42 research outputs found

    Location-dependent services for mobile users

    Get PDF
    Abstract—One of the main issues in mobile services ’ research (M-service) is supporting M-service availability, regardless of the user’s context (physical location, device employed, etc.). However, most scenarios also require the enforcement of context-awareness, to dynamically adapt M-services depending on the context in which they are requested. In this paper, we focus on the problem of adapting M-services depending on the users ’ location, whether physical (in space) or logical (within a specific distributed group/application). To this end, we propose a framework to model users ’ location via a multiplicity of local and active service contexts. First, service contexts represent the mean to access to M-services available within a physical locality. This leads to an intrinsic dependency of M-service on the users’ physical location. Second, the execution of service contexts can be tuned depending on who is requesting what M-service. This enables adapting M-services to the logical location of users (e.g., a request can lead to different executions for users belonging to different groups/applications). The paper firstly describes the framework in general terms, showing how it can facilitate the design of distributed applications involving mobile users as well as mobile agents. Then, it shows how the MARS coordination middleware, implementing service contexts in terms of programmable tuple spaces, can be used to develop and deploy applications and M-services coherently with the above framework. A case study is introduced and discussed through the paper to clarify our approach and to show its effectiveness. Index Terms—Context-awareness, coordination infrastructures, M-services, mobility, multiagent systems. I

    Proceedings of the international conference on cooperative multimodal communication CMC/95, Eindhoven, May 24-26, 1995:proceedings

    Get PDF

    Multi-Agent Systems in Control Engineering: A Survey

    Get PDF
    This paper presents a survey on multi-agent system (MAS) capabilities in control engineering applications. It describes essential concepts of multi-agent systems that are related to the control systems and presents an overview on the most important control engineering issues which MAS can be explored. Most important technical aspects in MAS implementation and development in engineering environment are also explained. Design methodologies, standards, tools, and supporting technologies to provide an effective MAS-based control design are addressed and a discussion on important related standards and protocols is given. Finally, some comments and new perspectives for design and implementation of agent-based control systems are presented

    Agents and Service-Oriented Computing for Autonomic Computing: A Research Agenda

    Get PDF
    Autonomic computing is the solution proposed to cope with the complexity of today\u27s computing environments. Self-management, an important element of autonomic computing, is also characteristic of single and multiagent systems, as well as systems based on service-oriented architectures. Combining these technologies can be profitable for all - in particular, for the development of autonomic computing systems

    A multi-agent system in education facility design

    Get PDF
    This paper deals with a multi-agent system which supports the designer in solving complex design tasks. The behaviour of design agents is modelled by sets of grammar rules. Each agent uses a graph grammar or a shape grammar and a database of facts concerning the subtask it is responsible for. The course of the design process is determined by the interaction between specialised agents. Space layouts of designs are represented by attributed graphs encoding both topological structures and semantic properties of solutions. The agents work in parallel on the common graph, independently generating layouts of different design components while specified node labels evoke agents using shape grammars. The agents’ cooperation allows them to combine a form-oriented approach with a functional-structural one in the design process, where the agents generate the general 3D form of the object based on design requirements together with the space layout based on the functional aspects of the solution. Based on the given design criteria, the agents search for admissible solutions within the design space that constitutes their operating environment. The proposed approach is illustrated by the example of designing kindergarten facilities

    Safe, Scalable, and Complete Motion Planning of Large Teams of Interchangeable Robots

    Get PDF
    Large teams of mobile robots have an unprecedented potential to assist humans in a number of roles ranging from humanitarian efforts to e-commerce order fulfillment. Utilizing a team of robots provides an inherent parallelism in computation and task completion while providing redundancy to isolated robot failures. Whether a mission requires all robots to stay close to each other in a formation, navigate to a preselected set of goal locations, or to actively try to spread out to gain as much information as possible, the team must be able to successfully navigate the robots to desired locations. While there is a rich literature on motion planning for teams of robots, the problem is sufficiently challenging that in general all methods trade off one of the following properties: completeness, computational scalability, safety, or optimality. This dissertation proposes robot interchangeability as an additional trade-off consideration. Specifically, the work presented here leverages the total interchangeability of robots and develops a series of novel, complete, computationally tractable algorithms to control a team of robots and avoid collisions while retaining a notion of optimality. This dissertation begins by presenting a robust decentralized formation control algorithm for control of robots operating in tight proximity to one another. Next, a series of complete, computationally tractable multiple robot planning algorithms are presented. These planners preserve optimality, completeness, and computationally tractability by leveraging robot interchangeability. Finally, a polynomial time approximation algorithm is proposed that routes teams of robots to visit a large number of specified locations while bounding the suboptimality of total mission completion time. Each algorithm is verified in simulation and when applicable, on a team of dynamic aerial robots

    On the Development of Adaptive and User-Centred Interactive Multimodal Interfaces

    Get PDF
    Multimodal systems have attained increased attention in recent years, which has made possible important improvements in the technologies for recognition, processing, and generation of multimodal information. However, there are still many issues related to multimodality which are not clear, for example, the principles that make it possible to resemble human-human multimodal communication. This chapter focuses on some of the most important challenges that researchers have recently envisioned for future multimodal interfaces. It also describes current efforts to develop intelligent, adaptive, proactive, portable and affective multimodal interfaces

    A Framework for Modeling Human Behavior in Large-scale Agent-based Epidemic Simulations

    Get PDF
    Acknowledgements We thank Cuebiq; mobility data is provided by Cuebiq, a location intelligence and measurement platform. Through its Data for Good program, Cuebiq provides access to aggregated mobility data for academic research and humanitarian initiatives. This first-party data is collected from anonymized users who have opted-in to provide access to their location data anonymously, through a GDPR and CCPA compliant framework. To further preserve privacy, portions of the data are aggregated to the census-block group level. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Nonlinear Control Strategies for Cooperative Control of Multi-Robot Systems

    Get PDF
    This thesis deals with distributed control strategies for cooperative control of multi-robot systems. Specifically, distributed coordination strategies are presented for groups of mobile robots. The formation control problem is initially solved exploiting artificial potential fields. The purpose of the presented formation control algorithm is to drive a group of mobile robots to create a completely arbitrarily shaped formation. Robots are initially controlled to create a regular polygon formation. A bijective coordinate transformation is then exploited to extend the scope of this strategy, to obtain arbitrarily shaped formations. For this purpose, artificial potential fields are specifically designed, and robots are driven to follow their negative gradient. Artificial potential fields are then subsequently exploited to solve the coordinated path tracking problem, thus making the robots autonomously spread along predefined paths, and move along them in a coordinated way. Formation control problem is then solved exploiting a consensus based approach. Specifically, weighted graphs are used both to define the desired formation, and to implement collision avoidance. As expected for consensus based algorithms, this control strategy is experimentally shown to be robust to the presence of communication delays. The global connectivity maintenance issue is then considered. Specifically, an estimation procedure is introduced to allow each agent to compute its own estimate of the algebraic connectivity of the communication graph, in a distributed manner. This estimate is then exploited to develop a gradient based control strategy that ensures that the communication graph remains connected, as the system evolves. The proposed control strategy is developed initially for single-integrator kinematic agents, and is then extended to Lagrangian dynamical systems
    corecore