions of an MTx have committed or aborted, the MTx switches
its state again – from depart to committed – and finally terminates.

We are aware that our approach limits the merge potential with OLTP workloads, as
illustrated exemplary by fig. 6.3: Here, T1 submits a write to x, while T2 reads u. Next, T1
commits and thereby installs a new snapshot that the subsequently starting T3 operates
on. T2 and T3 simultaneously submit a read to y and z, respectively, before they commit.
Obviously h(r2(y)) = h(r3(y)) and h(r2(z)) = h(r3(z)). Thus, according to Algorithm
1, we can merge these read statements. However, as 2 < h(c1) < 3, (i.e., T2 and T3 are
separated by the snapshot installed by T1), Algorithm 7 would not allow to merge any of
the reads in this example.

6.2 System Design 87

time

T1 T2 T3

w1(x=1) r2(u) r3(y)c1

x: 0

y: 0

z: 0

x: 0

y: 0

z: 0

π

σ

z: 0

x: 1 x: 0x: 1

u: 0 u: 0

π

σ

y: 0

u: 0

z: 0

x: 0x: 1

y: 0

u: 0

z: 0

x: 0x: 1

y: 0

u: 0

r2(y)

π

σ

r3(z)

π

σ

r2(z)

π

σ

c2 c3

z: 0

x: 1

y: 0

u: 0

x: 0

Figure 6.3: Example of a wasted merge: Though, r2(y) and r3(y) (respectively r2(z) and
r3(z)), could have been merged, they are not – due to T3’s snapshot.

Process Merged Transactions (MTx) - phase 1

for each job in Merge Queue Dequeue Job

Job has MTx?

yes no

Has overlap with
existing MTx?

yes

add to MTx

no

Create new MTx
(State=Open)

Add to MTx list

Figure 6.4: Activity diagram of dequeuing process
(phase 1)

To overcome this drawback,
we propose an optimization
of Algorithm 7: Instead of
running queries to multiple
tables within the same MTx,
we keep an open MTx for
each table in the database.
Thus, if x is related to a dif-
ferent table than u, y and
z in the example above, we
can still merge the submitted
read statements. On commit,
a transaction has to depart all
MTxs related to tables in its
write-set.

6.3 MERGER COM-
PONENT

This section goes into more
detail of the program flow
in our Merger Component
added to SAP HANA to
make our approach work as
designed by the background
of Chapter 4.

6.3.1 Overview

Figure 6.4 describes the first phase of the process for dequeuing a job from the merge
queue. First, the job is dequeued and checked, whether it is already attached to an exist-
ing MTx. If this is the case, that MTx is added to the list of MTxs that have statements
to be merged and executed in this interval. Otherwise, the Merger Thread checks for an

88 Chapter 6 Implementation

overlap between the dequeued job and any other MTx in the system. Finding such over-
lap is described in Figure 6.5b. In case such MTx is found, the job may attach to this MTx,
otherwise, a new MTx is created in state open. The resulting MTx is also added to the list
of MTxs being active in this interval. After this was done for all jobs in the queue, the
Merger Thread enters the second phase, depicted in Figure 6.5a.

Process Merged Transactions (MTx) - phase 2

for each MTx merge

execute

send results

Update MTx State

(a) Activity diagram of dequeuing process (phase 2)

Check Overlap with existing MTx

Incoming job

for each MTx
job accesses object
accessed by MTx?

no yes

MTx State

Open

return yes

Depart

return no

(b) Activity diagram of finding the fitting MTx

Figure 6.5: Analysis of cat2prod query

For each MTx, it first merges all statements dequeued and attached in the last step to that
MTx. Figure 6.7 describes the program flow of merging statements. Next, the Merged
Read is executed and its result set split and returned to the respective clients. Finally,
some jobs may cause the MTx to update its state. This check and its action is performed
as described in Figure 6.10. After all Merged Reads from all MTxs in this interval were
executed, the Merger Thread sleeps until it is scheduled for the next interval.

The following sections go into more detail of the phases dequeueing jobs, merging state-
ments, spliting and sending the results, and updating the state of MTx.

6.3.2 Dequeuing

Figure 6.5b describes the process of finding an overlapping MTx for an incoming job, if
this job is not attached to a MTx, yet. For this purpose, all MTx in the system are checked,
whether they already access the same object (i.e., table), as the incoming job. If such MTx
is found, its state is checked. In case the MTx is still open, the incoming job may run in

6.3 Merger Component 89

the context of that MTx, otherwise the MTx needs to be checked. Once there are no more
MTx left for checking, an open MTx accessing the same object as the incoming job has not
been found. Therefore, a new one will be created.

MergeQueue
+typedef uint64_t MergedTransactionId_t
+typedef uint64_t MergedTransactionQueue_t
beginMergedTransactions, openMergedTransactions, departedMergedTransactions: lockfree_bag
committedMergedTransactions: vector
unprocessedQueues[]: lockfree::queue
freeList: lockfree::queue
numTransactions[]: atomic_uint32_t
mapActiveLock, mapBeginLock, commitLock, roundRobinLock, actionLock: mutable ReadWriteLock
overallBatches, numUnprocessedElements, numWrites, freeListSize: atomic_uint32_t
+getInstance(): MergeQueue*
batchUnprocessedElements(): uint64_t
enqueue(hJobNode, hJob, mergedTransactionId): bool
dequeue(*worker, idx): size_t
cleanUp(*handler): bool
close(tableOid, ts): void
abortIn(*mergedTransaction): bool
commitIn(*mergedTransaction): bool
checkForAction(): void
...

MergedTransactionQueue
+typedef lockfree::queue QueueType
+DequeueSemaphore: Synchronization::Semaphore
-maxNumEntries: uint32_t
elementQueue: QueueType
batchSizes: lockfree::queue
elementQueueSize: atomic_uint64_t
numUnprocessedElements, numBatches: atomic_uint32_t
retryCount: mutable atomic_uint32_t
finished: bool
idx: size_t
mergedTransactionId: uint64_t
createBatch(): size_t
enqueue(hJobNode, hJob, &batchSize): bool
dequeue(*worker): size_t
...

HANA Session Handler

executeEvent()

QueryOrganizerThread
"QO_Queen"

NUM_WORKERS: const unsigned short
Semaphore: Semaphore
SemaphoreWaiters: atomic_uint32_t
-instance: QueryOrganizerThread*
queryOrganizer: QueryOrganizer*
qoID: int
workers: QueryOrganizerWorker*[]
#run(): bool

QueryOrganizerWorker
"QO_Drone"

#popped_pointers: std::vector<QueueElement*>
#queryOrganizer: QueryOrganizer*
doDequeue(): void
#run(): bool

QueryOrganizer
addJob(): void
reserve(): void

executeForget(): uint64_t

1..*

enqueues jobs into

1..*

visits

uses

schedules

contains

Figure 6.6: UML diagram of classes involved in the en-/ and dequeueing process

In Figure 6.6, we present an UML diagram of the classes implemented for the en-/ and
dequeueing process1. The HANA Session Handler is the hook of our implementation
into SAP HANA. The session handler lives in the session layer. Its task is to receive and
decode jobs from the network layer and pass them on for processing. We implemented
a hook into this class so that it checks whether a job is mergeable (based on some string
pattern matching) and if so, enqueues the job in the MergeQueue.

The Merge Queue is a container for MergeTransactionQueues, which actually contain

1for the full diagram, please refer to Figure A.1 in Appendix A

90 Chapter 6 Implementation

the incoming jobs. A Merge Transaction Queue represents a bucket, as described in Fig-
ure 6.2. All jobs enqueued in one Merge Transaction Queue belong to the same MTx.

The Merge Queue groups Merge Transaction Queues by the state of their MTx and is
responsible for finding the overlap between an incoming job and an existing MTx, or for
creating a new MTx.

Figure 6.6 also describes the classes QueryOrganizerThread and QueryOrganizerWorker.
These are the Merger Threads. There exist two kind of these threads, one is the scheduler,
the “Queen”, the others are worker threads, the “Drone”. Each drone has an instance of a
QueryOrganizer. That class actually runs the second phase described in Figure 6.5a. The
queen schedules a drone, which dequeues jobs from the Merged Transaction Queue into
the Query Organizer. After all jobs were dequeued, it asks the Query Organizer to enter
phase two.

The following sections, thus, in more detail present phase two, the execution flow within
the Query Organizer.

6.3.3 Merging

Merge Statements

Group jobs by
statement type

for each group in set Create plain QP tree

for each statement in group Merge Parameterlist

Figure 6.7: Activity diagram of merging statements

As a job is added to the
Query Organizer, it de-
cides, whether this job can
be merged with previously
added jobs. This is the
case, if another job of the
same type already exists.
After all jobs were de-
queued and added, the
Query Organizer creates
for each statement type a
plain query execution plan
(QP) tree, to which it at-
taches the parameters of
all added jobs of that type.

6.3 Merger Component 91

same_plan_container

grouped_list: ltt::vector<same_plan>
queryHash: size_t
jobHandle: Execution::JobHandle
jobNodeHandle: Execution::JobNodeHandle

createMergedJob(): void
push_back(): void

MergeSameQueries

+TYPE: QueryOrganizerType = qot_MERGE_SAME_QUERIES
grouped_queries: std::vector<same_plan_container>

-mergePlans(): void
-executePlans(): uint64_t
-clearList(): void

QueryOrganizer

executeForget(): uint64_t

MergedPreparedStatement

BatchedPreparedStatementJobcreates and executes

creates

Figure 6.8: UML diagram of classes involved in merging

92
C

h
a

p
te

r6
Im

p
le

m
e

n
ta

tio
n

Figure 6.8 presents in more detail the classes required for implementing our merging
approach2. The class implementing the interface of the Query Organizer, introduced
in the last section, is called MergeSameQueries. The advantage of such design is that
further merging strategies simply need to provide a different implementation for the
Query Organizer. A Merge Same Queries object has a same_plan_container, which
is a list of same_plan. A Same Plan object holds all added statements that are simi-
lar. All kind of similar statements are the kept in the Same Plan Container. For each
Same Plan, the Merge Same Queries object creates a MergedPreparedStatement and
a BatchedPreparedStatementJob which contains the execution logic for executing the
Merged Read and processing its result. We will discuss the layout of these two classes in
more detail in Figure 6.9.

A Merged Read is executed in the context of its own transaction, which is coupled to
a connection in SAP HANA. For our implementation, we therefore extended the SAP
HANA classes Transaction and Connection to support the execution of Merged Reads
and holding the different states, as described later.

The Batched Prepared Statement Job object is executed using internal SAP HANA logic.
Usually, this includes sending the filtered results back to the application. However, in
our case, we need to do some extra work in beforehand. Thus, the result is stored within
an itab. In the next step, items in this itab need to be split an sent back to the requesting
applications.

6.3.4 Sending

Internal HANA Client Codec

SessionCodecForMergedTransactions

itab: InternalTable*
params: Query::Param*
expression: Expression*
statementid: uint64_t
tupleid: uint32_t

eCursorCreated(): bool
eRowCount(): void

Figure 6.9: UML diagram of classes in-
volved in splitting and sending results

The UML diagram in Figure 6.9 presents
the classes involved in splitting and
sending the results3. The main class
is the SessionCodecForMergedTrans-
actions, which inherits from the inter-
nal HANA client codec. This is neces-
sary, because as described in Section 6.1,
SAP HANA uses an internal protocol to
transfer data from the application to the
server and back. So, the Batched Pre-
pared Statement Job first creates one of
our own Session Codecs for each appli-
cation having a request merged within
the Merged Read. Our implementation
of the Session Codec now loops over the
rows of the itab and for each row checks,
if it needs to be written to the network
and thus transferred to its application.
For this purpose, we implement some
decision logic that can handle equality of different datatype values as well as and/or
concatenations of expressions. If an item is found to be returned to the client, our imple-
mentation of the Session Codec translates the SAP HANA representation of that value
into the network representation of that value and writes it into the network buffer. Once
the whole itab has been checked, the buffer is flushed and returned to the application.

So, at this point, jobs have been dequeued, merged, and executed. The accumulated
result has been split and returned to the respective application. The remaining task to do
is updating the state of the MTx.

2for the full diagram, please refer to Figure A.2 in Appendix A
3for the full diagram, please refer to Figure A.3 in Appendix A

6.3 Merger Component 93

6.3.5 Updating MTx State

Update MTx state

Interval contains COMMIT?

no yes

MTx state

Open

Set state=Depart

Depart

Number running
transactions

>1

Decrement number of
running transactions

1

Check conflicts

no conflict

COMMIT

conflict

isolate conflicts

COMMIT remaining

Set state=Committed

Figure 6.10: Activity diagram of updating the state of a MTx (in Snapshot Isolation).

After processing all jobs, MTxs that were active in this interval need to be checked for
their state. As the state of a MTx does not change when running in Read Committed, this
whole process is executed when running under Snapshot Isolation, only.

Figure 6.10 describes the execution flow for each MTx. The first check evaluates, whether
one of the dequeued jobs was of type commit. If this is the case, the state of the MTx
is checked. A MTx can have the state open, depart, or committed. As a committed MTx
does not execute any Merged Reads, the state check only needs to consider the former two
states. If the MTx is open, it enters state depart. When depart, jobs of beginning transactions
may not run in the context of this MTx, anymore.

94 Chapter 6 Implementation

If the MTx is depart, we need to perform a check to evaluate, whether this MTx needs
to commit. Therefore, we track the number of user transactions attached to this MTx. If
this number is greater than 1, we decrement it and proceed. Otherwise, the last attached
user transaction has committed and the MTx needs to switch its state from depart to com-
mitted. Therefore, all attached user transactions are checked for conflicts. If any user
transaction has a conflict with any other user transaction, it is aborted. All transactions
that are conflict-free, are committed. Next, the MTx switches to state committed and will
be removed by the Merge Queue, maintaining all MTxs.

Thus, the implementation of merging read statements consists of the steps (1) dequeue-
ing, (2) merging and execution, (3) splitting and sending the results, and (4) maintaining
MTxs. This section gave a detailed insight into these four steps. The next section presents
the challenges one is facing, when implementing our approach for merging write state-
ments.

6.4 CHALLENGES IN THE IMPLEMENTATION OF MERGING WRITES

While Section 4.5 discussed conceptual challenges, when merging writes, this section
adds further challenges, when implementing merging writes. In preparation of this the-
sis, we identified four implementation challenges, future work might identify more.

6.4.1 SQL String Implementation

First of all, example strings representing a Merged Write, presented in Section 4.5, require
ANSI SQL functionality of conditional updates or multi-row inserts. We find not all
databases offer the implementation of such features. E.g., SAP HANA neither supports
conditional updates, nor multi-row inserts, as of version 2 SP4. If such functionality is
implemented, a Merged Write can be executed like any other write statement.

6.4.2 Update Count

Usually, a write statement returns the number of performed operations after execution.
E.g., an insert operation returns the number of inserted rows, an update the number of
modified rows and a delete the number of deleted rows. Often, applications compare
such return values to the number of expected writes to decide, whether the update oper-
ation performed successfully. Otherwise, the application may abort its transaction.

The execution of a Merged Write therefore needs to propagate its update count to the
application. I.e., the following two write operations w1 and w2, submitted by T1, respec-
tively T2

-- w1:
UPDATE T SET x = 0 WHERE PK = 1;
-- w2:
UPDATE T SET x = 0 WHERE PK IN (2, 3, 4);

can be merged into the Merged Write wM

6.4 Challenges in the Implementation of Merging Writes 95

-- wM :
UPDATE T SET x = 0 WHERE PK IN (1, 2, 3, 4);

As x is updated based on the filter of some primary key, the assumption is thatwM returns
an update count of 4. In such case, the Merger can split and return the correct update
count based on the number of parameters in w1 and w2. Another simple case is if wM
returns an update count of 0, meaning all update operations failed. However, if wM
returns a value different from 4 and 0, e.g., 3, a mechanism to detect which operation
failed needs to be processed with ultra low execution overhead to not add additional
latency to the execution of the 3 succeeding update operations.

