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Abstract-Replication of web content in the Internet has 
been found to improve service response time, performance 
and reliability offered by web services. When working with 
such distributed server systems, the location of servers with 
respect to client nodes is found to affect service response time 
perceived by clients in addition to server load conditions. 
This is due to the characteristics of the network path seg- 
ments through which client requests get routed. Hence, a 
number of researchers have advocated making server selec- 
tion decisions at the client-side of the network. 
In this paper, we present a transparent approach for client- 
side server selection in the Internet using Netlet services. 
Netlets are autonomous, nomadic mobile software compo- 
nents which persist and roam in the network independently, 
providing predefined network services. In this application, 
Netlet based services embedded with intelligence to support 
server selection are deployed by servers close to potential 
client communities to setup dynamic service decision points 
within the network. An anycast address is used to identify 
available distributed decision points in the network. Each 
service decision point transparently directs client requests to 
the best performing server based on its in-built intelligence 
supported by real-time measurements from probes sent by 
the Netlet to each server. It is shown that the resulting sys- 
tem provides a client-side server selection solution which is 
server-customisable, scalable and fault transparent. 

I. INTRODUCTION 

With the user population of the Internet continuously on 
the rise, the demand for web based services is also witness- 
ing a corresponding exponential rise in demand. Content 
replication at multiple locations in the network has been 
identified as a scalable means to provide clients with im- 
proved service response time, reliability and performance 
levels. When replicated servers are available at multiple lo- 
cations in the network, clients are presented with the prob- 
lem of dynamically choosing the best or the optimum per- 
forming server for service provisioning. Most server se- 
lection methods [I-61 proposed to date work to distribute 
load across servers. 
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Techniques that perform load distribution across servers 
were traditionally designed for load balancing across 
server clusters. In such approaches, the selection deci- 
sion is purely based on the server load. However, when 
working to assign client requests to distributed server sys- 
tems, the location of servers with respect to client nodes 
has been found to affect the service response time per- 
ceived by clients [7,8]. This is due to the characteristics 
of the network path segments through which requests get 
routed. Hence, making server selection decisions based on 
the client’s view of the network and server conditions is 
appropriate. 

To facilitate this, web servers hosting replicas at multi- 
ple locations in the Internet provide users with the address 
list of servers available for service provisioning. Current 
approaches followed by clients for selecting servers from 
a replicated set include: (a) random selection; (b) directing 
requests always to a fixed server; or (c) to choose the clos- 
est server according to geographical proximity. However, 
the above mentioned approaches have proved to offer poor 
server selection solutions [7-91. In some cases, clients also 
try parallel downloads of the same the document from mul- 
tiple servers. In this approach, once a server accomplishes 
the requested task, the other requests are terminated. This 
approach generates redundant network traffic thus consum- 
ing excess bandwidth. 

Research efforts have been made to identify client-side 
server selection metrics that support efficient server selec- 
tion in the Internet [7-91. It is proposed that the clients 
themselves would perform the requisite measurements and 
make the selection decisions. There are two major short- 
coming of such techniques: (i) such solutions are not scal- 
able because every client on network will use measurement 
probes that will consume network resources; and (ii) the 
servers are unable to influence selection decisions, so that 
it is not possible to support request distribution across the 
available servers. 

Our solution is intended to meet the following goals: 
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- Load Distribution: it provides a mechanism to dis- 
tribute client requests for content among multiple, 
possibly geographically dispersed, servers; 

- Client-side based Service Decision: assigning re- 
quests to a specific server occurs close to a client, to 
maximise service responsiveness; 

- Server Customised Selection Techniques: the se- 
lection of a server is based on metrics supplied by 
the servers, allowing eg., load balancing or link band- 
width probing to be performed; 

- Scalability: avoiding the use of measurement probes 
generated by individual clients, and employing aggre- 
gated set of measurements that can be used for client 
communities; 

- Demand-based Service Support: providing selec- 
tion services at those locations where potential client 
communities for the service exist; 

- Service Location lkansparency : clients request 
content from a single address, so that the operation 
of scheme is completely transparent to the client; and 

- Fault ’kansparency: the solution is robust, with no 
single point of failure. 

The requirement to allow server access based on a sin- 
gle address may be met in one of two ways: (i) redirection 
from a primary server; or (ii) use of anycast addresses. Nei- 
ther solution can meet all of the above requirements. Our 
solution is to deploy a virtual primary server across multi- 
ple nodes of the network, which is identified using an any- 
cast address. This virtual primary server is implemented 
using Netlets, a mobile agent based network service com- 
ponent [IO, 111. 

