152,459 research outputs found

    Interferometry from Space: A Great Dream

    Full text link
    During some thirty years, 1980-2010, technical studies of optical interferometry from instruments in space were pursued as promising for higher spatial resolution and for higher astrometric accuracy. Nulling interferometry was studied for both high spatial resolution and high contrast. These studies were great dreams deserving further historical attention. ESA's interest in interferometry began in the early 1980s. The studies of optical interferometry for the global astrometry mission GAIA began in 1993 and ended in 1998 when interferometry was dropped as unsuited for the purpose, and the Gaia mission to be launched in 2013 is not based on interferometry. \c{opyright} Anita Publications. All rights reserved.Comment: 12 pages, 7 figures. In: Asian Journal of Physics Vol. 23, Nos 1 & 2 (2014), Special Issue on History of Physics & Astronomy, Guest Editor: Virginia Trimbl

    Femtoscopy correlations of kaons in Pb+PbPb + Pb collisions at LHC within hydrokinetic model

    Full text link
    We provide, within the hydrokinetic model, a detailed investigation of kaon interferometry in Pb+PbPb+Pb collisions at LHC energy (sNN=2.76\sqrt{s_{NN}} = 2.76 TeV). Predictions are presented for 1D interferometry radii of KS0KS0K^0_SK^0_S and K±K±K^{\pm}K^{\pm} pairs as well as for 3D femtoscopy scales in out, side and long directions. The results are compared with existing pion interferometry radii. We also make predictions for full LHC energy.Comment: 12 pages, 6 figure

    Probing non-Abelian statistics with Majorana fermion interferometry in spin-orbit-coupled semiconductors

    Full text link
    The list of quantum mechanical systems with non-Abelian statistics has recently been expanded by including generic spin-orbit-coupled semiconductors e.g., InAs) in proximity to a s-wave superconductor. Demonstration of the anyonic statistics using Majorana fermion interferometry in this system is a necessary first step towards topological quantum computation (TQC). However, since all isolated chiral edges that can be created in the semiconductor are charge neutral, it is not clear if electrically controlled interferometry is possible in this system. Here we show that when two isolated chiral Majorana edges are brought into close contact, the resultant interface supports charge current, enabling electrically controlled Majorana fermion interferometry in the semiconductor structure. Such interferometry experiments on the semiconductor are analogous to similar interferometry experiments on the ν=5/2\nu=5/2 fractional quantum Hall systems and on the surface of a 3D strong topological insulator, illustrating the usefulness of the 2D semiconductor heterostructure as a suitable TQC platform. In particular, we proposed Majorana interferometers may be the most direct method for establishing non-Abelian braiding statistics in topological superconductors.Comment: 8 pages, 2 eps figure

    Chirped-pulse interferometry with finite frequency correlations

    Full text link
    Chirped-pulse interferometry is a new interferometric technique encapsulating the advantages of the quantum Hong-Ou-Mandel interferometer without the drawbacks of using entangled photons. Both interferometers can exhibit even-order dispersion cancellation which allows high resolution optical delay measurements even in thick optical samples. In the present work, we show that finite frequency correlations in chirped-pulse interferometry and Hong-Ou-Mandel interferometry limit the degree of dispersion cancellation. Our results are important considerations in designing practical devices based on these technologies.Comment: 10 pages, 2 figure

    Speckle interferometry of asteroids

    Get PDF
    This final report for NASA Contract NAGw-867 consists of abstracts of the first three papers in a series of four appearing in Icarus that were funded by the preceding contract NAGw-224: (1) Speckle Interferometry of Asteroids I. 433 Eros; (2) Speckle Interferometry of Asteroids II. 532 Herculina; (3) Speckle Interferometry of Asteroids III. 511 Davida and its Photometry; and the fourth abstract attributed to NAGw-867, (4) Speckle Interferometry of Asteroids IV. Reconstructed images of 4 Vesta; and a review of the results from the asteroid interferometry program at Steward Observatory prepared for the Asteroids II book, (5) Speckle Interferometry of Asteroids. Two papers on asteroids, indirectly related to speckle interferometry, were written in part under NAGw-867. One is in press and its abstract is included here: Photometric Geodesy of Main-Belt Asteroids. II. Analysis of Lightcurves for Poles, Periods and Shapes; and the other paper, Triaxial Ellipsoid Dimensions and Rotational Pole of 2 Pallas from Two Stellar Occultations, is included in full

    Application of OCT to examination of easel paintings

    Get PDF
    We present results of applying low coherence interferometry to gallery paintings. Infrared low coherence interferometry is capable of non-destructive examination of paintings in 3D, which shows not only the structure of the varnish layer but also the paint layers

    Landau-Zener-Stuckelberg interferometry

    Full text link
    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stuckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stuckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.Comment: 34 single-column pages, 11 figure
    corecore