14 research outputs found

    Design of joint source/channel coders

    Get PDF
    The need to transmit large amounts of data over a band limited channel has led to the development of various data compression schemes. Many of these schemes function by attempting to remove redundancy from the data stream. An unwanted side effect of this approach is to make the information transfer process more vulnerable to channel noise. Efforts at protecting against errors involve the reinsertion of redundancy and an increase in bandwidth requirements. The papers presented within this document attempt to deal with these problems from a number of different approaches

    Signal processing for high-definition television

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1995.Includes bibliographical references (p. 60-62).by Peter Monta.Ph.D

    Low bit-rate image sequence coding

    Get PDF

    Proceedings of the Scientific Data Compression Workshop

    Get PDF
    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms

    Survey of error concealment schemes for real-time audio transmission systems

    Get PDF
    This thesis presents an overview of the main strategies employed for error detection and error concealment in different real-time transmission systems for digital audio. The “Adaptive Differential Pulse-Code Modulation (ADPCM)”, the “Audio Processing Technology Apt-x100”, the “Extended Adaptive Multi-Rate Wideband (AMR-WB+)”, the “Advanced Audio Coding (AAC)”, the “MPEG-1 Audio Layer II (MP2)”, the “MPEG-1 Audio Layer III (MP3)” and finally the “Adaptive Transform Coder 3 (AC3)” are considered. As an example of error management, a simulation of the AMR-WB+ codec is included. The simulation allows an evaluation of the mechanisms included in the codec definition and enables also an evaluation of the different bit error sensitivities of the encoded audio payload.IngenierĂ­a TĂ©cnica en TelemĂĄtic

    Video coding for compression and content-based functionality

    Get PDF
    The lifetime of this research project has seen two dramatic developments in the area of digital video coding. The first has been the progress of compression research leading to a factor of two improvement over existing standards, much wider deployment possibilities and the development of the new international ITU-T Recommendation H.263. The second has been a radical change in the approach to video content production with the introduction of the content-based coding concept and the addition of scene composition information to the encoded bit-stream. Content-based coding is central to the latest international standards efforts from the ISO/IEC MPEG working group. This thesis reports on extensions to existing compression techniques exploiting a priori knowledge about scene content. Existing, standardised, block-based compression coding techniques were extended with work on arithmetic entropy coding and intra-block prediction. These both form part of the H.263 and MPEG-4 specifications respectively. Object-based coding techniques were developed within a collaborative simulation model, known as SIMOC, then extended with ideas on grid motion vector modelling and vector accuracy confidence estimation. An improved confidence measure for encouraging motion smoothness is proposed. Object-based coding ideas, with those from other model and layer-based coding approaches, influenced the development of content-based coding within MPEG-4. This standard made considerable progress in this newly adopted content based video coding field defining normative techniques for arbitrary shape and texture coding. The means to generate this information, the analysis problem, for the content to be coded was intentionally not specified. Further research work in this area concentrated on video segmentation and analysis techniques to exploit the benefits of content based coding for generic frame based video. The work reported here introduces the use of a clustering algorithm on raw data features for providing initial segmentation of video data and subsequent tracking of those image regions through video sequences. Collaborative video analysis frameworks from COST 21 l qual and MPEG-4, combining results from many other segmentation schemes, are also introduced

    Error Resilient Video Coding Using Bitstream Syntax And Iterative Microscopy Image Segmentation

    Get PDF
    There has been a dramatic increase in the amount of video traffic over the Internet in past several years. For applications like real-time video streaming and video conferencing, retransmission of lost packets is often not permitted. Popular video coding standards such as H.26x and VPx make use of spatial-temporal correlations for compression, typically making compressed bitstreams vulnerable to errors. We propose several adaptive spatial-temporal error concealment approaches for subsampling-based multiple description video coding. These adaptive methods are based on motion and mode information extracted from the H.26x video bitstreams. We also present an error resilience method using data duplication in VPx video bitstreams. A recent challenge in image processing is the analysis of biomedical images acquired using optical microscopy. Due to the size and complexity of the images, automated segmentation methods are required to obtain quantitative, objective and reproducible measurements of biological entities. In this thesis, we present two techniques for microscopy image analysis. Our first method, “Jelly Filling” is intended to provide 3D segmentation of biological images that contain incompleteness in dye labeling. Intuitively, this method is based on filling disjoint regions of an image with jelly-like fluids to iteratively refine segments that represent separable biological entities. Our second method selectively uses a shape-based function optimization approach and a 2D marked point process simulation, to quantify nuclei by their locations and sizes. Experimental results exhibit that our proposed methods are effective in addressing the aforementioned challenges

    3D multiple description coding for error resilience over wireless networks

    Get PDF
    Mobile communications has gained a growing interest from both customers and service providers alike in the last 1-2 decades. Visual information is used in many application domains such as remote health care, video –on demand, broadcasting, video surveillance etc. In order to enhance the visual effects of digital video content, the depth perception needs to be provided with the actual visual content. 3D video has earned a significant interest from the research community in recent years, due to the tremendous impact it leaves on viewers and its enhancement of the user’s quality of experience (QoE). In the near future, 3D video is likely to be used in most video applications, as it offers a greater sense of immersion and perceptual experience. When 3D video is compressed and transmitted over error prone channels, the associated packet loss leads to visual quality degradation. When a picture is lost or corrupted so severely that the concealment result is not acceptable, the receiver typically pauses video playback and waits for the next INTRA picture to resume decoding. Error propagation caused by employing predictive coding may degrade the video quality severely. There are several ways used to mitigate the effects of such transmission errors. One widely used technique in International Video Coding Standards is error resilience. The motivation behind this research work is that, existing schemes for 2D colour video compression such as MPEG, JPEG and H.263 cannot be applied to 3D video content. 3D video signals contain depth as well as colour information and are bandwidth demanding, as they require the transmission of multiple high-bandwidth 3D video streams. On the other hand, the capacity of wireless channels is limited and wireless links are prone to various types of errors caused by noise, interference, fading, handoff, error burst and network congestion. Given the maximum bit rate budget to represent the 3D scene, optimal bit-rate allocation between texture and depth information rendering distortion/losses should be minimised. To mitigate the effect of these errors on the perceptual 3D video quality, error resilience video coding needs to be investigated further to offer better quality of experience (QoE) to end users. This research work aims at enhancing the error resilience capability of compressed 3D video, when transmitted over mobile channels, using Multiple Description Coding (MDC) in order to improve better user’s quality of experience (QoE). Furthermore, this thesis examines the sensitivity of the human visual system (HVS) when employed to view 3D video scenes. The approach used in this study is to use subjective testing in order to rate people’s perception of 3D video under error free and error prone conditions through the use of a carefully designed bespoke questionnaire.EThOS - Electronic Theses Online ServicePetroleum Technology Development Fund (PTDF)GBUnited Kingdo
    corecore