In 
section.11 we describe the related work. Section.111 
presents the solution overview. We describe the mecha- 
nism of transparent server selection using Netlets in sec- 
tions IV and V. Supporting architectural design features 
for the Netlets based approach is presented in.VI. Sec- 
tion VI11 presents experimental results and section IX con- 
cludes the article. 

The rest of the paper is organised as follows. 

11. RELATED WORK 

Approaches proposed to solve the task of selecting the 
best performing server from a set of geographically dis- 
persed replicated servers can be categorised based on the 
location at which the selection decision is performed. Pop- 
ular techniques available for server selection in the Internet 
are: (a) server-side [2]; (b) network supportive [ 1,341; and 
(c) client-side [12]. 

The commonly used server-side technique in the Inter- 
net is the HTTP Redirect [2] scheme. In this, a busy 
server redirects the client to resubmit the request to another 
server. This approach generates additional network traffic 
and causes increased latency. 

In the network supportive schemes, the network nodes 
(for example DNS servers, router, active nodes) act as the 
service distribution points for client requests. The DNS 
aliasing scheme [ I ]  stores multiple IP addresses for a sin- 
gle site in its local DNS table and directs requests in a 
round-robin fashion. The major problem with this scheme 
is that it is not capable of determining the availability of a 
given server. This is because intermediate name servers 
cache the resolved name-to-IP-address mapping thus al- 
lowing changes in DNS information to propagate slowly 
through the network. Consequently, failed servers continue 
to receive requests, resulting in e.g., HTTP failures to end- 
users. Furthermore, if in case of a DNS failure the replicas 
become inaccessible. 

In [ 131, Moore et al. described the SONAR approach for 
server selection. In this, clients when presented with a list 
of server replicas consults the nearby SONAR server for 
knowing the closest replica. The closest replica is selected 
based on the proximity of the replicas from the SONAR 
server. The disadvantages with this approach are: (i) client 
nodes must be aware of the SONAR protocol; and (ii) in- 
creased server selection latency due to additional interac- 
tion between the client and the SONAR server. This ap- 
proach is similar to the DNS based approach, hence the 
cost of setting up SONAR servers purely for proximity 
measurement in the Internet is not justified. Furthermore, 
the HOP counts based approaches for server selection has 
proved to provide poor selection performance [7,9]. 

Anycast based schemes were proposed to provide net- 
work supportive server selection techniques. Anycasting is 
defined in [3] as: “a service which provides a stateless best 
effort delivery of an anycast datagram to at least one host, 
and preferably only one host, which serves the anycast ad- 
dress”. IP anycast [3] is a network service that allows a 
client to connect to the nearest of the receivers that share 
the same anycast address. “Nearest” is defined in terms of 
network distance metrics. 

The plain anycast protocol was used by Engel et al. 
[4] to demonstrate server selection based on network dis- 
tance metrics, typically HOP counts. However, it has been 
proved that metrics based on network distances has less 
correlation with server response time and network delay 
C7,gI. 

A variant of the plain anycast approach, referred to as 
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the "active anycast" [5] ,  employed active nodes as routers 
to perform load distribution across replicated servers. A 
limitation of this approach is that every active node must 
collect metrics from each replicated server for selection de- 
cisions. Furthermore, in the case where there are no active 
nodes along the path of a flow, requests are automatically 
routed to the closest server of the group as in the plain any- 
cast scheme. 

A modified DNS based approach was described in [6] ,  
where anycast resolvers present at DNS nodes are used 
to perform load distribution across replicated servers that 
share an anycast address. The selection decision was based 
on locally maintained performance data about individual 
replicas. This approach will not scale to a large set of 
anycast services, because DNS servers must collect per- 
formance data about each potential server groups in the In- 
ternet. 

All the above mentioned approaches serve to balance 
the load across servers and do not take into account the 
location of clients and network conditions. However, 
when working with distributed server systems, the loca- 
tion of servers with respect to client nodes have been found 
to affect the service response times perceived by clients 
[7,8,12]. In [12], a modified web browser referred to as 
the smart client, was used to perform server selection. This 
client software downloads an applet supplied by the service 
provider to realise service-specific routing. This approach 
creates increased network traffic due to applet downloads 
and the corresponding communications which ensue be- 
tween the applet and the servers. 