6.4.3 Error Propagation

In addition to the correct error count, executing Merged Writes needs to also propagate
SQL Errors to the correct application. The following example illustrates this according to
two insert queries w1 and w2, submitted by T1 and T2, respectively.

-- w1:
INSERT INTO T (PK , val) VALUES (5, 1);
-- w2:
INSERT INTO T (PK , val) VALUES (6, 2);

Merging w1 and w2 into a Merged Write could result in the following wM .

-- wM :
INSERT INTO T (PK , val)
VALUES (5, 1),

(6, 2);

Naturally, the question arises how to handle a possible UNIQUE CONSTRAINT VIOLATION
ERROR caused by executing wM . This error-handling needs to consist of three steps: First,
the root-operation causing the violation (w1, w2, or both) needs to be found. This can be
done by parsing the error message in SAP HANA, or by some other root-cause propa-
gation in other databases. Next, the SQL Exception needs to be propagated to the client
and finally, the remaining operations need to be applied. A simple approach is to apply
w1 and w2, sequentially, in case wM fails.

However, if wM applies the changes of w1 and w2 in that order, and the insert of w2 fails,
the database engine first needs to undo the changes of w1. The Merger will then catch the
SQL Exception and apply w1 once more, before the execution of w2 runs into the UNIQUE
CONSTRAINT VIOLATION, again. This causes extra latency of the first undo of w1 and the
second exception-handling of w2, which may be tolerable in workloads with low write
conflicts. Workloads that have a high abort-rate might suffer performance from such
additional execution; e.g., the New Order transaction of TPC-C has an abort-rate of 90%.
In such a case, merging writes is not advisable.

96 Chapter 6 Implementation

6.4.4 Abort and Rollback

Finally, even if all operations wa(x), wb(y), . . . , wn(z) within a Merged Write wM succeed,
a transaction Ta may abort at a later point in time. According to the ACID properties,
all changes of Ta need to be undone, including the wa(x) composed into the execution
of wM . In consequence, wM needs to be partially reverted, as x needs to be reset to its
initial value, which is a difficult operation. It can be executed pessimistically by obtaining
the initial value of x prior to the execution of wM , leading to an extended delay for each
write operation. An optimistic approach reads the initial value of x in the context of Ta,
without considering Ta’s write-set, i.e., ra(x). Next, TM needs to update x with the value
obtained by ra(x) to partially undo the changes of wM .

This causes additional latency, when processing aborts. One could argue that aborts are
an exceptional case, which can be treated with additional latency. However, as mentioned
above, the New Order transaction of TPC-C has an abort rate of 90%, thus the overall
throughput of TPC-C could suffer drastically from such additional execution overhead.

6.4 Challenges in the Implementation of Merging Writes 97

98 Chapter 6 Implementation

7
Evaluation

Common enterprise systems often face overload spikes on reoccurring events. We ana-
lyzed OLTP workloads of such events and found that these are read-heavy with a few
simple hotspot queries. Instead of overprovisioning the underlying infrastructure, we
propose to merge the execution of these hotspot queries to reduce the load in the system.
The previous chapters discussed how we provide isolation level properties and read-your-
own-writes, when merging statements, and how to implement our approach efficiently in
a modern state-of-the-art in-memory DBMS. We also developed a model that showed a
significant throughput benefit for merging in theory.

This chapter evaluates our approach practically through different experiments. We first
evaluate the parameters of our system, showing that an interval-wise dequeuing strat-
egy is the most CPU-efficient. Next, we show a benefit of our approach of 20% to 33%
for workloads submitted interactively (depending on the isolation level), and 2.5x for
workloads submitted as stored procedures (Read Committed). The final section evaluates
our approach for an enterprise scenario that motivated our work, revealing a throughput
increase of 20%.

7.1 BENCHMARK SETTINGS

First, we provide the environment under which we run all our experiments. If not stated
otherwise, we execute all benchmarks presented in this chapter on a server with SUSE
Linux Enterprise Server 12 SP1 (kernel: 4.1.36-44-default). Our machine has 512 GB of
main memory in addition to four Intel(R) Xeon(R) CPU E7-4870 sockets with 10 cores.
All run at a speed of 2.4 GHz and have a cache size of 30 720 kB. We have hyperthreading
disabled.

99

7.2 SYSTEM SETTINGS

This section presents the evaluation of our system parameters. First we discuss differ-
ent strategies of dequeuing elements from the Merge Queue, as published in our work
[RBB+18] and [KRM+20]. Next, we evaluate our approach for different statement, trans-
action, and workload types with the media query, price query, and cat2prod query from
the SAP Hybris workload, the TATP benchmark, as well as a modified YCSB benchmark.
Section 7.2.4 evaluates the latency added by our approach to the response time of the
DBMS, before we break down the execution cost of our implementation. Section 7.2.6
closes this section with a discussion.

7.2.1 Experiment I: End-to-end Response Time Within a SAP Hybris System

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

A
vg

 R
es

po
ns

e
T

im
e

(s
)

Database Delay (ms)

16 cores
8 cores

Figure 7.1: DB responsiveness affecting the end-to-end latency

Before optimising the database, we decided to quantify the extent to which its perfor-
mance affects that of the whole system. This is to ensure our efforts will result in non-
negligeable end-to-end performance improvements. For this experiment, we execute the
SAP Hybris workload using 20 Apache JMeter [Nag09] threads on a full SAP Hybris
landscape. As configuration, we choose 16 Tomcat threads and in one setting 8 SAP
HANA threads and in the other 16 SAP HANA threads. We defer every query execution
by a delay that we implemented into SAP HANA, by calling once the sleep-function in
the query’s execution path. For our experiments, we set the delay from 10 µs to 100 ms.
Figure 7.1 presents our results.

We observe a linear relationship between the performance of the database to the overall
response time of the system: even a small delay of 40 ms results in an application wait-
time of about 2 s, while a delay of 80 ms increases the application’s wait-time to about
4 s (for 8 threads) respectively 3 s (for 16 threads). We explain this with the setup of SAP
Hybris, where the Tomcat server submits multiple statements in interactive transactions
to SAP HANA and composes the requested web-page from the result sets. As a small
delay is added to every single request, the end-to-end latency increases to seconds.

7.2.2 Experiment II: Dequeuing Strategy

In this section, we discuss different strategies from extracting requests from our Merge
Queue. We can think of two extremes, which we present, evaluate, and discuss:

100 Chapter 7 Evaluation

Dequeueing interval-wise I.e., requests are dequeued from the Merge Queue in a reg-
ular interval, regardless of the queue length. The challenge of this strategy is to find
an interval large enough so that on the one hand a reasonable number of requests can
be extracted from the queue and merged into a Merged Read beneficial for the overall
throughput. On the other hand, the interval must not be too large so that service level
agreements regarding the response time can still be hold by the system.

Dequeueing element-wise I.e., requests are dequeued from the Merge Queue, once
its number grows to a predefined threshold, regardless the time elapsed between two
extractions. The big advantage of that strategy is that Merged Read are always of the same
size. This reduces the overhead of statement compilation significantly. However, the
challenge of this strategy is to find a threshold. If the threshold is too low, a lot of Merged
Read composed of just a small number of statements is executed, hardly lowering the
utilization of the system. If the threshold is too high, requests may linger unreasonably
long in the queue causing the system to not hold its service level agreements with regards
to the response time. In the worst case, a threshold is not triggered and requests starve in
the Merge Queue.

Evaluating Interval-Wise Dequeuing Strategy

In this section, we provide a queuing model, presented in [RBB+18] to capture the impact
of the parameters that control the throughput in the THE LEVIATHAN execution strategy,
i.e.,

• the number of Merger Threads N that dequeue a merge queue and

• the polling interval I in which a merge queue is inspected.

Here, we assume the parameters as described in Table 7.1.

Parameter Name Parameter Meaning

M Number of queues
N Number of Merger Threads
Nm Number of Merger Threads for queue m ∈M
I Polling interval for queue inspection
Im Polling interval for queue m ∈M
B Batch size (number of tasks extracted from queue)
λI Rate of batches arriving at queue
F Distribution of the service times of batches
sI Mean service time of batches
pB(I) Probability of all threads being busy at batch-arrival
E[B] Average batch size for interval I
ρI System busy time (λI · sI)

Table 7.1: Parameter description for evaluating the interval-based approach

In the following, we first discuss the basic queuing model with only a single queue where
all available N Merger Threads are assigned to this particular queue. To that end, the
main problem in the basic model is to find the poll interval to maximize the throughput.

7.2 System Settings 101

Afterwards, we extend the basic model to multiple queues. As an additional dimension,
we do not only derive the poll interval per queue but also compute an assignment of
Merger Threads to queues – i.e., how the overall N Merger Threads are divided into
different queues.

In the context of THE LEVIATHAN, we currently use the model offline to determine the as-
signment of the Merger Threads to the merge queues and the polling interval per merge
queue. This is a realistic assumption if the workload does not change over time, which is
the case in many OLTP applications we see at SAP. In the future, we plan to extend our
implementation to also apply the model dynamically at runtime to adjust the configura-
tion to potential workload changes.

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

interval [µ s]

b
at

ch
 s

iz
e

[J
o
b

s]

average batch size E[B]

batch soue 0.9 percentile B
0.9

(a) Average batch size and B0.9

0

50

100

150

200

250

300

 100 200 300 400 500 600 700 800 900 1000
interval [µ s]

b
a
tc

h
 s

iz
e
 [

Jo
b
s]

(b) Batch sizes for N = 5

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10
x 10

4

T
h
ro

u
p
u
t

in
 [

Q
u
er

ie
s/

se
c]

interval [µ s]

0 200 400 600 800 1000
0

4

8

12

16

av
g
.
la

te
n
cy

 [
m

se
c]

3 threads

5 threads

7 threads

Latency

Throughput

(c) Throughput and Latency

Figure 7.2: Measured Statistics (throughput, latency, batch sizes) for different number of
threads N and various interval lengths I .

Basic Model Figure 7.2c shows the basic measured statistics where these two param-
eters N and I are apparent. Here, we observe first the impact of the number of Merger
Threads N on the system throughput. Interestingly, the impact of the inspection interval
I is not monotonic. This can be intuitively explained as follows: too small intervals lead
to smaller batch sizes that do not leverage the sharing potential, while too large intervals
introduce unnecessary waiting times for the arriving jobs.

Figure 7.2b and Figure 7.2a therefore show the batch sizes for different polling intervals
I . Note the persistent variability of the batch size B with an increasing interval length.

102 Chapter 7 Evaluation

Hence, waiting for larger intervals I does not necessarily entail a higher sharing potential
in the cases where the batch size is small. This effect surely depends on the type of
workload at hand, i.e., the statistical characteristics of the incoming statement stream.

To roughly estimate the appropriate interval length I that maximizes the throughput for
a given workload, we consider the queuing-model as depicted in Figure 7.4 as an insensi-
tive M/G/N/N queuing-system. In this model, batches arrive according to some Poisson
process with rate λI . Figure 7.3 shows how the empirically measured batch arrival rate
depends on the interval I as well as on a simple smoothing function that is used for the
model. In a real workload the arrival rate depends on the number of clients that submit
statements to the database system. We assume that the service times of batches at single
threads are independently and identically distributed with some distribution F and that
these have a mean service time sI , which represents the execution time of a merged query
in the queue.

interval [µ s]

0 200 400 600 800 1000

b
at

ch
es

 /
 s

0

200

400

600

800

1000

smoothed avg. batch arrival rate

empirical avg. batch arrival rate

(a)
interval [µ s]

0 200 400 600 800 1000

b
at

ch
es

 /
 s

0

100

200

300

400

500

600

700

smoothed avg. batch arrival rate

empirical avg. batch arrival rate

(b)

Figure 7.3: Smoothing of the empirically measured batch arrival rate for a varying num-
ber of threads N .

For the basic model, we assume that the system has N available threads and we are
particularly interested in finding the polling interval I that maximizes the throughput. In
order to maximize the throughput, we first compute the probability pB(I) of an incoming
batch seeing that all threads are busy, given the interval length I . Therefore, we need to
know the average batch service time and average batch sizes for given interval lengths I .

In the current prototype of THE LEVIATHAN, we therefore rely on a calibration run that
executes a given workload under different intervals I using N Merger Threads. It is im-
portant to note that a queue only contains statements of a single type; making it possible
to empirically obtain reliable average batch service times sI and average batch sizes E[B]
for given interval lengths I in advance. For notational purposes, we omit the reference to
I in E[B].

Thus, given the empirically obtained average batch service times sI and average batch
sizes E[B] for given interval lengths I , we are particularly interested in minimizing the
fraction of batches pB(I) · E[B] that are not immediately processed by a thread upon
arrival, hence, reducing the system throughput. We derive the probability pB(I) similar
to Erlang’s loss formula [Coh76] as

pB(I) = ρNI /N !∑N
i=0 ρ

i
I/i!

(7.1)

7.2 System Settings 103

with ρI = λI · sI depending on the interval length I . Note that pB(I) can be calculated
efficiently in an iterative manner. The idea of maximizing the throughput is to find an I
that minimizes pB(I) · E[B].

I

batches

jobs

...

N threads

time

time

Figure 7.4: Basic M/G/N/N queuing model. The queue depicted is only needed for an
M/M/N approximation of the batch waiting time.

Extended Model In the extended model, compared to the basic model we support mul-
tiple queues. The problem statement is that we want to distribute the N Merger Threads
to M queues and approximately find an interval Im for each queue m ∈ M to maximize
the overall throughput. We denote the number of assigned threads of queue m using Nm

where N = ∑
m∈M Nm.

In this thesis, we assume that the number of queues M and available Merger Threads N
is fixed. Typically, N is given by the current DBMS configuration and M is derived from
the workload and represents the number of top-M statement types that are merged using
a merging queue for each statement type.

To find the optimal configuration (i.e., Nm and Im for each queue m ∈M), we again exe-
cute calibration runs but this time for all M queues (and their statement types) and 1...N
threads for each queue. It is important to note that each of the m ∈M queues again only
contains statements of a single statement type, making it possible to empirically obtain
reliable batch service times sI and average batch sizes E[B] for given interval lengths Im
and a number of Merger Threads Nm in advance.

Using these empirically obtained statistics, we enumerate all possible distributions of N
threads to M queues. For each of those distributions, we derive the optimal poll interval
Im for each of the queues m ∈ M and compute the estimated throughput for that queue
as discussed in the previous section. In order to pick the best overall configuration (i.e.,
Nm and Im for each queue m ∈M), we use the one which globally maximizes the sum of
the estimated throughput over all queues.

Accuracy of the Model In the previous section, we discussed the queuing model of our
approach. In this section, we analyze its accuracy. As we will show next, our theoreti-
cal model closely matches findings of our experimental evaluation. In order to show the
accuracy of the queuing model, we consider a workload of read-only single-key lookup
statements of a YCSB benchmark arriving at one merge queue. The merge queue is ser-
viced by N ∈ {5, 7} Merger Threads. Furthermore, we vary the poll interval I in the
range of 100 µs to 1 ms.

104 Chapter 7 Evaluation

interval [µ s]

200 400 600 800 1000T
h
ro

u
g
h

p
u
t

[q
u
er

ie
s/

s] ×10
4

2

4

6

8
N=5

interval [µ s]

0 200 400 600 800 1000

×10
4

4

5

6

7

8
N=7

interval [µ s]

0 200 400 600 800 1000

p
B

 ·
 E

[B
]

10
-4

10
-3

10
-2

interval [µ s]

0 200 400 600 800 1000
10

-6

10
-4

10
-2

Figure 7.5: Tuning the interval I using the queuing model.

In order to see if our model predicts an interval which results in an approximately max-
imized throughput, we compare the measured throughput, i.e., given n queries per sec-
ond, for varying I to the delayed batch fraction computed by our model. We want to
see that the throughput is maximized at those poll intervals I which also minimize the
delayed batch fraction as predicted by our queuing model in the previous section.

