7,518 research outputs found

    Transfer Learning for Improving Model Predictions in Highly Configurable Software

    Full text link
    Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Instead of taking the measurements from the real system, we learn the model using samples from other sources, such as simulators that approximate performance of the real system at low cost. We define a cost model that transform the traditional view of model learning into a multi-objective problem that not only takes into account model accuracy but also measurements effort as well. We evaluate our cost-aware transfer learning solution using real-world configurable software including (i) a robotic system, (ii) 3 different stream processing applications, and (iii) a NoSQL database system. The experimental results demonstrate that our approach can achieve (a) a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'17

    Application Heartbeats for Software Performance and Health

    Get PDF
    Adaptive, or self-aware, computing has been proposed as one method to help application programmers confront the growing complexity of multicore software development. However, existing approaches to adaptive systems are largely ad hoc and often do not manage to incorporate the true performance goals of the applications they are designed to support. This paper presents an enabling technology for adaptive computing systems: Application Heartbeats. The Application Heartbeats framework provides a simple, standard programming interface that applications can use to indicate their performance and system software (and hardware) can use to query an applicationâ s performance. Several experiments demonstrate the simplicity and efficacy of the Application Heartbeat approach. First the PARSEC benchmark suite is instrumented with Application Heartbeats to show the broad applicability of the interface. Then, an adaptive H.264 encoder is developed to show how applications might use Application Heartbeats internally. Next, an external resource scheduler is developed which assigns cores to an application based on its performance as specified with Application Heartbeats. Finally, the adaptive H.264 encoder is used to illustrate how Application Heartbeats can aid fault tolerance

    Adaptation-Aware Architecture Modeling and Analysis of Energy Efficiency for Software Systems

    Get PDF
    This thesis presents an approach for the design time analysis of energy efficiency for static and self-adaptive software systems. The quality characteristics of a software system, such as performance and operating costs, strongly depend upon its architecture. Software architecture is a high-level view on software artifacts that reflects essential quality characteristics of a system under design. Design decisions made on an architectural level have a decisive impact on the quality of a system. Revising architectural design decisions late into development requires significant effort. Architectural analyses allow software architects to reason about the impact of design decisions on quality, based on an architectural description of the system. An essential quality goal is the reduction of cost while maintaining other quality goals. Power consumption accounts for a significant part of the Total Cost of Ownership (TCO) of data centers. In 2010, data centers contributed 1.3% of the world-wide power consumption. However, reasoning on the energy efficiency of software systems is excluded from the systematic analysis of software architectures at design time. Energy efficiency can only be evaluated once the system is deployed and operational. One approach to reduce power consumption or cost is the introduction of self-adaptivity to a software system. Self-adaptive software systems execute adaptations to provision costly resources dependent on user load. The execution of reconfigurations can increase energy efficiency and reduce cost. If performed improperly, however, the additional resources required to execute a reconfiguration may exceed their positive effect. Existing architecture-level energy analysis approaches offer limited accuracy or only consider a limited set of system features, e.g., the used communication style. Predictive approaches from the embedded systems and Cloud Computing domain operate on an abstraction that is not suited for architectural analysis. The execution of adaptations can consume additional resources. The additional consumption can reduce performance and energy efficiency. Design time quality analyses for self-adaptive software systems ignore this transient effect of adaptations. This thesis makes the following contributions to enable the systematic consideration of energy efficiency in the architectural design of self-adaptive software systems: First, it presents a modeling language that captures power consumption characteristics on an architectural abstraction level. Second, it introduces an energy efficiency analysis approach that uses instances of our power consumption modeling language in combination with existing performance analyses for architecture models. The developed analysis supports reasoning on energy efficiency for static and self-adaptive software systems. Third, to ease the specification of power consumption characteristics, we provide a method for extracting power models for server environments. The method encompasses an automated profiling of servers based on a set of restrictions defined by the user. A model training framework extracts a set of power models specified in our modeling language from the resulting profile. The method ranks the trained power models based on their predicted accuracy. Lastly, this thesis introduces a systematic modeling and analysis approach for considering transient effects in design time quality analyses. The approach explicitly models inter-dependencies between reconfigurations, performance and power consumption. We provide a formalization of the execution semantics of the model. Additionally, we discuss how our approach can be integrated with existing quality analyses of self-adaptive software systems. We validated the accuracy, applicability, and appropriateness of our approach in a variety of case studies. The first two case studies investigated the accuracy and appropriateness of our modeling and analysis approach. The first study evaluated the impact of design decisions on the energy efficiency of a media hosting application. The energy consumption predictions achieved an absolute error lower than 5.5% across different user loads. Our approach predicted the relative impact of the design decision on energy efficiency with an error of less than 18.94%. The second case study used two variants of the Spring-based community case study system PetClinic. The case study complements the accuracy and appropriateness evaluation of our modeling and analysis approach. We were able to predict the energy consumption of both variants with an absolute error of no more than 2.38%. In contrast to the first case study, we derived all models automatically, using our power model extraction framework, as well as an extraction framework for performance models. The third case study applied our model-based prediction to evaluate the effect of different self-adaptation algorithms on energy efficiency. It involved scientific workloads executed in a virtualized environment. Our approach predicted the energy consumption with an error below 7.1%, even though we used coarse grained measurement data of low accuracy to train the input models. The fourth case study evaluated the appropriateness and accuracy of the automated model extraction method using a set of Big Data and enterprise workloads. Our method produced power models with prediction errors below 5.9%. A secondary study evaluated the accuracy of extracted power models for different Virtual Machine (VM) migration scenarios. The results of the fifth case study showed that our approach for modeling transient effects improved the prediction accuracy for a horizontally scaling application. Leveraging the improved accuracy, we were able to identify design deficiencies of the application that otherwise would have remained unnoticed