111. SOLUTION OVERVIEW 
A solution based on Netlets which meets the goals listed 

in section I will now be presented. We use the Netlet ser- 
vices [ 10,111 for providing the service decision points, re- 
ferred to collectively as the Virtual Primary Server, within 
the network. The location of decision points is shown in 
Fig. 1 for our approach and the approaches of [ 1-61. 

Netlets are autonomous, nomadic mobile software com- 
ponents which persist and roam in the network indepen- 
dently, providing predefined network services. The Netlets 
network uses the mobile agent paradigm to realise an Ac- 
tive Network architecture. The Netlet Node offers support 
for composition and execution of Netlet based network ser- 
vices. A more detailed discussion of the Netlets approach 
and the architecture of the Netlet node can be found in 

The reference architecture that we employ to demon- 
strate our solution is shown in Fig. 2. We assume a het- 

[ 10,111. 
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Fig. 1 : Server Selection Approaches 
erogeneous network environment in which both active and 
legacy routing nodes exist. Netlet based services embed- 
ded with intelligence to support server selection are de- 
ployed by servers close to potential client communities to 
setup dynamic service decision points within the network. 
We refer to those network services that support server se- 
lection as the director services. Each service decision point 
transparently directs client requests to the best performing 
server based on its in-built intelligence supported by real- 
time measurements that are performed between itself and 
server replicas. We propose to deploy director services 
based on user demand. The exact location and the num- 
ber of director services present in a network is dictated by 
the location of the relevant communities of interest in the 
network. 

col-1 
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Fig. 2: Replicated Servers and Communities of Interest 
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Note that the Netlets architecture has a wider set of ap- 
plications than the problem of transparent server selection 
[ 14-17]. Hence, the justification for installing Netlet sup- 
port at network nodes is not just to provide network ser- 
vices for server selection, but to host other mobile agent or 
active network based solutions. 

Iv .  DYNAMIC SETUP OF VIRTUAL PRIMARY SERVER 

A. Anycast based Director Services 
Anycast addresses are used to represent distributed 

server groups in the Intemet. Web sites hosting replicated 
servers advertise an anycast address instead of the individ- 
ual IP addresses that correspond to server replicas. This 
approach has been adapted by anycast based server selec- 
tion schemes [3-51. 

In the Netlets based approach to server selection, we 
propose to share an anycast address among the Netlet based 
director services (i.e., inherently the Netlet node at which 
the service operates) that act as service decision points and 
with the primary content server. Clients are only aware 
of the director service location rather than the individual 
server replicas. Consequently, client requests that cor- 
respond to anycast addresses are automatically routed to 
the closest service decision point rather than directly to a 
server. 

- - - _  .- -. - -  
i Director Services Replicated Sewer 

Fig. 3: Address Sharing in the Netlet Scheme 

The representation of address sharing in the Netlet based 
scheme is shown in Fig. 3. The director services share an 
anycast address, while the replicated servers have distinct 
IP addresses. The primary server shares the anycast ad- 
dress with director services and also has a distinct IP ad- 
dress. This feature of binding two addresses to the primary 
server, allows a client request to get automatically routed 
to a server if no service decision points exist close to its 
location. 

B. Service Deployment 
The mobile and autonomous property of service code 

in the Netlets architecture avoids manual intervention for 

service deployment. To introduce service selection sup- 
port at multiple points in the network, the director service 
is informed with the address list of nodes requiring ser- 
vice. This Netlet then autonomously migrates to each node 
and installs service thus avoiding centralised deployment 
schemes and generating less network traffic. Methods to 
find exact locations to providing director service support 
and the scheme to discover active nodes at those locations 
are presented in section.VI. 

C. Registration of Director Services at Netlet Nodes 

When a director service is deployed at a Netlet node, this 
service requests the local node: (i) to register for receiving 
client requests that correspond to the anycast address for 
which the Netlet holds the permission; and (ii) to advertise 
routes for the anycast address. 