Figure 7.5 shows the result for a range of intervals I and two setups with N ∈ {5, 7}. We
can see that where the delayed batch fraction pB(I) ·E[B] is minimized the throughput is
actually maximized. Given empirically measured average batch sizes E[B] and batch ser-
vice times per thread sI , Equation 7.1 can thus be used to determine the combination of
the number of threads N and the interval length I which maximizes the system through-
put. Note, that we observed an outlier in the calibration for I = 800µs. However, these
outliers can be filtered out by smoothing, as described earlier.

Next, we model a system, where an element-wise dequeueing strategy is followed. That
section was submitted in [KRM+20].

Evaluating Element-Wise Dequeuing Strategy

To model an element-wise dequeuing strategy, we consider a closed queueing system
where jobs are routed along three stations: job producer, job batcher, and service sta-
tion. This section was published in our previous work [KRM+20]. Here, we assume the
parameters as described in Table 7.2. The producer station has n clients, each being as-
signed a token enabling them to submit a new job/query1. Upon submission, the token
is revoked and the query is passed to the job batcher which creates a merged query at
rate M(k), once k queries become available to form a batch of size k. Each batch is for-
warded to the service station consisting ofm serving units, or servers, processing batches

1We use the terms job and query interchangeably.

7.2 System Settings 105

Parameter Name Parameter Meaning

n Number of Clients
x Number of active Clients
k Batch size
k∗ Optimal batch size
K Maximum batch size
K {1, 2, 3, . . . ,K}
M(k) Arrival rate of batches
m Number of Merger Threads
µ(k) Batch service rate
λx Job arrival rate
y Jobs available at batcher
z Batches available at the Merger
πππ0 Unique distribution of system’s steady state
Q(r, s) Jump rate from state r to state s
g(k) Speed-up function: g(k) = 1/µ(k)
w Weight for the speed-up function
φφφ(k) Vector for the speed-up function
`i Parameter vector of speed-up function
Θi Parameter space of `i
Sk Set of sample service times, related to k
Q Intensity matrix

Table 7.2: Parameter description for evaluating the element-based approach

in a FCFS order at rate µ(k), i.e., the number of batches served per unit time. Further, the
merged query is compiled, executed, and the result is split and sent back to the respec-
tive clients. Along with receiving a result, each client also receives its token back and
becomes ready to submit a new query. We note that the rate at which a new query is sub-
mitted to the batching station depends on the number of active clients, i.e., clients with
a token, rather than the total number of clients. It is also important to observe that the
total number of jobs in the system is the same as the number of clients n. For a schematic
representation of the system recall Figure 7.6.

1

m

1

2

n

.

.

Clients Batcher Servers

2
.
.

Figure 7.6: A closed queueing system with n clients and m servers. Clients are either
active or inactive and produce jobs at rate λx when x of them are active. The batcher
produces batches of size k at rate Mby/kc when there are y available jobs. The service
station consists of a single queue and m parallel servers, each having a service rate µ(k);
the overall batch service rate is µmin(m, z) when z batches are available.

106 Chapter 7 Evaluation

A key observation is that the additional time spent on batching is compensated by the
reduction in the total execution time of the jobs, owing to the amortization of associated
operational overhead characteristic to jobs of the same type. The gain from batching usu-
ally grows when increasing the batch size, an effect which is commonly referred to as
speedup. However, increasing the batch size beyond a certain threshold can lead to an
excessive idling of the available servers. This is due to the fact that batch formation takes
longer and also the number of batches in the system can become less than the number of
servers. In other words, higher speedups can idle more servers, which raises an interest-
ing performance tradeoff. Our objective is to find the optimal batch size k∗ maximizing
the system’s throughput, i.e., the number of jobs served at the service station per unit of
time. To this end, we will first model the closed queueing system as a continuous time
Markov chain (CTMC) and find its steady state distribution.

We assume that the time for each client to produce a job is exponentially distributed with
rate λ; denoting by x the number of active clients (i.e., having a token), the producer
station forwards a job to the batcher at rate λx. Let us also denote by y and z as the
number of jobs at the batcher and the number of batches at the server, respectively. The
state of the system can thus be uniquely described by the triple (x, y, zk) belonging to the
state space

S =
{

(x1, x2, x3) ∈ Z3
+ : x1 + x2 + x3 = n, k|x3

}
.

Although (x, y, zk) is determined by any two of its components, we retain the triple repre-
sentation due to a more convenient visualisation. The state of the system clearly evolves
as a continuous-time Markov chain and the rates at which the system jumps to another
state from the state (x, y, zk) are given by

(x, y, zk) λx−→ (x− 1, y + 1, zk), x > 0
M(k)by/kc−−−−−−→ (x, y − k, (z + 1)k), y ≥ k
µ(k) min(m,z)−−−−−−−−→ (x+ k, y, (z − 1)k), z > 0 . (7.2)

Informally, when the system is in state (x, y, zk), either one job can move from the pro-
ducer to the batcher at rate λx when there are x active clients, or k jobs can move from
the batcher to the server at rate M(k)by/kc, or k more clients become active (i.e., receive
their tokens back) at rate min(m, z)µ(k). The rates to all other states are zero.

The system attains a steady state with the unique distribution πππ0 given by the solution
of the equation πππ · Q = 0. This is due to the fact that the chain is irreducible, whereas
the finiteness of the state space guarantees positive recurrence. Here, Q(r, s) denotes
the jump rate from state r to s where r, s are of the form (x, y, zk), as specified in (7.2).
Given the non-linear state dependent rates, we can only obtain the solution πππ0 numeri-
cally rather than in closed form.

Further, the steady state distribution πππ immediately lends itself to the steady state system
throughput, i.e.,

Θ(k) :=
∑

(x,y,zk)∈S
πππ0(x, y, zk) kµ(k) min(m, z) , (7.3)

which implicitly yields the optimal batch size

k∗ := arg max
k∈K

Θ(k) . (7.4)

7.2 System Settings 107

Here, K = {1, 2, 3, . . . ,K} and K is the maximum possible batch size imposed by the
underlying queueing system. Note that finding the solution of (7.4) runs in ω

(
n4) time

as it involves solving πππ ·Q = 0 for every 1 ≤ k ≤ K in (7.3); for a particular batch size k,
the dimension of Q is of order n2

k . Next, we evaluate our model.

Benchmark Settings For our experiments, we focus on the GET_SUBSCRIBER_DATA trans-
action of the TATP benchmark [SNR09], consisting of one read operation. The operation
is expressed as an SQL string, which is sent to the database and processed on the server
side, as described earlier. It accesses only one row of exactly one table to read from and is
usually processed in less than 1 ms, which is common to OLTP workloads, as the analysis
in Chapter 2 showed.

We run our experiments on a base table size of 104 rows with a varying number of clients.
Internally, we keep track of the job arrival and retrieval times from the queue, as well as
the execution time of its batch.

Fitting the Experimental Data In the following, we employ standard optimal experi-
ment design techniques to characterize the service distributions for all batch sizes, while
letting the batch-processing system run only for some selected batch sizes. To this end,
we estimate the batching speedup and characterize the corresponding service distribu-
tions. For the sake of brevity, we describe the estimation process for only one job type;
the two job-type case proceeds similarly.

First, we express the batching speedup through the function g : N 7→ R+ where g(k) =
1/µ(k). To avoid triviality, we assume sub-additivity, i.e., g(k1 + k2) ≤ g(k1) + g(k2). In
the experimental evaluation, we consider the best fit of the empirical data to have one of
the following speedup forms:

• g1(k) = ak + b with a < 1
• g2(k) = γkα with α < 1
• g3(k) = c log k + d with c < 1.

Each speedup function is characterized by some parameters which are estimated by fit-
ting the mean service times for different batch sizes.

To estimate the speedup function in the given commercial database system we calculate
a set of batch sizes which minimize the estimation error. Our approach is based on a
linear regression where we transform the speedup function into a linear combination of
weights w and feature vectors φφφ(k). Assuming a Gaussian distribution on the error of
the responses of this model, i.e., the mean service times, the standard linear model can
be used and hence the ordinary least square (OLS) regression estimate of the regression
weights can be found. For the experiment design on the batch-processing system, i.e.,
deciding on the set A containing which batch sizes to run for the subsequent fitting, we
employ a D-optimal design [Puk93] to minimize the log determinant of the covariance
matrix of the OLS estimator. The size of the subset A is usually set in accordance with
time and cost considerations. We solve this integer optimization problem numerically
after relaxation using the CVX package [GBY08].

Finally, we denote the set of sample service times corresponding to the batch size k ∈ K
as Sk, and the respective mean service times as E[Y (k)], and find the speedup function g
minimizing the corresponding OLS estimation error, i.e., g = gm where m = arg mini ei
and ei = ∑

k∈K (gi(k| ˆ̀i)−E[Y (k)])2. Here, we express the parameter space corresponding
to the parameter vector `i of the speedup function gi as Θi, and adopt an OLS approach
to estimate `i through ˆ̀i = arg minθi∈Θi

∑
k∈K (gi(k)−E[Y (k)])2.

108 Chapter 7 Evaluation

(a) n = 100 (b) n = 300

Figure 7.7: Experimental evaluation: Comparison of the observed optimal batch sizes k∗

and the model estimates with increasing number of servers. The comparison is done for a
varying number of clients. As expected the optimal batch size decreases with increasing
number of servers due to server idling.

Evaluation For the experimental evaluation we set a measurement budget for the fit-
ting and parameter estimation, i.e., we estimate the service times and the speedup based
on measurement runs for only ∼ 5% of all possible batch sizes. Using the optimal exper-
imental design approach from the previous section we calculate the set of batch sizes to
be measured K for n ∈ {100, 300} clients. For each n we estimate the mean batching and
service times for each batch size k ∈ K from independent runs. The mean service times
for batch sizes k ∈ K are then used to estimate the speedup.

Equipped with the estimated service and batching rates we populate the intensity ma-
trix Q using Equation (7.2) and subsequently solve for the steady state distribution. We
further calculate the steady state throughput using Equation (7.3) and obtain the corre-
sponding optimal batch size. We repeat the same process for a varying number of servers
m and for a varying number of clients n up to 300. Note that the database prototype at
hand has at most m = 10 available servers.

In addition, we run an exhaustive experiment for all possible batch sizes to find the em-
pirical optimum for the set-up with a varying number of servers and clients for the sake
of completeness. Figure 7.7 shows a comparison of the modelled and observed optimal
batch sizes k∗ for an increasing number of servers and different number of clients n. We
observe that our models are accurate. Both the non-asymptotic/exact model as well as
the mean-field model capture the decline in the optimal batch size with an increasing
number of servers m.

Discussion of Dequeuing Strategies

There are two sides of the coin for both dequeueing strategies: On the one hand, the
advantage of the an interval-wise strategy is that a service level agreement on the re-
sponse time may be guaranteed. The downside of that strategy is that the number of
dequeued statements varies with each extraction, causing Merged Reads of different size,
which leads to an extended statement compilation time. On the other hand, the advan-
tage of the element-wise strategy is that in most cases the same number of elements is
dequeued from the Merge Queue, lowering the time spent in compiling the Merged Read.

7.2 System Settings 109

The downside of that approach, however, is that service level agreements regarding the
response time may not be guaranteed.

A discussion of both strategies is presented in [Kep20]. There, the author analyses the rel-
ative CPU time spent in different functions of SAP HANA, using a SAP HANA internal
kernel profiling tool. While they do not show the details of the full trees, as they con-
tain SAP HANA internals, they enlarge the leave holding the relative CPU time for the
function setQueryStringAndCompile of class MergedPreparedStatement, introduced by
Figure 6.9. That function receives a const char* representing a SQL string, which it
compares to the SQL string already set for this Merged Prepared Statement2. If the new
SQL string differs from the one set, the Merged Prepared Statement needs to be recom-
piled. As [Kep20] reveals, 6.6% of the CPU time is spent in recompilation when using
an element-wise dequeueing strategy, while that value increases to 11.6% when using
an interval-wise dequeueing strategy. The author argues that using an element-wise de-
queueing strategy decreases the CPU cost of compilation by 5 percent points.

In his next experiment, [Kep20] evaluates the efficiency – i.e., the CPU consumption per
query execution – of both strategies on a read-only workload consisting of media querys
taken from the SAP Hybris workload. His findings reveal that both strategies are equally
efficient. This is even though that workload is the optimal workload for an element-wise
strategy, because a large amount of similar mergeable statements enters the system in a
high frequency. In a more realistic scenario, however, similar statements are submitted
less frequently. Even [Kep20] argues that using an element-wise dequeueing strategy in
a full SAP Hybris workload hardly makes sense, as the frequency of submitted media
query is too low to trigger the threshold for dequeueing, before the response time is too
large to keep the service level agreement. As Chapter 4 revealed, higher isolation levels
– such as Snapshot Isolation – further decrease the mergeability of statements, rendering
the element-wise dequeueing strategy practically useless.

We thus continue with the interval-wise dequeuing strategy throughout our evaluation.

7.2.3 Experiment III: Merging Improvement on Different Statement, Trans-
action and Workload Types

This section presents to what extend the benefit of merging depends on the complexity
of statements in the workload, the mix of statement types within transactions and the
overall read-/write ratio of the workload.

Experiment III.i: Different Query Types and CPU Consumption in SAP Hybris

In this section, we show how merging improves the throughput and CPU consumption
for different statement types, as published in our earlier work [RKL+20]. Therefore, we
exemplary select media query, price query, and cat2prod query as presented in Section 2.3.2
and implement merging for these into THE LEVIATHAN, as discussed in Section 4.1.1. We
connect to our database with 2000 threads via the ODBC interface and run a workload con-
sisting of one of these queries. Figure 7.8 reports the throughput improvement and CPU
consumption for all three queries as we vary the ratio of queries we merge. The x-axis

2this may be the case, because we cache Merge Prepared Statements to avoid overhead of instantiation
and compilation

110 Chapter 7 Evaluation

(a) media query (b) price query

(c) cat2prod query

Figure 7.8: Merging affecting throughput and CPU usage for statements of different com-
plexity classes

shows the ratio of statements we merge from 5% to 100%. The y-axis shows the through-
put increase of merging over the baseline in factors. The y2-axis shows the CPU con-
sumption increase in factors, where 1 means that the same number of cores are required
to execute the workload, 0.5 means, half the number of cores are requires to execute the
workload. For the y-axis larger is better, for the y2-axis, lower is better.

Comparing the results, we first observe that merging improves the throughput and CPU
consumption when a larger proportion of the queries are merged, regardless the state-
ment type. This fits our intuition that a larger amount of mergeable queries is more bene-
ficial regarding the throughput and CPU consumption. Second, we note that the cat2prod
query benefits the most by merging in terms of throughput and CPU consumption, while
the price query performs the worst in both terms. In his work, Keppner [Kep20] investi-
gates these results and reveals that merging the cat2prod query always returns very simi-
lar results, which leads to a small intermediate result set in the join operator, causing the
large benefit through merging. The price query however, is a union query that returns
a larger intermediate result when merged, causing a lower benefit and even a higher
CPU consumption for the 75% case, when merged. We therefore note that not only the
statement type but also the size of its result set is affecting the benefit when merging the
statement.

In the best case, when merging all of the cat2prod querys, our approach can increase the
throughput by a factor of 2, while decreasing the CPU consumption by the same factor.
In consequence, we execute twice as many queries per second with half the number of
CPUs!

7.2 System Settings 111

Experiment III.ii: Different Transactions and Statement Types in TATP

The previous section evaluated our approach for different statement types in terms of
throughput and CPU consumption. This section broadens the evaluation to different
transaction types and mixes of statements. We published this section in our earlier work
[RBB+20].

In order to analyze the impact of different transaction types for merging, we refer to
the TATP benchmark [SNR09] and run each TATP transaction individually. For space
reasons, we abbriviate them in the following manner: Get Subscriber (Sub), Get New
Destination (Dest), Get Acces Data (Acc), Update Subscriber (UpSub), as well as the
Update Location (UpLoc), Insert Call Forwarding (InsCF), and finally the Delete Call
Forwarding (DelCF) transaction. In addition, we also run TATP’s read-only transactions
(RO), consisting of Sub, Dest, and Acc. We execute all statements in Read Committed and
vary the dequeuing interval and use 1 µs, 10 µs, 50 µs, 100 µs, 250 µs, and 500 µs. We plot
all results relative to the no-merging baseline indicated at 1. Figure 7.9 plots our results.

