7,845 research outputs found

    MENU: multicast emulation using netlets and unicast

    Get PDF
    High-end networking applications such as Internet TV and software distribution have generated a demand for multicast protocols as an integral part of the network. This will allow such applications to support data dissemination to large groups of users in a scalable and reliable manner. Existing IP multicast protocols lack these features and also require state storage in the core of the network which is costly to implement. In this paper, we present a new multicast protocol referred to as MENU. It realises a scalable and a reliable multicast protocol model by pushing the tree building complexity to the edges of the network, thereby eliminating processing and state storage in the core of the network. The MENU protocol builds multicast support in the network using mobile agent based active network services, Netlets, and unicast addresses. The multicast delivery tree in MENU is a two level hierarchical structure where users are partitioned into client communities based on geographical proximity. Each client community in the network is treated as a single virtual destination for traffic from the server. Netlet based services referred to as hot spot delegates (HSDs) are deployed by servers at "hot spots" close to each client community. They function as virtual traffic destinations for the traffic from the server and also act as virtual source nodes for all users in the community. The source node feeds data to these distributed HSDs which in turn forward data to all downstream users through a locally constructed traffic delivery tree. It is shown through simulations that the resulting system provides an efficient means to incrementally build a source customisable secured multicast protocol which is both scalable and reliable. Furthermore, results show that MENU employs minimal processing and reduced state information in networks when compared to existing IP multicast protocols

    High-speed, in-band performance measurement instrumentation for next generation IP networks

    Get PDF
    Facilitating always-on instrumentation of Internet traffic for the purposes of performance measurement is crucial in order to enable accountability of resource usage and automated network control, management and optimisation. This has proven infeasible to date due to the lack of native measurement mechanisms that can form an integral part of the network‟s main forwarding operation. However, Internet Protocol version 6 (IPv6) specification enables the efficient encoding and processing of optional per-packet information as a native part of the network layer, and this constitutes a strong reason for IPv6 to be adopted as the ubiquitous next generation Internet transport. In this paper we present a very high-speed hardware implementation of in-line measurement, a truly native traffic instrumentation mechanism for the next generation Internet, which facilitates performance measurement of the actual data-carrying traffic at small timescales between two points in the network. This system is designed to operate as part of the routers' fast path and to incur an absolutely minimal impact on the network operation even while instrumenting traffic between the edges of very high capacity links. Our results show that the implementation can be easily accommodated by current FPGA technology, and real Internet traffic traces verify that the overhead incurred by instrumenting every packet over a 10 Gb/s operational backbone link carrying a typical workload is indeed negligible

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    A QoS-Driven ISP Selection Mechanism for IPv6 Multi-homed Sites

    Get PDF
    A global solution for the provision of QoS in IPng sites must include ISP selection based on per-application requirements. In this article we present a new site-local architecture for QoS-driven ISP selection in multi-homed domains, performed in a per application basis. This architecture proposes the novel use of existent network services, a new type of routing header, and the modification of address selection mechanisms to take into account QoS requirements. This proposal is an evolution of current technology, and therefore precludes the addition of new protocols, enabling fast deployment. The sitelocal scope of the proposed solution results in ISP transparency and thus in ISP independency.This research was supported by the LONG (Laboratories Over the Next Generation Networks) project IST-1999-20393.Publicad

    Service quality measurements for IPv6 inter-networks

    Get PDF
    Measurement-based performance evaluation of network traffic is becoming very important, especially for networks trying to provide differentiated levels of service quality to the different application flows. The non-identical response of flows to the different types of network-imposed performance degradation raises the need for ubiquitous measurement mechanisms, able to measure numerous performance properties, and being equally applicable to different applications and transports. This paper presents a new measurement mechanism, facilitated by the steady introduction of IPv6 in network nodes and hosts, which exploits native features of the protocol to provide support for performance measurements at the network (IP) layer. IPv6 Extension Headers have been used to carry the triggers involving the measurement activity and the measurement data in-line with the payload data itself, providing a high level of probability that the behaviour of the real user traffic flows is observed. End-to-end one-way delay, jitter, loss, and throughput have been measured for applications operating on top of both reliable and unreliable transports, over different-capacity IPv6 network configurations. We conclude that this technique could form the basis for future Internet measurements that can be dynamically deployed where and when required in a multi-service IP environment

    A network processor for a learning based routing protocol

    Get PDF
    Recently, Cognitive Packet Networks (CPN) is proposed as an alternative to the IP based network architectures and shows similarity with the discrete active networks. In CPN, there is no routing table, instead reinforcement learning (Random Neural Networks) is used to route packets. CPN routes packets based on QoS, using measurements that are constantly collected by packets and deposited in mailboxes at routers. The applicability of the CPN concept has been demonstrated through several software implementations. However, higher data traffic and increasing packet processing demands require the implementation of this new network architecture in hardware. In this paper, we present a network processor architecture which supports this learning based protocol. ©2004 IEEE

    Transparent and scalable client-side server selection using netlets

    Get PDF
    Replication of web content in the Internet has been found to improve service response time, performance and reliability offered by web services. When working with such distributed server systems, the location of servers with respect to client nodes is found to affect service response time perceived by clients in addition to server load conditions. This is due to the characteristics of the network path segments through which client requests get routed. Hence, a number of researchers have advocated making server selection decisions at the client-side of the network. In this paper, we present a transparent approach for client-side server selection in the Internet using Netlet services. Netlets are autonomous, nomadic mobile software components which persist and roam in the network independently, providing predefined network services. In this application, Netlet based services embedded with intelligence to support server selection are deployed by servers close to potential client communities to setup dynamic service decision points within the network. An anycast address is used to identify available distributed decision points in the network. Each service decision point transparently directs client requests to the best performing server based on its in-built intelligence supported by real-time measurements from probes sent by the Netlet to each server. It is shown that the resulting system provides a client-side server selection solution which is server-customisable, scalable and fault transparent

    SDN as Active Measurement Infrastructure

    Get PDF
    Active measurements are integral to the operation and management of networks, and invaluable to supporting empirical network research. Unfortunately, it is often cost-prohibitive and logistically difficult to widely deploy measurement nodes, especially in the core. In this work, we consider the feasibility of tightly integrating measurement within the infrastructure by using Software Defined Networks (SDNs). We introduce "SDN as Active Measurement Infrastructure" (SAAMI) to enable measurements to originate from any location where SDN is deployed, removing the need for dedicated measurement nodes and increasing vantage point diversity. We implement ping and traceroute using SAAMI, as well as a proof-of-concept custom measurement protocol to demonstrate the power and ease of SAAMI's open framework. Via a large-scale measurement campaign using SDN switches as vantage points, we show that SAAMI is accurate, scalable, and extensible
    • 

    corecore