The concept of virtual host and interfaces used by IP 
aliasing can be used to register director services at a Net- 
let node. IP Aliasing is simply a mechanism that en- 
ables a single physical or virtual network port to assume 
responsibility for more than one IP address. For exam- 
ple, in a linux based router, a simple command such as, 
ijiconfig ethO:<virtual in te~ace  number > <anycast ip> 
<netmusk> can be used for this purpose. By using this fea- 
ture a Netlet node will be able to support multiple director 
services simultaneously. New routes to anycast addresses 
can be advertised as part of normal routing table updates. 

v. SERVER SELECTION USING DIRECTOR SERVICES 

h 

er 

Server 3 

Fig. 4: Transparent Server Selection using Director Services 

Below we describe the mechanism used to transparently 
direct client requests to the optimal server. For the example 
below, we assume that TCP is used as the transport proto- 
col. 

When a client wants to connect to a server, the client 
performs a name resolution query to the DNS server (step 
1). The reply from the DNS node consists of an anycast ad- 
dress (step 2) which refers to the distributed server group. 
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The client sends a TCP SYN packet to this address to ini- 
tiate a connection. This packet is automatically routed to 
the closest service decision point (i.e., director service) that 
corresponds to the server group (step3 in Fig. 4). On re- 
ceiving the request, the director service selects the opti- 
mum server (step 4) based on selection metrics (step a). 
The selection metrics are described in section.VII1. Hence, 
the request is directed to the chosen server (for example 
server 3 as in Fig. 4). 

Note that the SYN packet from the client has the any- 
cast address as its destination address. Hence, a mecha- 
nism is required to direct the SYN packet transparently to 
the chosen server. One solution to this problem is to en- 
capsulate the SYN packet within a unicast packet destined 
to the unicast address of the selected server. Unique pro- 
tocol identifiers can be used to identify such encapsulated 
packets at the server end. The server on receiving the SYN 
packet replies with the SYN-ACK packet directly to the 
client based on the available destination address. 

Stateful connections (step 5 )  can then be maintained 
with the selected server using the approach described in 
[4]. In this approach, the server receiving the anycast 
packet pins the route for future packets originating from 
the client during that session to pass through the unicast ad- 
dress of the selected server. With modifications performed 
at the TCP/IP control blocks at the server side, when such 
packets are received, the IP block passes it to the request 
processing daemon. Stateful connections may be altema- 
tively maintained over UDP [4]. 

VI. ARCHITECTURAL DESIGN FEATURES 
In this section we discuss the architectural features re- 

quired to support the Netlets based approach to server se- 
lection. This feature set includes: (i) a method to support 
discovery of locations requiring director service support; 
(ii) discovery of active nodes at those locations; and (iii) 
scalable routing for anycast addresses using unicast rout- 
ing protocols. 

A.  Communities of Interest 
A deployment scheme is required for distributing direc- 

tor services within the network. Analysis of access logs of 
various web servers have shown the existence of commu- 
nities of interest in the Internet [ 18-20]. These are groups 
of clients which are responsible for generating a high pro- 
portion of ‘the workload on servers and which are geo- 
graphically close or under common administrative control. 
Servers should deploy director services close to such com- 
munities. 

In [ 181, a network-aware method based on prefixes and 
netmask information gathered from Border Gateway Pro- 
tocol (BGP) routing table snapshots was used to identify 
client clusters (referred as communities of interest in this 
paper) in the Intemet. The authors validated the BGP based 
technique to locate communities of interest by employing 
two approaches based on ”domain name” and ”traceroute”. 
This technique gave good performance even when used 
with historical snapshot data. 

The results from [18] based on globally collected web 
server logs show that 90% of communities have 100% of 
their clients topologically close to each other. It was also 
reported that around 5% of communities accounted for the 
majority of the clients and for generating a high percentage 
of the workload on the web server (see Fig. 5). This con- 
firms earlier studies [19] that claim the existence of Zipf- 
like distributions in a variety of web measurements. 

By being able to locate communities of interest, servers 
will be able to provide transparent selection support to the 
majority of the client population that use the services. Re- 
maining clients are served directly by the primary server. 
Since there are relatively few clients outside the commu- 
nities of interest, this does not represent a major burden 
on the primary server. We adapt the above described BGP 
based technique to locate communities of interest present 
in the network to support director service deployment. 

I 10 l a ,  
Communiticn of Intaea 

Fig. 5:  Cumulative Request Distribution Across Communities of 
Interest 

B. Locating Hot Spot Nodes 

On locating communities of interest in the network, a 
discovery service is required to identify appropriate oper- 
ation locations for the director services which utilises net- 
work resources efficiently. Due to the heterogeneous na- 
ture of the Internet, not all nodes in the Intemet will be 
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active. Thus both active and non-active nodes are expected 
to coexist in the future. Hence, a discovery scheme to lo- 
cate active nodes in the Internet is mandatory. 