Figure 7.9: TATP transactions affecting merging.

Our first observation is that merging improves the throughput of Sub by a factor of 10
and Dest by a factor of 12. While merging increases the throughput of Acc by a factor of
6, we see almost no improvement for transactions that contain DML statements. As the
previous evaluation showed, the size of a statement’s result set also contributes to the
benefit of merging that statement. Arguably, Dest has the smallest result set, as [SNR09]
reports that only 23.9% of all Dest statements return a single row, while the result set
of the remaining 76.1% is empty. For the Sub, [SNR09] reports that 100% of the queries
return a single row, while for Acc, only 62.5% return a single row. Therefore, the size of
Dests result set is responsible for the increase of factor 12, when merged. In Section 7.2.3,
we showed that Sub consists of less filter arguments than Acc. This is the reason, why Sub
increases by a factor of 10, while Acc only increases by a factor of 6.

Another interesting fact is that the throughput of running a read only mix is increased
by a factor of 3 with an interval of 250 µs. This supports our hypothesis that merging
is extremely beneficial for read heavy workloads with a limited set of hot-spot queries,
which in fact is a very typical pattern in practical settings.

The next experiment evaluates our approach for different workloads consisting of vary-
ing read/write ratios.

112 Chapter 7 Evaluation

Experiment III.iii: Different Workload Types and Dequeuing Interval in YCSB

To show the impact of the workload’s read/write ratio on our merging approach, we
implement a multi-statement YCSB, where each transaction is read- or write-only and
consists of ten statements. Clients execute the workload in an interactive setting (i.e., they
submit statements one-by-one). We show the results for Read Committed and Snapshot
Isolation as isolation level.

For running the workload, we use different read/write ratios and plot our results in Fig-
ure 7.10. More precisely, we have chosen the read ratios of 0.1 (i.e. 10% of all transactions
are read-only), 0.25, 0.5, 0.75, 0.9, 0.95, 0.99, as well as 1.0 reflecting a read-only workload.
We use the same system-settings and intervals, as in our previous experiment.

(a) Read Committed (b) Snapshot Isolation

Figure 7.10: Read/Write ratio affecting merging.

As Figure 7.10a reveals, our approach can achieve a throughput increase of factor 20 for
a read-only workload and an interval of 250 µs, when executed under Read Committed.
However, with more writes within the workload, the throughput declines drastically to
a throughput improvement of factor 14 for a workload with 99% reads and factor 7 for a
workload with 95% reads. The case of 75% reveals a throughput improvement of about
100% for all dequeueing intervals. In case of Snapshot Isolation, Figure 7.10b shows that
using an interval of 100 µs increases throughput by a factor of 18. With more writes in
the workload, the benefit of merging is even more decreased as for Read Committed: A
workload consisting of 99% reads increases throughput by a factor of 6 when executed
under Snapshot Isolation, while merging improves the throughput for a workload with
95% reads only by a factor of 2. The case of 75% reveals a drop of throughput by 50%.

The reason for the lower improvement of merging under Snapshot Isolation is the larger
number of MTx. The next experiments focus on the response time and a breakdown of
the execution components in SAP HANA.

7.2.4 Experiment IV: End-to-End Latency in YCSB

This section evaluates the overhead of our approach in terms of latency on the client side.
We published this evaluation in our earlier work [RBB+20].

To evaluate how much latency is increased by that overhead, we run the same benchmark
as before for Figure 7.10a and measure latency of read/write statements individually
with and without merging. Figure 7.11 presents a boxplot for each read-ratio, using the

7.2 System Settings 113

Figure 7.11: System latencies for different read/write ratios

114 Chapter 7 Evaluation

same values, as in our previous experiment for Read Committed. The x-axis shows the
boxplots for our merging approach using different intervals (the same as in our previous
experiment). The very left value on each x-axis is the boxplot for the baseline. The y-axis
shows the latency in milli seconds.

As Figure 7.11 shows, latency does not increase much for low read ratios of 0.10-0.75
while the tail latency increases, as expected. However, for the 0.90 up to 1.0 read rations,
the median latency even decreases for larger dequeue intervals. Interestingly, these are
also the cases where we see major throughput gains. The reason is that under high read
ratios the latencies of transactions become more predictable by executing all read opera-
tions in fixed dequeue intervals.

The next section breaks down the execution in the server components. That evaluation
was also published in our earlier work [RBB+20].

7.2.5 Experiment V: Breakdown of Execution in YCSB

To have a better understanding where time is spent during execution of the workload
of Figure 7.10, we break down the execution for the workload with a read-proportion of
0.75 for the isolation levels Read Committed and Snapshot Isolation, since this is the typical
read ratio of OLTP as discussed before. Figure 7.12a compares the baseline to the merged
execution with an interval of 100 µs in Read Committed, Figure 7.12b compares the baseline
to the merged execution for the same setting under Snapshot Isolation. Naturally, the
proportion of executing reads, compared to writes, shrinks, when merging is applied,
as a Merged Read takes less execution time than executing all its reads one by one. In
consequence, executing writes makes up about 40% of the baseline execution, but 50%
when merging is applied under Read Committed.

(a) Read Committed (b) Snapshot Isolation

Figure 7.12: Execution breakdown of YCSB

For Snapshot Isolation, we first note that the relative execution time for transaction han-
dling is significantly higher, than for Read Committed. This is reasonable, as Snapshot
Isolation is a higher isolation level than Read Committed and thus comes with a larger exe-
cution overhead. Therefore, the relative time for executing writes is lower (25%), but also
increases to about 30% when merging is applied.

Moreover, most importantly, we can see that the overhead of our additional merging
logic is relatively low and attributes to approx. 10% of the overall execution cost in Read
Committed. For Snapshot Isolation, this value increases to almost 20%, because of the large
number of MTxs, we need to maintain, as discussed earlier.

7.2 System Settings 115

7.2.6 Discussion of System Settings

In this section, we showed that many characteristics of a workload contribute to the im-
provement through merging. In our first experiment, we showed that some statement
types are more beneficial to our approach than others. This is also true for the size of a
statements result set. The next experiment verified these findings using the transactions
of the TATP benchmark. In addition they showed that the mix of statements in a trans-
action also contributes to the benefit of merging for that transaction. I.e., the mix of all
read-only transactions improved by a factor of 3, when merging was applied, while run-
ning the read only transactions in isolation increased throughput by a factor of 6 to 12 by
merging. Notably, there was almost no benefit for TATP transactions consisting of reads
and writes. Our next experiment reproduced this observation with workloads of differ-
ent read/write ratios. We showed that a small number of writes decreases our merge
potential drastically, even more for a higher isolation level, such as Snapshot Isolation.

We analyzed the last experiment in more detail, by presenting the latency and the break
down of our execution. Our experiments revealed that latency may even be reduced for
some dequeueing intervals. This is because merging frees resources in overload scenar-
ios, which can then be spent in executing Merged Reads. The break down of our execution
showed that our approach comes with a low execution overhead of 10% for Read Commit-
ted and a larger overhead of 20% for Snapshot Isolation. The time spent for executing writes
increases, when merging is applied. This is according to the law of Amdahl [Amd67] that
optimizing a part of the system (in our case the execution of read statements) can only
be beneficial up to the point where a non optimizational part (in our case the execution
of write statements) becomes the new bottleneck. To further increase the performance
through merging, one therefore has to overcome the challenges of merging writes, as
presented in Section 4.5 and Section 6.4.

7.3 MERGING IN INTERACTIVE TRANSACTIONS

Having evaluated our system settings (end-to-end response time and dequeuing strat-
egy), we now investigate the performance gain of merging when using TATP as an in-
teractive workload and analyze the effects of stored procedures in the next experiment.
For the isolation levels we use Read Uncommitted, Read Committed and Snapshot Isolation
which are typical isolation levels for OLTP. We presented these experiments in our earlier
publications [RBB+18] and [RBB+20].

For this experiment, we now limit our system’s resources to 10 worker threads pinned to
10 cores. This enables us to bring our system into a state of overload with a reasonable
small number of clients. For the baseline, all 10 threads are executing non-merged trans-
actions. For the merging case, the 10 threads are shared for executing merged statements
and non-merged statements. In both cases, clients connect to the database from an exter-
nal C++ driver program via SQLDBC and therefore measure the end-to-end throughput.

7.3.1 Experiment VI: Merging TATP in Read Uncommitted

In Read Uncommitted, all statements can be merged, as discussed in Section 4.4.1. As SAP
HANA does not support such isolation level, we use Read Committed with autocommit
mode, which in effect executes the workload as if run under Read Uncommitted. Unlike
the following experiments, we presented this experiment and its results in [RBB+18].

116 Chapter 7 Evaluation

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t I

nc
re

as
e

(f
ac

to
rs

)

Clients

baseline
merged

Figure 7.13: TATP in Read Uncommitted. The x-axis shows an increasing number of clients,
the y-axis the throughput increase over TATP with one client and no merging. Merging
increases the throughput by 20%, once the database is overloaded.

For this experiment, we use an interval of 110 µs. In this experiment we use only one
shared Merge Queue for all single-key lookup queries.

We show our results in Figure 7.13. As we see, our approach does not cause a throughput
drop for an underload-scenario of less than 40 clients. From 40 clients onward, we ob-
serve an increase of the throughput of about 20% compared to conventional SAP HANA.

Due to the fact that we are using only one queue for this experiment, the throughput
increase is not as high as expected, since we only merge statements if the same SQL string,
i.e., statements with different strings are executed sequentially. Still, it should be noted
that even with one queue for four different statement strings our approach produces a
remarkable increase of the system’s throughput, as Figure 7.13 shows.

7.3.2 Experiment VII: Merging TATP in Read Committed

For Read Committed, Figure 7.14 reports a performance increase of 25% to 33% for 100
clients and more, once the system is fully utilized.

In comparison to the 20% reported in [RBB+18] for Read Uncommitted, we find that our
results are slightly better, which is probably due to an improved implementation. In
more detail, we see two sides of the coin: on the one side, we observe a decrease of the
sharing potential, compared to YCSB or isolated execution of TATP’s transactions, with
the existence of more complex queries such as the join query in the Dest transaction. On
the other side however, we see how merging improves the performance of merge-able
TATP queries under high load resulting in a positive net effect of merging for complex
interactive OLTP workloads under Read Committed.

The next section analyses to what extent this also holds, when TATP is executed under
Snapshot Isolation.

7.3 Merging in Interactive Transactions 117

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t I

nc
re

as
e

(f
ac

to
rs

)

Clients

baseline
merged

Figure 7.14: TATP in Read Committed. The x-axis shows an increasing number of clients,
the y-axis the throughput increase over TATP with one client and no merging. Merging
increases the throughput by 25% to 33%, once the database is overloaded.

7.3.3 Experiment VIII: Merging TATP in Snapshot Isolation

As discussed in Section 4.4, Snapshot Isolation offers less sharing potential than Read Com-
mitted.

In Figure 7.15 we depict the benefit of merging for TATP executed interactively under
Snapshot Isolation. Our first observation is that merging also provides a benefit for OLTP
workloads executed under Snapshot Isolation. The throughput increase is in average 25%.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t I

nc
re

as
e

(f
ac

to
rs

)

Clients

baseline
merged

Figure 7.15: TATP in Snapshot Isolation. The x-axis shows an increasing number of clients,
the y-axis the throughput increase over TATP with one client and no merging. Merging
increases the throughput by a peak of 25%, when the database is overloaded.

In comparison to the results presented in Figure 7.14 for Read Committed, we note two
things:

1. Workloads executed under Snapshot Isolation start to benefit from merging in more
extreme overload situations. While TATP under Read Committed showed a perfor-
mance improvement already for 100 clients, such an improvement is only visible
from 300 clients onwards when executed under Snapshot Isolation.

118 Chapter 7 Evaluation

2. The overall benefit shrinks, compared to Read Committed. As can be seen in Fig-
ure 7.14 merging leads to a throughput increase of 33%. For Snapshot Isolation, we
improve throughput by 25%.

As Section 4.4 already stated that Snapshot Isolation decreases the merging potential of an
interactive OLTP workload in comparison to Read Committed, we conclude that the above
mentioned observations can be inferred from the stronger isolation level guarantees that
Snapshot Isolation provides over Read Committed.

7.4 MERGING QUERIES IN STORED PROCEDURES

The evaluation section covered our parameter settings, as well as transactions that are
submitted interactively, i.e., the client blocks and sends its next request upon receiving the
result of the former. This section evaluates merging for stored procedures. We published
this section earlier in [RBB+20].

Experiment IX: Merging TATP Stored Procedures in Read Committed

Real-world OLTP workloads are often implemented as stored procedures to avoid send-
ing every request over the network. As stored procedures are transactions under super-
vision of the DBMS, we consider them a subset of interactive transactions in this context.
In order to outline the practicality of the merging approach also for such common set-
tings, we implemented the TATP transactions used in the experiment before as stored
procedures and executed TATP with an increasing number of clients, where each client
in sequence submits calls to a TATP transaction. We run our experiment in Read Commit-
ted which allow us to compare the result to the results of the previous experiment.

Figure 7.16 presents our results relative to the baseline (always 1), when we execute TATP.
First, merging is applied for all read-only operations (merge RO) which leads to an in-
crease in throughput by a factor of 2.5×, as delaying the execution of read-statements
leads to an earlier execution of non-mergeable statements. For this experiment, we addi-
tionally report the speedup when only merging individual transactions while executing
other non-merged. We observe that merging only Dest improves performance by 20%,
while merging Sub or Acc improves performance by 40%. These numbers are easily ex-
plained, as Sub and Acc make 35% of the workload, each, while Dest makes only 10%.

7.5 MERGING SAP HYBRIS

Motivated by overload spikes in OLTP enterprise systems, we came up with the idea
to merge similar statements in OLTP workloads, based on our analysis of such work-
loads. Previous experiments solely focused on experiments on the foundation of syn-
thetic benchmarks. In this section, we evaluate our approach with an OLTP enterprise
workload that motivated our work, namely a SAP Hybris workload, which we also ana-
lyzed in Chapter 2.

We published this section in our earlier work [RKL+20].

7.4 Merging Queries in Stored Procedures 119

Figure 7.16: TATP execution, where each transaction is implemented as Stored Proce-
dure, running in Read Committed. The x-axis shows the increased number of clients, the
y-axis the throughput increase over the baseline (no merging). Merging all read-only
transactions leads to a peak increase of 2.5x over the baseline.

7.5.1 Experiment X: CPU-time Breakdown on HANA Components

This section presents the impact of queries submitted by SAP Hybris on the CPU seconds
that SAP HANA spends in different components. Therefore, we run the SAP Hybris
workload with 800 threads over 304 s on HANA with 8 database threads running on a
SUSE Linux Enterprise Server 12.3 (x86_64). SAP HANA reports a CPU time of 1472.5 s
for this workload, meaning that SAP HANA was utilized up to ≈ 38.75%.

Figure 7.17: Time spent in different HANA components

Figure 7.17 presents the relative amount of execution time the workload spent in differ-
ent SAP HANA components. During workload execution, SAP HANA spends approxi-
mately 41.2% of the time in statement preparation, i.e., decoding the message containing
the query id to be executed and preparing this query, as well as re-compiling a prepared
statement for the current transaction’s context. The SAP HANA SQL Plan Cache lists

120 Chapter 7 Evaluation

RECOMPILE TRIGGERED DUE TO PARAM VALUES in 88.81% of all cases as reason for
the recompilation, giving no reason for the remaining 11.19% at all. In addition, SAP
HANA spends approximately 24.5% in processing of read-queries. The work accounted
as query-processing is opening the result set, including execution of the query plan, as
well as encoding the reply-message that contains the query results. This step may also
includes further fetch operations. Approximately 13.3% is spent in network operations,
such as receiving and decoding a message, as well as sending a message. Scheduling
takes 12.5% - almost as much time, as network handling. Scheduling includes the time
to get the stack of a task and some internal NUMA handling, as well as adding and ex-
tracting a task to and from the internal task-queue. Much less time is spent in processing
queries that modify data (4.2%). The component taking the least amount of time is the
one for processing commits, which we account as transaction handling. This takes 1.5%
of the overall execution time. We were not able to match the remaining 2.8% to any spe-
cific component.

