4,882 research outputs found

    Interference Calculation in Asynchronous Random Access Protocols using Diversity

    Full text link
    The use of Aloha-based Random Access protocols is interesting when channel sensing is either not possible or not convenient and the traffic from terminals is unpredictable and sporadic. In this paper an analytic model for packet interference calculation in asynchronous Random Access protocols using diversity is presented. The aim is to provide a tool that avoids time-consuming simulations to evaluate packet loss and throughput in case decodability is still possible when a certain interference threshold is not exceeded. Moreover the same model represents the groundbase for further studies in which iterative Interference Cancellation is applied to received frames.Comment: This paper has been accepted for publication in the Springer's Telecommunication Systems journal. The final publication will be made available at Springer. Please refer to that version when citing this paper; Springer Telecommunication Systems, 201

    Multiple Access for Small Packets Based on Precoding and Sparsity-Aware Detection

    Get PDF
    Modern mobile terminals often produce a large number of small data packets. For these packets, it is inefficient to follow the conventional medium access control protocols because of poor utilization of service resources. We propose a novel multiple access scheme that employs block-spreading based precoding at the transmitters and sparsity-aware detection schemes at the base station. The proposed scheme is well suited for the emerging massive multiple-input multiple-output (MIMO) systems, as well as conventional cellular systems with a small number of base-station antennas. The transmitters employ precoding in time domain to enable the simultaneous transmissions of many users, which could be even more than the number of receive antennas at the base station. The system is modeled as a linear system of equations with block-sparse unknowns. We first adopt the block orthogonal matching pursuit (BOMP) algorithm to recover the transmitted signals. We then develop an improved algorithm, named interference cancellation BOMP (ICBOMP), which takes advantage of error correction and detection coding to perform perfect interference cancellation during each iteration of BOMP algorithm. Conditions for guaranteed data recovery are identified. The simulation results demonstrate that the proposed scheme can accommodate more simultaneous transmissions than conventional schemes in typical small-packet transmission scenarios.Comment: submitted to IEEE Transactions on Wireless Communication

    Interference Cancellation at the Relay for Multi-User Wireless Cooperative Networks

    Full text link
    We study multi-user transmission and detection schemes for a multi-access relay network (MARN) with linear constraints at all nodes. In a (J,Ja,Ra,M)(J, J_a, R_a, M) MARN, JJ sources, each equipped with JaJ_a antennas, communicate to one MM-antenna destination through one RaR_a-antenna relay. A new protocol called IC-Relay-TDMA is proposed which takes two phases. During the first phase, symbols of different sources are transmitted concurrently to the relay. At the relay, interference cancellation (IC) techniques, previously proposed for systems with direct transmission, are applied to decouple the information of different sources without decoding. During the second phase, symbols of different sources are forwarded to the destination in a time division multi-access (TDMA) fashion. At the destination, the maximum-likelihood (ML) decoding is performed source-by-source. The protocol of IC-Relay-TDMA requires the number of relay antennas no less than the number of sources, i.e., RaJR_a\ge J. Through outage analysis, the achievable diversity gain of the proposed scheme is shown to be min{Ja(RaJ+1),RaM}\min\{J_a(R_a-J+1),R_aM\}. When {\smallMJa(1J1Ra)M\le J_a\left(1-\frac{J-1}{R_a}\right)}, the proposed scheme achieves the maximum interference-free (int-free) diversity gain RaMR_aM. Since concurrent transmission is allowed during the first phase, compared to full TDMA transmission, the proposed scheme achieves the same diversity, but with a higher symbol rate.Comment: submitted to IEEE Transaction on Wireless Communicatio

    Let the Tree Bloom: Scalable Opportunistic Routing with ORPL

    Get PDF
    Routing in battery-operated wireless networks is challenging, posing a tradeoff between energy and latency. Previous work has shown that opportunistic routing can achieve low-latency data collection in duty-cycled networks. However, applications are now considered where nodes are not only periodic data sources, but rather addressable end points generating traffic with arbitrary patterns. We present ORPL, an opportunistic routing protocol that supports any-to-any, on-demand traffic. ORPL builds upon RPL, the standard protocol for low-power IPv6 networks. By combining RPL's tree-like topology with opportunistic routing, ORPL forwards data to any destination based on the mere knowledge of the nodes' sub-tree. We use bitmaps and Bloom filters to represent and propagate this information in a space-efficient way, making ORPL scale to large networks of addressable nodes. Our results in a 135-node testbed show that ORPL outperforms a number of state-of-the-art solutions including RPL and CTP, conciliating a sub-second latency and a sub-percent duty cycle. ORPL also increases robustness and scalability, addressing the whole network reliably through a 64-byte Bloom filter, where RPL needs kilobytes of routing tables for the same task
    corecore