Currently available service discovery protocols such as 
Jini [21], SLP [22] have been developed for working with 
small network topologies, such as LAN networks. The 
DNS based scheme proposed below can be used to locate 
active network nodes present in the Internet. 

DNS-based Discovery Scheme 

Domain Name System (DNS) servers support features 
to list existing hosts located within a domain. This fea- 
ture can be exploited to discover active nodes present in a 
network domain. The set of active network nodes that fall 
under a common administrative control can be listed in the 
node reachability information list of their corresponding 
domain servers. By using existing DNS query tools such 
as nslookup, dig, the host list of a domain can be retrieved. 
The information retrieved includes both host names and 
corresponding addresses of the nodes. By making the host 
names self-descriptive with standard prefix formats, the list 
of active nodes present in a network domain can be ex- 
tracted. 

For example, a name such as active.netlet-node- 
32.dcu.ie can be used to represent an active node of type 
Netlet present in the dcu.ie domain. If, by co-incidence, a 
passive node matches the prefix format, this scheme will 
include it in the list of active nodes. Valid active nodes can 
be identified by exchanging hello messages between the 
server and the nodes on the list. Further work is necessary 
to study scalability issues when using such confirmation 
messages. 

MI-1 

Hot Spot Nodes 
A suitable location for director service operation is at 

the ingresshntemal routing nodes of the stub network (such 
as N1 and N2 in Fig. 6) through which users connect to 
the Internet. This is a consequence of the feature of route 
aggregation present in the Internet [23]. 

For example in Fig. 6, let the director service, N2 di- 
rect requests to server S1 (IP addresses 192.15.36.12) and 
S3 (1  36.10.1.2) based on some predefined selection met- 
ric. Suppose the border router BR1 aggregate routing en- 
tries for destination IP addresses starting with 192 while 
BR2 serves for IP addresses with 136 as the start. In this 
example, the route over which N2 communicates with the 
servers will share many links with the corresponding routes 
for clients in the community Col1 which accesses the In- 
ternet via stubnetworkl. We refer to those Netlet nodes 
that act as judicious points for deployment of director ser- 
vices as “hot spot nodes” and their addresses as “hot spot 
addresses”(e.g., N1 is the hot spot location for users 
from Col1 while N2 is for clients present in communi- 
ties Col2 and CoZ3 in Fig. 6). 

Fig. 7: Algorithm for Active Node Discovery and Service De- 
ployment 

The algorithm for locating and deploying director ser- 
vices in the network is presented in Fig. 7. The BGP based 
scheme [ 181 (section.VI-A) automatically generates the list 
of hot spot addresses in the Internet. Using the above de- 
scribed DNS based approach, we will be able to discover 
corresponding hot spot nodes and their addresses. 

If the domain that holds the client group fails to contain 
active nodes, the next hop domain within the stub network 
connecting the clients to the Internet is queried. Locating 
the name of the second domain can be performed using 
traditional network tools such as traceroute. 

C. Scalability of Unicast Routing Protocol for  Anycast Ad- 
dresses 

Netlet based director services employ global anycast 
addresses to seamlessly integrate the dynamically con- 
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structed service decision points with the client-server 
based web communication model. When director services 
are deployed within stub networks they behave as local 
anycast groups to the corresponding stub domain. Due to 
this specific nature of the Netlets approach, conventional 
intra-domain routing protocols will be sufficient to route 
packets destined to anycast receivers local to the domain. 
For example, distance-vector algorithms, such as RIP in- 
herently provide support for anycast service [4]. 

Employing unicast protocols for anycast services causes 
each service decision point present within a stub network 
to take up an entry in the internal routing table. However, 
this approach is scalable because: (i) the number of service 
decision points within a network is driven by user demand 
local to that domain; and (ii) routing nodes present in stub 
networks has more free memory resources and CPU cycles 
when compared to routing nodes present in core networks. 

Recall that when no service decision points exist within 
a domain, the anycast packets are routed to the primary 
content server which shares the same anycast address with 
director services (Fig. 3). The inter-domain routing can 
be implemented in a scalable manner using the method of 
Global IP Anycast (GIA) [24]. GIA uses the notion of pop- 
ular and unpopular anycast groups in the Internet. The pop- 
ular groups refers to those sets of anycast addresses that are 
often accessed by users from a particular domain. How- 
ever, for unpopular groups (here, those groups which are 
routed to the primary server), packets are routed to a de- 
fault unicast address that is encoded within the 32-bit any- 
cast address. 