7.5.2 Experiment XI: Merging Media Query in SAP Hybris

In this section, we present the results of merging the media query within a full SAP Hybris
workload. We run our workload, described in Section 2.3.2, with a varying number of
JMeter threads against the Hybris landscape. To further create the overload aspect in this
evaluation, we decrease the size of our database to four cores.

Benchmark Settings

We run our the experiments for this section on a server with Intel Xeon Processors E7-
8880 v4 64 CPU cores with 4 GB RAM and 2.20 GHz, each. The server has a 1.7 TB Disk.

The SAP Hybris setup consists of clients connecting via the network to an Apache Tom-
cat server [Apa18], using a SOLR page cache [AS17] on top of a SAP HANA database
[FML+12], as described in Section 2.3.2 and depicted in Figure 7.18. For our experiments,
we simulate the clients with JMeter threads [Nag09] running in version 3.0. The app
server, database and clients all run on one single machine, each having an exclusive pool
of CPU cores.

We execute the clients on 24 cores. The app server runs on 32 cores and the SOLR cache
has 4 cores. SAP HANA runs on the remaining 4 cores.

For the workload, we choose the following mix of transactions presented in Section 2.3.2.
80% of all JMeter threads execute the Browsing transaction. 15% of the JMeter threads per-
form the Add Items to Cart transaction. The remaining 5% execute the Buying transaction.

Though a conversion rate of 5% appears to be larger than what we experience in real en-
terprise scenarios (Leonardo report a “look-to-book” ratio of 1000 : 1, i.e., 0.1% [May15]),
this is the workload mix the developers of SAP Hybris optimize their system for, so we
assume it a reasonable value.

7.5 Merging SAP Hybris 121

Figure 7.18: System Layout of Hybris

Benchmark Execution

Figure 7.19 plots the number of clients on the x-axis and the throughput in clicks per sec-
ond on the y-axis. We observe that the System’s throughput decreases with an increasing
number of clients, as expected. However, not only increases merging the media query
the performance peak, but also the overall throughput in the overload is constantly in-
creased by 20%. This is a remarkable improvement, considering we merge only 12% of
the workload.

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t (

C
li

ck
s/

s)

Clients

baseline
merged

Figure 7.19: Throughput of baseline and merging when merging is applied to the media
query.

122 Chapter 7 Evaluation

7.5.3 Discussion of our Results in Comparison with Related Work

In his work, Keppner [Kep20] also merges the media query in a full SAP Hybris work-
load and presents the throughput improvement over the baseline as well as the CPU
improvement over the baseline. For comparison, we depict his findings in Figure 7.20.

 1

 1.1

 1.2

 1.3

 1.4

100 200 300 400 500 600 700 800 900 1000

 1

 1.1

 1.2

 1.3

 1.4

T
hr

ou
gh

pu
t I

nc
re

as
e

(f
ac

to
rs

)

C
P

U
 I

m
pr

ov
em

en
t (

fa
ct

or
s)

Number of Clients

throughput
CPU

Figure 7.20: SAP Hybris throughput and CPU [Kep20]

On the x-axis the number of clients is increased from 100 to 1000. The y-axis plots the
throughput increase in factors as histograms. The y2-axis plots the CPU improvement3

in factors. For both y-axis, 1 means no improvement, larger is better. The setup of that
experiment is also slightly different to ours: He uses only 12 cores to execute the JMeter
threads and 16 for SAP HANA. The other settings are the same as in our experiments.

Similar to Figure 7.19, Figure 7.20 reports a significant throughput benefit for 500 clients
and more. While we report an improvement of 20% through merging, [Kep20] reports a
peak improvement of 40% with merging applied and improves CPU consumption up to
10%.

Naturally, the question arises how the findings of [Kep20] complement our evaluation.
Keppner also reports, the workload of SAP Hybris varies drastically with each execu-
tion, in terms of submitted statements. It is therefore likely that the workload evaluated
in [Kep20] consisted of more media querys, than ours, which is reflected in the higher
throughput improvement. Thus, [Kep20] can be seen as a reproduction of our results
under different benchmark settings.

We therefore conclude that merging not only improves the throughput of artificial bench-
marks, such as YCSB or TATP, but also the throughput and CPU consumption of com-
mon enterprise OTLP workloads, such as SAP Hybris. Therefore, THE LEVIATHAN may
be used to reduce the overload spikes on reoccurring events within such systems!

3less CPU consumption

7.5 Merging SAP Hybris 123

124 Chapter 7 Evaluation

8
Conclusion

Enterprise OLTP systems tend to run into overload spikes on reoccuring shopping events,
such as Black Friday, Cyber Monday, Chinese Singles Day or Christmas. The massive fre-
quency of page views can bring systems to their limits and beyond, causing companies
to lose real money. Naturally, companies prepare for such events by over-provisioning
the underlying infrastructure. In addition, much effort is spent in developing and opti-
mizing new solutions to handle these spike overloads. The over-provisioning and devel-
opment is usually planned months ahead and tested on server landscapes under natural
conditions.

As the over-provisioning of the underlying infrastructure, the development of customized
solutions and the planning of a task force are expensive, this thesis investigated into an
idea that reduces such overload spikes on common state-of-the-art database systems: by
merging read-statement strings.

8.1 SUMMARY

This thesis analyzed enterprise OLTP workloads, responsible for the reported overload
spikes, namely the workload of SAP Hybris, a leader in e-commerce. According to our
findings, OLTP workloads consist of a few select-statements that are repeatedly submit-
ted by different clients; in consequence, OLTP workloads are read-heavy with just a few
read hotspot queries. Related analysis of workloads from SAP, Oracle, Microsoft, IBM,
Leonardo, and our own analysis of open source projects, as well as common OLTP bench-
marks, such as YCSB, TATP, TPC-C, TPC-E and TPC-W, confirm our findings. Thus, we
proposed to merge queries of the same string into merged query-strings by inflating their
parameter-lists, according to some rule-pattern matching. Such merging technique needs
to fulfill five requirements for its applicability in enterprise OLTP workloads:

1. The approach needs to be applicable to simple operations, e.g., index look-ups

2. The execution overhead of the approach needs to be ultra-low

125

3. The approach needs to consider different visibilities of different transactions

4. Writes also need to be handled by the approach

5. The approach needs to be adaptable to state-of-the-art database systems

State-of-the-art related work dealing with merging techniques in OLAP or OLTP work-
loads does not fulfill these requirements: Proposals that merge the execution of plan
operators focus on complex operations, such as scans or joins. Approaches that merge
the execution of subplans require to analyze queries for common sub-expressions and
thus do not provide an ultra-low execution overhead. Materialized views, which merge
the result of subplans do not provide different visibilities to different transactions. In ad-
dition, their maintenance on frequent updates is expensive, rendering their use in OLTP
workloads inefficient. Finally, works that investigate into the idea of merging the exe-
cution of full plans, propose their idea within the environment of a new system design,
inapplicable in state-of-the-art database systems.

In contrast, our approach merges select-statements on a string level by increasing the
statement’s parameter-list. Thus, it can be easily applied to complex, medium, and even
simple operations such as index look-ups. Our approach decides the mergeability of a
statement by looking up the statement’s hash in a hash table and retrieve a merge-rule
for that statement. If no such rule exists, the statement is executed as it is. Otherwise,
we create a new statement string, a so-called Merged Read, based on the merge-rule. Its
input is the statement hash and the number of statements with that hash to be merged.
Its output is a new statement string, which can then be executed. The intermediate result,
produced by the merged statement’s execution, is split up according to the parameters of
the original statements and distributed to the clients. As our whole approach is based on
hash look-ups and pattern-matching, it has an ultra-low overhead and is thus applicable
to enterprise OLTP workloads.

As different transactions have a different visibility on the data, we formulate a framework
that merges only statements with the same view on the requested data. Such framework
considers the statement’s snapshot as well as the submitting transaction’s write-set, when
deciding on merge-candidates. If the statement is merged into a Merged Read, that Merged
Read will be executed within its own transaction, a so-called Merged Transaction (MTx),
having the same snapshot on the requested data, as the statements it is composed of. In
our analysis, we find that higher isolation levels restrict our abilities to merge more, while
lower isolation levels allow for more merging. E.g., in Read Uncommitted, all read state-
ments may be merged without any restriction. Since we execute non-mergeable state-
ments as they come, our approach is also able to handle write-statements.

When deploying our approach into a state-of-the-art database system, we developed a
mathematical model to analyze the expected throughput improvement for interactive
transactions as well as stored procedures. Our model reported that the throughput im-
provement of interactively submitted OLTP transactions is neglectable due to the short
ratio an OLTP request usually resides within the database, compared to the time it spends
in the network and the client. As stored procedures do not require to send statements
over the network, their application promises more improvement from merging tech-
niques. In addition, merging can be applied to statements of the same transaction, when
using stored procedures, further increasing the mergeabilities. The evaluation of our ap-
proach, implemented in SAP HANA, confirmed the findings of our model: While the
throughput improvement in an interactively submitted TATP benchmark is rather low
(about 33% in Read Uncommitted and 22% in Snapshot Isolation), the throughput could be
increased to a factor of 2 in stored procedures for Read Committed, using a special sys-
tem setup, consisting of just three threads, two for handling writes, one for merging and

126 Chapter 8 Conclusion

executing reads. The TPC-C New Order transaction showed even more improvement in
Snapshot Isolation, which is due to the optimization of merging all statements of the trans-
action’s loop into one – a technique, which can be applied by any stored procedure opti-
mizer without using any sophisticated merging approach. The evaluation of system pa-
rameters revealed the sensitivity of our approach to different statement-types: Increasing
the number of mergeable statements reduced the throughput improvement by a factor of
about 5, from 14× to 3×. In a mixed scenario, merging is sensitive to the ratio of writes
in the workload: as our benchmarks with YCSB revealed, throughput drops by a factor
of 2, when increasing the write ratio from 0% to 1% and by another factor of 2, when in-
creasing the write ratio to 5%. At a write ratio of 25%, a value often observed in common
enterprise OLTP workloads, the throughput improvement is almost neglectable in YCSB,
a workload consisting of only a single mergeable statement, which is the optimal case for
merging!

Obstacles in the Implementation

While our approach is designed to be adaptable to any commercial database, the im-
plementation in a research prototype revealed details of a database design that tend to
contradict the application of merging in such systems. First and foremost, in SAP HANA
it is assumed that the execution engine processes at most one statement per transaction
at a time, i.e., not two statements of the same transaction are processed at the same time
in the database. This assumption makes sense, as transactions are defined as sequence
of read and write operations, thus submitting these operations one by one. In our ap-
proach, however, a MTx may submits multiple Merged Reads at a time, thus breaking that
assumption, leading to unforeseen side-effects, such as system crashes. To avoid such
crashes, we introduced several synchronization points in the execution of a Merged Read,
leading to a sequential execution of independent operations and thereby a performance
loss, which could be observed in the lock wait time of our traces.

To provide an ultra-low execution overhead, we implemented extensive caching of Merged
Reads. In consequence, we were able to reduce the time, spent in re-compiling merged
statement strings to a minimum. In SAP HANA, statements do not offer an interface to
reset its transaction. Therefore, whenever a MTx closes or a new MTx is started, which
happens frequently when run under Snapshot Isolation, all Merged Reads belonging to the
closing MTx, are erased from the cache and need to be re-allocated and re-compiled for
the new MTx, leading to an additional execution overhead.

Finally, in the execution flow, a SQL Executor thread receives the client’s message, parses
it, compiles it, and decides whether the statement is to be merged, otherwise, it executes
the statement. Then it proceeds with the next statement residing in the network layer’s
buffer. In consequence, two mergeable statements stored in that buffer sequentially with
one non-mergeable statement in between, may not be merged. This is because the SQL
Executor reads the first mergeable statement from the buffer, processes it until the merg-
ing decision, after which it enqueues the statement within the Merge Queue. It then con-
tinues with the non-mergeable statement, which it processes beyond the merge-decision
until the statement’s result was written back to the network layer. By the time the SQL
Executor thread reads the second mergeable statement from the network layer, the first
statement was already dequeued from the Merge Queue. Hence, a design where the SQL
Executor reads statements from the network layer as batch, enqueues all mergeable state-
ments of that batch at once and processes the remaining sequentially, makes more sense
in terms of our approach.

8.1 Summary 127

8.2 FUTURE RESEARCH DIRECTIONS

Within this thesis, we developed a technique to merge select-statements steaming from
enterprise OLTP workloads with ultra-low execution overhead, while guaranteeing the
isolation level properties as well as read-your-own-writes. However, modelling and eval-
uating our approach revealed that the throughput improvement is too low and sensitive
to the homogeneity and read/write ratio of the workload, for a real application in such
enterprise OLTP workloads. In the following, we present the most promising scenarios
for future directions that arised during the preparation of this thesis.

Formalism of Merging Writes

Section 4.5 has presented a brief outline of merging writes. In contrast to merging reads,
merging writes is more complex, due to the additional analysis of the anomaly caused
by such merged write and comes with additional obstacles, regarding transaction con-
sistency. Not only the provision of read-your-own-writes is becoming more complex, as
read-statements might need to be split up to read only parts of an update. Incoming
write requests might need to be executed within the context of a MTx to be able to re-
ceive a lock on the requested tuple, leading to a different concept of transactions. Merg-
ing of writes may also lead to what we refer to as "starvation of the innocent", where
one or more write-operations wait for a lock requested by another write merged into
the same merged write. Implementing such approach can become tricky, as well; the
merging approach requires additional knowledge about which operation failed or suc-
ceeded, to properly return SQL Exceptions and update counts to the respective client, or
rollback parts of a write operation due to a client’s abort. These are just a few obstacles
we presented, as the focus of our thesis was merging reads, since the analysis in Chap-
ter 2 revealed that merging reads is expecting the most improvement in enterprise OLTP
workloads. However, future work needs to tackle merging writes and find a formalism
beyond our examples to propose under which circumstances two writes are mergeable
and how this can be implemented efficiently.

New Database Design

Our approach is designed for ultra-low execution overhead, necessary for the applica-
tion to enterprise OLTP workloads. However, the integration of such approach into a
state-of-the-art database has to overcome obstacles and side-effects, as discussed in the
previous section. To fully leverage the power of merging, OLTP databases need to be
designed to provide merging through the stack, by allowing the execution of multiple
statements running in the same transaction, at once, provide pipelining with multiple
consumers or accessing multiple snapshots of the same data. The merged approach
needs to be integrated from the top of the architecture, i.e., the SQL Executor thread
that reads batches of messages from the network layer, to the bottom, i.e., accessing the
data through different contexts within the same operation. The parameters of optimal
batch-size or waiting-interval and which statements to merge for best throughput im-
provement can be calculated, using fitting techniques through differential programming,
as described in [HBB+20].

That way, overload spikes may be reduced without acquiring additional hardware, by
merging statements as they enter the system with ultra-low execution overhead.

128 Chapter 8 Conclusion

Accelerators

As transactions merged together into the same batch, executed in one CUDA kernel al-
ways operate on the same snapshot, the implementation of Snapshot Isolation on GPUs is
the consequently next step, when merging the execution of transactions on GPUs. Fur-
thermore, old snapshots may be read asynchronously from the CPU without locking,
while updates may be performed in between the execution of such batches, similar to
BatchDB. With such approach, GPUs can be integrated into state-of-the-art databases,
executing stored procedures that were compiled into C++-kernels, deployed in the ker-
nel. As multiple clients call such stored procedures, the scheduler decides whether these
stored procedures are executed on the CPU or on the GPU, providing Snapshot Isolation
for both.