    Managers Handbook for Software Development

    Get PDF
    Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences with flight dynamics software development. The management aspects of organizing the project, producing a development plan, estimation costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying are described

    Automated extraction of architecture-level performance models of distributed component-based systems

    Full text link
    Abstract—Modern enterprise applications have to satisfy in-creasingly stringent Quality-of-Service requirements. To ensure that a system meets its performance requirements, the ability to predict its performance under different configurations and workloads is essential. Architecture-level performance models describe performance-relevant aspects of software architectures and execution environments allowing to evaluate different usage profiles as well as system deployment and configuration options. However, building performance models manually requires a lot of time and effort. In this paper, we present a novel automated method for the extraction of architecture-level performance models of distributed component-based systems, based on mon-itoring data collected at run-time. The method is validated in a case study with the industry-standard SPECjEnterprise2010 Enterprise Java benchmark, a representative software system executed in a realistic environment. The obtained performance predictions match the measurements on the real system within an error margin of mostly 10-20 percent. I

    Effective Utilization of Historical Data to Increase Organizational Performance: Focus on Sales/ Tendering and Projects

    Get PDF
    Master's thesis in Offshore technologyIn Oil and Gas industry there was not enough focus on this topic as cost was not a big factor in good olden days. But the sensational drop in oil prices below US$40 per barrel at the end of 2015 made the price more than 60 percent down compared to the one in previous years. It’s clear that the sector is going through one of the most transformative periods in its history. This situation has created more challenges to all O&G company leaders by forcing them to change their business strategies. The operating companies in the Oil and Gas industry have been focusing to reduce costs and increase organizational performance. Accordingly suppliers companies need to acknowledge their focus on the efficiency and optimization of resources to be able to sustain and grow in a competitive market. It demands better control of estimates and cost on future sales/tendering process. As quoted by one of the Operations Managers “An informed organization saves cost and wins faster”. The only way to get reliable information for any organization is by analyzing ‘what happened in the past’ and what we learned from it. In other words this is achieved through utilization of historical data from previous projects and by developing benchmarking metrics. Further, usage of the historical data can improve estimation and scheduling, support strategic planning, and improve the organizational processes. The historical project data or information can help in making strategic business decisions in any Organization. It can play a significant role in providing very distinct advantage over the competitors. Historical data can help the management to decide what projects are right for the future of the company and which projects can be avoided. Further, it can help to learn from past mistakes and win future bids by not repeating them. Most of the top management understands the importance of having and using historical project information or data. The problem is that very few companies have the methodologies, procedures, and systems in place to effectively use this information to improve their project processes and to support the estimation, scheduling, and control of future projects (opportunities). The present work focuses on historical data, estimation process and lessons learned for enhancing organizational performance. Further, the work includes a case study and number of expert interviews conducted at ABB. The work discusses how to collect, normalize, and analyze historical project data to develop practical information. Three models have been developed for project estimation process with a feedback loop, Lessons learned process model and Historical data utilization process. The recommendations have been made to use the historical data for establishing references for the sales/tendering department for future estimates, which can reduce the dependency on manual or a single person’s judgment and improve the estimation process. Some suggestions have also been made for establishing lessons learned process which can improve organizational performance. The results from analysis show that by applying the recommended processes, organizations can achieve efficiency through easy access and storage of historical database, easy access to lessons learned, measurable KPIs. Also use of key variables like project complexity and severity of requirements for estimation process and historical data process can form a better relation for data analysis and utilization.AB

    Computer aided design of cluster-based ASIPs

    Get PDF

    FPGA Accelerators on Heterogeneous Systems: An Approach Using High Level Synthesis