VII. BENEFITS OF EMPLOYING DIRECTOR SERVICE 
NETLETS 

Temporal Shifts in User Demand Across Communities 
of Interest: Analysis of commercial web server logs [20] 
have proved the existence of demand shifting across com- 
munities of interest in the Internet. The authors of this 
paper propose to allocate distributed resources on demand 
near client locations to support such variations. Comple- 
mentarily, using the Netlets approach, director services 
will be able move in accordance with demand to support 
server selection. The intelligence to support such feature 
can be embedded in the director services themselves. 
Scalability and Knowledge Sharing: Selection tech- 
niques based on using measurement probes by each client 
for server selection will not scale for large networks such as 
the Internet. The Netlet scheme offers to implement scal- 
able server-customised probing techniques. For example, 
director services that belong to the same server group and 

operating in close vicinity (eg., the same stub domain) will 
be able to share measurement probes. Furthermore, direc- 
tor services can be scoped to probe only a reduced set of 
servers when the replica set comprises a large server group. 
Support for Wireless Network nodes: Wireless network 
nodes have constraints on the availability of local resources 
and power. Hence, supporting server selection software at 
such nodes will be inefficient. Furthermore, wireless nodes 
will be unable to participate in continuous communication 
with server groups to perform selection decisions. The 
Netlets scheme readily offers support for wireless nodes by 
implementing the decision procedure in the network rather 
than on the client nodes. 

VIII. EXPERIMENTS 

Server Selection Metrics 

formulated as: 
The service response time perceived by a client can be 

ServiceTime = Tbcate + TCOnnect + Tserve 

where, TLocare refers to the time taken to locate a server; 
TConnect is the time required to establish the connection; 
and Tserye is the remaining time taken to serve the request. 

The T L ~ ~ ~ ~ ~  and TcOnnect components are dependent on 
the prevailing network and server conditions. The TServe 
component is largely dependent on the request type but 
also depends on the server load. Hence, selection metrics 
that use server load and network parameters to make server 
selection decisions will be able to control the effect of these 
components on the total service response time perceived by 
the client. In this paper, we compare the performance of the 
following server selection metrics when employed by the 
director services: (i) server load; (ii) network latency; (iii) 
random selection and (iii) end-to-end processing delay. 

A. Server Load Distribution 
The first set of experiments includes: (i) the implemen- 

tation of load distribution across servers using director ser- 
vices; and (ii) a study of the impact of server load on 
client perceived service response time. This set of experi- 
ments were conducted in a LAN environment with a pair of 
Apache servers [25] (SI, S2) running on Linux machines. 
Server S1 was configured the closest to the client node (a 
single HOP away) while server S;! was configured with 2 
HOPS as the distance metric. 

These servers were configured to accept a maximum of 
150 connections simultaneously. The mod-status module 
present in the Apache server was configured to monitor the 
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load condition on the servers. Httperf [26], a HITP traffic 
generation tool was used to generate background traffic on 
servers. Client requests to servers were modelled with ex- 
ponential inter-arrival times. The goal the director service 
had to accomplish was: to route client requests to the best 
peflorming server based on load conditions (obtained us- 
ing the mod-status module of apache), thus achieving load 
distribution across the sewers. The maximum load thresh- 
old at the servers was defined as 80%. The director services 
worked with this value for server selection. 
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Fig. 8: Load Based Server Selection 

The httperf tool generated background traffic to SI, con- 
stituting around 90% load on the server for the first 350 
seconds (see Fig. 8). During this period of time, the di- 
rector service routed requests to server S2. When the back- 
ground traffic was removed from server SI, the Netlet ser- 
vice directed requests to the closest best performing server, 
SI. This corresponds to the period from 350 to 750 seconds 
in Fig. 8. When the background traffic was introduced 
back on server SI, the director service routed requests to 
S2,  thus accomplishing load distribution. 

To study the impact of server load on service response 
time, average download latency for files from the two 
servers were analysed. File sizes used in our tests varied 
from 500K to 5000K. Files were downloaded when server 
SI was operating at 80% load and when server S2 was hav- 
ing 40% load imposed. This corresponds to load condi- 
tions at different instants of time in Fig. 8. The average 
download latency experienced for each file at both servers 
are shown in Fig. 9. 