Intra-Transactional Merging

A proposal to delay writes of fully submitted transactions is presented in [FA15]. Delay-
ing writes allows for intra-transactional merging of such writes, avoiding the complex
analysis for anomalies, implementation obstacles of how to return update counts, and
transaction inconsistencies, discussed in Section 4.5. The idea we propose for future re-
search, is to introduce new isolation levels, such as Asynchronous Read Committed and
Asynchronous Snapshot Isolation, where clients submit their read and write requests in-
teractively. While read statements are processed immediately (or merged), writes are
executed on demand, either if requested by read-your-own-writes, or on commit. Thus,
in the commit-phase, writes can be merged on a string basis, using our string-matching
pattern rules, decreasing the latency and lock-time of these operations.

8.2 Future Research Directions 129

130 Chapter 8 Conclusion

References

[AAP+17] Raja Appuswamy, Angelos C. Anadiotis, Danica Porobic, Mustafa K. Iman,
and Anastasia Ailamaki. Analyzing the Impact of System Architecture on
the Scalability of OLTP Engines for High-contention Workloads. Proc. VLDB
Endow., 11(2):121–134, October 2017.

[ACL87] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency Control
Performance Modeling: Alternatives and Implications. ACM Trans. Database
Syst., 12(4):609–654, November 1987.

[Ado19] Adobe. Adobe Holiday Shopping Trends. Technical report, Adobe,
2019. https://www.adobe.com/content/dam/www/us/en/experience-
cloud/digital-insights/pdfs/adobe_analytics-holiday-predictions-
2019.pdf?promoid=NV3KR4X2&mv=other.

[ADP+18] Iya Arefyeva, Gabriel Campero Durand, Marcus Pinnecke, David Broneske,
and Gunter Saake. Low-Latency Transaction Execution on Graphics Pro-
cessors: Dream or Reality? In Rajesh Bordawekar and Tirthankar Lahiri,
editors, International Workshop on Accelerating Analytics and Data Manage-
ment Systems Using Modern Processor and Storage Architectures, ADMS@VLDB
2018, Rio de Janeiro, Brazil, August 27, 2018, pages 16–21, 2018.

[AGBGA19] Raja Appuswamy, Goetz Graefe, Renata Borovica-Gajic, and Anastasia Ail-
amaki. The Five-Minute Rule 30 Years Later and Its Impact on the Storage
Hierarchy. Commun. ACM, 62(11):114–120, October 2019.

[Aka15a] Akamai. Akamai 2013 Online Holiday Shopping: Trends
& Traffic Report. Technical report, Akamai, June 2015.
https://www.akamai.com/de/de/multimedia/documents/content/akamai-
2013-online-holiday-shopping-trends-and-traffic-report-white-paper.pdf.

[Aka15b] Akamai. Akamai Releases 2014 Online Holiday Shopping
Trends And Traffic Report. Technical report, Akamai, March
2015. https://www.akamai.com/de/de/about/news/press/2015-
press/akamai-releases-2014-online-holiday-shopping-trends-and-traffic-
report.jsp.

[Aka16] Akamai. Akamai’s 2015 Online Holiday Shopping Trends and Traffic Report
for Europe and North America. Technical report, Akamai, February 2016.
https://www.akamai.com/fr/fr/multimedia/documents/content/white-
paper/akamai-2015-online-holiday-shopping-traffic-report-white-
paper.pdf.

[AMA20] KIMBERLY AMADEO. What Is Black Friday: Sales Statistics and
Trends. https://www.thebalance.com/what-is-black-friday-3305710,
2020. Accessed: 2020-05-01.

[Amd67] G. M. Amdahl. Validity of the single-processor approach to achieving large
scale computing capabilities. In AFIPS Conference Proceedings, volume 30,
pages 483–485, Reston, VA, 1967. AFIPS Press.

131

[An17] Daniel An. Find Out How You Stack Up to New Indus-
try Benchmarks for Mobile Page Speed. Technical report,
Google Global Product Lead, Mobile Web, February 2017.
https://www.thinkwithgoogle.com/_qs/documents/57/mobile-page-
speed-new-industry-benchmarks.pdf.

[Apa18] Apache HTTP Server Project. Apache HTTP Server Documentation Version
2.4. Technical report, Apache Software Foundation, March 2018.

[Apf66] Martin L. Apfelbaum. Philadelphia’s "Black Friday". American Philatelist,
69(4):239, 1966.

[AS17] Apache Lucene and Solr Project. Apache Solr Reference Guide. Technical
report, Apache Software Foundation, September 2017.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A Critique of ANSI SQL Isolation Levels. In Proceedings
of the 1995 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’95, pages 1–10, New York, NY, USA, 1995. ACM.

[BD19] Angela Bonifati and Stefania Dumbrava. Graph Queries: From Theory to
Practice. SIGMOD Rec., 47(4):5–16, May 2019.

[BG83] Philip A. Bernstein and Nathan Goodman. Multiversion Concurrency Con-
trol&Mdash;Theory and Algorithms. ACM Trans. Database Syst., 8(4):465–
483, December 1983.

[BHR18] Michael Bromberger, Markus Hoffmann, and Robin Rehrmann. Do Iterative
Solvers Benefit from Approximate Computing? An Evaluation Study Con-
sidering Orthogonal Approximation Methods. In Mladen Berekovic, Rainer
Buchty, Heiko Hamann, Dirk Koch, and Thilo Pionteck, editors, Architecture
of Computing Systems – ARCS 2018, pages 297–310, Cham, 2018. Springer
International Publishing.

[BKY19] Matthias Boehm, Arun Kumar, and Jun Yang. Data management in machine
learning systems. Synthesis Lectures on Data Management, 14:1–173, 02 2019.

[BLT86] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently Up-
dating Materialized Views. In Proceedings of the 1986 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’86, page 61–71, New
York, NY, USA, 1986. Association for Computing Machinery.

[Bra19] J. Brandeis. SQLScript for SAP HANA. SAP PRESS Englisch. Rheinwerk
Publishing, 2019.

[CA20] Hyung-Ju Cho and Muhammad Attique. Group processing of multiple k-
farthest neighbor queries in road networks. IEEE Access, PP:1–1, 06 2020.

[CAA+11] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B. Gib-
bons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. TPC-E vs. TPC-C:
Characterizing the New TPC-E Benchmark via an I/O Comparison Study.
SIGMOD Rec., 39(3):5–10, February 2011.

[Cam20] F. Campoli. PostgreSQL for DBA: PostgreSQL 12. Independently Published,
2020.

[CCS93] E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On-line Analytical
Processing) to User-analysts: An IT Mandate. Codd & Associates, 1993.

132 REFERENCES

[CLW+18] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng,
Yuhui Wang, and Guoqing Ma. PolarFS: An Ultra-low Latency and Failure
Resilient Distributed File System for Shared Storage Cloud Database. Proc.
VLDB Endow., 11:1849–1862, 2018.

[Coh76] J.W. Cohen. On Regenerative Processes in Queueing Theory. Lecture notes in
economics and mathematical systems. Springer-Verlag, 1976.

[CPV11] George Candea, Neoklis Polyzotis, and Radek Vingralek. Predictable
Performance and High Query Concurrency for Data Analytics. PVLDB,
20(2):227–248, 2011.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154,
New York, NY, USA, 2010. ACM.

[DKG18] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improving Optimistic Con-
currency Control Through Transaction Batching and Operation Reordering.
PVLDB, 12(2):169–182, 2018.

[DKO+84] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R
Stonebraker, and David A. Wood. Implementation Techniques for Main
Memory Database Systems. In Proc. ACM SIGMOD Int. Conf. Manag. Dat.,
SIGMOD ’84, pages 1–8, New York, NY, USA, 1984. ACM.

[DSRS01] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelining
in Multi-Query Optimization. In Proceedings of the Twentieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’01,
page 59–70, New York, NY, USA, 2001. Association for Computing Machin-
ery.

[Eat12] Kit Eaton. How One Second Could Cost Amazon $1.6 Billion In
Sales. https://www.fastcompany.com/1825005/how-one-second-could-
cost-amazon-16-billion-sales, March 2012. Accessed: 2020-09-10.

[EBA+11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In 2011 38th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 365–376, 2011.

[EKA19] Katembo Ezéchiel, Shri Kant, and Dr Agarwal. A systematic review on
Distributed Databases Systems and their techniques. Journal of Theoretical
and Applied Information Technology, 96, 01 2019.

[EPZ05] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication using gen-
eralized snapshot isolation. In 24th IEEE Symposium on Reliable Distributed
Systems (SRDS’05), pages 73–84, Oct 2005.

[EWK10] Mike Ruthruff Emily Wilson and Thomas Kejser. Analyzing I/O Charac-
teristics and Sizing Storage Systems for SQL Server Database Applications.
Technical report, Microsoft, 2010.

[FA15] Jose M. Faleiro and Daniel J. Abadi. Rethinking Serializable Multiversion
Concurrency Control. PVLDB, 8(11):1190–1201, 2015.

[fc19] featured customers. 163 Companies that are using Hybris eCommerce Plat-
forms Software. https://www.featuredcustomers.com/vendor/hybris/
customers, 2019. Accessed: 2020-05-01.

REFERENCES 133

[FG19] Hua Fan and Wojciech Golab. Ocean Vista: Gossip-Based Visibility
Control for Speedy Geo-Distributed Transactions. Proc. VLDB Endow.,
12(11):1471–1484, July 2019.

[FGW+05] Nathan Folkert, Abhinav Gupta, Andrew Witkowski, Sankar Subramanian,
Srikanth Bellamkonda, Shrikanth Shankar, Tolga Bozkaya, and Lei Sheng.
Optimizing Refresh of a Set of Materialized Views. In Proceedings of the 31st
International Conference on Very Large Data Bases, VLDB ’05, page 1043–1054.
VLDB Endowment, 2005.

[Fin82] Sheldon Finkelstein. Common Expression Analysis in Database Applica-
tions. In Proceedings of the 1982 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’82, page 235–245, New York, NY, USA, 1982.
Association for Computing Machinery.

[FLO+05] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and
Dennis Shasha. Making Snapshot Isolation Serializable. ACM Trans. Da-
tabase Syst., 30(2):492–528, June 2005.

[FM16] Paul Fisher and Brian D. Murphy. Spring Persistence with Hibernate. Apress,
USA, 2nd edition, 2016.

[FML+12] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees. The
SAP HANA Database - An Architecture Overview. Bulletin of the Technical
Committee on Data Engineering / IEEE Computer Society, 35(1):28–33, 2012.

[GAK12] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. SharedDB:
Killing One Thousand Queries with One Stone. PVLDB, 5(6):526–537, 2012.

[GBY08] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX: Matlab software for
disciplined convex programming, 2008.

[GG97] Jim Gray and Goetz Graefe. The Five-Minute Rule Ten Years Later, and
Other Computer Storage Rules of Thumb. SIGMOD Rec., 26(4):63–68, De-
cember 1997.

[GGKM05] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha.
GPUTeraSort: High Performance Graphics Coprocessor Sorting for Large
Database Management. Technical Report MSR-TR-2005-183, Microsoft Re-
search, December 2005. Original November 2005, Revised March 2006.

[GGP09] R. Gabriel, P. Gluchowski, and A. Pastwa. Data warehouse & data mining.
W3L-Verlag, 2009.

[Gil16] Nikki Gilliland. Black Friday & Cyber Monday 2016 ecommerce stats bo-
nanza – Econsultancy. https://econsultancy.com/black-friday-cyber-
monday-2016-ecommerce-stats-bonanza/, 2016. Accessed: 2020-05-01.

[GM99] Ashish Gupta and Iderpal Singh Mumick, editors. Materialized Views: Tech-
niques, Implementations, and Applications. MIT Press, Cambridge, MA, USA,
1999.

[GMR95] Ashish Gupta, Inderpal S. Mumick, and Kenneth A. Ross. Adapting Mate-
rialized Views after Redefinitions. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’95, page 211–222,
New York, NY, USA, 1995. Association for Computing Machinery.

[GP87] Jim Gray and Franco Putzolu. The 5 Minute Rule for Trading Memory for
Disc Accesses and the 10 Byte Rule for Trading Memory for CPU Time. SIG-
MOD Rec., 16(3):395–398, December 1987.

134 REFERENCES

[Gra08] Goetz Graefe. The Five-Minute Rule 20 Years Later: And How Flash Mem-
ory Changes the Rules. Queue, 6(4):40–52, July 2008.

[HAMS08] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker. OLTP Through the Looking Glass, and What We Found There. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’08, pages 981–992, New York, NY, USA, 2008. ACM.

[HBB+20] Benjamin Hilprecht, Carsten Binnig, Tiemo Bang, Muhammad El-Hindi,
Benjamin Hättasch, Aditya Khanna, Robin Rehrmann, Uwe Röhm, Andreas
Schmidt, Lasse Thostrup, and Tobias Ziegler. DBMS Fitting: Why should we
learn what we already know? In CIDR 2020, 10th Conference on Innovative
Data Systems Research, 2020.

[HCW+19] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He,
Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li. X-Engine:
An Optimized Storage Engine for Large-scale E-commerce Transaction Pro-
cessing. In Proceedings of the 2019 International Conference on Management of
Data, SIGMOD ’19, pages 651–665, New York, NY, USA, 2019. ACM.

[HH98] Joseph Hellerstein and Waqar Hasan. Extensible/Rule Based Query Rewrite
Optimization in Starburst. Proc. ACM SIGMOD Conf., 21, 09 1998.

[HLY+09] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong
Luo, and Pedro V. Sander. Relational Query Coprocessing on Graphics Pro-
cessors. ACM Trans. Database Syst., 34(4), December 2009.

[Hob51] T. Hobbes. Leviathan. Andrew Ckooke at the Green Dragon, 1651.

[HSA05] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki.
QPipe: A Simultaneously Pipelined Relational Query Engine. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’05, pages 383–394, New York, NY, USA, 2005. ACM.

[HY11] Bingsheng He and Jeffrey Yu. High-Throughput Transaction Executions on
Graphics Processors. Proceedings of The Vldb Endowment - PVLDB, 4:12, 03
2011.

[HYF+08] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo,
and Pedro Sander. Relational Joins on Graphics Processors. In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’08, page 511–524, New York, NY, USA, 2008. Association for Com-
puting Machinery.

[IBM16] IBM. IBM Knowledge Center. https://www.ibm.com/support/
knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/
doc/c0054502.html, June 2016. Accessed: 2020-05-05.

[Inc17] Akamai Technologies Inc. State of Online Retail Perfor-
mance. Technical report, Akamai Technologies, Inc., Spring 2017.
https://www.akamai.com/uk/en/multimedia/documents/report/akamai-
state-of-online-retail-performance-spring-2017.pdf.

[JLF10] Bernhard Jaecksch, Wolfgang Lehner, and Franz Faerber. A Plan for OLAP.
In Proceedings of the 13th International Conference on Extending Database Tech-
nology, EDBT ’10, pages 681–686, New York, NY, USA, 2010. ACM.

REFERENCES 135

[KCS+10] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony
Nguyen, Tim Kaldewey, Victor Lee, Scott Brandt, and Pradeep Dubey.
FAST: fast architecture sensitive tree search on modern CPUs and GPUs.
In SIGMOD Conference, pages 339–350, 01 2010.

[Ken53] David G Kendall. Stochastic processes occurring in the theory of queues and
their analysis by the method of the imbedded markov chain. The Annals of
Mathematical Statistics, pages 338–354, 1953.

[Kep20] Martin Keppner. Acceleration of an OLTP Enterprise Application using Da-
tabase Query Sharing. Master’s thesis, Chair for Database Systems, Depart-
ment of Informatics, Technical University of Munich, 2020.

[KHL17] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. Adaptive Work Place-
ment for Query Processing on Heterogeneous Computing Resources. Proc.
VLDB Endow., 10(7):733–744, March 2017.

[KHS20] Chris Kjellqvist, Mohammad Hedayati, and Michael L. Scott. Safe, Fast
Sharing of memcached as a Protected Library. In 49th International Con-
ference on Parallel Processing - ICPP, ICPP ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[KKG+11] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David
Schwalb, Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and Alexander
Zeier. Fast Updates on Read-optimized Databases Using Multi-core CPUs.
PVLDB, 5(1):61–72, 2011.