    Get PDF
    La evolución de las FPGAs como dispositivos para el procesamiento con alta eficiencia energética y baja latencia de control, comparada con dispositivos como las CPUs y las GPUs, las han hecho atractivas en el ámbito de la computación de alto rendimiento (HPC).A pesar de las inumerables ventajas de las FPGAs, su inclusión en HPC presenta varios retos. El primero, la complejidad que supone la programación de las FPGAs comparada con dispositivos como las CPUs y las GPUs. Segundo, el tiempo de desarrollo es alto debido al proceso de síntesis del hardware. Y tercero, trabajar con más arquitecturas en HPC requiere el manejo y la sintonización de los detalles de cada dispositivo, lo que añade complejidad.Esta tesis aborda estos 3 problemas en diferentes niveles con el objetivo de mejorar y facilitar la adopción de las FPGAs usando la síntesis de alto nivel(HLS) en sistemas HPC.En un nivel próximo al hardware, en esta tesis se desarrolla un modelo analítico para las aplicaciones limitadas en memoria, que es una situación común en aplicaciones de HPC. El modelo, desarrollado para kernels programados usando HLS, puede predecir el tiempo de ejecución con alta precisión y buena adaptabilidad ante cambios en la tecnología de la memoria, como las DDR4 y HBM2, y en las variaciones en la frecuencia del kernel. Esta solución puede aumentar potencialmente la productividad de las personas que programan, reduciendo el tiempo de desarrollo y optimización de las aplicaciones.Entender los detalles de bajo nivel puede ser complejo para las programadoras promedio, y el desempeño de las aplicaciones para FPGA aún requiere un alto nivel en las habilidades de programación. Por ello, nuestra segunda propuesta está enfocada en la extensión de las bibliotecas con una propuesta para cómputo en visión artificial que sea portable entre diferentes fabricantes de FPGAs. La biblioteca se ha diseñado basada en templates, lo que permite una biblioteca que da flexibilidad a la generación del hardware y oculta decisiones de diseño críticas como la comunicación entre nodos, el modelo de concurrencia, y la integración de las aplicaciones en el sistema heterogéneo para facilitar el desarrollo de grafos de visión artificial que pueden ser complejos.Finalmente, en el runtime del host del sistema heterogéneo, hemos integrado la FPGA para usarla de forma trasparente como un dispositivo acelerador para la co-ejecución en sistemas heterogéneos. Hemos hecho una serie propuestas de altonivel de abstracción que abarca los mecanismos de sincronización y políticas de balanceo en un sistema altamente heterogéneo compuesto por una CPU, una GPU y una FPGA. Se presentan los principales retos que han inspirado esta investigación y los beneficios de la inclusión de una FPGA en rendimiento y energía.En conclusión, esta tesis contribuye a la adopción de las FPGAs para entornos HPC, aportando soluciones que ayudan a reducir el tiempo de desarrollo y mejoran el desempeño y la eficiencia energética del sistema.---------------------------------------------The emergence of FPGAs in the High-Performance Computing domain is arising thanks to their promise of better energy efficiency and low control latency, compared with other devices such as CPUs or GPUs.Albeit these benefits, their complete inclusion into HPC systems still faces several challenges. First, FPGA complexity means its programming more difficult compared to devices such as CPU and GPU. Second, the development time is longer due to the required synthesis effort. And third, working with multiple devices increments the details that should be managed and increase hardware complexity.This thesis tackles these 3 problems at different stack levels to improve and to make easier the adoption of FPGAs using High-Level Synthesis on HPC systems. At a close to the hardware level, this thesis contributes with a new analytical model for memory-bound applications, an usual situation for HPC applications. The model for HLS kernels can anticipate application performance before place and route, reducing the design development time. Our results show a high precision and adaptable model for external memory technologies such as DDR4 and HBM2, and kernel frequency changes. This solution potentially increases productivity, reducing application development time.Understanding low-level implementation details is difficult for average programmers, and the development of FPGA applications still requires high proficiency program- ming skills. For this reason, the second proposal is focused on the extension of a computer vision library to be portable among two of the main FPGA vendors. The template-based library allows hardware flexibility and hides design decisions such as the communication among nodes, the concurrency programming model, and the application’s integration in the heterogeneous system, to develop complex vision graphs easily.Finally, we have transparently integrated the FPGA in a high level framework for co-execution with other devices. We propose a set of high level abstractions covering synchronization mechanism and load balancing policies in a highly heterogeneous system with CPU, GPU, and FPGA devices. We present the main challenges that inspired this research and the benefits of the FPGA use demonstrating performance and energy improvements.<br /
    corecore