The average download latency offered by server S2 is 2 
to 3 times less than that of the closest server SI. Thus, we 
can conclude that the server load affects the response time 
perceived by clients. Furthermore, approaches (e.g.. [4]) 
based on locating closest server replicas nodes for serving 
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Fig. 9: Impact of Server Load on Service Response 
client requests thus does not always provide an accurate 
server selection technique. 

B. Server Selection in the Internet 
The next set of experiments evaluated and compared 

three different metrics for server selection in the Inter- 
net. For this purpose, we used a set of 10 mirror servers 
(www.*.kemel.org) [27] present at different geographical 
locations in the Internet. File sizes used for testing the 
average download latencies experienced by clients var- 
ied from 500K to 15000K. The total set of measurements 
spanned across a 10 day period at different times of the 
day so as to minimise effects of caching and time-of-day 
effects. 

1) Random Selection: For this metric, the director ser- 
vices implemented the random server selection strategy 
popularly followed in the Internet. Random number gener- 
ators were used to decide the server to be selected from the 
replica set. Average download latency for each file (500K 
to 15000K) was recorded (see Fig. 10). 
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Fig. 10: Comparison of Server Selection Metrics 
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2 )  Network Latency: In the second server selection 
technique, the Netlet services used network latency as the 
parameter for deciding the optimum performing server. 
The average round-trip time (RTT) was measured for each 
server by the Netlet service. This measurement was carried 
out using ping probes to each server. 

The selection decision at the Netlet service was either 
made on past probe measurement results or on new mea- 
surements that were made prior to assigning the requests to 
a server. We selected the timeout period for past measure- 
ment results as 90 seconds. The timeout value was arbi- 
trarily chosen to reduce frequent probing. The probability 
of selecting a server, S j ,  from a replicated set of N server 
replicas was calculated using the following equation: 

where RTTsj is the average round-trip time that corre- 
sponds to server Sj from the director service. 

Based on the measurements, the server with the highest 
probability was selected. The average download latency 
for each file was recorded (see Fig. 10). 

3) End-to-End Latency: The selection metric based on 
network latency does not account for the load condition 
at server nodes. This is because the ping responses from 
servers are handled by server daemons other than the web 
server daemons. Applications that are both CPU intensive 
and delay sensitive will require both server and network 
load parameters to be involved in deciding the best per- 
forming server. A solution to support such decisions will 
be to check the end-to-end latency perceived by the client. 
The end-to-end latency, Ls,, can be formulated as 

Ls, = RTTsj + Pdelays, 

where, RTTsj is the average round-trip time to server Sj  

from the Netlet service and Pdelaysj is the request pro- 
cessing delay at the server. The end-to-end latency can be 
measured by downloading a small test file from all server 
replicas. 

A lOOK file was used to measure the end-to-end latency 
in our experiments. We selected the timeout period for past 
measurement results as 90 seconds. The probability of se- 
lecting a server, Si, from a replicated set of N server repli- 
cas was calculated using the following equation: 

The average download latency for each file from the 
group was recorded (see Fig. 10). 

Metric Comparison 

The end-to-end latency technique performs the best 
among all the three schemes discussed (see Fig.10). This 
finding is consistent with results presented in [8]. The ran- 
dom selection technique popularly followed in the Inter- 
net offered the worst performance. The average download 
latency offered by this technique was 3 times more than 
the end-to-end latency and almost twice that of the net- 
work latency based approach. The technique of download- 
ing small test files to measure end-to-end latency will not 
scale for servers containing large set of replicas in the In- 
ternet. A scalable approach as described in section VI1 can 
be adapted. 

I x .  CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a novel technique to sup- 
port transparent and flexible server selection in the Internet. 
The Netlets based approach provides a client-side server 
selection solution which is server-customisable, scalable 
and fault transparent. Our approach combines the bene- 
fits of anycast addressing with a mechanism allowing the 
adoption of any server selection algorithm. By using mo- 
bile agent technology in the form of Netlets, service deci- 
sion points can be deployed dynamically to the locations in 
the network where they can most efficiently serve a large 
number of clients. This approach makes our solution inher- 
ently scalable, since it minimises the amount of overhead 
generated by measurement probes. 

Future work will extend the server selection mechanism 
to be content-aware. This will allow the scheme to auto- 
matically select routes to servers which provide a level of 
QoS support relevant to the type of content. 
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