[KRM+20] Sounak Kar, Robin Rehrmann, Arpan Mukhopadhyay, Bastian Alt, Florin
Ciucu, Heinz Koeppl, Carsten Binnig, and Amr Rizk. On the Throughput
Optimization in Large-Scale Batch-Processing Systems. In IFIP Performance
2020, 2020.

[KSRM03] Tobias Kraft, Holger Schwarz, Ralf Rantzau, and Bernhard Mitschang.
Coarse-Grained Optimization: Techniques for Rewriting SQL Statement Se-
quences. In Johann-Christoph Freytag, Peter Lockemann, Serge Abiteboul,
Michael Carey, Patricia Selinger, and Andreas Heuer, editors, Proceedings
2003 VLDB Conference, pages 488 – 499. Morgan Kaufmann, San Francisco,
2003.

[KWF+15] Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, and Tim
Kraska. Stale View Cleaning: Getting Fresh Answers from Stale Material-
ized Views. Proc. VLDB Endow., 8(12):1370–1381, August 2015.

[LAM18] Tom Kyte Lance Ashdown and Joe McCormack. Oracle R© Database Data-
base Concepts. Technical report, Oracle, August 2018.

[LBD+11] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jig-
nesh M. Patel, and Mike Zwilling. High-performance Concurrency Control
Mechanisms for Main-memory Databases. Proc. VLDB Endow., 5(4):298–309,
December 2011.

[LBM+07] Christian Lang, Bishwaranjan Bhattacharjee, Tim Malkemus, Sriram Pad-
manabhan, and Kwai Wong. Increasing Buffer-Locality for Multiple Re-
lational Table Scans through Grouping and Throttling. In 2007 IEEE 23rd
International Conference on Data Engineering, pages 1136–1145, 05 2007.

[LBM20] G. Lekshmi B., Andreas Becher, and Klaus Meyer-Wegener. The ReProVide
Query-Sequence Optimization in a Hardware-Accelerated DBMS. arXiv e-
prints, page arXiv:2005.01511, May 2020.

136 REFERENCES

[LC12] Ziyang Liu and Yi Chen. Exploiting and Maintaining Materialized Views
for XML Keyword Queries. ACM Trans. Internet Technol., 12(2), December
2012.

[LCPZ01] Wolfgang Lehner, Roberta Cochrane, Hamid Pirahesh, and Markos Zahari-
oudakis. fAST Refresh using Mass Query Optimization. In Proceedings of the
17th International Conference on Data Engineering, April 2-6, 2001, Heidelberg,
Germany, pages 391–398, 2001.

[Leh03] Wolfgang Lehner. Datenbanktechnologie für data-warehouse-systeme.
Konzepte und Methoden, Heidelberg, 2003.

[LI20] Yunrui LI. Method and System to Accelerate Transaction Commit using
non-Volatile Memory, April 2020.

[Liu12] Henry Liu. Oracle Data Consistency and Concurrency, pages 139–160. IEEE,
2012.

[LKA17] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. Cicada: De-
pendably Fast Multi-Core In-Memory Transactions. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD ’17,
pages 21–35, New York, NY, USA, 2017. ACM.

[LR19] Jyoti Leeka and Kaushik Rajan. Incorporating Super-Operators in Big-Data
Query Optimizers. Proc. VLDB Endow., 13(3):348–361, November 2019.

[MAA+13] Hossain Mahmud, Ashfaq Mahmood Amin, Mohammed Eunus Ali, Tanz-
ima Hashem, and Sarana Nutanong. A group based approach for path
queries in road networks. In Mario A. Nascimento, Timos Sellis, Reynold
Cheng, Jörg Sander, Yu Zheng, Hans-Peter Kriegel, Matthias Renz, and
Christian Sengstock, editors, Advances in Spatial and Temporal Databases,
pages 367–385, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[Mag19] Stephan Magura. Retail: Experience Management | SAP-Handelsforum
| SAP News Center. https://news.sap.com/germany/2019/06/
handelsforum-qualtrics-experience-management/, 2019. Accessed:
2020-05-01.

[May15] Kevin May. Airline system look-to-book ratios soar, expected to go 10x
higher. https://www.phocuswire.com/Airline-system-look-to-book-
ratios-soar-expected-to-go-10x-higher, December 2015. Accessed:
2019-03-15.

[MB20] Tina Müller and Matthias Born. Financial Results. Technical
report, Douglas, 2020. https://ir.douglas.de/download/companies/
douglasgmbh/Pres_web/3M_2019-20_Investor_Update.pdf.

[MBL17] Norman May, Alexander Böhhm, and Wolfgang Lehner. SAP HANA –
The Evolution of an In-Memory DBMS from Pure OLAP Processing To-
wards Mixed Workloads. In Bernhard Mitschang, Daniela Nicklas, Frank
Leymann, Harald Schöning, Melanie Herschel, Jens Teubner, Theo Härder,
Oliver Kopp, and Matthias Wieland, editors, Datenbanksysteme für Business,
Technologie und Web (BTW 2017), pages 545–546. Gesellschaft für Informatik,
Bonn, 2017.

[Mey18] Robin Meyerhoff. Schuhhersteller vervierfacht Online-Umsatz am
Black Friday. https://news.sap.com/germany/2018/12/fitflop-sap-
commerce-cloud/, 2018. Accessed: 2020-05-01.

REFERENCES 137

[MG19] Suren Machiraju and Suraj Gaurav. Key Application Experiences: Latency, Scal-
ability, and Throughput, pages 123–139. Apress, Berkeley, CA, 2019.

[MGAK16] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald
Kossmann. MQJoin: Efficient Shared Execution of Main-memory Joins.
PVLDB, 9(6):480–491, 2016.

[MGBA17] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso.
BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads
for Interactive Applications. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 37–50, New York,
NY, USA, 2017. ACM.

[MMMA18] Renato Marroquin, Ingo Müller, Darko Makreshanski, and Gustavo Alonso.
Pay One, Get Hundreds for Free: Reducing Cloud Costs through Shared
Query Execution. In SoCC, 2018.

[MRSR01] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. Mate-
rialized View Selection and Maintenance Using Multi-Query Optimization.
In Proceedings of the 2001 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’01, page 307–318, New York, NY, USA, 2001. Asso-
ciation for Computing Machinery.

[Nag09] Sravanthi Naga. Open Source Performance Testing Using Apache
JMeter. Technical report, Cognizant Technology Solutions, 2009.
https://docuri.com/download/119500-os-performance-testing-using-
apache-jmeter_59bb8547f581719a31729367_pdf.

[Nar15] Neha Narula. Parallel Execution for Conflicting Transactions. PhD thesis, De-
partment of Electrical Engineering and Computer Science – Massachusetts
Institute of Technology, 6 2015.

[NDB+14] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. Scale-out numa. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’14, page 3–18, New York, NY, USA, 2014. Association for
Computing Machinery.

[ORC13] Haim Helman Ohad Rodeh and David Chambliss. Visualizing Block IO
Workloads. Technical report, IBM Research Division, October 2013.

[PAOA14] Iraklis Psaroudakis, Manos Athanassoulis, Matthaios Olma, and Anastasia
Ailamaki. Reactive and Proactive Sharing Across Concurrent Analytical
Queries. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, pages 889–892, New York, NY, USA,
2014. ACM.

[PJHA10] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Aila-
maki. Data-oriented Transaction Execution. PVLDB, 3(1-2):928–939, 2010.

[Puk93] Friedrich Pukelsheim. Optimal design of experiments, volume 50. siam, 1993.

[PVV09] Robert L. Patrick and Richard K. Van Vranken. The Direct Couple for the
IBM 7090. Technical report, IBM, Atascadero, CA, and El Segundo, CA USA,
2009.

[QRR+08] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and Guy M.
Lohman. Main-Memory Scan Sharing for Multi-Core CPUs. Proc. VLDB
Endow., 1(1):610–621, August 2008.

138 REFERENCES

[QS18] Thamir M. Qadah and Mohammad Sadoghi. QueCC: A Queue-oriented,
Control-free Concurrency Architecture. In Proceedings of the 19th Interna-
tional Middleware Conference, Middleware ’18, pages 13–25, New York, NY,
USA, 2018. ACM.

[RAH15] Radi Reza, Mohammed Eunus Ali, and Tanzima Hashem. Group Processing
of Simultaneous Shortest Path Queries in Road Networks. In 2015 16th IEEE
International Conference on Mobile Data Management, pages 128–133, 09 2015.

[RBB+18] Robin Rehrmann, Carsten Binnig, Alexander Böhm, Kihong Kim, Wolfgang
Lehner, and Amr Rizk. OLTPshare: The Case for Sharing in OLTP Work-
loads. Proc. VLDB Endow., 11(12):1769–1780, August 2018.

[RBB+20] Robin Rehrmann, Carsten Binnig, Alexander Böhm, Kihong Kim, and Wolf-
gang Lehner. Sharing Opportunities for OLTP Workloads in Different Iso-
lation Levels. Proc. VLDB Endow., 11(12):1769–1780, August 2020.

[Ree78] D. P. Reed. Naming And Synchronization In A Decentralized Computersystem.
PhD thesis, Massachusetts Institute of Technology, USA, 1978.

[RKL+20] Robin Rehrmann, Martin Keppner, Wolfgang Lehner, Carsten Binnig, and
Arne Schwarz. Workload merging potential in sap hybris. In Proceedings of
the Workshop on Testing Database Systems, DBTest ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[Rou82] Nicholas Roussopoulos. View Indexing in Relational Databases. ACM Trans.
Database Syst., 7(2):258–290, June 1982.

[RSA18] Md Rana, M. Sohel, and Md Arman. Distributed Database Problems, Ap-
proaches and Solutions – A Study. International Journal of Rough Sets and
Data Analysis, 8:472–476, 10 2018.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and
Extensible Algorithms for Multi Query Optimization. In Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’00, page 249–260, New York, NY, USA, 2000. Association for Com-
puting Machinery.

[Sam14] Manoo Samet. Consolidating Oracle R© OLTP Workloads with XtremIO.
Technical Report Part Number H13828-1 (Rev. 02), EMC Corporation, De-
cember 2014.

[SAP16] SAP SE. Business Transformation Study: Habermaaß. Technical re-
port, SAP SE, 2016. https://cdn.featuredcustomers.com/ CustomerCaseS-
tudy.document/hybris_habermaass_53830.pdf.

[SE18] SAP SE. SAP HANA SQL Command Network Protocol Refer-
ence. Technical report, SAP HANA Platform SPS 12, January 2018.
https://help.sap.com/doc/63cef00e229b4010be06cfa01e1d338b/1.0.12/en-
US/SAP_HANA_SQL_Command_Network_Protocol_Reference_en.pdf.

[Sel88] Timos K. Sellis. Multiple-query Optimization. ACM Trans. Database Syst.,
13(1):23–52, March 1988.

[SLT+20] Zechao Shang, Xi Liang, Dixin Tang, Cong Ding, Aaron J. Elmore, Sanjay
Krishnan, and Michael J. Franklin. CrocodileDB: Efficient Database Execu-
tion through Intelligent Deferment. In CIDR 2020, 10th Conference on Innova-
tive Data Systems Research, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org, 2020.

REFERENCES 139

[Smi00] Wayne D. Smith. TPC-W: Benchmarking An Ecommerce Solution
Revision 1.2. Technical report, Intel Corporation, February 2000.
http://www.tpc.org/tpcw/tpc-w_wh.pdf.

[SNR09] Markku Manner Simo Neuvonen, Antoni Wolski and Vilho
Raatikka. Telecommunication Application Transaction Pro-
cessing (TATP) Benchmark Description. Technical report,
IBM Software Group Information Management, March 2009.
http://tatpbenchmark.sourceforge.net/TATP_Description.pdf.

[Sun09] Vaidyanathan Sundarapandian. Probability, statistics and queuing theory. PHI
Learning Pvt. Ltd., 2009.

[TDW+12] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. Calvin: Fast Distributed Transactions for
Partitioned Database Systems. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’12, pages 1–12, New
York, NY, USA, 2012. ACM.

[Tea16] Adobe Communications Team. Cyber Monday 2016 Smashes Online Shop-
ping Records | Adobe Blog. https://theblog.adobe.com/cyber-monday-
2016-smashes-online-shopping-records/, 2016. Accessed: 2020-05-01.

[TH10] TPC-H. TPC BENCHMARKTMC Standard Specification Revision 5.11. Tech-
nical report, Transaction Processing Performance Council (TPC), Febru-
ary 2010. http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-
c_v5.11.0.pdf.

[TLH11] Maik Thiele, Wolfgang Lehner, and Dirk Habich. Data-Warehousing 3.0
– Die Rolle von Data-Warehouse-Systemen auf Basis von In-Memory-
Technologie. In Wolfgang Lehner and Gunther Piller, editors, IMDM 2011 –
Proceedings zur Tagung Innovative Unternehmensanwendungen mit In-Memory
Data Management, pages 57–68, Bonn, 2011. Gesellschaft für Informatik e.V.

[TvS02] Andrew Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms, volume 3. Prentice Hall International, 01 2002.

[TYJ12] Jeppe Rishede Thomsen, Man Lung Yiu, and Christian S. Jensen. Effec-
tive caching of shortest paths for location-based services. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’12, page 313–324, New York, NY, USA, 2012. Association for Com-
puting Machinery.

[TYJ14] Jeppe Rishede Thomsen, Man Lung Yiu, and Christian S. Jensen. Concise
caching of driving instructions. In Proceedings of the 22nd ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
SIGSPATIAL ’14, page 23–32, New York, NY, USA, 2014. Association for
Computing Machinery.

[UGA+09] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann.
Predictable Performance for Unpredictable Workloads. Proc. VLDB Endow.,
2(1):706–717, August 2009.

[VB17] Sietse Verhoog and Gisele Brito. Handle Black Friday Traffic Every Day, 11
2017.

140 REFERENCES

[VHF+18] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper,
Viktor Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then. Get
Real: How Benchmarks Fail to Represent the Real World. In Proceedings of
the Workshop on Testing Database Systems, DBTest’18, New York, NY, USA,
2018. Association for Computing Machinery.

[Vog11] Werner Vogels. How and why did Amazon get into the cloud comput-
ing business? Rumor has it that they wanted to ’lease’ out their excess
capacity outside of the holiday season (November–January). Is that true?
- Quora. https://www.quora.com/How-and-why-did-Amazon-get-into-
the-cloud-computing-business-Rumor-has-it-that-they-wanted-to-
lease-out-their-excess-capacity-outside-of-the-holiday-season-
November\T1\textendashJanuary-Is-that-true, 2011. Accessed: 2020-
05-01.

[WAL+17] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An Em-
pirical Evaluation of In-Memory Multi-Version Concurrency Control. Proc.
VLDB Endow., 10(7):781–792, March 2017.

[Web16] Kevin Webber. Revitalizing Aging Architectures with Microservices.
https://www.youtube.com/watch?v=SPGCdziXlHU, 2016. Accessed: 2020-
05-01.

[Wik20] Wikipedia. SAP HANA - Wikipedia. https://en.wikipedia.org/wiki/
SAP_HANA, April 2020. Accessed: 2020-08-19.

[WK16] Tianzheng Wang and Hideaki Kimura. Mostly-optimistic Concurrency
Control for Highly Contended Dynamic Workloads on a Thousand Cores.
Proc. VLDB Endow., 10(2):49–60, October 2016.

[WOL99] Hui Wang, Maria Orlowska, and Weifa Liang. Efficient Refreshment of Ma-
terialized Views with Multiple Sources. In Proceedings of the Eighth Interna-
tional Conference on Information and Knowledge Management, CIKM ’99, page
375–382, New York, NY, USA, 1999. Association for Computing Machinery.

[Wol17] Jan Wolf. Multiple Query Execution through SQL Rewriting. Master’s the-
sis, Systems Group, Department of Computer Science, ETH Zürich, 2017.

[WRGB06] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, and Sudeept Bhatna-
gar. State-Slice: New Paradigm of Multi-query Optimization of Window-
based Stream Queries. In Proceedings of the 32nd International Conference on
Very Large Data Bases, Seoul, Korea, September 12-15, 2006, pages 619–630,
2006.

[YBP+14] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and
Michael Stonebraker. Staring into the Abyss: An Evaluation of Concur-
rency Control with One Thousand Cores. Proc. VLDB Endow., 8(3):209–220,
November 2014.

[ZB91] Songnian Zhou and Timothy Brecht. Processor-pool-based scheduling for
large-scale numa multiprocessors. In Proceedings of the 1991 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems, SIGMET-
RICS ’91, page 133–142, New York, NY, USA, 1991. Association for Comput-
ing Machinery.

[ZHNB07] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. Cooperative
Scans: Dynamic Bandwidth Sharing in a DBMS. In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB ’07, page 723–734.
VLDB Endowment, 2007.

REFERENCES 141

[ZLE07] Jingren Zhou, Per-Ake Larson, and Hicham G. Elmongui. Lazy Mainte-
nance of Materialized Views. In Proceedings of the 33rd International Confer-
ence on Very Large Data Bases, VLDB ’07, page 231–242. VLDB Endowment,
2007.

[ZLFL07] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang
Lehner. Efficient exploitation of similar subexpressions for query process-
ing. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Beijing, China, June 12-14, 2007, pages 533–544, 2007.

[ZLHZ19a] M. Zhang, L. Li, W. Hua, and X. Zhou. Efficient batch processing of shortest
path queries in road networks. In 2019 20th IEEE International Conference on
Mobile Data Management (MDM), pages 100–105, 2019.

[ZLHZ19b] Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou. Batch processing
of shortest path queries in road networks. In Lijun Chang, Junhao Gan, and
Xin Cao, editors, Databases Theory and Applications, pages 3–16, Cham, 2019.
Springer International Publishing.

[ZSP18] Dana Van Aken Zeyuan Shang and Andy Pavlo. Carnegie Mellon Data-
base Application Catalog (CMDBAC). http://cmdbac.cs.cmu.edu, 2018.
Accessed: 2018-03-01.

142 REFERENCES

A
UML Class Diagrams

143

MergedConnectionCommit

operator()(): bool
getDescription(): const char*

MergedConnectionAbort

operator()(): bool
getDescription(): const char*

MergedConnectionCloser

#mConn: MergedConnection*

getMergedConnectionId(): uint64_t
operator()(): bool
getDescription(): const char*

MergeQueue

+typedef uint64_t MergedTransactionId_t
+typedef uint64_t MergedTransactionQueue_t
map_MergedTransactionId_to_MergedTransactionQueue: std::map<MergedTransactionId_t, MergedTransactionQueue_t>
map_BeginningMtxId_to_MergedTransactionQueue: std::map<MergedTransactionId_t, MergedTransactionQueue_t>
beginMergedTransactions: std::lockfree_bag<MergedTransactionId_t>
openMergedTransactions: std::lockfree_bag<MergedTransactionId_t>
departedMergedTransactions: std::lockfree_bag<MergedTransactionId_t>
committedMergedTransactions: std::vector<MergedConnection*>
unprocessedQueues[NUMBER_OF_MERGE_QUEUE_SERVICE_THREADS]: boost::lockfree::queue<MergedTransactionId_t, boost::lockfree::fixed_sized<true>, boost::lockfree::capacity<1000> >
freeList: boost::lockfree::queue<MergedTransactionQueue_t, boost::lockfree::fixed_sized<true>, boost::lockfree::capacity<1000> >
numTransactions[NUMBER_OF_MERGE_QUEUE_SERVICE_THREADS]: std::atomic_uint32_t
mapActiveLock: mutable Synchronization::ReadWriteLock
mapBeginLock: mutable Synchronization::ReadWriteLock
commitLock: mutable Synchronization::ReadWriteLock
roundRobinLock: mutable Synchronization::ReadWriteLock
actionLock: mutable Synchronization::ReadWriteLock
overallBatches: std::atomic_uint32_t
numUnprocessedElements: std::atomic_uint32_t
numWrites: std::atomic_uint32_t
freeListSize: std::atomic_uint64_t

+getInstance(): MergeQueue*
empty(): bool
getCurrentNumBatches(): size_t
getCurrentNumQueues(): size_t
hasElementsToProcess(): bool
getNumberOfUnprocessedElements(): size_t
getNumOpenMergedTransactions(): size_t
getNumDepartMergedTransactions(): size_t
getNumCommittedMergedTransactions(): size_t
getFreeListSize(): size_t
getOpenMergedTransactionIdForTable(const Metadata::objectid_t& tableOid, ConnectionCallback& conn): uint64_t
batchUnprocessedElements(): uint64_t
enqueue(Execution::JobNodeHandle hJobNode, Execution::JobHandle hJob, const uint64_t mergedTransactionId): bool
dequeue(void* worker, size_t idx): size_t
cleanUp(void* handler): bool
close(Metadata::objectid_t tableOid, TransactionManager::CommitTS ts): void
abortIn(MergedConnection* mergedTransaction): bool
commitIn(MergedConnection* mergedTransaction): bool
checkForAction(): void
clear(): void

QueueElement

+hJobNode: Execution::JobNodeHandle
+hJob: Execution::JobHandle

MergedTransactionQueue

+typedef boost::lockfree::queue<uint64_t, boost::lockfree::fixed_size<true>, boost::lockfree::capacity<10000> > QueueType
+DequeueSemaphore: Synchronization::Semaphore
-maxNumEntries: uint32_t
elementQueue: QueueType
batchSizes: boost::lockfree::queue<uint16_t, boost::lockfree::fixed_sized<true>, boost::lockfree::capacity<1000> >
elementQueueSize: std::atomic_uint64_t
numUnprocessedElements: std::atomic_uint32_t
numBatches: std::atomic_uint32_t
retryCount: mutable std::atomic_uint32_t
finished: bool
idx: size_t
mergedTransactionId: uint64_t

size(): size_t
empty(): bool
hasElementsToProcess(): bool
getNumberOfUnprocessedElements(): size_t
isFinished(): bool
getIdx(): size_t
clear(): void
createBatch(): size_t
enqueue(Execution::JobNodeHandle hJobNode, Execution::JobHandle hJob, uint32_t& batchSize): bool
dequeue(void* worker): size_t
setIdx(size_t newIdx): void
setMergedTransactionId(uint64_t mtIdx): void

Internal HANA Client SessionHandler

executeEvent()

SessionWatchdog
"SessionWatchdog"

#processReloadWorkloadClassesAndMapping(): void

QueryOrganizerThread
"QO_Queen"

NUM_WORKERS: const unsigned short
Semaphore: Synchronization::Semaphore
SemaphoreWaiters: std::atomic_uint32_t
-instance: QueryOrganizerThread*
queryOrganizer: QueryOrganizer*
qoID: int
workers: QueryOrganizerWorker*[NUM_WORKERS]

getInstance(): QueryOrganizerThread&
checkQueryOrganizerConfiguration(): void
getDequeueMode(): uint32_t
resetQueryOrganizer<QueryOrganizerT>(): bool
#run(): bool

QueryOrganizerClearer

doDequeue(): void

Thread

#run(): bool

QueryOrganizerWorker
"QO_Drone"

#popped_pointers: std::vector<QueueElement*>
#queryOrganizer: QueryOrganizer*

addJob(): void
doDequeue(): void
resetQueryOrganizer<QueryORganizerT>(): bool
#run(): bool
#clearAndDestroyQO(): viod

QueryOrganizerZombie

+TYPE: QueryOrganizerType = qot_ZOMBIE

QueryOrganizer

addJob(): void
reserve(): void

executeForget(): uint64_t
getQueueCheckInterval(): uint64_t

getDequeueMode(): uint64_t
getDequeueNum(): uint64_t

getDequeueThreshold(): uint64_t
getDequeueLimit(): uint64_t

«enum»
QueryOrganizerType

qot_DUMMY = 0
qot_DUMMY2
qot_SIMPLE_REORDER
qot_MERGE_SAME_QUERIES
qot_MERGE_TRANSACTIONS
qot_EXEC_ONE_DIST_ALL
qot_TEST_MOCK = 404
qot_ZOMBIE = 503

non_copyable
1..*

1..*

enqueues jobs into
1..*

visits

resets in QueryOrganizerThread

uses

schedules

defines implementation of

contains

Figure A.1: Full UML diagram of classes involved in the en-/ and dequeueing process

144 Appendix A UML Class Diagrams

Transaction

mergedTransState: MergedTransState
mergedTransactionId: uint64_t // actually the pointer to the Connection

«enum»
MergedTransState

MTX_BEGIN
MTX_GATHER
MTX_DEPART
MTX_COMMIT
MTX_ABORT
MTX_ISOLATED
MTX_NEEDS_ISOLATION

Connection

readSet: std::vector<std::pair<objectid_t, transactionid_t> >*
writeSet: std::vector<std::pair<objectid_t, transactionid_t> >*
tsStartGatherPhase: uint64_t
timeoutUs: uint64_t
numPassangerTransactions: uint32_t
numFinishedPassengerTransactions: uint32_t

-isOverwrite(): bool
-abortPassengerTransaction(): void
-undoWrites(): void
-allPassengerTransactionsFinished(): bool

addAccessedObject(): void
getAccessedObjects(): void
handleFinishingPassengerTransactions(): void
isTimeout(): bool
isolateQueries(): void
isolateChangesOfIsolatedTransactions(): void
undoChangesOfIsolatedTransactions(): void
commitMergedTransaction(): void
abortMergedTransaction(): void

same_plan_container

grouped_list: std::vector<same_plan>
queryHash: size_t
jobHandle: Execution::JobHandle
jobNodeHandle: Execution::JobNodeHandle

createMergedJob(): void
push_back(): void

same_plan

pstmt: PreparedStatement*

getStatementString(): const _STL::string&
getStatementHash(): size_t

vector_content

jobHandle: Execution::JobHandle
jobNodeHandle: Execution::JobNodeHandle
active: bool

isErased(): bool
erase(): void

MergeSameQueries

+TYPE: QueryOrganizerType = qot_MERGE_SAME_QUERIES
grouped_queries: std::vector<same_plan_container>

-mergePlans(): void
-executePlans(): uint64_t
-clearList(): void

AbstractQueryOrganizer

executeForget(): uint64_t

QueryOrganizer

addJob(): void
reserve(): void

executeForget(): uint64_t
getQueueCheckInterval(): uint64_t

getDequeueMode(): uint64_t
getDequeueNum(): uint64_t

getDequeueThreshold(): uint64_t
getDequeueLimit(): uint64_t

TransX

jobHandle: Execution::JobHandle
jobNodeHandle: Execution::JobNodeHandle
mergedTransactionId: uint64_t
transaction: Transaction*

isAutoCommit(): bool
isRead(): bool
isWrite(): bool
isCommit(): bool
isAbort(): bool
getObjects(): void
getStateName(): const char*

non_copyable

Merger

operations: std::vector<TransX>
mergedTransaction: Connection*
mergedReadWriteStatement: MergedPreparedStatement*

empty(): bool
clear(): void
getMergedTransactionId(): uint64_t
add(): bool
addJob(): void
merge(): void
execute(): void
checkTimeout(): void
transactionFinished(): bool

MergedPreparedStatement

BatchedPreparedStatementJob

handles merging of operations
in different transactions via

access Transaction
via

acess
proxy of

has a

1..*

uses

creates and executes

creates

Figure A.2: UML diagram of classes involved in merging

145

Transaction

Connection

MergeSameQueries

Statement

MergedPreparedStatement

typedef std::vector<InternalTable*> IntermediateResultSet

add(): void
setReadStatement(): MergedPreparedStatement*
setWriteStatement(): MergedPreparedStatement*
executeMergedQuery(): bool
setQueryStringAndCompile(const char* sql_string): bool

PreparedStatement

OrExpressionAndExpression

TwoSideExpression

left: Expression*
right: Expression*

evaluate(): bool

TextInExpression

DoubleInExpression<double, double>FloatInExpression<float, float>IntInExpression<int, uin32_t>SmallIntInExpression<int, uin16_t>TinyIntInExpression<int, uin8_t>

template<ColumnType, ParamType>
NumericExpression

#compareNumeric(): bool

InExpression

param_: Query::param_t*
paramOffset: size_t
paramSize: size_t

evaluate(): bool

ConnIdExpression

connId: int

UpdatingExpression

Expression

typedef std::shared_ptr<std::vector<Expression*> > ExpressionVectorPtr
evaluate(): bool

getLeaveNodeExpression(): ExpressionVectorPtr
toStream(): void

SingleExpression

column_: Column*

JobNode

run(): void

BatchedPreparedStatementJob

handler: SessionHandler*
bpstmt: BatchedPreparedStatement*

run(): void

Internal HANA Client Codec

SessionCodecForMergedTransactions

itab: InternalTable*
params: Query::Param*
expression: Expression*
statementid: uint64_t
tupleid: uint32_t

eCursorCreated(): bool
eRowCount(): void

has a

creates and executes

creates

usescreates

creates and executes

executes

«typedef»«typedef»

Figure A.3: UML diagram of classes involved in splitting and sending results

146 Appendix A UML Class Diagrams

CONFIRMATION

I confirm that I independently prepared the thesis and that I used only the references and
auxiliary means indicated in the thesis.

Dresden, May 16, 2023

147

	Introduction
	Summary of Contributions
	Outline

	Workload Analysis
	Analyzing OLTP Benchmarks
	YCSB
	TATP
	TPC Benchmark Scenarios
	Summary

	Analyzing OLTP Workloads from Open Source Projects
	Characteristics of Workloads
	Summary

	Analyzing Enterprise OLTP Workloads
	Overview of Reports about OLTP Workload Characteristics
	Analysis of SAP Hybris Workload
	Summary

	Conclusion

	Related Work on Query Merging
	Merging the Execution of Operators
	Merging the Execution of Subplans
	Merging the Results of Subplans
	Merging the Execution of Full Plans
	Miscellaneous Works on Merging
	Discussion

	Merging Statements in Multi Statement Transactions
	Overview of Our Approach
	Examples
	Why Naïve Merging Fails

	the Leviathan Approach
	Formalizing the Leviathan Approach
	Transaction Theory
	Merging Under MVCC

	Merging Reads Under Different Isolation Levels
	Read Uncommitted
	Read Committed
	Repeatable Read
	Snapshot Isolation
	Serializable
	Discussion

	Merging Writes Under Different Isolation Levels
	Read Uncommitted
	Read Committed
	Snapshot Isolation
	Serializable
	Handling Dependencies
	Discussion

	System Model
	Definition of the Term ``Overload''
	Basic Queuing Model
	Option (1): Replacement with a Merger Thread
	Option (2): Adding Merger Thread
	Using Multiple Merger Threads
	Evaluation

	Extended Queue Model
	Option (1): Replacement with a Merger Thread
	Option (2): Adding Merger Thread
	Evaluation

	Implementation
	Background: SAP HANA
	System Design
	Read Committed
	Snapshot Isolation

	Merger Component
	Overview
	Dequeuing
	Merging
	Sending
	Updating MTx State

	Challenges in the Implementation of Merging Writes
	SQL String Implementation
	Update Count
	Error Propagation
	Abort and Rollback

	Evaluation
	Benchmark Settings
	System Settings
	Experiment I: End-to-end Response Time Within a SAP Hybris System
	Experiment II: Dequeuing Strategy
	Experiment III: Merging Improvement on Different Statement, Transaction and Workload Types
	Experiment IV: End-to-End Latency in YCSB
	Experiment V: Breakdown of Execution in YCSB
	Discussion of System Settings

	Merging in Interactive Transactions
	Experiment VI: Merging TATP in Read Uncommitted
	Experiment VII: Merging TATP in Read Committed
	Experiment VIII: Merging TATP in Snapshot Isolation

	Merging Queries in Stored Procedures
	Experiment IX: Merging TATP Stored Procedures in Read Committed

	Merging SAP Hybris
	Experiment X: CPU-time Breakdown on HANA Components
	Experiment XI: Merging Media Query in SAP Hybris
	Discussion of our Results in Comparison with Related Work

	Conclusion
	Summary
	Future Research Directions

	References
	UML Class Diagrams

